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Abstract

Accurate cell detection in multiplex immunofluorescence (mlF) is crucial for quantifying
and analyzing the spatial distribution of complex cellular patterns within the tumor mi-
croenvironment. Despite its importance, cell detection in mIF is challenging, primarily
due to difficulties obtaining comprehensive annotations. To address the challenge of lim-
ited and unevenly distributed annotations, we introduced a streamlined semi-supervised
approach that effectively leveraged partially pathologist-annotated single-cell data in mul-
tiplexed images across different cancer types. We assessed three leading object detection
models, Faster R-CNN, YOLOv5s, and YOLOvS8s, with partially annotated data, selecting
YOLOVSs for optimal performance. This model was subsequently used to generate pseudo
labels, which enriched our dataset by adding more detected labels than the original par-
tially annotated data, thus increasing its generalization and the comprehensiveness of cell
detection. By fine-tuning the detector on the original dataset and the generated pseudo
labels, we tested the refined model on five distinct cancer types using fully annotated data
by pathologists. Our model achieved an average precision of 90.42%, recall of 85.09%, and
an F1 Score of 84.75%, underscoring our semi-supervised model’s robustness and effective-
ness. This study contributes to analyzing multiplexed images from different cancer types
at cellular resolution by introducing sophisticated object detection methodologies and set-
ting a novel approach to effectively navigate the constraints of limited annotated data with
semi-supervised learning.

Keywords: Semi-supervised Learning, Cell Detection, Computational Pathology, Multi-
plex Imaging
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1. Introduction

The introduction of multiplex immunofluorescence (mIF) imaging techniques marks a signif-
icant advancement in tissue analysis, enabling the in situ quantification of multiple proteins
(Amitay et al., 2023). Cell detection from mIF images is a fundamental task, facilitating
the quantification of the tumor microenvironment and spatial configuration with identified
cell locations and types, thereby providing insight into tumor progression. Integrating deep
learning into medical imaging and pathology has significantly led to advancements in disease
diagnosis and treatment strategies. Previous methods mainly formulated cell identification
as segmentation under the fully supervised fashion, and cell phenotyping primarily relied
on the expression of proteins. Schmidt et al. presented StarDist, a novel method for cell
segmentation in microscopy images, utilizing star-convex polygons for segmentation and
effectively handling crowded cellular environments (Schmidt et al., 2018). Complementing
this, Greenwald et al. developed Mesmer, a deep learning algorithm for whole-cell segmen-
tation in tissue images, which achieved human-level performance and addressed the critical
challenge of cell segmentation in tissue imaging (Greenwald et al., 2022). Also, Stringer
et al. introduced Cellpose, a generalist algorithm for precise cell segmentation across vari-
ous microscopy image types without requiring retraining (Stringer et al., 2021). Moreover,
groundbreaking advancements have been made by Amitay et al. with the development of
CellSighter, a neural network demonstrating over 80% accuracy in cell classification from
multiplexed images (Amitay et al., 2023). Additionally, unsupervised methods were also
incorporated for cell phenotyping. Bortolomeazzi et al. introduced SIMPLI, a versatile
tool for multiplexed image analysis by integrating cell segmentation and classification with
unsupervised and supervised methods (Bortolomeazzi et al., 2022).

Despite these advancements, the field still faces challenges concerning the limited avail-
ability of comprehensively annotated datasets, heterogeneity across cancer types, and the
intricate task of cell segmentation and classification in histology images. Several inno-
vative approaches have been introduced to address the need for improved object detec-
tion methods in natural scene images. The study by Abbasi et al. proposed enhancing
YOLO’s performance on partially labeled datasets by creating pseudo-labels for unlabeled
instances, significantly improving generalization performance (Abbasi et al., 2020). Niemei-
jer et al. developed a method for fusing datasets with partially overlapping classes, employ-
ing pseudo-labeling with uncertainty quantification to enhance model robustness (Niemeijer
et al., 2023). However, these advanced techniques have not been fully investigated for mIF
images.

Tackling the challenges of cell detection posed by tumor heterogeneity and lack of com-
prehensive annotations in mIF images, our study underscores the critical role of precise
quantification of complex cellular patterns in predicting immune cells within the tumor
microenvironment—immunotherapeutic responses. We initially trained three detectors on
partially annotated datasets and selected the best one based on the performance. Next,
we used pseudo labels produced by this model to train a new detector. Furthermore, we
comprehensively compared our method’s performance across different portions of partial
annotations. To finalize the validation of our pipeline, we performed evaluations on five
specific cancer types: Papillary Urothelial Carcinoma (PUC), Penile Squamous Cell Car-
cinoma (PSCC), Urothelial Carcinoma (UC), Cholangiocarcinoma (CC), and Rectal Squa-
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mous Cell Carcinoma (RSCC), all fully annotated by pathologists. It further highlights our
approach’s robustness, effectiveness, and generalization, establishing a new benchmark in
medical image analysis and pathology.

2. Methodology
2.1. Methodology Overview

To generate fully annotated images, this study delves deeply into medical image analysis,
focusing on evaluating the performance of three leading object detection models: Faster R-
CNN (Ren et al., 2015), YOLOv5s (Jocher, 2020), and YOLOv8s (Ultralytics, 2023). These
models are assessed for their proficiency in detecting and classifying cells within mIF images,
a process integral to advancing the precision and speed of object detection, pivotal factors
in early and accurate cancer diagnosis. Initially, all detectors were trained using a dataset
that was partially annotated. To create this dataset, 10 whole mIF images were used,
and patches were extracted from these images for training. Additionally, the dataset was
expanded through the use of augmentation techniques. Then, the best performing detector,
determined by the comparative analysis, was selected to generate pseudo labels (additional
labels generated by the detector with the confidence level greater than 90%) in an iterative
training loop. These pseudo labels were then used to retrain a new detector, enhancing
the model’s learning process and improving its detection capabilities. Figure 1 provides a
schematic overview for generating pseudo labels and employing a semi-supervised learning
approach for the detection and classification of cells, including immune cells (CD45+),
epithelial and cancer cells (panCK+), and others (CD45-panCK-).
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Figure 1: Schematic for generating pseudo-labels and utilizing a semi-supervised learning
approach for the detection of cells, including immune cells (CD45+), epithelial
and cancer cells (panCK+), and others (CD45-panCK-).

2.2. Pre-processing and Annotation Strategy for Training

This study employs an mIF dataset of histology images from papillary urothelial carcinoma
tumors of 10 different patients, obtained through our Patient Mosaic initiative following
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IRB approval, and was generated in line with the GeoMx DSP manufacturer’s recommen-
dations (nanoString). Recognizing the labor-intensive nature of annotating large histology
images, the study employed a partial annotation strategy. In this study, pathologists anno-
tated approximately 10% of the cells in each of the 10 images, totaling 11,643 cells labeled
as CD45, 15,228 cells labeled as panCK, and 9,489 cells labeled as Others. Annotations
were made by marking points at the centers of cells for rapid yet accurate identification
of each cell type. Subsequently, we drew a fixed square bounding box with a length of 50
pixels around each center point. This step was crucial for converting the point annotations
into appropriate inputs for object detection models like YOLO and Faster R-CNN, which
necessitate bounding box information. To manage the extensive size of these images, a
patch extraction method was applied, creating non-overlapping patches of 640x640 pixels
that retain essential cellular features critical for accurate detection (Figure 2). The dataset
was further enriched through data augmentation techniques such as flipping, zooming, ro-
tating, and blurring, expanding the dataset to 51,924 patches, of which 70%, 15%, and 15%
were used for training, validation, and testing, respectively. The 15% testing portion was
carefully chosen from different samples and did not include any augmented images to ensure
the model was tested on completely new data.

2.3. Model Training, Pseudo Label Generation, and Validation

The pseudo labels generation phase involved pretraining the YOLOv8s model with partially
annotated data, guided by semi-supervised object detection strategies to effectively utilize a
limited number of labeled images (Gao et al., 2019; Jeong et al., 2019). To further enhance
our model’s performance and prevent overfitting, we incorporated dropout with a rate of
0.3, extensive data augmentation including mixup and mosaic techniques with ratios of 0.5
and 0.1 respectively, and regularization with an L2 penalty coefficient of 0.01, alongside
early stopping with a patience of 5 epochs to ensure generalization during the training
process. Moreover, the training was conducted for a shorter span, capped at 50 epochs, to
avoid excessive fitting to the partial dataset. This was followed by the generation of pseudo
labels, a process inspired by methods such as CSD (Jeong et al., 2019), specifically, we
borrowed the idea of using image augmentations, such as flipping, to enforce consistency.
In our approach, pseudo labels were first generated by selecting predictions with a
confidence level above 90%. These high-confidence pseudo labels were ensured to contain
almost all initial partial annotations from pathologists. This comparison validated the
accuracy of all pseudo labels, acting as an additional verification step. Consequently, the
method used a confidence threshold for the initial generation and ground truth comparison
for validation, ensuring that only the most reliable pseudo labels were added to the dataset.
Although the quality of pseudo labels was not directly evaluated by pathologists, the
final model trained with these labels was assessed on the fully annotated dataset. After the
pretraining phase with the partial dataset from papillary urothelial carcinoma, we merged
the original labels with the pseudo labels (Initially, the annotated dataset by pathologists
contained 11,643 cells labeled as CD45, 15,228 cells labeled as panCK, and 9,489 cells
labeled as Others, after adding pseudo-labels generated through semi-supervised learning,
the dataset expanded to include approximately 140,000 CD45 cells, 200,000 panCK cells,
and 120,000 cells labeled as Others). This enriched dataset was then utilized to retrain the
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YOLOv8s model. We also analyzed the model’s performance at different annotation levels
during this retraining phase. Specifically, we considered 100% of the annotations for each
class. Subsequently, we experimented with excluding 50% and 75% of the annotations for
each class to assess the model’s performance under varying levels of annotation scarcity
(results presented in the Appendix Section A). The study also included fully annotated
datasets of five distinct cancer types, utilized in the final stages of validation to assess
the model’s performance across varied cancer cell appearances and histology conditions, as
illustrated in Figure 2. These datasets were derived from five distinct cancer types, four of
which are unseen types during the training process. For each case, four patches of images
were fully annotated by two independent pathologists, ensuring high data accuracy. Our
primary computational resource was a Linux server equipped with dual NVIDIA GeForce
RTX 4090 GPUs, 256GB of random access memory, and a 32-core CPU, ensuring optimal
performance and efficiency.
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Figure 2: Overview of the dataset showcasing cell morphology, the number of images and
annotations per class after augmentation, and fully annotated cancer types for
final testing.

3. Results
3.1. Initial Phase: Selection of Best Object Detection Model

This section encapsulates the comparative performance analysis of various object detec-
tion networks, specifically focusing on their capabilities in identifying distinct cell types.
After the initial phase, we evaluated the performance of these models, ultimately select-
ing YOLOvS8s for further processes based on its optimal performance. Table 1 provides a
detailed comparison of the object detection models, showcasing YOLOv8s’s performance
in accurately detecting different types of cancer cells. The table presents key measures of
model performance, recall, and mAP50 (mean Average Precision at 50% Intersection Over
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Union (IoU)), which are central to our evaluation criteria. YOLOv8s achieved excellent
recall and mAP50 scores for all types of cells, with recall scores consistently high, ranging
from 0.97 to 0.98. Faster R-CNN showed lower performance, with its recall and mAP50
scores varying more widely across different cell types. YOLOv)s also demonstrated high
mAP50 and competitive recall scores, nearly matching those of YOLOvS8s in certain aspects.
However, the comprehensive analysis highlights YOLOv8s’s slight edge in performance, es-
pecially in terms of recall, marking it as the most accurate and reliable among the tested
models.

Table 1: Performance comparison of object detection networks across cell types, trained on
an initially partially annotated dataset with 250 epochs.

Metric Faster RCNN YOLOvV5s YOLOvS8s

CD45 panCK Others | CD45 panCK Others | CD45 panCK Others
Recall 0.850 0.824 0.798 0.962 0.969 0.966 0.971 0.975 0.987
mAP50 | 0.846 0.815 0.791 0.983 0.985 0.984 0.985 0.993 0.988

3.2. Final Phase: Pseudo Label Integration and Validation on Fully
Annotated Dataset

In the final phase, we enhanced YOLOvS8s by integrating pseudo labels with the original
dataset, which involves semi-supervised learning and iterative refinement. To validate the
performance, we used four patches of size 640x640 pixels for each cancer type, which have
been fully annotated by two pathologists. The involvement of pseudo labels significantly
improved the model’s ability to detect cells (Figure 3A, all the p-values < .0001), validating
the effectiveness of the strategy and ensuring the quality of pseudo labels. Figure 3B
exemplifies four annotated patches from the PSCC, UC, CC, and RSCC, illustrating the
comparison of the cell counts between the pathologists’ annotations and the predictions
made by YOLOvS8s. The comprehensive validation of the YOLOv8s model across various
cancer types is presented in Table 2. The model was tested against five cancer types: PUC,
PSCC, UC, CC, and RSCC. The model showed high precision, recall and F1 score rates in
most categories, with CD45 cells in RSCC and CC demonstrating perfect recall (100%). In
the case of PSCC, there were no CD45 cells present in the patches examined, as indicated
by the dashes in the table. The model also performed strongly in panCK and Others cell
types, especially in PSCC and PUC, showing high precision and recall. Additional details
regarding the Area Under the Curve (AUC) metrics ,and the average number of annotations
per class for these five types of cancers are provided in the Appendix, Section C, and
Section B.

In our study, the annotations provided by pathologists were centered on each cell rather
than including segmentation masks. Still, we aspired to compare our results using state-of-
the-art cell segmentation methods. Specifically, we applied StarDist (with its ” Versatile”
model for fluorescent nuclei and the "DSB 2018” model from their 2D paper) (Schmidt et al.,
2018) and Cellpose (using their latest ”"cyto3” model) (Stringer and Pachitariu, 2024) to
predict segmentation masks on our validation datasets. For evaluation, we matched the
centers of the predicted segmentations to the bounding boxes of our annotated cell centers.
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The StarDist method yielded a precision of 0.450, a recall of 0.210, and an F1 score of 0.284,
while Cellpose demonstrated a precision of 0.862, a recall of 0.230, and an F1 score of 0.363.
Throughout this evaluation, we considered all cells as a single category and utilized only

the blue channel of the images.
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Figure 3: (A): Comparison of YOLOvS8s performance on the fully annotated dataset when

initially trained on partial annotations and after the integration of pseudo labels,
(B): Comparison of cell counts between pathologist annotations and YOLOvS8s
predictions trained with partial annotations and pseudo labels. The top images
show pathologists fully annotated the patches, while the bottom images display
YOLOvVS8’s detection. Red dots represent CD45 cells, cyan dots represent panCK
cells, and magenta dots indicate Others cell type. The numbers at the bottom
denote the count of each cell type.

Table 2: Performance of YOLOvVS8s on five Cancer Types. The cancer types are indicated as

PUC (Papillary Urothelial Carcinoma), PSCC (Penile Squamous Cell Carcinoma),
UC (Urothelial Carcinoma), CC (Cholangiocarcinoma), RSCC (Rectal Squamous
Cell Carcinoma).

Type CD45 panCK Others

P R F1 P R F1 P R F1
PUC | 1.000 0.881 0.937 | 1.000 0.771 0.871 | 1.000 0.886 0.939
PSCC - - - 1.000 0.891 0.943 | 0.386 1.000 0.557
ucC 1.000 0.921 0.959 | 1.000 0.734 0.847 | 0.452 1.000 0.623
CcC 0.880 1.000 0.936 | 1.000 0.751 0.858 | 1.000 0.719 0.837
RSCC | 0.941 1.000 0.969 | 1.000 0.857 0.923 | 1.000 0.500 0.667

4. Discussion

4.1. Interpretation of Results

This study addressed the challenge of partially annotated mIF images through a semi-
supervised deep learning approach, focusing on detecting three cell classes: CD45, panCK,
and Others. Cell detection in mIF is necessary to quantify and analyze the intricate spatial
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distribution of cellular patterns within the tumor microenvironment, which is crucial for un-
derstanding immunological studies in oncology. The model’s validation on fully annotated
patches across five cancer types, despite being trained on a dataset with partial annota-
tions (approximately 10% of full annotations), not only underscores its capability to detect
the majority of cells within the patches but also demonstrates its versatility in addressing
different cancer types. This adaptability and reliability are evident in the consistent per-
formance across various histology conditions, ranging from Papillary Urothelial Carcinoma
to Rectal Squamous Cell Carcinoma. The model’s adeptness in various contexts reflects
findings similar to those of Amitay et al., who underscored the significance of accurate cell
classification in computational pathology (Amitay et al., 2023). Furthermore, the ability of
YOLOVSs to deliver high performance, even with a limited set of annotations, indicates its
robust learning mechanism and capacity to generalize from sparse data. This characteristic
is particularly valuable considering the resource-intensive nature of manual annotations in
medical imaging. This robustness and adaptability make our model a promising tool in
digital pathology, opening new avenues for efficient and accurate cancer cell detection and
classification.

4.2. Limitations, Future Work, and Broader Implications

While the study presents promising results, certain limitations and opportunities for future
research are apparent. This study performed annotations by marking points at the centers
of cells rather than using bounding box techniques, it could limit the model’s ability to fully
understand the spatial context of each cell, which could be critical for certain analytical
tasks like cells segmentation. Future endeavors could focus on refining the model’s perfor-
mance under sparse annotations, potentially employing advanced semi-supervised learning
techniques, as highlighted by Xu et al. (Xu et al., 2021). Furthermore, extending the
model’s detection capabilities to encompass a broader range of cell types and pathologi-
cal conditions could offer a more holistic tool for pathologists, possibly integrating with
comprehensive analysis software like SIMPLI, as suggested by Bortolomeazzi et al. (Bor-
tolomeazzi et al., 2022). Also, the absence of CD45 marker values in PSCC samples due
to the non-availability of CD45 in PSCC patches points to a limitation in evaluating the
model’s capability to detect the CD45 marker in PSCC, reflecting a need for more compre-
hensive data to validate the model’s performance for this specific marker. Moreover, while
our primary objective was to identify cell centers and cells detection, comparisons with
state-of-the-art methods such as StarDist and Cellpose highlight the potential for future
research to enhance cell annotations by incorporating segmentation masks, thereby poten-
tially improving the performance metrics against state-of-the-art segmentation methods.

In summary, our study contributes to mIF imaging analysis by introducing a semi-
supervised learning model specifically designed for cell detection across different cancer
types. By integrating a novel pseudo-label generation strategy, we aim to improve detection
accuracy. This method showcases the potential of the YOLOv8s model to address the unique
challenges presented by mIF datasets, potentially moving us toward enhanced precision and
efficiency in healthcare diagnostics.
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Data and Code Availability

The sample dataset, source code, and any additional materials supporting the findings of
this study are available in the following GitHub repository: https://github.com /idso-fal-
pathology /semi-supervised-cell-detection
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Appendix A. Annotation Impact: Analyzing Model Performance at
Different Annotation Levels

Given the superior performance of YOLOvS8s in detecting cells, as evidenced in Table 3,
we further investigated its robustness under varying annotation scenarios. Specifically, we
evaluated the model’s performance when trained with different proportions of annotated
data: 100%, 50%, and 25%. The results of this experiment, detailed in Table 2, provide
insight into the minimum level of annotations required to maintain acceptable detection
results. As presented in Table 3, YOLOv8s maintain respectable performance metrics with
a full annotation set (100%). However, a notable decrease in precision, recall, and mAP50 is
observed as the level of annotations is reduced. With 50% annotations, the model achieves
a precision of 0.721 and a recall of 0.743, alongside a mAP50 of 0.797, indicating a moderate
decline in performance. The impact is more noticeable at 25% annotations, where precision
drops to 0.193, recall to 0.515, and mAP50 to 0.182, suggesting a significant compromise
in the model’s detection capabilities. It is important to note that our strategy for reducing
annotations was methodical. We ensured an even distribution of annotations across different
cell types rather than removing them randomly. This approach was intended to maintain a
balanced representation of each cell type in the training data. These findings highlight the
importance of enough annotations for training robust deep-learning models like YOLOvS8s.
While the model demonstrates a certain degree of tolerance to reduced annotations, ensuring
a higher percentage of annotated data is imperative for optimal performance, especially in
the critical domain of cancer cell detection.
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Table 3: YOLOvS8s performance with varying annotation levels (250 epochs.)

Metric 100% Annotations 50% Annotations 25% Annotations

Precision 0.986 0.721 0.193
Recall 0.967 0.743 0.515
mAP50 0.989 0.797 0.182
Appendix B. Average Annotation Comparison Between Pathologists and
YOLOvS8s

Figure 4 illustrates the average number of annotations divided into CD45, panCK, and
Others identified by pathologists and the YOLOv8s algorithm in five cancer types. The
chart shows that pathologists annotate panCK markers more frequently than YOLOvS8s
in all cancer types, with a particularly high average in RSCC and PSCC. In contrast, for
CD45, pathologists and YOLOvS8s have a lower and closely matched average number of an-
notations. The Others cells show a variable pattern, with pathologists generally identifying
more annotations except in CC, where YOLOvS8s has a higher count. This visualization
represents the comparison between pathologists’ manual annotations and automated an-
notations by the YOLOvS8s algorithm, emphasizing the differences and potential areas for
algorithmic improvement or training.
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Figure 4: Average annotation comparison between pathologists and YOLOv8s for CD45,
panCK, and Others in 5 distinct cancers type.
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Appendix C. Model Performance Evaluation via AUC Metrics

We assessed our model’s classification capabilities for three cell types—CD45, panCK, and
Others—using Receiver Operating Characteristic (ROC) curves and AUC metrics, against
pathologist-provided ground truth annotations. This approach highlights our final model’s
precision in identifying each cell type within cancerous tissues, illustrating the balance
between sensitivity and specificity.

The model demonstrated variable accuracy across cell types, indicated by the AUC
scores: CD45 achieved a high score of 0.90, showing excellent model performance in iden-
tifying CD45 cells. In comparison, panCK and Others cell types scored 0.80 and 0.83,
respectively, suggesting areas for improvement.These findings underscore the potential of
our model in supporting pathologists by rapidly and accurately classifying cellular structures
in cancerous tissues.

Appendix D. Patient Mosaic Team Members

For the review process, the names of individuals in the Patient Mosaic Team have been
omitted.

The following individuals are members of the Patient Mosaic Team: Nadim J Ajami,
Azad Ali, Franklin Alvarez, Brittany Alverez, Bianca Amador, Surosh Avandsalehi, Claudia
Alvarez Bedoya, Katrice Bogan, Elena Bogantenkova, Elizabeth Bonojo, Maria Neus Bota-
Rabassedas, Elizabeth M Burton, Noble Cadle, Vanessa Castro, Chi-Wan Chow, Randy
Aaron Chu, Candace Cunningham, Carrie Daniel-MacDougall, Nana Kouangoua Diane C,
Mary Domask, Sheila Duncan, Andrew Futreal, Vivian Gabisi, Jessica Gallegos, Andrea
Galvan, Ana Garcia, Jose Garcia, Celia Garcia-Prieto, Christopher Gibbons, Jonathan
Benjamin Gill, Dominic Guajardo, Curtis Gumbs, Kristin J Hargraves, Tim Heffernan,
Joshua Hein, Sharia Hernandez, Charlotte Hillegass, Yasmine M Hoballah, Theresa Honey,
Chacha Horombe, Habibul Islam, Stacy Jackson, Jeena Jacob, Akshaya Jadhav, Robert
Jenq, Weiguo Jian, Juliet Joy, Isha Khanduri, Walter Kinyua, Laura Klein, Mark Knafl,
Larisa Kostousov, Ying-Wei Kuo, Wenhua Lang, Barrett Craig Lawson, Alexander Lazar,
Jack Lee, Erma Levy, XiQi ’Cece’ Li, Latasha D Little, Yang Liu, Yan Long, Vielka Lopez,
Wei Lu, Sandra Lugo, Aaliyah Maldonado, Jared Malke, Asri Margono, Dipen Maheshb-
hai Maru, Grace Mathew, Brian McKinley, Jennifer Leigh McQuade, Courtney McRuf-
fin, Gertrude Mendoza, Christopher Miller, Raymond Montoya, Francisco Motemayor,
Theresa Nguyen, Heather Perez, Juan Posadas Ruiz, Sabitha Prabhakaran, Mallory Psenda,
Gabriela Raso, Mike Roth, Pranoti Sahasrobhojane, Amber Savant, Keri L Schadler, Ale-
jandra Serrano, Kenna R Shaw, Julie M Simon, Elizabeth Sirmans, Luisa Maren Solis Soto,
Xingzhi 'Henry’ Song, Meghan Stennis, Huandong 'Howard’ Sun, Maria Chang Swartz,
Marialeska Tariba-Edick, Christopher Vellano, Angela Walker, Ignacio Ivan Wistuba, Scott
Eric Woodman, DeArtura Young, Jianhua ’John’ Zhang, Haifeng Zhu, Hui ’Helen’ Zhu,
Olga Bat, Shadarra Crosby, Ellie Freebern, Cindy Hwang, Diana Kouangoua, Yang Li,
Sharon Miller, Xiaogang "Sean’ Wu.
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Figure 5:

SEMI-SUPERVISED CELL DETECTION IN IMMUNOFLUORESCENCE IMAGING

Receiver Operating Characteristic (ROC)

i —CDA45 (AUC = 0.90)
——panCK (AUC = 0.80)
//’ —Others (AUC = 0.83)
0 0.2 0.4 0.6 0.8
False Positive Rate (FPR)
ROC curves and AUC scores for CD45 (0.90), panCK (0.80), and Others (0.83),

reflecting the model’s classification efficacy for three cell types. Each curve delin-
eates the trade-off between the True Positive Rate and the False Positive Rate,

offering a quantifiable accuracy measure.
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