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ABSTRACT

In this paper, we tackle source-free domain generalization (SFDG), where the ob-
jective is to perform well on an unseen target domain using only models trained on
source domains, without assuming any access to labeled source images. We pro-
pose an effective, yet simple method for solving SFDG by using unlabeled target
data available only during inference to give a dynamic, adaptive prediction at the
batch-level. Specifically, during test-time, we (1) pass the test batch through each
source model, (2) select as pseudo-label the class with the highest average proba-
bility score, (3) minimize cross-entropy loss for each model using the pseudo-label
and finally (4) forward pass through the adapted models and predict the class with
the highest average probability. We compare our test-time pseudo-labeling method
TEPLA, with a wide variety of baselines and outperform them on average accu-
racy across four benchmark DG datasets, namely PACS, OfficeHome, VLCS and
TerraIncognita.

1 INTRODUCTION

Machine learning models deployed in the real world often encounter out-of-training domain sam-
ples including distribution shifts due to weather (Volk et al., 2019), illumination (Dai & Gool, 2018)
or location (Varma et al., 2019) conditions. Deep neural networks (DNNs) are known to show per-
formance deterioration in the presence of domain shift (Gulrajani & Lopez-Paz, 2020). A plethora
of problem settings and methods (Ben-David et al., 2010; Muandet et al., 2013; Narayanan et al.,
2022; Ahmed et al., 2021) have been proposed in recent years to build models which are robust to
domain shift. Settings differ in the varying degrees of assumptions that they make on the availability
of labeled data in the source and target domains, during training time as well as during inference
(see Sec. A). For instance, Unsupervised Domain Adaptation (UDA) methods learn a model by as-
suming concurrent access to labeled source data and unlabeled target data, whereas DG learns from
only a labeled set of source domains while making no assumptions about the target.

Although existing DG methods have been important stepping stones towards building practical mod-
els robust to domain shift, these methods require access to data from the source domains, while
learning a model for an unseen target domain. Governments are increasingly making stronger per-
sonal data sharing laws, inducing privacy concerns in sharing source domain data. In certain other
cases, sharing source data might simply not be possible due to privacy, bandwidth, management and
storage limitations. We thus propose to tackle the problem setting of source-free domain generaliza-
tion (SFDG) (Frikha et al., 2021), where the objective is to learn a model that can perform well on
an unseen target domain using only domain-specific models trained on source domains, without any
explicit access to the labeled source data. By working with only domain-specific models and not the
data, SFDG presents a challenging and practical problem setting, which addresses both data privacy
concerns as well as bandwidth and storage issues.

In a parallel line of work, there is growing interest in using unlabeled data available at test-time
to adapt the model on the fly during inference (Wang et al., 2020; Boudiaf et al., 2022; Sun et al.,
2020). Since unlabeled test samples are available only during inference, test-time adaptation (TTA)
methods use these test samples to optimize on some unsupervised objective, and adapt a DNN model
to the test samples before providing its predictions on them. When test data comes from outside the
training distribution, TTA can be beneficial in adapting to an incoming batch of test samples, rather
than simply using a model frozen after training.
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Figure 1: Overview of our proposed approach TEPLA. Left: We are given domain-specific models
for each source Si which were trained using empirical risk minimization. Right: For each target
image, we get the distribution over classes from each model, take a soft aggregate of the probabilities
for each class and choose the pseudo-label ypl as the most probable class. We then update each
model by minimizing cross-entropy loss using the pseudo-label. Finally, we make a forward pass
through the adapted models and output the soft average label as the prediction.

We propose to solve SFDG by leveraging unlabeled data from the target domain available only
during inference via a simple test-time pseudo-labeling method. Specifically, as shown in Figure
1 during inference, we: (1) forward-pass the test batch through each source model; (2) select as
pseudo-label the class with the highest soft aggregate probability score; (3) minimize cross-entropy
loss for each model using the selected pseudo-label; and finally (4) forward pass through the adapted
models and output the soft average label as the prediction. To the best of our knowledge, giving an
adaptive prediction on an unseen target domain, assuming access only to source models trained on
different domains, is yet unexplored. We evaluate our simple method, TEst-time Pseudo-Labeling
& Averaging (TEPLA) on four benchmark DG datasets – PACS (Li et al., 2017), OfficeHome
(Venkateswara et al., 2017), VLCS (Fang et al., 2013) and TerraIncognita (Beery et al., 2018).
We compare our method with: (1) multiple common sense baseline methods (methods that one may
expect to work on this setting as simple adaptations of well-known strategies); (2) a competing
SFDG method; (3) single-source source-free unsupervised domain adaptation (SF-UDA) methods;
and (4) multi-source source-free UDA (MSF-UDA) methods adapted to TTA. Our results show that
the proposed method outperforms any of these baselines across the considered benchmark datasets.

Our contributions are summarized as follows: (1) We propose TEPLA, a simple method for solving
source-free domain generalization, by leveraging unlabeled data during inference (test-time adapta-
tion); (2) We establish and compare with a variety of sensible baselines, and outperform them on
average accuracy on four DG datasets – PACS, OfficeHome, VLCS and TerraIncognita; (3) We show
connections between our proposed method with self-training and entropy minimization approaches.

2 TEPLA: TEST-TIME PSEUDO LABELING & AVERAGING FOR
SOURCE-FREE DOMAIN GENERALIZATION

2.1 PROBLEM FORMULATION

We assume access to domain-specific models trained on M source domains {Ds
i }Mi=1 denoted by

{fs
θi
}Mi=1. Here each model fs

θi
: X −→ ∆|Y| is parameterized by θi, where X is the input space,

Y is the label space, and ∆|Y| is the probability simplex over the labels. We drop the superscript s
and denote θ = [θ⊺1 θ⊺2 . . . θ

⊺
M ]⊺ as the vector of parameters of all source models. Note that we only

have access to the trained models {fθi}Mi=1 and not the training samples from each domain. Given
the set of domain-specific classifiers the objective is to classify a batch of unlabeled instances B
from an unseen target domain Dt. The unlabeled batch B can be used to optimize an unsupervised
objective to adapt each fθi and output the prediction for that batch. Additionally, we can only use the
current batch B which has arrived for inference – in the real-world where data arrives sequentially,
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we cannot wait for a new batch to arrive for improving the model to give a better prediction on the
current batch.

2.2 METHODOLOGY

We now describe TEPLA, our simple method for source-free domain generalization. We are
given a batch B = {xj}Nj=1 of N samples and a set of domain-specific classifiers {fθi}Mi=1. For
each test-point xj we obtain class-probabilities (or soft-labels), from each source model to get
{fθi(xj)}Mi=1. We then perform an aggregation of all soft-labels to get the hard pseudo-label as
yplj = argmaxy∈Y

1
M

∑M
i=1 fθi(xj). Let L(B, θi) = 1

N

∑N
j=1 L(y

pl
j , fθi(xj)) be the average cross-

entropy loss for the batch w.r.t source model i. We perform one gradient descent step on the sum of
all average cross-entropy losses

∑M
i=1 L(B, θi) and update all source model parameters as:

θ′ = θ − η

M∑
i=1

∇L(B; θi) (1)

where L is the average cross-entropy loss, and θ is the vector of all parameters as defined in sec. 2.1.
Note that in the case of the hard pseudo-label, eq 1 disentangles into M separate updates, one for
each source model – but there is still an interaction between the source-models due to the pseudo-
label. The final prediction for xj ∈ B is obtained by taking an average of predictions made by all
the updated source models:

yj = argmax
y∈Y

1

M

M∑
i=1

fθ′
i
(xj) (2)

It is worth noting that only batch-level access to the test data is assumed, and that too only during
inference. We assume that the models are deployed, and that the adaptation and prediction for the
current samples has to be performed at that instant; we cannot wait for more data to come in to
improve the model.

Connections with entropy minimization and self-training Entropy minimization and its vari-
ants have proven successful in out-of-distribution (OOD) generalization (Wang et al., 2020). The
connection between self-training (Zou et al., 2019) and entropy minimization has been explored in
the past (Chen et al., 2020; Goyal et al., 2022), which we exploit in our method – minimizing the
classifier’s prediction entropy is equivalent to minimizing the cross-entropy when the target pseudo-
label is the soft label obtained from a forward pass of the data on the classifier itself. However, clas-
sical self-training does not incorporate information from other source-models. TEPLA combines
information from multiple domains by selecting a pseudo-label that is an aggregate prediction of all
source models. We also experiment with a soft pseudo-labeling variant using the soft pseudo-label
ȳplj = 1

M

∑M
i=1 fθi(xj).

3 EXPERIMENTS

3.1 BASELINES

We compare our method with the following baselines: (1) Majority Voting: Output the prediction
as a majority vote of all source models; (2) Lowest Entropy: Selecting the model which has the
highest confidence as measured by the lowest entropy; (3) Entropy Weighting: Weighted average of
the source model predictions, where the weights are the inverse entropy of predictions; (4) Random
Source: Select a random source model and use it for prediction; (5) Average Prediction: Take
a soft label average of all source predictions and output the class with the maximum score; (6)
DEKAN Frikha et al. (2021): A student-teacher based SFDG method which inverts source models
to generate images from each domain for training the student; (7) Single-source-free unsupervised
domain adaptation (SF-UDA) Ensembles: We extend multiple SOTA SF-UDA methods (SHOT
(Liang et al., 2021), NRC (Yang et al., 2021), SHOT++ (Liang et al., 2021), BAIT (Yang et al.,
2020)) for TTA by adapting the target batch individually to each source model and taking a soft label
average; (8) Multi-source-free domain adaptation (MSF-UDA): We adapt SOTA MSFDA methods
(DECISION Dong et al. (2021), CAiDA Ahmed et al. (2021)) to the TTA setting, i.e. we train the
model using the respective losses on the target batch, and output the prediction; and (9) Best Source:
An oracle baseline where we look at the best individual source for each target batch and use its
predictions. Additionally, we evaluate on these methods with and without their key modules for
completeness. Further implementation details are provided in Appendix B.2
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Table 1: Average leave-one-domain-out accuracies on PACS (Li et al., 2017), OfficeHome
(Venkateswara et al., 2017), VLCS (Fang et al., 2013) and Terra Incognita (Beery et al., 2018) (Sec.
B.1), using ResNet50. Standard deviation across three seeds is reported here. For each dataset, the
best results are in bold, the second best results are underlined. Baselines explained in Section 3.1

PACS OfficeHome VLCS TerraIncognita Average

Majority Voting 70.4 ± 0.0 64.1 ± 0.0 74.0 ± 0.0 36.0 ± 0.0 61.1
Entropy Weighting 78.1 ± 0.0 68.3 ± 0.0 77.4 ± 0.0 39.5 ± 0.0 65.8
Lowest Entropy 77.5 ± 0.0 66.5 ± 0.0 76.7 ± 0.0 38.4 ± 0.0 64.8
Random Source 75.3 ± 0.0 60.2 ± 0.0 69.6 ± 0.0 36.7 ± 0.0 60.5
Average Prediction 77.7 ± 0.0 68.5 ± 0.0 78.0 ± 0.0 40.5 ± 0.0 66.2

DEKAN 83.7 ± 1.8 65.1 ± 1.0 71.1 ± 3.2 35.5 ± 2.2 63.9

SHOT Ensemble 82.1 ± 3.5 68.0 ± 6.3 76.0 ± 0.9 39.2 ± 2.2 66.3
BAIT Ensemble 82.3 ± 4.3 68.2 ± 6.5 73.3 ± 0.9 37.9 ± 2.5 65.4
SHOT++ Ensemble 86.3 ± 1.1 69.3 ± 0.6 77.5 ± 2.1 40.0 ± 3.8 68.3
NRC Ensemble 82.5 ± 3.4 68.0 ± 6.3 76.0 ± 1.1 38.9 ± 1.5 66.4

CAiDA w/o Ent 80.7 ± 3.9 67.4 ± 8.4 68.3 ± 3.8 37.5 ± 5.3 63.5
CAiDA w/o Div 81.1 ± 4.2 62.2 ± 5.5 68.2 ± 3.9 38.6 ± 5.4 62.5
CAiDA w/o Cls 80.8 ± 3.9 62.1 ± 5.5 68.2 ± 4.1 38.6 ± 5.6 62.4
CAiDA w/o Crc 81.1 ± 4.3 62.0 ± 5.3 68.4 ± 4.0 38.2 ± 6.0 62.4
CAiDA 81.1 ± 4.2 67.7 ± 8.5 68.4 ± 4.0 38.2 ± 6.0 63.9
DECISION 81.5 ± 1.0 67.5 ± 6.8 72.4 ± 1.6 38.0 ± 2.6 64.9

TEPLA-Soft (Ours) 85.8 ± 0.1 69.7 ± 0.2 78.4 ± 0.1 39.8 ± 0.1 68.4
TEPLA (Ours) 88.1 ± 0.3 70.2 ± 0.2 78.0 ± 0.2 40.3 ± 0.2 69.2
Best Source (Oracle) 74.7 ± 0.0 65.1 ± 0.0 77.8 ± 0.0 47.1 ± 0.0 66.2

3.2 RESULTS

Table 1 summarizes the results. As stated above, we compare TEPLA with a wide variety of simple
baselines along with more complicated SFDG, SF-UDA and MSF-UDA methods adapted to work in
the TTA setting. TEPLA has the highest average accuracy across all four datasets, and is second-best
only on TerraIncognita – despite its simplicity. We outperform simple baselines by 3.0% ∼ 8.7%,
DEKAN by 5.3%, SF-UDA methods by 0.9% ∼ 3.8% and MSF-UDA methods by 4.3% ∼ 6.8%.
Notably, our method has far less variance than UDA baselines on all datasets. The high variance
of the UDA methods may be explained by the fact that they often have multiple loss terms in their
objective, each with their own hyperparameters, and are constrained to use only images available
in the batch that has arrived for inference. We also observe that simple baselines are competitive
for most datasets we consider, the notable exception being PACS. Particularly, average prediction
seems to be performing on par with even the best source oracle method. We also experiment with
soft pseudo-labeling (TEPLA-Soft), but empirically find hard pseudo-labeling to work better.

4 CONCLUSION

In this paper, we propose TEPLA, a simple, yet effective test-time adaptation method based on
pseudo-labeling for solving the task of source-free domain generalization. We establish, compare
and outperform a variety of baselines on four benchmark domain shift datasets, as measured by av-
erage accuracy. Our results indicate that for SFDG, although using test-time unlabeled data is ben-
eficial, it may make more sense to employ simple methods instead of complicated multi-objective,
hyper-parameter sensitive pipelines, considering that a deployed model might be constrained by la-
tency and storage limitations. It is worth noting that in the SFDG setting, due to the absence of
labeled data in both source and target domains, providing performance guarantees may be chal-
lenging, and it is possible for the model to silently degrade. Although, one can use unsupervised
empirical measures such as the prediction entropy as proxy measures for accuracy, reliable unsuper-
vised monitoring of model performance is still a difficult, open problem. Until reliable correlations
between unsupervised measures and actual model performance are established, it might be prudent
to have periodic manual checks in deployed models, even more so in safety-critical applications.
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Setting Source Domains Target Domain Access

Source-Free Multiple Sources Offline Online

Domain Generalization (DG) (Gulrajani & Lopez-Paz (2020)) × ✓ × ×
Source-Free Domain Generalization (SFDG) (Frikha et al. (2021)) ✓ ✓ × ×
Unsupervised Domain Adaptation (UDA) (Ben-David et al. (2010)) × × ✓ ×
Source-Free Domain Adaptation (SF-UDA) (Liang et al. (2020)) ✓ × ✓ ×
Multi-Source Source-Free DA (MSF-UDA) (Ahmed et al. (2021)) ✓ ✓ ✓ ×
Test-time Adaptation (TTA) (Wang et al. (2020)) ✓ × × ✓
Ours ✓ ✓ × ✓

Table 2: Comparison with other related settings in literature. We propose to address a setting where
we assume access only to multiple source models, and not the data used to train those models, to
give an adaptive prediction during inference.

A RELATED WORK

Domain Generalization & Unsupervised Domain Adaptation. Domain Generalization (DG)
(Gulrajani & Lopez-Paz, 2020; Wang et al., 2022) methods try to learn a model using labeled data
from multiple source domains in order to maximize performance on an unseen target domain. These
methods generally transform the source data to a representation space where domain-invariant fea-
tures, relevant for classification in the target domain, are captured. Please see (Wang et al., 2022)
for a detailed survey of DG methods. On the other hand, Unsupervised Domain Adaptation (UDA)
(Wilson & Cook, 2020) methods work under a relatively more relaxed setting where simultane-
ous access to source and target domains is assumed. Multiple classes of methods exist for UDA
such as adversarial-learning (Zhang et al., 2018), pseudo-labeling (Wang & Breckon, 2020) and
reconstruction-based (Ghifary et al., 2016) methods. Nonetheless, UDA methods cannot be used in
scenarios where data privacy needs to be ensured. Additionally, it can be cumbersome to manage
multiple large source domain datasets when compared to sharing source models alone.

Source-Free Domain Adaptation. To alleviate the UDA assumption of simultaneous access to
source and target images, source-free domain adaptation methods (Fang et al., 2022) were proposed,
which learn to adapt to the target domain using only the source model without access to source data,
along with an offline unlabeled target dataset. These methods typically refine the pseudo-labels
generated by the source model for the target domain using self-supervision (Liang et al., 2020) or
regularization (Qiu et al., 2021) approaches. However, unlike our approach, beyond having offline
access to target domain samples, these methods adapt only from a single source model.

Multi-Source Source-free UDA (MSFDA) (Dong et al., 2021; Ahmed et al., 2021) methods, similar
to our setup, learn from multiple domain-specific models without assuming access to the labeled
source data, and the model is adapted only using unlabeled images from the target domain. But,
similar to SFDA, the adaptation process is done in an offline manner with knowledge of the target
data. Unlike MSFDA, our method works completely during inference time on an unseen target
domain, of which there is no prior knowledge.

Test-time Adaptation. As a development in recent years, test-time adaptation (TTA) methods
make use of the incoming test batch to optimize the model on some unsupervised objective to give
a more aligned prediction for that batch. Unlike standard supervised learning methods, which keep
the model frozen once training is done, TTA methods attempt to alter the decision surface during
inference based on auxiliary, unsupervised objectives. For instance, Sun et al. (2020) optimize
the network to do well on rotation prediction, but require altering the training procedure in order
to train the rotation head. Wang et al. (2020) modulate only the batch-normalization parameters by
minimizing average prediction entropy of the target batch. Boudiaf et al. (2022) propose an objective
which enforces samples in the test batch which are close in the representation space, to be assigned to
the same class. Iwasawa & Matsuo (2021) propose an approach similar to the prototypical networks
by interpreting the classification layer weights as templates or prototypes for each class. These
prototypes are updated during test-time based on pseudo-labels generated by the model, and the
nearest prototype is given as the final prediction. The majority of TTA methods in literature conform
to the fully-test time adaptation setting (Wang et al., 2020) and are source-free. While closely related
to our work, these methods are proposed for learning from only a single model, and not for learning
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from multiple domains. To the best of our knowledge, we are the first to address giving an adaptive
prediction in the presence of multiple domain-specific models during inference.

B EXPERIMENTAL DETAILS

B.1 DATASETS

We perform our experiments on four benchmark datasets which are commonly used in the domain
shift literature – PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), VLCS (Fang et al.,
2013) and TerraIncognita (Beery et al., 2018). PACS comprises 9,991 images divided in 7 classes
across 4 different domains: Photo, Art, Cartoon and Sketch. The Office-Home dataset contains
15,500 images across 4 domains: Product, Art, Clipart and Real World. Each domain is divided
into 65 different classes. VLCS is a combination of four photographic datasets: Caltech101 (Fei-Fei
et al., 2006), LabelMe (Torralba et al., 2010), SUN09 (Choi et al., 2010), VOC2007 (Everingham
et al., 2009), containing 10729 examples of 5 classes. Following (Gulrajani & Lopez-Paz, 2020),
we consider a subset of the TerraIncognita dataset which contains 24,788 images divided into 10
classes across 4 domains: L100, L38, L43 and L46.

B.2 IMPLEMENTATION DETAILS

For each source model, following Liang et al. (2020), we use an ImageNet Deng et al. (2009) pre-
trained ResNet-50 He et al. (2016) and train it using standard empirical risk minimization Vapnik
(1991) (i.e. training using a suitable task loss function). The penultimate fully-connected layer is
replaced with a bottleneck layer and a classifier with weight normalization. Batch normalization
Ioffe & Szegedy (2015) is employed to normalize the outputs of the bottleneck layer. Similar to
Liang et al. (2020), we employ label smoothing for source training. During inference, similar to
Wang et al. (2020), we choose to update only the Batch Normalization (BN) parameters and keep
the rest of the network frozen. We select between two scales (the default values, and scaled down
values) of BN momentum and learning rate (LR) using a simple heuristic. If we have knowledge
of the fact that source domains are visually similar (from prior knowledge or practitioner wisdom),
we use a lower momentum and LR, else we use the standard values. This heuristic operates under
the common assumption that domains are sampled from some unknown but fixed prior, and if all
the source domains are close together, it is likely that the target domain would also be similar. We
note that we do not violate the SFDG setting herein since this heuristic does not depend on target
data, which we are not privy to. Default values are 0.1 for momentum and 5e−4 for LR set by linear-
scaling Goyal et al. (2017), which we use for PACS and OfficeHome. For VLCS and TerraIncognita,
we use a scaled-down momentum of 0.001 and a LR of 1e−4. In the hard variant of TEPLA, we
perform label smoothing Szegedy et al. (2015) with default parameter 0.1 on the hard pseudo-label
before updating the model. We set the test-time batch size as 32 and perform all experiments on one
V100 GPU.

Algorithm 1 TEPLA for SFDG
Input: Domain-specific models {fs

θi
}Mi=1 trained on {Ds

i }Mi=1, Test batch B = {xj}Nj=1 from target domain
DT

1: θ = [θ⊺1 θ⊺2 . . . θ
⊺
M ]⊺

2: for j ∈ {1, 2, . . . N} do
3: ypl

j = argmaxy∈Y
1
M

∑M
i=1 fθi(xj)

4: end for
5: for i ∈ {1, 2, . . .M} do
6: L(B, θi) = 1

N

∑N
j=1 L(y

pl
j , fθi(xj))

7: end for
8: θ′ = θ − η

∑M
i=1 ∇L(B; θi)

9: for j ∈ {1, 2, . . . N} do
10: yj = argmaxy∈Y

1
M

∑M
i=1 fθ′i

(xj)

11: end for
12: return y
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P A C S Avg.

Majority Voting 95.2 70.6 56.8 58.8 70.4
Entropy Weighting 97.9 80.7 66.4 67.2 78.1
Lowest Entropy 97.9 80.2 67.0 65.0 77.5
Random Source 97.0 77.2 63.4 63.7 75.3
Average Prediction 98.0 80.3 65.7 66.9 77.7

DEKAN 96.1 83.4 76.1 79.2 83.7

SHOT-Ensemble 97.3 88.2 73.3 69.5 82.1
BAIT-Ensemble 96.5 86.9 74.7 71.1 82.3
SHOT++ Ensemble 98.9 88.9 79.5 77.8 86.3
NRC Ensemble 97.4 88.4 74.0 70.4 82.5

DECISION 97.9 88.5 66.7 72.9 81.5
CAiDA 97.1 86.4 73.3 67.8 81.1

Tent Ensemble 97.7 87.3 82.1 73.5 85.2
LAME Ensemble 91.3 62.3 45.1 50.4 62.3

TEPLA-Soft 98.6 87.5 82.8 74.1 85.8
TEPLA 98.7 90.2 86.4 77.0 88.1
Best Source 98.0 73.4 63.7 63.7 74.7

Table 3: Domain-wise results for Table 1 on PACS

P A C R Avg.

Majority Voting 73.5 63.0 44.6 75.2 64.1
Entropy Weighting 77.4 68.0 47.9 79.9 68.3
Lowest Entropy 75.8 66.3 45.9 78.1 66.5
Random Source 68.8 51.0 45.8 75.0 60.2
Average Prediction 77.8 68.1 48.0 79.9 68.5

DEKAN 73.7 64.2 46.9 75.4 65.1

SHOT-Ensemble 78.4 66.3 48.4 78.7 68.0
BAIT-Ensemble 78.3 66.5 48.0 79.8 68.2
SHOT++ Ensemble 76.6 65.3 53.2 82.2 69.3
NRC Ensemble 77.6 66.5 47.4 80.4 68.0

DECISION 80.2 66.7 44.8 78.1 67.5
CAiDA 78.0 66.3 48.1 78.5 67.7

Tent Ensemble 75.4 69.2 49.1 79 68.2
LAME Ensemble 75.2 65.7 42.3 77.5 65.2

TEPLA-Soft 76.9 70.7 50.7 80.5 69.7
TEPLA 77.3 71.4 51.6 80.6 70.2
Best Source 76.9 66.5 43.5 73.6 65.1

Table 4: Domain-wise results for Table 1 on OfficeHome
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C L S V Avg.

Majority Voting 94.4 66.0 64.4 71.3 74.0
Entropy Weighting 96.8 65.6 72.3 75.0 77.4
Lowest Entropy 96.0 65.0 71.8 73.8 76.7
Random Source 69.8 68.8 81.3 58.3 69.6
Average Prediction 97.4 66.0 71.9 76.8 78.0

DEKAN 87.4 61.2 63.4 72.4 71.1

SHOT-Ensemble 93.6 63.9 66.9 79.6 76.0
BAIT-Ensemble 87.8 61.9 64.3 79.2 73.3
SHOT++ Ensemble 96.8 65.0 73.1 75.1 77.5
NRC Ensemble 94.8 63.4 66.0 79.9 76.0

DECISION 95.8 60.4 61.5 71.9 72.4
CAiDA 78.4 61.9 61.2 72.0 68.4

Tent Ensemble 82.4 63.3 63.1 70.3 69.8
LAME Ensemble 91.3 51.7 63.3 61.4 66.9

TEPLA-Soft 97.4 68.6 71.5 76.3 78.4
TEPLA 97.3 68.3 71.1 75.2 78.0

Best Source 98.6 65.9 76.6 70.1 77.8

Table 5: Domain-wise results for Table 1 on VLCS

L100 L38 L43 L46 Avg.

Majority Voting 48.0 31.0 33.6 31.2 36.0
Entropy Weighting 55.4 32.0 38.4 32.3 39.5
Lowest Entropy 53.2 29.9 37.9 32.5 38.4
Random Source 56.3 27.1 22.9 40.6 36.7
Average Prediction 56.0 33.8 39.1 32.9 40.5
DEKAN 41.9 34.3 32.1 33.7 35.5

SHOT-Ensemble 42.5 35.6 38.8 39.9 39.2
BAIT-Ensemble 41.9 33.9 36.1 39.8 37.9
SHOT++ Ensemble 46.6 35.5 43.7 34.3 40.0
NRC Ensemble 42.3 36.8 37.0 39.4 38.9

DECISION 41.7 33.3 39.6 37.5 38.0
CAiDA 40.8 35.0 41.2 35.6 38.2

Tent Ensemble 48.4 28.0 35.5 37.8 37.4
LAME Ensemble 59.6 36.9 30.5 31.9 39.7

TEPLA-Soft 59.6 29.3 38.8 31.6 39.8
TEPLA 60.7 27.1 40.2 33.0 40.3

Best Source 60.3 33.5 51.3 43.2 47.1

Table 6: Domain-wise results for Table 1 on TerraIncognita
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Figure 2: Robustness of TEPLA to batch size. Since the number of samples that arrive for inference
cannot be known beforehand, it is beneficial if the TTA algorithm is stable across a range of batch
sizes. For all datasets considered, we see that TEPLA maintains performance across different batch
sizes.

C COMPLETE DOMAIN-WISE RESULTS FOR TABLE 2

Tables 3, 4, 5 and 6 present the complete domain-wise results for Table 1. Please refer to the main
paper for details on the experiment. We observe that for most domains across all datasets, TEPLA
outperforms all competing baselines. Although the hard variant of TEPLA achieved the highest
accuracy on average, the soft version (TEPLA-Soft) is performing competitively on most domains.
Additionally, we observe that SHOT++ Ensemble seems to be doing well on certain domains, pos-
sibly due to its confidence-based semi-supervision module which provides better source-target pair
calibrations before its aggregation step. Specifically, for PACS (Table 3), it is marginally better than
TEPLA for Photo (0.2%) and Sketch (0.8%), but is much worse on the Cartoon domain (6.9%). We
make similar observations for VLCS (Table 5) as well, where it is the best on SUN09 but is worse
than TEPLA-Soft on Caltech101 and LabelMe.

D ADDITIONAL EXPERIMENTS

D.1 EFFECT OF BATCH SIZE

Figure 2 shows the performance of TEPLA across different batch sizes. Since in the TTA setting
the number of samples that arrive for inference cannot be known beforehand, it is important for
the method to be stable across a range of batch sizes. For all datasets considered, we can see that
TEPLA maintains performance across different batch sizes.

D.2 BATCH INDEX VS ACCURACY

Figure 3: Accuracy across test batches: note that TEPLA outperforms the baseline consistently
across the batches and domains
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(a)

(b)

Figure 4: TEPLA evaluated in the domain incremental setting, compared with Average Prediction
(AP). Each subplot title refers to that particular domain being treated as the target domain. The
labels on the horizontal axis in each subplot refers to the source models available at that time step.
For instance, in the first subplot, ”Photo” is the target domain, while Sketch (S), Cartoon (C) and
Art (A) are source models which are available incrementally. Exact numbers are available in Table
7

PACS Photo Art Cartoon Sketch

S SC SCA S SC SCP S SA SAP C CA CAP

Average Prediction 35.3 89.3 98 28.5 70.8 80.3 57.3 69.6 65.7 63.7 69.5 66.9
TEPLA (Ours) 52.9 97.3 98.5 62.7 88.3 89.5 69.9 85.8 86.6 76.8 79.6 79.2

OfficeHome Product Art Clipart Real World

C CA CAR C CP CPR A AP APR C CA CAP

Average Prediction 60.8 69.3 77.8 52.1 59.7 68.1 41.3 45.8 48 63.4 76.2 79.9
TEPLA (Ours) 64.2 69.8 77.4 58.8 65.7 71.8 43.0 49.9 51.2 67.4 76.1 79.9

Table 7: As new source domain models are added incrementally, TEPLA consistently improves
performance on the target domain.

We plot the accuracy for each target batch in Figure 3 for PACS. We can clearly see the benefits of
performing TEPLA adaptation to the target batch, specifically for the harder Art, Cartoon and Sketch
domains. In addition, we note that the quantitative results are not influenced by improvements in
sporadic batch indices, but the improvement is consistent across the batches at test time.

D.3 DOMAIN-INCREMENTAL SETTING

In the real world, due to various reasons, it is possible that source models might arrive in an incre-
mental manner, and not be available all at once. In Figure 4, we thus study how TEPLA fares in a
domain incremental setup for PACS and OfficeHome. We use the leave-one-domain-out evaluation
strategy, where we loop through each domain in the dataset as the target. At each time step, we add
one model to the source domain set and adapt using TEPLA. For PACS, we fix the ordering as S →
C → A → P and C → A → P → R for OfficeHome. We find that even when limited source models
are available, TEPLA performs better than the average prediction (AP) baseline. Additionally, we
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PACS P A C S Avg.

Episodic 98.5 83.4 71.1 71.1 81.1
Non-Episodic 98.7 90.2 86.4 77.0 88.1
OfficeHome P A C R Avg.

Episodic 77.2 69.2 48.9 80.3 68.9
Non-Episodic 77.3 71.4 51.6 80.6 70.2
VLCS C L S V Avg.

Episodic 97.2 67.0 71.3 76.4 78.0
Non-Episodic 97.3 68.3 71.1 75.2 78.0
TerraIncognita L100 L38 L43 L46 Avg.

Episodic 56.1 33.3 38.7 33.7 40.4
Non-Episodic 60.7 27.1 40.2 33.0 40.3

Table 8: Comparing Episodic vs Non-Episodic evaluation

observe that performance on the target increases as more source models are introduced, showing the
usefulness of TEPLA in a domain incremental setting.

D.4 EVALUATION SCHEMES: EPISODIC VS NON-EPISODIC

In Table 8, we analyze the effect of episodic vs non-episodic evaluation. Episodic evaluation implies
that we adapt to every batch using the original source model weights, i.e. ones received after pre-
training. Non-episodic evaluation implies that we never reset to the original source weights and
continuously adapt to the incoming target batches. We find that across all datasets, non-episodic
evaluation, i.e. continuously adapting to the target batch is always beneficial. This can be explained
by the fact that in the SFDG setting, since incoming batches are assumed to be coming from the
same target distribution, adapting the source models continuously seems to be a helpful strategy.

We also experiment with stochastic weight restore strategy (see Table 9) where at each batch we
make a decision to whether to reset to the original source models. We observe a marginal drop in
performance across datasets using the stochastic strategy, apart from TerraIncognita, where we see
an incremental gain. At the same time, adapting even with a small restoration probability seems to
be better than evaluating episodically, indicating the success of the continuous adaptation strategy
for SFDG. We note that the all results in the main paper use non-episodic evaluation.

D.5 GRADIENT ANALYSIS

We perform a gradient analysis for the PACS dataset to visualize the cumulative gradient for each
source domain. The average gradient of a source model is computed by taking the mean of 2-
norm of the flattened gradient of every parameter tensor being updated. Figure 5 shows the average
gradient across target batches. We observe that across batches, the gradient for the Art source
model is the lowest for target images from Photo. We hypothesize that since images from the Photo
and Art domain are visually similar (compared to say, Sketch), the Art source is already a good
predictor for Photo, hence requiring a smaller gradient update. Similarly, since the Sketch domain
is visually disparate from other domains, the Sketch model transfers poorly to all target domains,
which is reflected in the figure, where the Sketch source model often has the largest average gradient
across different domains. Additionally, we also observe that across all domains, apart from a few
anomalous batches, as more batches come in, the average gradient is decreasing. This is possibly an
indication that source models are getting better calibrated towards making prediction on the target
domain.
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(a) (b)

(c) (d)

Figure 5: Average gradient norm of different source models for a given target domain.

PACS P A C S Avg.

Prob. = 1 (Episodic) 98.5 83.4 71.1 71.1 81.1
Prob. = 0.75 98.6 83.7 72.3 71.3 81.5
Prob. = 0.5 98.6 83.8 73.5 71.5 81.9
Prob. = 0.25 98.6 84.9 76.1 71.5 82.8
Prob. = 0 (Non-Episodic) 98.7 90.2 86.4 77.0 88.1

OfficeHome P A C R Avg.

Prob. = 1 (Episodic) 77.2 69.2 48.9 80.3 68.9
Prob. = 0.75 77.2 69.4 49.1 80.3 69.0
Prob. = 0.5 77.4 69.4 49.2 80.4 69.1
Prob. = 0.25 77.4 69.7 49.5 80.4 69.2
Prob. = 0 (Non-Episodic) 77.3 71.4 51.6 80.6 70.2

VLCS C L S V Avg.

Prob. = 1 (Episodic) 97.2 67.0 71.3 76.4 78.0
Prob. = 0.75 97.3 66.2 71.7 76.8 78.0
Prob. = 0.5 97.4 66.2 71.7 76.8 78.0
Prob. = 0.25 97.5 66.3 71.8 76.8 78.1
Prob. = 0 (Non-Episodic) 97.3 68.3 71.1 75.2 78.0

TerraIncognita L100 L38 L43 L46 Avg.

Prob. = 1 (Episodic) 56.1 33.3 38.7 33.7 40.4
Prob. = 0.75 56.4 33.8 39.4 33.0 40.6
Prob. = 0.5 56.6 33.8 39.5 33.0 40.7
Prob. = 0.25 57.4 33.9 39.7 33.0 41.0
Prob. = 0 (Non-Episodic) 60.7 27.1 40.2 33.0 40.3

Table 9: Results using stochastic source model restoration. Restoration probability of 0 implies
source models are never restored, i.e. the non-episodic setting, whereas probability of 1 implies
source models are restored for every batch before adaptation.
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PACS OfficeHome VLCS TerraIncognita Average

ERM 85.5 ± 0.6 66.5 ± 0.4 77.5 ± 0.8 46.1 ± 2.9 68.9
IRM 83.5 ± 1.0 64.3 ± 2.3 78.6 ± 0.6 47.6 ± 1.5 68.5
GroupDRO 84.4 ± 1.0 66.0 ± 0.8 76.7 ± 0.7 43.2 ± 1.5 67.6
Mixup 84.6 ± 0.8 68.1 ± 0.5 77.4 ± 0.7 47.9 ± 1.4 69.5
MLDG 84.9 ± 1.1 66.8 ± 0.8 77.2 ± 0.8 47.8 ± 1.7 69.2
CORAL 86.2 ± 0.6 68.7 ± 0.4 78.8 ± 0.7 47.7 ± 1.8 70.4
MMD 84.7 ± 0.8 66.4 ± 0.3 77.5 ± 1.2 42.2 ± 1.9 67.7
DANN 83.7 ± 1.1 65.9 ± 0.7 78.6 ± 0.7 46.7 ± 1.6 68.7
CDANN 82.6 ± 0.9 65.7 ± 1.4 77.5 ± 1.0 45.8 ± 2.7 67.9
MTL 84.6 ± 1.0 66.4 ± 0.5 77.2 ± 0.8 45.6 ± 2.4 68.5
SagNet 86.3 ± 0.5 68.1 ± 0.3 77.8 ± 0.7 48.6 ± 1.8 70.2
ARM 85.1 ± 0.7 64.8 ± 0.4 77.6 ± 0.7 45.5 ± 1.3 68.3
VREx 84.9 ± 1.1 66.4 ± 0.6 78.3 ± 0.9 46.4 ± 2.4 69.0
RSC 85.2 ± 1.0 65.5 ± 1.0 77.1 ± 0.7 46.6 ± 1.4 68.6

TEPLA-Soft 83.8 ± 0.8 63.7 ± 0.1 71.9 ± 0.2 37.3 ± 0.2 64.2
TEPLA 85.1 ± 0.3 63.9 ± 0.2 71.5 ± 0.2 37.7 ± 0.2 64.6

Table 10: Comparison with Domain Generalization methods with ResNet50 without label smooth-
ing. Results from ERM to RSC as in Gulrajani & Lopez-Paz (2020).

E COMPARISON WITH DG METHODS

Table 10 compares the performance of our method with domain generalization (DG) methods, under
the same training conditions, i.e. ResNet50 architecture trained without label smoothing. We note
that in contrast to SFDG, DG works under a slightly relaxed assumption of simultaneous access to
data from multiple source domains. DG methods exploit the availability of labeled data to learn
domain-invariant models, which is not possible in the SFDG setting. We observe that for PACS,
even under the stricter SFDG setting, TEPLA is competitive with DG methods. On the other hand,
for OfficeHome, VLCS and TerraIncognita, we see a gap with DG methods, noting that there is
significant room for improvement for SFDG methods.
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