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ABSTRACT

Memory in biological neural networks emerges as coherent structures—
spatiotemporal waves and manifold trajectories—driven by complex synaptic ac-
tivities across neural fields. By contrast, many artificial neural networks—from
gated recurrent units to recent state-space-models—remain black-box mechanisms.
Recent works provide interpretable latent states by imposing traveling waves or
invariant manifolds, but lack data-driven explanatory mechanisms for why such
structures should arise. We offer a theoretical framework for studying trivial and
emergent coherent dynamics. Building on the Mori-Zwanzig formalism, our ap-
proach casts memory as a family of time-dependent projections that reveal how
coupled dynamics give rise to memory encoding and decoding. Using this frame-
work, we present a Neural Wave Field architecture that autonomously discov-
ers the memory operator’s leading eigenmodes and leverages them to enhance its
long-range memory. We validate our method on both long-range copy benchmarks
and chaotic-system forecasting tasks, demonstrating robust long-range accuracy
and the spontaneous emergence of interpretable memory modes.

1 INTRODUCTION

Biological neural networks exhibit a range of coherent dynamical phenomena—such as stable at-
tractor states and traveling waves (Engel et al., 2001; [Wang, |1999; Engel & Steinmetz, [2019)—that
are increasingly implicated in working memory and large-scale coordination across cortical regions.
These phenomena have been studied using a variety of dynamical modeling frameworks, including
neural field models (Ermentrout, |1998; |(Coombes, 2005)—continuous, spatially extended dynamical
systems that describe mesoscopic activity of densely interconnected neuron populations—as well as
methods that reduce the neural dynamics to low-dimensional manifolds (Marrouch et al., [2020).
These models provide mechanistic insight into how coherent population activity supports cognition,
and have been used to explain core functions including the integration of sensory input, consoli-
dation of long-term memories, and the organization of decisions, motor actions, and temporal se-
quences (Muller et al., 2014; Massimini et al., |2004; Rubino et al., [2006; [Wimmer et al., [2014).
These same attractor and wave phenomena are emergent in artificial neural networks (ANNs) (Ra-
jan et al.||2016b; Karuvally et al.,|2024)), and have been explicitly manipulated through architectural
design to improve memory retention, sequence processing, and structured computation (Hopfield,
1982; Rusch & Mishra, [2021; [Keller et al., 2024)). Many of these architectures draw direct inspira-
tion from biological neural networks, using insights from cortical dynamics to guide the design of
memory and sequence-processing mechanisms in artificial systems. Some studies have attempted
to bridge these motifs—demonstrating waves emerging from attractor instabilities (Coombes, [2005))
or attractor basins organizing wave propagation (Laing & Chow, [2002)—they are typically studied
in isolation (Sagodi et al., 2024} Karuvally et al.l 2024; |Keller et al., |2024), and a unifying theo-
retical framework to explain the flow of information in neural systems remains absent (Liu et al.
2025; [Lei et al., 2024)). Developing a framework that reconciles stability, propagation, and recall in
biological and artificial networks remains a key challenge to explaining the dynamical behavior of
intelligence (Alamia et al., 2025} |[Keller, 2025).

A central goal in neuroscience is to understand how cognitive functions emerge from complex neu-
ral activity, and dynamical models—particularly those grounded in attractor dynamics and traveling
waves—have proven essential for this purpose. Fixed-point and stationary bump attractors have
been shown to stabilize persistent activity patterns in working memory (Wang} [1999; Wimmer et al.,



2014). Sequential and metastable attractors govern transitions between internal states—modeling
decisions, motor plans, and temporal sequences (Friston, |1997; |[Kelso, |2012)). Stochastic attractor
exploration during rest and sleep facilitates internal simulation, cognitive flexibility, and memory
consolidation through spontaneous traversal of neural state space (Deco et al., [2009; (Chaudhuri
et al., 2019). Traveling waves appear to serve complementary roles in coordinating activity across
space and time, and in some instances emerge as instabilities of attractor states. Wavefronts, of-
ten stimulus-evoked (Muller et al., [2014) or multistability-driven (Laing & Chow, [2002), support
sensory integration (Muller et al.), attentional shifts (Maris et al.l 2013), and large-scale coordi-
nation (Takahashi et all 2011)) by propagating sustained activation through cortical maps. Wave
pulses are localized, transient bursts, shaped by excitation-inhibition balance (Brunel)) or excitabil-
ity thresholds (Douglas et al. [19935)), and are implicated in timing, signal relay, and motor plan-
ning (Rubino et al.| [2006; [Latash et al.l 2010). Spontaneous waves emerge endogenously during
anesthesia (Townsend et al.,[2015)), sleep (Massimini et al.|[2004), or perception (Davis et al.||2020),
traverse cortical attractor landscapes to support memory consolidation (Lee & Wilson, [2002), inter-
nal simulation, and synaptic refinement (Feller, |1999). Attractor dynamics and traveling waves are
typically modeled in isolation; how evolving neural dynamics influence memory remains an open
question (Liu et al., [2025]).

Recurrent neural networks (RNNs) often struggle to retain information over long timescales, suffer-
ing from the exploding and vanishing gradient problem (EVGP) (Zucchet & Orvieto, [2024)) as well
as inherent information bottlenecks(Sussillo & Barak} |2013; |Rajan et al., [2016al). Recent successes
in deep state-space models (Gu & Dao, 2024) and transformer (Vaswani et al.) architectures have
overcome these challenges through structured state updates and self-attention mechanisms, respec-
tively. However, even state-of-the-art transformers and deep state-space models can struggle with
long-range dependencies and structured sequence tasks (Jelassi et al.,2024), highlighting the impor-
tance of understanding memory mechanisms. Inspired by biological systems, many RNNs have been
imbued with (stable) attractor-like (Rusch & Mishral 2021} |[Keller & Welling} |2023}; |Sdgodi et al.}
2024) or wave-like (Keller et al., [2024; [Keller, [2025; [Liu et al.| 2025) structures to bolster memory
retention and sequence processing. Intriguingly, even standard RNNs trained on history-dependent
dynamical systems reveal latent waves under coordinate transforms (Karuvally et al., 2024). In-
spired by neural fields, researchers have extended these ideas to practical applications, emulating
cortical wave propagation for image segmentation (Liboni et al.,[2025), modeling spatially working
memory geometries (Lei et al.,|2024) and sensory input (Xie et al., [2022)).

Mori-Zwanzig (MZ) formalism offers an exact decomposition of a dynamical system into an equa-
tion over chosen variables, that explicitly accounts for the memory effects that shape their future
behavior (Mori, [1965b; [Zwanzig, 1961} |Nakajima, |1958). Classical MZ is a technique developed
for statistical mechanics that has been used to study molecular dynamics (Meyer et al.l |2017), vis-
cous Burgers flows (Stinis, 2012), and the Euler equations (Stinis, 2007). Data-driven machine
learning approaches using MZ (Chorin et al.| 2002} [Lin et al.| |2021; [2023) are a bottom-up ap-
proach to reduced-order modeling (Givon et al.| 2004; (Gupta et al,, [2024) similar to time-delay
embeddings (Woodward et al.| [2025), which have shown recent success in modeling isotropic tur-
bulence (Tian et al., 2021) and hypersonic boundary layer transitions (Woodward, [2023)). More re-
cently, MZ has been used as a framework for deep learning (Venturi & Li, |2023)), where it has been
used to inform the latent state of LSTMS (Maulik et al., 2020)), as an effective auto-encoder (Gupta
et al., [2024), to predict time-dependent PDEs using neural operators (Buitrago et al., [2025), and
to enhance the explainability of neural networks (Menier et al.l [2023). However, two assumptions
made by MZ inspired deep learning architectures oversimplify the latent dynamics. First, many
MZ architectures formulate memory using a time-delay of the latent state, neglecting the inclusion
of the generalized fluctuation-dissipation relation (GFDR) in the memory kernel (Lin et al., [2023).
Second, many MZ inspired architectures assume an at equilibrium state for the latent dynamics ne-
glecting the effects of time-dependent memory kernels (Grabert, [2006; [Héry & Netz, [2024; [Netz,
2024; |Venturi & Li, 2023). Moreover, the approaches that properly assume the structure of the
latent dynamics neglect to account for the additional degrees of freedom often introduced during the
encoding of information into the latent state. This approach is critical for learning the emergent be-
havior of information in the latent state, where the latent state itself contains an over-representation
of information. Recent work has linked these dynamics to the ability of data-driven MZ to discover
emergent organization (Rupe & Crutchfield, 2024), but no prior works chart the changes in neural
dynamics using MZ formalism.



1.1 OUR CONTRIBUTION.

We present a novel theoretical framework for modeling the time-dependent dynamics of latent rep-
resentations of an ANN during sequence learning. In particular:

1. We derive a generalized Langevin equation that accounts for intrinsic degrees of freedom
using a family of time-dependent projections. This formulation allows us to study the
emergence of coherent structures, when at least a subset of the projections trivialize.

2. We provide practical guidance by implementing a biologically-inspired Neural Wave Field
architecture equipped with MZ dynamics. By considering wave and oscillatory dynamics
we are able to study information encoding and retrieval most naturally tied to the brain.

3. We empirically validate our approach by evaluate it on several long-range learning bench-
marks, dynamical systems, and real-world neuroscience applications. We observe robust
long-range recall, minimal memory dimension, and interpretable latent modes.

1.2 RELATED WORK

Architectures using MZ-inspired time-delay memory, e.g. in neural operators (Buitrago et al.;|2025),
do not explicitly enforce GFDR consistency in the memory, limiting interpretability. Deep-learning
extensions of MZ typically learn observables (Gupta et al.,[2024) or memory kernels for an chosen
set of observables (Lin et al.|[2021)), and may enforce GFDR through iterative regression (Lin et al.,
2023)). However, these approaches do not focus on emergent or coherent behaviors. Similarly, neural
oscillators and traveling-wave networks directly encode dynamical motifs enhancing mechanistic
explainability but not emergent behaviors (Rusch & Rus, [2025; [Keller et al.l 2024)). Meanwhile,
transformers and structured state-space-models are treated as black-box architectures that achieve
state-of-the-art performance (Gu et al., 2022; [Fu et al., 2023} |(Gu & Dao, |2024)).

By contrast, our approach aims to leverage explainable dynamical motifs and enhance their mech-
anistic interpretability while imposing principled constraints on memory and noise (via GFDR).
This approach enables the model to suppress uninformative latents, elevate emergent structure, and
shorten effective memory. Additional related-work details appear in Appendix [A]

2 BACKGROUND

In this section, we present the preliminary background. We treat the latent state of the neural network
as observations of an underlying dynamical system. The near-equilibrium MZ formalism (NE-MZ)
describes the evolution of a time-invariant subset of observations. Time invariance may be overly
restrictive for the latent states of a neural network, in which case we employ time-dependent operator
formalism for far-from-equilibrium systems (FFE-MZ). Finally, we recall the important distinction
of MZ-type memory, the generalized fluctuation-dissipation relation (GFDR).

2.1 PRELIMINARIES

Suppose the underlying system evolves dynamically on a smooth manifold M C R", called the
phase-state, described by the following (ergodic and possibly nonlinear) autonomous ODE

d®(t
where S : M — R" is C''. By the Picard-Lindelsf (Coddington, |1955) theorem, Equationadmits
a unique solution ®;(x) = ®(¢) forall ¢ in T C R, inducing the flow &; : M — M.

Let the collection (M, F, i) be the phase-state manifold M equipped with a o-algebra F and a
finite, flow-invariant probability measure p. A system observation g : M — R is a real-valued
square-integrable function, i.e. g € H := L?(M, i) where H is a separable Hilbert space.

Definition 2.1. (Liouville Operator) The Liouville operator L : H — H describes the infinitesimal
evolution of an observable g € H along the flow ®;. In general we will take it to be %g(t) = Lyg(t).

Remarkably, the evolution of the observations can be expressed in terms of linear operators on 7,
despite the underlying system being possibly nonlinear and mildly complex (ergodic). However,
this is a linear operator that acts on the space of all observables, which may be infinite dimensional.



2.2 NEAR-EQUILIBRIUM MORI-ZWANZIG FORMALISM (NE-MZ)

Using the separability of H, the space of observations can be separated into a set of resolved ob-
servables and complementary unresolved observables. In particular, for any closed subspace V C ‘H
there is a decomposition # = V @ VT realized by the unique orthogonal projection

P-H—>YV, Q=I-P:H->V' (PP=P,Q*°=Q,P=P",Q=Q" PQ=0).

These projections can be linear operators (Mori, [1965a), or as we adopt, (non)-linear opera-
tors (Zwanzig, 2001) realized as conditional expectations P = E [ - | G ] on the sub-o-algebra G C F.
In NE-ZM formalism the subset of observables—and therefore the projection P—is time-invariant.

The generalized Langevine equation. NE-MZ formalism describes the exact evolution of a time-
invariant subset of observables by decomposing A into resolved § € V and unresolved §j € V'
observables. The result is the generalized Langevin equation (GLE)

0, X ! A
5 9() =PLy(t) + / PLeEIREQLG(s)ds + PLe'PF Qg(0). 2)
—— —_—
Markov 2 o Fluctuating Force
emory

Equation 2] consists of three distinct terms (underscored). The Markov term represents the instanta-
neous drift from the resolved dynamics. The Memory term re-introduces the influence of dynamics
previously forgotten, i.e. prior resolved information that has been projected into the unresovled
subspace. The Fluctuating Force ter captures the residual influence of the unresolved initial state.

2.3  FAR-FROM-EQUILIBRIUM MORI-ZWANZIG FORMALISM (FFE-MZ)

For a neural network architecture, it may not be possible—and potentially unreasonable—to ascribe to
each element of its latent state a static representation. By definition, this is the black-box assumption.
Our approach models the black-box by using FFE-MZ (Grabert, 2006) which allows P(¢) to evolve.

The resulting GLE is given by

590 = POLIO-+ PO+ [ POLCE5Q)La(5)s+ POLGE0Q) 5(0). G

The two-time memory kernel G(¢,s) = T_ exp( J. : Qu) L du) is the negatively time-ordered ex-

ponential operator that captures the extrinsic influence from the evolution of the subspaces. The

Kinematic term P(t) g(t) captures the intrinsic evolution of the resolved subspace (Meyer et al.,
2017).

Critically, the time-dependent projection operator acts as moving frame of reference that is tied to
the relevant ensemble. The source of the time dependence is extrinsic to the resolved observables i.e.
it is driven. As a result, this non-stationarity cannot be removed by a simple change of coordinates.

2.4 GENERALIZED FLUCTUATION DISSIPATION RELATION (GFDR)

We now observe the critical distinction between MZ memory and auto-regressive or time-delay
mechanisms, that MZ assumes an underlying principle of detailed balance. The principle of detailed
balance states that at equilibrium, each process is in equilibrium with its reverse process. For NE-
MZ this is formalized via the fluctuation-dissipation theorem (Callen & Weltonl|1951) directly. The
generalized fluctuation-dissipation relation (GFDR) is the extension to FFE-MZ (Meyer et al., 2019)

K(t,s) = (F(t]s), F())C(s) ™ )
K(t,s) = P()LG(t, 5)Q(s)L, C(s) = (4(s),9(s)), F(s) = Q(s)Lq(s), F(t]s) = G(t,s)F(s)
which relates the memory kernel K (¢, s) to the level of noise (F'(¢|s), F'(s)) relative to the covari-

ance of the resolved observable C'. Instead of treating noise in the black-box model as a limitation of
explainability, MZ formalism allows us to model noise predictably from the memory kernel itself.

For more details on the distinction of architectures, we refer the reader to (Lin et al., | 2023)).

!"The third term referred to by (Moril |1965a) as a random force and by (Zwanzig| [2001) as a fluctuating
force, is frequently called the noise term in data-driven and stochastic applications.



3  MORI-ZWANZIG FORMALISM FOR COHERENCE AND EMERGENCE

Our key theoretical contribution is to introduce
a family of projection operators that adapts dy-
namically to the information content of a fixed-
depth latent state. As illustrated in Figure[I] we
learn a time-dependent decoding mechanism,
whose variation can induce coherent dynam- Figure 1: The effects of intrinsic latent drift as ob-
ics. This intrinsic adaptation lets the model served by a fam]ly of projection operators. In par-
handle additional degrees of freedom natively— ticular, for the resolved observable §(t) the drift

suppressing uninformative latents and elevat- in the underlying basis can be captured by P,,, .
ing newly informative ones—while maintaining

noise-memory balanced via the GFDR, without assuming that the role of each latent coordinate
is fixed a priori. The closest theoretical developments are state-dependent memory kernels (Ayaz
et al.| 20225 |Ge et al., 2024)), which let the kernel depend on the state but keep the projection opera-
tor determined; in contrast, we learn the projector family itself, aligning memory and noise with the
evolving relevance of the latent coordinates.

3.1 AN INTRINSIC TIME-DEPENDENT GENERALIZED LANGEVINE EQUATION

We treat the architecture as a three network framework consisting of an embedding layer, finitely
many layers describing the time evolution of the latent state, and a final output layer. We treat the
embedding as a map of information from a (possibly) FFE-MZ system to a NE-MZ system, that
trades its (possibly) time-dependent basis for additional degrees of freedom. This motivates us to
introduce a family of projection operators defined on the (possibly) under determined latent state.
We make two key assumptions about the projection operators that enable the network to learn and
allow us to formulate a two-projection style GLE.

We work inside a fixed resolved space V. where inputs are sections g(t) € W; C V. and outputs
are sections h(t) € V; C V. of time-varying closed subspaces, so that V, covers the entire family
{W;} while outputs evolve on the (possibly smaller) time-dependent subspaces {V,}.

Assumption 3.1. (Encoding Time-Dimension Tradeoff) The embedding of a generic input g, € W,
is a transport map Ty : Wy — V, = L2(M, G, i) to a time-invariant subspace.

For example, a traveling-wave is a co-moving shift, i.e., a linear lifting operator that increases di-
mensionality and centers moving patterns in the latent state. Kuramoto models are non-linear lifts
that trade time-dependence in the signal for dimensions in phase coordinates.

With a chosen lifting operator in hand, we now turn our attention to enabling coherent and emer-
gent latent representations via a family of time-dependent projections that decode the relevant in-
formation. Critically, our approach utilizes chosen lifting operators but allows for entirely generic
(although continous) projection operators. Therefore, the induced latent dynamics are determined
solely by the lifting operator together with the specification of input and output spaces, while the
projection family itself imposes no additional structural assumptions. This separation enables us to
study the coherence of emergent phenomena through parameterized dynamics.

We will learn a family of projection operators { P, } by parameterizing their measures {1 }. Con-
sider a family of measures {1 }+cjo,7) With p; < p for all ¢, i.e. p; is absolutely continuous with
respect to .. Our time-dependent projection operators are defined by

EM* [Ptf | g]

Eu. [pelG]

which is the conditional-expectation onto the o-algebra G of the fixed resolved space but with
weights p;. Note that p; = die_ g the Radon-Nikodym derivative further discussed in Appendix

dpdo
In order to model the evolution of 1, we make the following assumption.

P, V=V, PthZEm[glgL ]Em[ﬂg]:

Assumption 3.2. (Differentiability of P,,,) Suppose the time-dependent conditional expectation op-
erator P, : L*(p.) — L?(pt) is Fréchet-differentiable with derivative P,,.

These assumptions are minimal to deriving the GLE but further assumptions that are necessary for
optimization are shown in Appendix Bl We include missing proofs in Appendix



Proposition 3.1. (Intrinsic Time-Dependent GLE) Let g(t) evolve under the Liouville operator L on
a fixed Hilbert space H = L*(M, F, u.). Let P,, : H =V C H be an orthogonal projection onto
V = L*(M, G, p.) with G C F. For a family of C' measures {ju; }+cio,1) let P, : V — Vy be the
corresponding family of projections defining a Hilbert bundle {V; }c(0,q with V; = L2(M, G, ).
The evolution of the resolved variable P, g(t) satisfies the following GLE

t

%Pufg(t) = P;Lt PHt Q/J«tg(t) +Pﬁbt [’PM* g(t) +/0 P)/Lt ‘Ce(t_S)Q“* LPM* g(s)dS+PMt ‘cetQ“* Lg(o) .
The additional term P,,, P,“ Q... 9(t) captures the instantaneous drift of the resolved state caused
by the time-dependent rotation of the projection subspace, i.e., the transfer of latent information.
This additional term is similar to the FFE-MZ. However, our approach does not result in a two-time
memory kernel, and our intrinsic drift depends only the dynamics of both subspaces P,,, and @,
Corollary 3.1. (Intrinsic Time-Dependent GFDR) The intrinsic time-dependent GFDR is
Ki(t—s) = C L) (F(t), F(s)) with K;(t — s) = P, Le(=%)Qu£ and F(t) = P, Le'Pn=£g(0).

3.2 COHERENCE AND EMERGENCE

We now highlight the key role of time-dependent projection operators in capturing trivial and emer-
gent coherence. First, we define coherence as any time the dynamics of the lift operator or the drift
operator (i.e. measure dynamics) are stationary. Trivial coherence occurs when the lifting operator
is aligned and the latent dimension is sufficiently large, which produces an invariant trivialization
of the measure dynamics. Emergent coherence arises when the latent dimension is small, so that
the lifting operator saturates the underlying space and become trivial so that the dynamics of the
projection operator themselves give rise to coherent behavior.

By Assumption the Radon-Nikodym densities p; are C! in ¢. This induces a smooth unitary
trivialization T} : L?(p1¢) — L?(uo) by (Ty.f)(2) = /pe(2) f (). If in additon p;(x) = a(t) for
independent of z, then T} preserves an invariant basis across all ¢, called an invariant trivialization.
Proposition 3.2. (Coherence Under Invariant Trivialization) If the densities p;(x) are spatially con-
stant, pi(x) = «(t), then the family of subspaces {V;} is unitarily equivalent to the fixed subspace
Vo. Then {P,,,} is coherent under the invariant trivialization T; where TP, I = P, =P,.

Corollary 3.2. (Vanishing Drift Under an Invariant Trivialization) Suppose the Radon-Nikodym
densities satisfy p,(z) = a(t), and o > 0 independent of x. Then P, = P,, hence P,, = 0.

When such a trivialization exists, the measure dynamics become effectively time-independent in the
trivialized coordinates, and the lifting operator drives emergent coherence.
Proposition 3.3. (Emergent Coherence Under Latent Compression) If the effective resolved space

is r-dimensional, then the drift operator P,,, Pm Q. has at most rank r. Thus the additional drift
organizes along the most r coherent directions in V;.

Notice that coherence ties the latent drift of our GLE to the chosen lifting operator. In particular,
as the lifting changes the basis for the representation, we have the transported projection Pt(T) =
T,P,, T;". The transported drift is defined by D\" = T}(P,,, P, Q)T " — BT (T, 17 1)Q™.

3.3 A NEURAL WAVE FIELD ARCHITECTURE

We treat the architecture as a three network framework consisting of an embedding layer, finitely
many layers describing the time evolution of the latent state, and a final output layer. We treat the
embedding as a map of information from a (possibly) FFE-MZ system to a NE-MZ system, that
trades its (possibly) time-dependent basis for additional degrees of freedom.

s
Zi41 = DET)Zt + Z K (k)ziprk + Fy, 91 = P;E?)zt+1
k=1

which leverages MZ style frameworks from|Lin et al.[(2021)) and incorporates a coupled dynamics of

a lifting operator and the measure dynamics in Dt(T). We find the introduction of noise contributes

substantially to the learning stability of the network as the latent dimension becomes small.



4 EXPERIMENTAL RESULTS

To empirically evaluate our theoretical framework, we test our architectures ability to learn coherent
dynamics for traveling-wave and non-linear oscillatory models. These results further support Propo-
sition[3.2]across a range of task including long-range benchmarks and real-world EEGs. We find that
the derived GFDR provides enhances the robustness of the coherence across all tasks further sup-
porting the use of MZ formalism. Furthermore, we demonstrate how these emergent behaviors can
help characterize memory encoding, retention and retrieval similar to biological neural networks.

We choose a staggered set of benchmarks to sequentially demonstrate our formalism. We start
by showing the emergence of coherent strucutures in a simple copying task. We then complicate
the FFE-MZ effects by including a selective copying task. We then test on real neuron population
dynamics in EEG and ECoG datasets, demonstrating the potential to model real-world biological
systems. We perform evaluation using braindecode’s standardized protocol. The Neural Wave Field
architecture was trained using mean-squared-error for consistency with Proposition 2?.

For a comparison on long-range benchmarks, we consider WaveRNN (Keller et al. [2024),
Mamba (Gu & Dao, 2024), Alibi (Press et al., 2021), NoPe (Kazemnejad et al.,2023), and RoPe (Su
et al.| [2024). For a comparison on real-world data, we consider several baseline models including
ShallowFBCSPNet |Ang et al.| (2008)), Deep4 |Schirrmeister et al.| (2017), EEGNet [Lawhern et al.
(2018)) and TIDNet |[Kostas & Rudzicz (2020). Additional details including hyperparameters and
optimization procedures and can be found in Appendix

4.1 LONG-RANGE CoPY TASK

To assess our architectures coherence capabilities, we use the long-range copy task, a benchmark
designed to test long-range information retention (Graves et al.,|2014; |Arjovsky et al., 2016; |Keller,
et al.l [2024). The task consists of an input sequence of N random scalar integers in {1, ..., 8},
followed by T' 4+ N count of 0’s. The target for this task is a sequence of the same length of
all 0’s except the last NV elements that are set to the initial sequence. From a dynamical systems
perspective, the information lives as a fixed point in N»V dimensional space and is input to the
system one observable (dimension) at a time, i.e. as FFE-MZ. By reducing the dimension of the
lifting operator to [V, this task tests the model’s ability to encode, retain, and recall information in a
minimal latent representation.
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Figure 2: Explainability of the Neural Wave Field equipped with a traveling-wave lift operator in (a)
the latent state (b) the measure and (c) the predictions. The traveling-wave front embeds information,
followed by an attracting regime that retains information, followed by an emergent traveling-wave
front that recalls information.

The distinctive feature of our Neural Wave Field with a traveling-wave lift operator is that the en-
coding, retention, and recall phases are clearly separated in the latent dynamics. In Figure [2] , we
visualize these phases across three views: (a) the latent state, where the forward-traveling front and
subsequent stabilization can be observed; (b) the measure dynamics, which reveal the transition
from embedding to retention to recall; and (c) the model predictions, which align the emergent re-
call phase with accurate output reproduction. The coherence of these phases is notable because they
mirror strategies observed in biological neural systems for memory and recall (Muller et al.), where
traveling activity fronts and attractor dynamics jointly support long-term memory.

Latent Memory Capacity For comparison, we evaluate the accuracy of each architecture as the
size of the latent stat is reduce. In particular, we systematically constrain the latent dimension from
100 to 10, the minimal size needed to represent the information in the long-range copy task for
T = 10. This forces each model to rely on its latent dynamics rather than excess dimensionality,
and allows us to test whether the core mechanism can efficiently encode and preserve information.
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Figure 3: A study of latent memory capacity including (a) model performances (b) trivial coherence
in a large latent capacity (c) emergent coherence in a small latent capacity. In particular we observe
that under sufficient latent dimensions, the architecture exhibits an invariant trivialization of the
latent dynamics (blue) by aligning the decoded information (orange) using the traveling wave. When
the memory is constrained, then we observe emergent behavior where the traveling wave becomes a
stable attractor and the latent dynamics exhibit wave-like behavior.

Figure[3]illustrates (a) the accuracy of our model compared to baselines as the latent state dimension
is reduced; (b) the latent features and measure dynamics for a large-capacity latent state; and (c) the
latent features and measure dynamics for a low-capacity latent state. In Figure[3(a), we see that our
architecture maintains high accuracy even at the minimal latent dimension, where the information
content fully saturates the latent state. In contrast, Figure 3[b) shows trivialization of the measure
when the latent state is sufficiently large: the traveling-wave dynamics propagate latent features past
a time-invariant measure in a manner that allows proper decoding without introducing additional
decoding dynamics. Notice that when the latent space contains extraneous degrees of freedom that
are not filled by prior information, coherence may reside ambiguously in either the lifting operator or
the measure dynamics. This saturated regime is shown in Figure[3[c), where every latent coordinate
is active and the measure dynamics must be decoded directly from this filled latent state.

4.2 SELECTIVE COPY TASK

The selective copy task (Jing et al.,|2019; |Gu & Daol 2024)) modifies the copy task by randomizing
the spacing of the IV tokens over the first NV 4+ T inputs. The target is the same as the copy task.
Due to this randomization, it requires more data-dependent reasoning to solve the task.  From
the FFE-MZ perspective, the task highlights how the lifting operation is tied to the time-dependent
projections. Specifically, when the projection operator evolves in time, the lifting operator is static.

5 Input Output Label 100
5.0 e
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0 10 20 028
Sequence lterations £ T

(a) Latent State (b) Model Predictions (c) Model Comparison

Latent
State
=

Figure 4: Results for the selective copy task (a) the latent state (b) the model predictions and (c) a
memory capacity comparison against baselines. Neural Wave Field achieves a minimal representa-
tion and outperforms baseline architectures.

In Figure [d] we illustrate the (a) latent state (b) model predictions and (c) a comparison of architec-
tures as the memory capacity is reduced. As a result, of the tie between the lifting operator and the
measure dynamics, we observe that the latent state encodes only the relevant information. Here it
achieves a minimal yet sufficient representation in the latent state. As a result, it not only preserves
accuracy but also outperforms all baseline architectures under identical constraints.

4.3 EEG DATASET

Using the braindecode library, we further benchmark our method on two neuroscience datasets from
the BNCI IV competition 1) The BNCI IV-2a dataset, which contains EEG recordings from 9 sub-
jects performing four motor imagery tasks: left hand, right hand, foot, and tongue movements. Each
subject completed two sessions across different days, with 288 trials per session (12 per class per



run, 6 runs per session). 2) The BNCI IV-4 dataset, which contains recordings and simultaneous
finger-flexion measurements from three epilepsy patients at Harborview Hospital, Seattle. Each
subject wore a subdural platinum-electrode grid (62, 48, and 64 channels for Subjects 1-3) sampled
at 1000 Hz (0.15-200 Hz band-pass) and referenced to a common average; finger movements of all
five digits were captured via a 5-sensor data glove (25 Hz, up-sampled to 1 kHz). This benchmark
allows us to assess whether the traveling-wave inductive bias meaningfully improves decoding under
practical EEG conditions.

To test whether latent propagating dynamics can serve as an effective inductive bias for EEG/ECoG
decoding, we insert our Neural Wave Field module at the front of the network, directly operating
on raw EEG/ECoG signals. This module compresses the raw sequence into a dynamic latent state
by simulating learned traveling waves in feature space using gated, memory-aware updates derived
from the Mori—Zwanzig formalism. The output is a sequence representation that is then passed into
a standard CNN-based classification pipeline, similar to ShallowFBCSPNet. In this way, we can
assess if the latent traveling wave representation enhances the expressivity of the models.

By placing the NeuralField BNCIIV-2a BNCI IV-4
before conventional spatial- Model (Accuracy 1) (r-value 1)
temporal filtering, we evaluate

whether traveling-wave dynam- ShallowFBCSPNet 72.9 0.311
ics can serve as an effective Deep4 56.25 0.653
neural preprocessor, enhancing EEGNet 77.08 0.354
downstream performance. This TIDNE?t 40.97 0.356
setting allows us to test the Neural Wave Field (TW) 74.31 0.375

expressiveness and utility of

our proposed inductive bias Table 1: Accuracy on the BNCITV-2a dataset and Pearson’s r on
in a realistic, cue-based EEG the BNCI IV-4 dataset. The Neural Wave Field including a trav-
classification task. eling wave lifting operator ranks as the second-best performer.

Table [T] presents the accuracy on the BNCI IV-2a dataset and the Pearson r-score on the BNCI V-4
dataset. The Neural Wave Field is the second best performer with a single channel latent state size
of 30, which maintains a compressed traveling wave representation of the full 22 channel input.
Again the Neural Wave Field is the second best performer with a single channel latent state size of
20, obtaining a compressed traveling wave representation of the full 62 channel input. Moreover, it
showed strong improvement over the direct baseline ShallowFBCSPNet. It also suggest the potential
to include alternative lifting operators to that may alignmen better with the underlying dynamics.

5 CONCLUSION

We introduced an intrinsic time-dependent framework for the Mori-Zwanzig formalism and used it
to derive a structured model of latent memory dynamics. In particular we observed how a lifting
operator and the latent drift were coupled. Building on this, we proposed the Neural Wave Field
architecture, which utilizes traveling wave lifting operations to learn both drift and memory closure
end-to-end. Empirically, we validated our theoretical observations about the expressivity of the ar-
chitecture, and showed that it reliably discovers coherent memory structures, achieves minimal latent
representations and outperforms baselines on long-range sequence tasks. Moreover, we introduced
our neural wave field on a real-world EEG and ECoG tasks and demonstrated that it outperforms the
existing architectures using and oscillatory model.

Limitations and Future Work While our Neural Wave Field provides a clear proof of concept, it
is only one instantiation of a much richer framework to be explored in future works. In particular, our
preliminary insights into EEG and ECoG datasets warrant further exploration of oscillatory models
as lifting mechanisms. We made two assumptions regarding continuity and support of the measure
¢ in our framework. Empirically the first assumption stabilizes training as shown in the copy task
of Section 4] The second assumption on the differentiability of y; may not always be assumed,
e.g. for the ordered recall task a variant of the copy task in which numbers are recalled in order. A
framework that handles discontinuous yi; is non-trivial and would provide additional insights into
higher level cognitive capabilities and we leave this to future work.
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A RELATED WORKS

Data-driven MZ (Chorin et al., 2002} Lin et al., 2021 and time-delay embeddings (Brunton et al.,
2017; Woodward et al., 2025} [Zhu et al.| 2021} [Ostrow et al.| 2024)) fix a static projection (e.g.,
EDMD modes or a stack of delays) to learn stationary memory kernels. Deep learning exten-
sions of these approaches use sequential inputs to learn memory kernels (Lin et al.| 2023)) in auto-
encoders (Gupta et al., [2024) and neural operators (Buitrago et al., 2025). Time-dependent MZ
formalism has been used to characterized deep learning (Venturi & Li, [2023)).

Structured models. Neural oscillators (Lanthaler et al., 2023; Rusch & Mishra, 20215 [Keller &
Welling, 2023), traveling-wave networks (Keller et al.,|2024; [Liboni et al., |2025; |Keller, 2025), at-
tractor embeddings (Sagodi et al.| 2024), reservoir computing (Jaeger, 2007} Lukosevicius & Jaeger,
2009) and neural delay-difference equations (Zhu et al.,|2021) bake in known dynamical motifs to
encode memory explicitly. WaveRNN (Keller et al., 2024)) structures its latent updates as linear
advection, yielding transparent memory dynamics as traveling waves.

Black-box models. GRUs, LSTMs, residual and deep equilibrium models are well established
recurrent and feed-forward NNs with augmented memory-mechanisms. Continuous-time models
such as neural ODEs (Chen et al., 2018) and ODE-RNNs (Rubanova et al., 2019) encode history
through flows in state space. Recent state-of-the-art performance has been achieved by structured
state-space-models (SSMs) (Gu et al., 2022} [Fu et al., | 2023;|Gu & Daol[2024)), notably the oscillatory
SSM-LinOSS (Rusch & Rus|, [2025)).

Global context embeddings. Transformers (Press et al., 2021} |Su et al) [2024; (Gumma et al.,
2024) use full self-attention for global sequence dependencies. Recent work investigating the per-
formance of positional encodings (Jelassi et al., [2024) has demonstrated that various positional en-
coding strategies (Press et al., 2021 |Kazemnejad et al., 2023} |Su et al., |2024) outperform SSMs on
copying tasks.

Memory Neural Operator (MemNO) MemNO (Buitrago et al.}[2025)) interleaves a memory op-
erator (sequential model) into the layer updates of a neural operator, in order to capture memory
effects in a GLE inspired manner. The goal of the memory operator is to re-introduce projected
variables, and is theoretically motivated by a theorem demonstrating the divergence of solutions
with and without memory for a second-order elliptic PDE. The approach is empirically validated by
testing super resolution capacity of architectures, i.e. reducing the input resolution and maintaining
the output resolution during the training of an encoder-decoder framework. A further ablation study
is performed on the window size of the memory operator, where the performance improves as the
window size increases, i.e. in a time-delay embedding fashion.

At a high level, both works aim to resolve a memory closure using sequential linear layers (S4 in the
case of MemNO). MemNO uses a multi-layer FNO as an embedding and read out of the latent state,
whereas NWF uses linear layers based on projection operators. Additionally, NWF directly induces
wave like phenomena into the latent state, and studies the rise of phenomena like coherence and
emergence. An interesting future direction would be to characterize MemNQO’s memory operator
using the theory developed here-in.

Time-dependent GLE This time-dependent relevant ensemble p(t) has been extended to a bundle
of trajectories, i.e. measurements for a distribution of moving points in the phase space (Meyer et al.,
2017). The resolved subspace is changing in time and the two-time memory kernel appears again.
The time-dependent projection operator is an average over all possible trajectories.

A discrete analogue of the time-dependent GLE has been proposed in the context of deep residual
neural networks (Venturi & Li, 2023). In this formulation, each layer n is associated with a pro-
jection operator P,, and the hidden state evolves with a Markov term, two-time memory kernel and
layer-wise fluctuating force. Although their streaming term does not explicitly include a kinematic
component, it implicitly accounts for the evolution of the projection subspace across layers through
the residual propagator. While (Venturi & Li} 2023)) notes that MZ formalism can be used to reduce
the total number of degrees of freedom in the neural network, in practice their approach does not
provide a mechanism by which they may go about reducing the number of variables.
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B MORI-ZWANZIG FORMALISM
In this section, we provide a detailed derivation of the Mori-Zwanzig formalism.

The evolution of system observations. We provide two complementary views of a dynamical
system: the microscopic Cauchy problem and the macroscopic MZ formalism.

Let & € R” be the full phase-state of the system, evolving under the autonomous ODE
do(t)

dt
where S : M — R™ is C'! (hence locally Lipschitz). By the Picard-Lindelsf (Coddington, |1955)

theorem, for each initial condition zy € M there is a unique solution ®(¢) on the interval T' C R.
This defines the flow

=S(2(t), ®(0) = o, 5)

(bt M= M, (I)t(IO) = q)(t)

Define the measure space (M, F, ) with the phase-state manifold M, a g-algebra F (typically the
Borel o-algebra B(,M)), and a finite, flow-invariant probability measure p. The Hilbert space of
observable functions (i.e. observables) is defined as H = L?(M, F, ;1) consisting of real-valued,
square-integrable functions g : M — R, with inner product

(9. h) = /M o(2)h(z)du(z).

Note that since M C R" is a separable metric space with finite measure, then # is a separable
Hilbert space. In addition, these scalar-valued observables may be arbitrary non-linear functions of
the phase-space variable ®.

Each observable g € H evolves under the Koopman semigroup {U*};>( via U'g(z) = g(P(x))
and the Liouville operator £ : H — #H is the infinitesimal generator, defined by

(£g)(@) = lim DN ZIC) g oy

so that formally Ut = et~.

The decomposition into resolved and unresolved observables. Central to the MZ formalism is
the orthogonal decomposition of H:

H=V®V" =ran(P) G ran(l — P)

where P projects onto the resolved subspace (i.e., the observables we retain) and I — P onto the
unresolved subspace. The choice of P is the sole degree of freedom in the Mori-Zwanzig formalism,
determining which components of the full dynamics are treated as resolved.

Mori and Zwanzig offer differing canonical projections: Mori’s projection selects V as the finite-
dimensional span of observables {g; }, projecting via inner products (Moril |1965a); Zwanzig’s pro-
jection takes V to be the (typically infinite-dimensional) subspace of functions measureable with
respect to a o-algebra G, projecting via the conditional expectation Pg = E [¢|G] (Zwanzig, 2001)).

The derivation of the GLE. The instantaneous evolution of g is given by

9 et2g(0) = Le4(0),

which can be decomposed into its two projected dynamics yeilding two coupled equations

d
%Pewg(O) = PLPe"g(0) + PLQe  g(0),

Qe'%9(0) = QLQe'9(0) + QLPEE (0).
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We rewrite the second equation for v(t) = Qe**g(0) where A(t) = Qe*“g(0) and F(t) =
QLPet*g(0),

d
Z(t) = A(t)o(t) + F (0).

The solution is given by Dyson’s identity
t
v(t) = e v(0) —|—/ e=IAR(s)ds.
0
Notice that v(0) = Qg(0). Substituting for v, A, F', we have

t t
Qe'*g(0) = '€ Qg(0) + / e(=9)RL Pest 4 (0)ds = "9 g(0) + / e(=)RL Py (s)ds.
0 0

The GLE results from substituting the prior result into the dynamics for %Pg(t)

t
%Pg(t) = PLPy(t) + / PLeIREQL Py(s)ds + PLe* @ Qg(0).
0

The connection to Koopman operator theory. The Koopman operator Kt : H — H is a bounded
linear operator that evolves any observable g € H along the flow 7' C R on the phase manifold

K' g(z0) = g(T(xo,1)).

Because H is infinite dimensional, in practice one often restricts attention to a finite resolved sub-
space V = Span{g(), ..., g("} C H with orthogonal complement V.

The evolution of g € V in this reduced subspace, with restricted evolution operator I/C\ accumulates
an error term N
goT = Kt g +
rey’.
where ¢ € V. The residual r is the closure problem, which is addressed via the Mori-Zwanzig
formalism by projecting onto ) while accounting for the influence of V7.

B.1 FEATURE MAPS AND BASIS

The choice of projection operator P fixes the decomposition H = V @ VT and thus completely
determines the GLE (its drift, memory kernel, and fluctuating force operators). In order to work
with a concrete, finite-dimensional system one must still choose a basis for V; a feature map £ picks
out coordinates on ) and yields explicit matrix representations of the GLE operators.

A feature map is any measurable function i : M — R™, and it induces a pullback o-algebra
o(h) ={h~'(B): B € B(R™)} C B(M).
Intuitively, o (h) captures exactly the events determined by values of the latent features h(z).

Given a feature map h : M — R™, let v = h,p = o h™! be the push-forward of ;. The induced
pull-back operator

In: LAR™v) —» L2 (M, p),  (Inf)(@) = f(h(2))

is an isometry whose image is the closed subspace L?(M, o(h), 1) of o(h)-measurable functions;
in particular {¢poh : ¢ € C.(R™)} is dense in that subspace. In this case the conditional-expectation
projector P onto V admits the concrete representation P = I, I} where I} is the L%-adjoint of Ij,.

Now pick any orthonormal basis {e;}, of the feature-space L?(R™,v). Then the pull-back of

each basis vector is given by
¢i(x) = (Inei)(x) = ei(h(x)).

By the isometry property of I, the family {¢;}™; is orthonormal in L?(M, ;1) and spans exactly
the resolved subspace V. In this sense {¢;} is the canonical basis induced by the feature map h.
Any other choice of basis on L?(R™, v) differs only by a unitary transformation.
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Note that P depends only on the subspace V), and any invertible transformation of the feature map

h = Ah with A € GL(m,R) yields the same V and thus the same P. Moreover, if V is in-
variant under the Liouville operator then any choice of feature basis yields the same closure of the
formalism.

Assumption ensures that every region with positive mass under ., is observed at some time ¢,
so that all potential degrees of freedom in the reference measure are, in principle, observable.

Assumption B.1. (Support Coverage Assumption) Let i = ZtT:1 e We require p,, < [ or
equivalently supp(p.) C Uthl supp( ).

oys y . s ~ 1 T
Proposition B.1. (Optimal Task Projector) Let Assumptwnhold for fi = 7 >, j1y and define

Pran= argmin  Ej [ly(t) — G(g(1)l3

G €G —measureable

where y(t) is the target at time t. Then Pyqin = P,

Hilbert bundle. ~Collectively, the family {V; };<[o, 1) together with the projection map

7T=|_|Vt—>[0,T], m(v) =t

constitutes a Hilbert bundle over the interval [0, 7] In this bundle picture, fibers are the individual
V:, a section is a time-indexed observable g(t) € V;. Here we describe trivialization with respect to
a fixed reference within the bundle, which is given by the Radon-Nikodym isometry

d 1
T VooV Tilg) = ,/d—jjé(x)g(x) — pig.

C THEORETICAL DETAILS

In this section, we provide proofs of the corresponding propositions from Section

C.1 ASSUMPTIONS

For completeness, we restate our assumptions below. In addition, we will provide some more context
to the significance of these assumptions.

Assumption 3.2. (Differentiability of P,,,) Suppose the time-dependent conditional expectation op-
erator P, : L*(u.) — L*(pt) is Fréchet-differentiable with derivative P,,.

This assumption is critical to ensuring that the GLE is well-posed. In practice it forces us to choose
a feature-map basis whose dependence on ¢t makes F,,, a smooth function of time—only then can
the model reliably learn the evolving dynamics.

Assumption B.1. (Support Coverage Assumption) Let i = Zthl e We require p,, < [i or
. T
equivalently supp(p«) € U;_; supp ().

This condition ensures that the projected dynamics P, can act on the entire latent state: there are no
hidden modes in ., that fall completely outside the supports of the training measures. Equivalently,
it removes any degrees of freedom from the latent state, so that our GLE truly governs all of the
relevant latent dynamics.

C.2 PROOFS
Proposition 3.1. (Intrinsic Time-Dependent GLE) Let g(t) evolve under the Liouville operator L on

a fixed Hilbert space H = L*(M, F, u.). Let P, : H =V C H be an orthogonal projection onto
V = L*(M,G, p.) with G C F. For a family of C' measures {ju; }+cio,1) let P, : V — Vy be the
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corresponding family of projections defining a Hilbert bundle {V,},c(0.q with V; = L*(M, G, ;).
The evolution of the resolved variable P, g(t) satisfies the following GLE

t
dt wed g(t) = PutpmQutg(t)"‘PmEPu*g(t)"‘/ Putﬁe(t_s)Q”*LPM*9(5)d3+Put£etQ“*£g(0)-
0

Proof. By Assumption@] P,, is differentiable, so that the GLE is given by chain rule as

O (Puug() = Buglt) + Pau 9() = Buglt) + Pou L(1).

Let H and V be decomposed as H = V & V' = ran(P,.) @ ran(Q,,.), and V = ran(P,,) @
ran(Q,,, ) for all t. First, using the decomposition of V, we rewrite

Pﬂt ( ) Ijlttptfg( ) MQM ( ) IHQ/HQ( ) MtPMthttg(t)
using the identities in Section 2}
Inserting the fixed-time decomposition for Lg(t), we see
Pﬂtﬂg(t) = PHtK(PM* + QU«*)g(t)

hence
d

a(Pth(t)) = ng(t) + Py, LPy, g(t) + Py, LQpu.g(1)

Finally, using Dyson’s identity to solve for v(t) = @, ¢g(t) as in the standard MZ formalism, we
find

d : ¢ .
dtP:u"f g(t) = P, Py, ng(t)+Pm£Pu*9(t)+/ Putﬁe(t )Q“*ﬁpu*g(s)d5+PmLetQ“*EQ(O)-
0

O
Proposition B.1. (Optimal Task Projector) Let Assumptionhold for i = % Zthl W and define

Pran=  argmin  Eg [y(t) — G(g(t))|3

€G —measureable
where y(t) is the target at time t. Then Pyqi = P,

Proof. The space of all G-measurable functions is a closed subspace of L?(M, fi). By the unique-
ness of the projection operator, then the unique minimizer of

argmin  E; ||ly(t) — G(g(t))llg

G €G —measureable

is G*(g) = E; [y| G]. Equivalently Pyyin = P is the unique orthogonal projector in L?(M, f1)
onto the G-measurable subspace.

By Assumption then the conditional expectation operators i and ., coincide almost every-
where. Concretely,
Eily|Gl(z) =E,, [y|G] () for ji-a.e. z.

O

Corollary 3.2. (Vanishing Drift Under an Invariant Trivialization) Suppose the Radon-Nikodym
densities satisfy pi(x) = a(t), and o > 0 independent of x. Then P, = P,,,, hence P,, = 0.

Proof. Forany g € L?(M, i), P, is defined by the requirement

/ fdu, = / e )i for all measurable G.
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Since pu; = ot

)No
/G fdpe = a(t) /G Fdpo, /G (P f)dp = alt) /G (P £t

Therefore
/ fdug = / (P, f)dpo for all measurable G,
G G

which by the uniqueness of the conditional-expectation operator in L? characterizes P,,,. We thus
conclude that P,,, = P, for all £, and as a result the time-derivative vanishes, i.e., P, = 0. O

Corollary C.1. (Toroidal Latent Manifold) Suppose we constrain each latent coorindate h;(t) to
live on a circle of period L; and we enforce that both the learned drift and memory-kernel param-
eters depend on h only through these periodic coordinates. Then the entire latent trajectory h(t)
evolves on the m-dimensional torus T™. As a result, the network can only represent—and learn—
functions defined on this compact, boundary-free manifold.

Proof. By the assumption of periodicity then each of the MZ terms descent to well-defined maps on
the quotient R™ /(L1Z X ... X Ly,Z), and the initial condition 2(0) € S} x ... x S7* uniquely
determines a solution h(t) that never leaves the torus.

Therefore any decoder F' : R™ — Y must descent to a well-defined map F:T™ - Y, ie., those
maps that are periodic in each coordinate. O

D METHODOLOGICAL DETAILS

D.1 ARCHITECTURAL DETAILS

Neural Wave Field The Neural Wave Field maintaints two coupled latent state h; € R™ and
e € R™, which evolve under a Mori-Zwanzig inspired network and an accompanying measure-
update expert. At each time step ¢ the raw input x; is first embedded into the feature space as a ghost
boundary point. That is, it is available to be uptaken by the memory kernel provided the gating
mechanism allows it.

For this reason, the MZ-NET o, and ogorce are critical for determining the amount of long history
information to retain, and the amount of new information to incorporate into the memory state.
Whether the information is ultimately taken into the latent state is governed by ojosure- These signals
jointly determine a convolutional kernel C},, and padded hidden state h; for updating hy; = Ch, *
ht.

A measure-dynamics expert network D,, determines the update for the measure between two time
periods. This module enforces that i, remains a valid probability density via softmax with a large
temperature of 100.

Given our assumptions on the conditional-expectation projections of P,,,, we train using the MSE
loss across all tasks.

WaveRNN The WaveRNN architecture is most similar to the Neural Wave Field in its construction
of a latent state. There are two particular differences in the approaches. First, the WaveRNN utilizes
periodic boundary conditions which are a limiting factor as described by Corollary [C.I} Moreover,
the architecture relies on a static decoder and encoder which forces the projection dynamics to be
invariant. As a result, the architecture will be unable to achieve a minimal latent state representation.
Furthermore, it will be prohibited from accurately learning the selective copy task.

Mamba The Mamba architecture is a state-of-the-art structured state-space model. It has achieved
particular success in modeling long-range tasks. It has done so by balancing long-range and short
range updates to the latent state.
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Transformers The positional encoding-based (or replacement) transformers aim to use various
methods to replace fixed positional encoding mechanisms with relative positional encoding mecha-
nisms. These have shown strong results in memory tasks such as the copy task.

D.2 ADDITIONAL EXPERIMENTS
D.2.1 CHAOTIC DYNAMICAL SYSTEMS

We evaluate how well our architecture can learn a highly non-periodic, chaotic manifold in accor-
dance with Corollary For this reason, we compare against the WaveRNN baseline, which uses
periodic boundary conditions in its latent state. We train both models to reconstruct the full phase-
state from only its z-coordinate, using 300-step input sequences (At = 0.01), and a latent dimension
of 3.

— True — True — Tue
---- Time-delay Embedding ---- Time-delay Embedding -~ Prediction ---- Prediction

Zo.
o~0.4

(a) Time-delay (7 = 1) (b) Time-delay (7 = 10) (c) WaveRNN (d) Neural Wave Field

Figure 5: Time-delay and predicted trajectories of the Lorenz attractor using the time delays of
7 = 1 and 10, and WaveRNN and Neural Wave Field models. We observe that the WaveRNN
performs comparably to the under resolved 7 = 1 time-delay embedding. In contrast, the Neural
Wave Field achieves strong trajectory matching that degrades over time as errors slowly accumulate.

Figure [5] presents the time-delay and predicted latent trajectories of the Lorenz attractor using two
classical delay embeddings (7 = 1 and 7 = 10), as well as the learned embeddings form the
WaveRNN and Neural Wave Field models. In our Neural Wave Field model, the latent trajectory
forms smooth, closed loops that align with the true attractor and only gradually diverge as errors
accumulate. Although this is slightly relaxed behavior from Proposition ??, it is attributable to
approximation errors in the memory kernel, the drift dynamics, and the dynamics of x;. By contrast,
the WaveRNN fits the dynamics into a toroidal manifold introducing distortion and misalignment,
especially over long time horizions, coinciding with Corollary [C.T]

D.3 TASK DETAILS
Lorenz Attractor We simulate the Lorenz system

t=oly—x), y=zlp—2)—y, E=ay-—pz

with standard parameters (o, p, 8) = (10, 28, 8/3) using a fourth-order Runge-Kutta integrator at
step size At = 0.01. At each time step only the x-coordinate is provided as input; the models must
reconstruct the full state (x4, y4, 2¢).

For all experiments, we use a training batch size of 128 and test using a batch size of 32. All batches
are generated randomly to obtain the trajectory of 300 time-steps. The loss is only computed on the
last 280 time-steps. For all models we use the Adam optimizer with a learning rate of 0.001 for 1000
batches.

For our comparisons, we use the following configurations. For WaveRNN (Keller et al., [2024),
we use one channel, an identity activation, and a hidden dimension of 20 to have a more direct
comparison to our model. The loss is mean squared error (MSE).

Copy For all experiments, we use a training batch size of 128 and test using a batch size of 50.
All batches are generated randomly to obtain the sequence of 10 tokens to be memorized. We use
T = 20, so the total sequence length is 30. The loss is only computed on the last 10 tokens; the
intermediate outputs are not considered. That is, we only care about the model’s ability to reproduce
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the sequence of 10 tokens at the final 10 timesteps. For all models we use the Adam optimizer with
a learning rate of 0.001 for 1000 batches.

For our comparisons, we use the following configurations. For WaveRNN (Keller et al.| [2024), we
use one channel and an identity activation to have a more direct comparison to our model. The loss
is mean squared error (MSE). For Mamba and the transformer models, we use cross entropy loss,
as they naturally output logits over the vocabulary size. We found that these models needed at least
2 layers to perform on the task, which we use in our experiments. For the transformers, we use a
single attention head.

Selective Copy By randomizing token positions and focusing evaluation solely on the terminal
outputs, this task highlights each model’s ability to selectively attend to and retain the correct in-
formation. Our architecture’s time-dependent projection and delay-coordinate closure enable it to
isolate the IV informative tokens with minimal overhead, even as memory capacity is constrained.

D.4 ASSUMPTIONS NOTE

As a note on the practical implications of the assumptions made. When the size of the latent state is
larger than the minimal representation but not large enough to trivialize the dynamics of the measure,
then the additional degrees of freedom provide many non-unique and non-trivial solutions. In this
case, we experience large standard deviations in the training loss between runs with differing initial
conditions. In the case where memory is sufficiently large to trivialize the measure dynamics, the
learning became significantly more consistent.

In addition, the continuity assumptions on the measure make it impossible to use the current frame-
work to effectively learn a version of the copy task where the predicted output is required to be
placed in order. However, on this task, we observe that the Mamba and transformer architectures
perform exceptionally well.
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