
Published as a conference paper at ICLR 2024

TREE SEARCH-BASED POLICY OPTIMIZATION UNDER
STOCHASTIC EXECUTION DELAY

David Valensi
Technion
davidvalensi@campus.technion.ac.il

Esther Derman
Technion
estherderman@campus.technion.ac.il

Shie Mannor
Technion & Nvidia Research
shie@ee.technion.ac.il

Gal Dalal
Nvidia Research
gdalal@nvidia.com

ABSTRACT

The standard formulation of Markov decision processes (MDPs) assumes that
the agent’s decisions are executed immediately. However, in numerous realis-
tic applications such as robotics or healthcare, actions are performed with a de-
lay whose value can even be stochastic. In this work, we introduce stochastic
delayed execution MDPs, a new formalism addressing random delays without
resorting to state augmentation. We show that given observed delay values, it
is sufficient to perform a policy search in the class of Markov policies in or-
der to reach optimal performance, thus extending the deterministic fixed delay
case. Armed with this insight, we devise DEZ, a model-based algorithm that
optimizes over the class of Markov policies. DEZ leverages Monte-Carlo tree
search similar to its non-delayed variant EfficientZero to accurately infer future
states from the action queue. Thus, it handles delayed execution while pre-
serving the sample efficiency of EfficientZero. Through a series of experiments
on the Atari suite, we demonstrate that although the previous baseline outper-
forms the naive method in scenarios with constant delay, it underperforms in the
face of stochastic delays. In contrast, our approach significantly outperforms
the baselines, for both constant and stochastic delays. The code is available at
https://github.com/davidva1/Delayed-EZ.

1 INTRODUCTION

The conventional Markov decision process (MDP) framework commonly assumes that all of the
information necessary for the next decision step is available in real time: the agent’s current state
is immediately observed, its chosen action instantly actuated, and the corresponding reward feed-
back concurrently perceived (Puterman, 2014). However, these input signals are often delayed in
real-world applications such as robotics (Mahmood et al., 2018), healthcare (Politi et al., 2022), or
autonomous systems, where they can manifest in different ways. Perhaps the most prominent exam-
ple where delay can be stochastic is in systems that rely on data transmission. Oftentimes, there is
some interference in transmission that stems from internal or external sources. Internal sources may
be due to temperature or pressure conditions that influence the sensing hardware, whereas external
sources of interference occur when a policy infers actions remotely (e.g., from a cloud). For ex-
ample, an autonomous vehicle may experience delay from its perception module in recognizing the
environment around it. This initial recognition delay is known as observation delay. Additional de-
lays can occur when taking action according to a previously made decision. This delay in response
is termed execution delay. As highlighted in (Katsikopoulos & Engelbrecht, 2003) and despite their
distinct manifestations, both types of delay are functionally equivalent and can be addressed using
similar methodologies.

In addition to its existence, the delay’s nature is often overlooked its nature. In complex systems,
delays exhibit stochastic properties that add layers of complexity to the decision-making process
(Dulac-Arnold et al., 2019). This not only mirrors their unpredictability, but also warrants a novel

1

https://github.com/davidva1/Delayed-EZ

Published as a conference paper at ICLR 2024

approach to reinforcement learning (RL) that does not rely on state augmentation. This popular
method consists of augmenting the last observed state with the sequence of actions that have been
selected by the agent, but whose result has not yet been observed (Bertsekas, 2012; Altman & Nain,
1992; Katsikopoulos & Engelbrecht, 2003). Although it presents the advantage of recovering partial
observability, this approach has two major limitations: (i) its computational complexity inevitably
grows exponentially with the delay value (Derman et al., 2021); (ii) it structurally depends on that
value, which prevents it from generalizing to random delays. In fact, the augmentation method
introduced in (Bouteiller et al., 2020) to address random delays was practically tested on small
delay values and/or small support.

In this work, we tackle the following question: How does one effectively engage in an environment
where action repercussions are subject to random delays? We introduce the paradigm of stochastic
execution delay MDPs (SED-MDPs). We then establish a significant finding: To address stochastic
delays in RL, it is sufficient to optimize within the set of Markov policies, which is exponentially
smaller than that of history-dependent policies. Our result improves upon the one in (Derman et al.,
2021) that tackled the narrower scope of deterministic delays.

Based on the observation above, we devise Delayed EfficientZero (DEZ). This model-based algo-
rithm builds on the strengths of its predecessor, EfficientZero, by using Monte Carlo tree search
to predict future actions (Ye et al., 2021). In practice, DEZ keeps track of past actions and their
delays using two separate queues. It utilizes these queues to infer future states and make decisions
accordingly. We also improve the way the algorithm stores and uses data from previous experi-
ence, enhancing its overall accuracy. In essence, DEZ offers a streamlined approach to managing
stochastic delays in decision-making. We accordingly modify the Atari suite to incorporate both
deterministic and stochastic delays, where the delay value follows a random walk. In both cases,
our algorithm surpasses ‘oblivious’ EfficientZero that does not explicitly account for delay, and
‘Delayed-Q’ from Derman et al. (2021).

In summary, our contributions are as follows.

1. We formulate the framework of MDPs with stochastic delay and address the principled
approach of state augmentation.

2. We prove that if the realizations of the delay process are observed by the agent, then it
suffices to restrict policy search to the set of Markov policies to attain optimal performance.

3. We devise DEZ, a model-based algorithm that builds upon the prominent EfficientZero.
DEZ yields non-stationary Markov policies, as expected by our theoretical findings. It is
agnostic to the delay distribution, so no assumption is made about the delay values them-
selves. Our approach is adaptable and can be seamlessly integrated with any of the alterna-
tive model-based algorithms.

4. We thoroughly test DEZ on the Atari suite under both deterministic and stochastic delay
schemes. In both cases, our method achieves significantly higher reward than the original
EfficientZero and ‘Delayed-Q’ from Derman et al. (2021).

2 RELATED WORK

Although it is critical for efficient policy implementation, the notion of delayed execution remains
scarce in the RL literature. One way to address this is through state-space augmentation, which
consists of concatenating all pending actions to the original state. This brute-force method presents
the advantage of recovering the Markov property, but its computational cost increases exponentially
with the delay value (Walsh et al., 2009; Derman et al., 2021).

Previous work that addressed random delay using state embedding includes Katsikopoulos & En-
gelbrecht (2003); Bouteiller et al. (2020). The work Katsikopoulos & Engelbrecht (2003) simply
augments the MDP with the maximal delay value to recover all missing information. In (Bouteiller
et al., 2020), such an augmented MDP is approximated by a neural network, and trajectories are re-
sampled to compensate for the actual realizations of the delay process during training. The proposed
method is tested on a maximal delay of 6 with a high likelihood near 2. This questions the viability
of their approach to (i) higher delay values; and (ii) delay distributions that are more evenly dis-
tributed over the support. Differently, by assuming the delay process to be observable, our method

2

Published as a conference paper at ICLR 2024

augments the state space by one dimension only, regardless of the delay value. It also shows effi-
ciency for delay values of up to 25, which we believe comes from the agnosticism of our network
structure to the delay.

To avoid augmentation, Walsh et al. (2009) alternatively proposes inferring the most likely present
state and deterministically transitioning to it. Their model-based simulation (MBS) algorithm re-
quires the original transition kernel to be almost deterministic for tractability. Additionally, MBS
proceeds offline and requires a finite or discretized state space, which raises the curse of dimen-
sionality. (Derman et al., 2021) address the scalability issue through their Delayed DQN algorithm,
which presents two main features: (i) In the same spirit as MBS, Delayed DQN learns a forward
model to estimate the state induced by the current action queue; (ii) This estimate is stored as a next-
state observation in the replay buffer, thus resulting in a time shift for the Bellman update. Although
(Walsh et al., 2009; Derman et al., 2021) avoid augmentation, these two works focus on a fixed and
constant delay value, whereas DEZ allows it to be random. In a related study, Karamzade et al.
(2024) investigate a method similar to ours, focusing on continuous control tasks in the mujoco and
DMC environments. Notably, they adopt our latent space imagination approach in their adaptation
of Dreamer-V3 to manage delays.

DEZ leverages the promising results obtained from tree-search-based learning and planning algo-
rithms (Schrittwieser et al., 2020; Ye et al., 2021). Based on a Monte Carlo tree search (MCTS),
MuZero (Schrittwieser et al., 2020) and EfficientZero (Ye et al., 2021) perform multi-step lookahead
and in-depth exploration of pertinent states. This is performed alongside latent space representations
to effectively reduce the state dimensions. MuZero employs MCTS as a policy improvement oper-
ator by simulating multiple hypothetical trajectories within the latent space of a world model. On
the other hand, EfficientZero builds upon MuZero’s foundation by introducing several enhance-
ments. These enhancements include a self-supervised consistency loss, the ability to predict re-
turns over short horizons in a single step, and the capacity to rectify off-policy trajectories using
its world model. Yet, none of these methods account for the delayed execution of prescribed deci-
sions, whereas DEZ takes advantage of the world model to infer future states and accordingly adapt
decision-making.

3 PRELIMINARIES

A discounted infinite-horizon MDP is a tuple (S,A, P, r, µ, γ) where S,A are finite state and action
spaces, respectively, P is a transition kernel P : S ×A → ∆S that maps each state-action pair to
a distribution over the state space, r : S × A → R is a reward function, µ ∈ ∆S an initial state
distribution, and γ ∈ [0, 1) a discount factor that diminishes the weight of long-term rewards.

At each decision step t, an agent observes a state s̃t, draws an action ãt that generates a reward
r(s̃t, ãt), then progresses to s̃t+1 according to P (·|s̃t, ãt). The action ãt follows some prescribed
decision rule πt, which itself has different possible properties. More precisely, a decision rule can
be Markovian (M) or history-dependent (H) depending on whether it takes the current state or the
entire history as input. It can be randomized (R) or deterministic (D) depending on whether its
output distribution supports multiple or single action. This yields four possible classes of decision
rules: HR, MR, HD, MD. A policy π := (πt)t∈N is a sequence of decision rules. The different
classes of policies are denoted by ΠHR,ΠMR,ΠHD,ΠMD and determined by their decision rules.
When πt = π0,∀t ∈ N, the resulting policy is said to be stationary. We simply denote by Π the set
of stationary policies.

The value function under a given policy π ∈ ΠHR is defined as

vπ(s) := Eπ

[∞∑
t=0

γtr(s̃t, ãt)|s̃0 = s

]
,

where the expectation is taken with respect to the process distribution induced by the policy. Ulti-
mately, our objective is to find π∗ ∈ argmaxπ∈ΠHR vπ(s) =: v∗(s), ∀s ∈ S . It is well-known
that an optimal stationary deterministic policy exists in this standard MDP setting (Puterman, 2014).

3

Published as a conference paper at ICLR 2024

Figure 1: Pending queue resolution in a SED-MDP. The policy input ŝt+zt corresponds to the state
inferred at t by a forward model (see Section 5). For clarity, effective decision times are shown for
t ∈ {5, 6} only.

4 STOCHASTIC EXECUTION-DELAY MDP

In this section, we introduce stochastic execution-delay MDPs (SED-MDPs), which formalize
stochastic delays and MDP dynamics as two distinct processes. We adopt the ED-MDP formu-
lation of (Derman et al., 2021) that sidesteps state augmentation and extend it to the random delay
case. With this perspective, we proceed in steps: (1) we define the SED-MDP framework with a
suitable probability space; (2) we introduce the concept of effective decision time; (3) we prove the
sufficiency of Markov policies to achieve optimal return in a SED-MDP.

A SED-MDP is a tuple (S,A, P, r, µ, γ, ζ, ā) such that (S,A, P, r, µ, γ) is an infinite-horizon MDP
and ζ ∈ ∆[M] a distribution over possible delay values, where [M] := {0, 1, · · · ,M}. The last
element ā ∈ AM models a default queue of actions to be used in case of null assignment.1 At each
step t, a delay value z̃t is generated according to ζ; the agent observes z̃t and a state s̃t, prescribes
an action ãt, receives a reward r(s̃t, ãt) and transits to s̃t+1 according to P (·|s̃t, ãt). Unlike the
constant delay case, the action ãt executed at time t is sampled according to a policy that had been
prescribed at a previous random time. This requires us to introduce the notion of effective decision
time, which we shall describe in Section 4.1.

For any π ∈ ΠHR, the underlying probability space is Ω = (S ×[M] × A)∞ which we assume
to be equipped with a σ-algebra and a probability measure Pπ . Its elements are of the form ω =
(s0, z0, a0, s1, z1, a1, · · ·). For all t ∈ N, let the random variables s̃t : Ω → S, z̃t : Ω → [M] and
ãt : Ω→ A be respectively given by s̃t(ω) = st, z̃t(ω) = zt and ãt(ω) = at. Clearly, ã := (ãt)t∈N
and z̃ := (z̃t)t∈N are dependent, as the distribution of ãt depends on past realizations of z̃:t for all t ∈
N. On the other hand, in this framework, the delay process z̃ is independent of the MDP dynamics
while it is observed in real-time by the agent. The latter assumption is justified in applications
such as communication networks, where delay can be effectively managed and controlled through
adjustments in transmission power. We finally define the random variables of the history (h̃t)t∈N
according to h̃0(ω) = (s0, z0) and h̃t(ω) = (s0, z0, a0, · · · , st, zt), ∀t ≥ 1.

4.1 EFFECTIVE DECISION TIME

To deal with random delays, we follow (Bouteiller et al., 2020) and assume that the SED-MDP
actuates the most recent action that is available at that step. This implies that previously decided

1One may use a sequence of M distributions instead of deterministically prescribed actions, but we restrict
to actions for notation brevity.

4

Published as a conference paper at ICLR 2024

actions can be overwritten or duplicated. Fig. 1 shows the queue dynamics resulting from successive
realizations of the delay process. Concretely, at each step t, the delayed environment stores two
distinct queues: one queue of M past actions (at−M , at−M+1, · · · , at−1) and one queue of M past
execution delays (zt−M , zt−M+1, · · · , zt−1). Then, we define the effective decision time at t as:

τt := max
t′∈[t−M :t]

{t′ + zt′ ≤ t}. (1)

It is a stopping time in the sense that τt is σ(h̃t)-measurable. Notably, it also determines the distri-
bution that generated each executed action: given a policy π = (πt)t≥0, for any step t, the action at
time t is generated through the decision rule ãt ∼ πτt . Intuitively, τt answers the question “What
is the most recent action available for execution, given past and current delays”? Alternatively, we
may define et := t+ zt as the earliest execution time resulting from a decision taken at time t.

Example. Let M = 5 and assume that the following table gives the first realizations of decision
rules and delays:

t 0 1 2 3 4
zt 5 4 4 4 3
et 5 5 6 7 7
at a0 a1 a2 a3 a4

As a result, the effective decision time at t = 5 is given by τ5 = 1 ·1{z5>0} +5 ·1{z5=0}. From the
agent’s perspective, the pending queue at time t = 5 depends on the delay value z5:

• If z5 = 5, then the pending queue is [a1, a2, a4, a4, a4].
• If z5 = 4, then the pending queue is [a1, a2, a4, a4].
• If z5 = 3, then the pending queue is [a1, a2, a4].
• If z5 = 2, then the pending queue is [a1, a2].
• If z5 = 1, then the pending queue is [a1].
• If z5 = 0, then the pending queue is [].

4.2 SED-MDP PROCESS DISTRIBUTION

We now study the process distribution generated from any policy, which will lead us to establish the
sufficiency of Markov policies for optimality. To begin with, the earliest time at which some action
prescribed by the agent’s policy is executed corresponds to min{z0, z1 +1, . . . ,M − 1+ zM−1} or
equivalently, to min{e0, e1, . . . , eM−1}. From there on, the SED-MDP performs a switch and uses
the agent policy instead of the fixed default queue. Denoting tz := min{z0, z1 + 1, . . . ,M − 1 +
zM−1}, for any policy π ∈ ΠHR, we have:

Pπ
(
ãt = a|h̃t = (ht−1, at−1, st, zt)

)
=

{
1āt

(a) if t < min{z0, z1 + 1, . . . , zt + t},
πτt(ht)(a) otherwise.

(2)

We can now formulate the probability of a sampled trajectory in the following theorem. A proof is
given in Appendix A.1.
Theorem 4.1. For any policy π := (πt)t∈N ∈ ΠHR, the probability of observing history ht :=
(s0, z0, a0, · · · , at−1, st, zt) is given by:

Pπ(s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , ãt−1 = at−1, s̃t = st, z̃t = zt)

= µ(s0)

(
tz−1∏
k=0

1āk
(ak)P (sk+1|sk, ak)

)(
t−1∏
l=tz

πτl(hl)(al)P (sl+1|sl, al)

)(
t∏

m=0

ζ(zm)

)
.

Extending the result of (Derman et al., 2021), we establish that the process distribution generated
from any history-dependent policy can equivalently be generated from a Markov policy. The proof
is given in Appendix A.2.

5

Published as a conference paper at ICLR 2024

Theorem 4.2. Let π ∈ ΠHR be a history-dependent policy. For all s0 ∈ S, there
exists a Markov policy π′ ∈ ΠMR that yields the same process distribution as π, i.e.,
Pπ′

(s̃τt = s′, ãt = a|s̃0 = s0, z̃ = z) = Pπ(s̃τt = s′, ãt = a|s̃0 = s0, z̃ = z), for all a ∈ A, s′ ∈
S, t ≥ 0, and z̃ := (z̃t)t∈N the whole delay process.

We can now devise policy training in the smaller class ΠMR without impairing the agent’s return.
The algorithm we propose next does exactly this.

5 STOCHASTIC-DELAY EFFICIENTZERO

We introduce a novel algorithm designed to address the challenges posed by stochastic execution
delay. Drawing inspiration from the recent achievements of EfficientZero on the Atari 100k bench-
mark (Ye et al., 2021), we use its architectural framework to infer future states with high accuracy.
Its notable sample efficiency enables us to quickly train the forward model. We note that recent ad-
vancements in model-based approaches extend beyond lookahead search methods such as MuZero
and EfficientZero. Depending on the task at hand, alternatives such as IRIS (Micheli et al., 2022),
SimPLE (Kaiser et al., 2019), or DreamerV3 (Hafner et al., 2023) exhibit distinct characteristics
that can also be considered. Our approach is adaptable and can be seamlessly integrated with any of
these algorithms.

Figure 2: Interaction diagram between
DEZ and the delayed environment

zt
Delayed

env

at

Tree-search
Policy

ât:t+zt

st
Forward
model

ŝt+zt

Algorithm description. DEZ is depicted in Fig. 2. It
adapts EfficientZero (Ye et al., 2021) to act and learn
in environments with stochastic delays. At any time t,
we maintain two queues of length M . One is the ac-
tion queue of previous realizations M [at−M , . . . , at−1].
The second is the delay value queue observed for these
M actions, [zt−M , . . . , zt−1]. During inference, we ob-
serve state st and delay zt, and aim to estimate the
future state ŝt+zt . To do so, we take the expected
pending actions denoted by [ât, . . . , ât+zt−1] and suc-
cessively apply the learned forward model: ŝt+1 =
G(st, ât), . . . , ŝt+zt = G(ŝt+zt−1, ât+zt−1), using nota-
tions from Ye et al. (2021). Finally, we perform an MCTS
search to output at := πt(ŝt+zt) and add at, zt to the re-
spective queues. On the other hand, the action executed
in the delayed environment is aτt . Since no future action
can overwrite the first expected action ât, we note that
aτt = ât. The reward of the system is then stored to form
a transition (st, aτt , rt).

Pending actions resolution. Fig. 1 depicts the action and
delay queues, together with the relation between effective
decision times and pending actions. At each time step, the
actual pending actions are calculated using the effective
decision times from Eq. (1).

Future state prediction. To make accurate state predictions, we embrace the state representation
network st = H(ot) and the dynamics network ŝt+1 = G(st, at) from EfficientZero (Ye et al.,
2021). For simplicity, we do not distinguish between observation ot and state representation st as do
Ye et al. (2021). However, all parts of the network—-forward, dynamics, value, and policy—operate
in the latent space. Moreover, the replay buffer contains transition samples with states st, st+1 in the
same space. The pseudo-code in Algo. 1 depicts how self-play samples episodes in the stochastic
delayed environment.

Corrections in the replay buffer. In the original version of EfficientZero, episode transitions
(st, at, rt) are stored in the game histories that contain state, action, and reward per step. However,
to insert the right transitions into the replay buffer, we post-process the game histories using all
execution delays {zt}t=L

t=0 of the episode of length L, enabling us to compute effective decision
times and store (st, aτt , rt) instead. More details about the episode processing can be found in
Appx. B.

6

Published as a conference paper at ICLR 2024

Learning a policy in a delayed environment. Action selection is carried out using the same
MCTS approach as in EfficientZero. The output of this search denoted by πt(ŝt+zt) also serves as
the policy target in the loss function. The primary alteration occurs in the policy loss, which takes
the form:

Lp = L(πt(ŝt+zt), pt(st+zt)).

where pt is the policy network at time t. Although the MCTS input relies on a predicted version of
st+zt , this loss remains justified due to the exceptional precision exhibited by the dynamics model
within the latent space. Other loss components remain unchanged.

6 EXPERIMENTS

The comprehensive framework that we construct around EfficientZero accommodates both constant
and stochastic execution delays. We consider the delay values {5, 15, 25} to be either the constant
value of delay or its maximal value when dealing with stochastic delays, as in (Derman et al.,
2021). For both constant and stochastic delays, we refrain from random initialization of the initial
action queue as in (Derman et al., 2021). Instead, our model determines the first M actions. This
is achieved through the iterative application of the forward and the policy networks. In practice,
the agent observes the initial state s0, infers the policy through ā0, and predicts the subsequent
state ŝ1 = G(s0, ā0). It similarly infers ŝ2, . . . , ŝM and selects actions ā2, . . . , āM−1 through this
iterative process.

EfficientZero sampled 100K transitions, aligning with the Atari 100K benchmark. Although our
approach significantly benefits from EfficientZero’s sample efficiency, the presence of delay adds
complexity to the learning process, requiring mildly more interactions – 130K in our case. Success-
fully tackling delays with such limited data is a non-trivial task.

(a) (b)

Figure 3: Average score on 15 Atari games and delays M ∈ {5, 15, 25} over 32 test episodes per
trained seed. Delays appear from low to high values for each game. (a) Constant delay value; (b)
Stochastic delay value within {0, · · · ,M}.

To evaluate our theoretical findings, we subject DEZ to testing across 15 Atari games, each under
both constant and stochastic delays. In either case, the delay value is revealed to the agent. We stress

7

Published as a conference paper at ICLR 2024

that the baseline scores are not consistent for the two types of delays that we simulate. Indeed, on
constant delays, Delayed-Q (Derman et al., 2021) tends to achieve higher scores than the oblivious
version of EfficientZero, while Delayed-Q suffers more from stochastic delays than EfficientZero.
As explained next, DEZ consistently achieves higher scores on both types of delays. A full summary
of scores and standard deviations for our algorithm and baseline methods is presented in Appx. C.4,
Tabs. 1 and 2.

6.1 CONSTANT DELAYS

We first analyze the scores produced by DEZ for constant delays and refer to Appx. C.1 for the
convergence plots of all games tested.

Figure 3(a) shows that our method achieves the best average score in 39 of the 45 experiments.
The oblivious version of EfficientZero confirms previously established theoretical findings (Derman
et al., 2021, Prop. 5.2): stationary policies alone are insufficient to achieve the optimal value. Given
that Oblivious EfficientZero lacks adaptability and exclusively generates stationary policies, it is not
surprising that it struggles to learn effectively in most games.

Our second baseline reference is Delayed-Q (Derman et al., 2021), recognized as a state-of-the-art
algorithm for addressing constant delays in Atari games. However, it should be noted that Delayed-
Q is a DQN-based algorithm, and its original implementation entailed training with one million
samples. Our observations reveal that within the constraints of the allotted number of samples,
Delayed-Q struggles to achieve efficient learning. On the other hand, Delayed-Q benefits from
its perfect forward model, provided by the environment itself. We observe that in 21 out of 45
experiments, Delayed-Q achieves an average score that is at least 85% of our method’s result, even
from the initial training iterations.

Importance of the forward model. Despite the dependence of Delayed-Q on the Atari envi-
ronment as its forward model, this baseline exhibits significant vulnerabilities when faced with
limited data. To address this challenge, we harness the representation learning capabilities of Ef-
ficientZero, allowing us to acquire state representations and dynamics through the utilization of its
self-supervised rich reward signal, among other features. Our findings illustrate that when we ef-
fectively learn a precise prediction model, delays become more manageable. However, it is worth
noting that increased randomness in the environment can result in larger compounding errors in
subsequent forward models.

6.2 STOCHASTIC DELAYS

Figure 4: Random walk behav-
ior of the stochastic delay across
multiple episodes. No initial de-
lay value is set at the start of the
episode. Here, the maximal delay
is 15.

For a more realistic scenario, we also test our method on
stochastic delays. For each Atari game, we use three stochas-
tic delay settings. For each value M ∈ {5, 15, 25}, we use the
following formulation of the delay zt at time t:

z0 = M

zt>0 =

min(zt + 1,M) with probability 0.2,

max(zt − 1, 0) with probability 0.2,

zt otherwise.

Note that the delay is never reinitialized to M when the
episode terminates. Instead, the delays remain the same for
the beginning of the next episode. By doing that, we do not
assume an initial delay value and cover a broader range of ap-
plications.

We opt to avoid the augmentation approach in the baselines
due to its inherent complexity. Incorporating the pending ac-
tion queue into the state space was deemed infeasible due to
its exponential growth, even in simple environments such as Maze (Derman et al., 2021). In our
scenario, the length of the pending queue ranges from zero to M in cases involving stochastic de-
lays. Consequently, the size of the augmented state space becomes | S | × |A |M . As the value of
M increases, the order of magnitude of this quantity becomes overwhelming.

8

Published as a conference paper at ICLR 2024

We report the average scores of DEZ and baselines for 15 Atari games in Figure 3(b), and refer
to Appx. C.2 for the convergence plots. Similarly to the constant case, we observe an impressive
achievement, even slightly better, highlighting the added resilience of our method to stochastic de-
lays. In 42 of 45 experiments, our method prevails with the highest average score. DEZ is also
trained to incorporate very large delay values for evaluation in extreme scenarios. The performance
in such cases is predominantly influenced by the specific characteristics of the environment. For
example, in Asterix, we observe that DEZ struggles to learn efficiently with delays of M = 35 and
M = 45. Contrarily, in Hero, our algorithm demonstrates comparable learning performance even
with the largest delay value.

7 DISCUSSION

In this work, we formalized stochastic execution delay in MDPs without resorting to state augmen-
tation. Although its analysis is more engaged, this setting leads to an intriguing insight: as in the
constant delay case, we can restrict the policy search to the class of Markov policies and still reach
optimal performance in the stochastic delay case. We introduced DEZ, a model-based approach
that achieves state-of-the-art performance for delayed environments, thanks to an accurately learned
world model. A natural extension of our approach would consider predicting the next state distribu-
tion instead of point prediction ŝt+1 to train a more robust world model and mitigate uncertainty in
more stochastic environments.

DEZ heavily relies on a learned world model to infer future states. Devising a model-free method
that addresses delayed execution while avoiding embedding remains an open question. DEZ also
assumes delay values are observed in real-time, which enabled us to backpropagate the forward
model the corresponding number of times. Ridding of this constraint would add another layer of
difficulty because the decision time that generated each action would be ignored. For deterministic
execution delay, we may estimate its value. For stochastic delays, we could adopt a robust approach
to roll out multiple realizations of delays and act according to a worst-case criterion.

Useful improvements may also be made to support continuous delays and remove drop and dupli-
cation of actions. In such a case, we may plan and derive continuous actions. Another modeling
assumption that we made was that the delay process is independent of the MDP environment. Al-
ternatively, one may study dependent delay processes, e.g., delay values that depend on the agent’s
current state or decision rule. Such extension is particularly meaningful in autonomous driving
where the agent state must be interpreted from pictures of various information complexities.

8 REPRODUCIBILITY

To further advance the cause of reproducibility in the field of Reinforcement Learning (RL), we are
committed to transparency and rigor throughout our research process. We outline the steps taken to
facilitate reproducibility: (1) Detailed Methodology: Our commitment to transparency begins with a
description of our methodology. We provide clear explanations of the experimental setup, algorith-
mic choices, and concepts introduced to ensure that fellow researchers can replicate our work. (2)
Formal proofs are presented in the appendix. (3) Open implementation: To encourage exploration
and research on delay-related challenges in RL, we include the code as part of the supplementary
material. We include a README file with instructions on how to run both training and evaluation.
Our repository is a fork of EfficientZero (Ye et al., 2021) with the default parameters taken from the
original paper. (4) Acknowledging Distributed Complexity: It is important to note that, while we
strive for reproducibility, the inherent complexity of distributed architectures, such as EfficientZero,
presents certain challenges. Controlling the order of execution through code can be intricate, and we
acknowledge that achieving exact-result replication in these systems may pose difficulties. In sum-
mary, our dedication to reproducibility is manifested through transparent methodologies, rigorous
formal proofs, and an openly accessible implementation. Although we recognize the complexities
of distributed systems, we believe that our contributions provide valuable insight into delay-related
issues in RL, inviting further collaboration within the research community.

9

Published as a conference paper at ICLR 2024

REFERENCES

Eitan Altman and Philippe Nain. Closed-loop control with delayed information. ACM sigmetrics
performance evaluation review, 20(1):193–204, 1992.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scien-
tific, 2012.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International conference on learning representations,
2020.

Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-stationary
markov policies. January 2021.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Armin Karamzade, Kyungmin Kim, Montek Kalsi, and Roy Fox. Reinforcement learning from
delayed observations via world models. arXiv preprint arXiv:2403.12309, 2024.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4635–4640. IEEE, 2018.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world models.
arXiv preprint arXiv:2209.00588, 2022.

Ruth E Politi, Peter D Mills, Lisa Zubkoff, and Julia Neily. Delays in diagnosis, treatment, and
surgery: Root causes, actions taken, and recommendations for healthcare improvement. Journal
of Patient Safety, 18(7):e1061–e1066, 2022.

Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in environ-
ments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18:83–105, 2009.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. October 2021.

10

Published as a conference paper at ICLR 2024

APPENDIX

A A FORMULATION FOR STOCHASTIC DELAYS

A.1 PROOF OF THEOREM 4.1

Proof. By definition of conditional probability, for all measurable sets A1, · · · , An ∈ B(Ω), we
have

Pπ(∩ni=0Ai) =

(
n−1∏
i=0

Pπ(Ai| ∩nj=i+1 Aj)

)
Pπ(An). (3)

Applying Eq. (3) to n = 2t+ 1 on the following events:

A2t+1 := {s̃0 = s0}
A2t := {z̃0 = z0, ã0 = a0}

...
A2 := {z̃t−1 = zt−1, ãt−1 = at−1}
A1 := {s̃t = st},
A0 := {z̃t = zt}

we obtain that

Pπ(s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , ãt−1 = at−1, s̃t = st, z̃t = zt)

= Pπ(s̃0 = s0)

t−1∏
i=0

Pπ(z̃i = zi, ãi = ai|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , s̃i = si)

Pπ(s̃i+1 = si+1|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , z̃i = zi, ãi = ai)

· Pπ(z̃t = zt|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , z̃t−1 = zt−1, ãt−1 = at−1, s̃t = st)

(1)
= Pπ(s̃0 = s0)

t−1∏
i=0

Pπ(z̃i = zi, ãi = ai|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , s̃i = si)

Pπ(s̃i+1 = si+1|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , z̃i = zi, ãi = ai)Pπ(z̃t = zt)

= Pπ(s̃0 = s0)

t−1∏
i=0

Pπ(z̃i = zi, ãi = ai|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , s̃i = si)

Pπ(s̃i+1 = si+1|h̃i = (hi−1, ai−1, zi, si), ãi = ai)Pπ(z̃t = zt)

= Pπ(s̃0 = s0)

t−1∏
i=0

Pπ(z̃i = zi, ãi = ai|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , s̃i = si)P (si+1|si, ai)ζ(zt)

= Pπ(s̃0 = s0)

t−1∏
i=0

Pπ(ãi = ai|h̃i = hi)Pπ(z̃i = zi|s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , s̃i = si)P (si+1|si, ai)ζ(zt)

= Pπ(s̃0 = s0)

t−1∏
i=0

Pπ(ãi = ai|h̃i = hi)ζ(zi)P (si+1|si, ai)ζ(zt)

= µ(s0)

(
tz−1∏
k=0

1āk
(ak)P (sk+1|sk, ak)

)(
t−1∏
l=tz

πτl(hl)(al)P (sl+1|sl, al)

)
ζ(zt)

11

Published as a conference paper at ICLR 2024

where equality (1) comes from the fact that the delay distribution at i+1 is independent of the state
si+1 observed then. By Eq. (2),

Pπ(s̃0 = s0, z̃0 = z0, ã0 = a0, · · · , ãt−1 = at−1, s̃t = st, z̃t = zt)

= Pπ(s̃0 = s0)

(
t∏

i=0

ζ(zi)

)
tz−1∏
i=0

Pπ(ãi = ai|h̃i = hi)Pπ(s̃i+1 = si+1|h̃i = (hi−1, ai−1, si, zi), ãi = ai)

t−1∏
k=tz

Pπ(ãk = ak|h̃k = hk)Pπ(s̃k+1 = sk+1|h̃k = (hk−1, ak−1, sk, zk), ãk = ak)

= µ(s0)

(
tz−1∏
k=0

1āk
(ak)P (sk+1|sk, ak)

)(
t−1∏
l=tz

πτl(hl)(al)P (sl+1|sl, al)

)(
t∏

m=0

ζ(zm)

)
,

where the first product is empty if and only if z0 = 0, i.e., the decision taken at time t = 0 is
immediately executed.

A.2 PROOF OF THEOREM 4.2

We first establish the following lemma, which will be used in the theorem’s proof.

Lemma A.1. For all t > 0 and zt > 0,

Pπ(s̃t = s′|ãt = a′, s̃t−1 = s, ãt−1 = a) = Pπ(s̃t = s′|s̃t−1 = s, ãt−1 = a) (4)

Proof. Since zt > 0 by assumption, the state variable s̃t is independent of ãt, so that: Pπ(s̃t =
s′|ãt = a′, s̃t−1 = s, ãt−1 = a) = P (s′|s, a) = Pπ(s̃t = s′|s̃t−1 = s, ãt−1 = a).

Theorem. Let π ∈ ΠHR be a history dependent policy. For all s0 ∈ S, there exists a Markov policy
π′ ∈ ΠMR that yields the same process distribution as π, i.e.,

Pπ′
(s̃τt = s′, ãt = a|s̃0 = s0, z̃ = z) = Pπ(s̃τt = s′, ãt = a|s̃0 = s0, z̃ = z), (5)

for all a ∈ A, s′ ∈ S, t ≥ 0, and z̃ := (z̃t)t∈N the whole delay process.

Proof. If M = 0, the result holds true by standard RL theory (Puterman, 2014)[Thm 5.5.1]. Assume
now that M > 0, fix s ∈ S and z = (zt)t∈N. The variable z is exogenous, and we shall consider
the corresponding sequence of effective decision times (τt)t∈N. We construct a Markov policy π′

for these times only while for other times, π′ can be anything else. Let thus π′ := (π′
τt)t∈N with

π′
τt : {s} → ∆A defined as

π′
τt(s

′)(a) :=

{
Pπ(ãt = a|s̃τt = s′, s̃0 = s, z̃ = z) if t ≥ tz,

1āt
(a) otherwise,

∀s′ ∈ S, a ∈ A . (6)

Recall the definition of the time the SED-MDP performs a switch and uses the agent’s policy tz :=
min{z0, z1 +1, . . . ,M − 1+ zM−1}. For the policy π′ defined in Eq. (6), we prove the theorem by
induction on t ≥ tz , since for t < tz , the decision rule being applied is 1āt

regardless of the policy.
For t = tz , by Thm. 4.1, we have:

Pπ(s̃τtz = s′, ãtz = a|s̃0 = s0) =
Pπ(s̃τtz = s′, ãtz = a, s̃0 = s0)

Pπ(s̃0 = s0)

=
1

Pπ(s̃0 = s0)

∑
s1,··· ,stz−1,
a0,··· ,atz−1

Pπ(s̃τtz = s′, ãtz = a, ãtz−1 = atz−1, · · · , ã0 = a0, s̃0 = s0)

=
∑

s1,··· ,stz−1,
a0,··· ,atz−1

tz−1∏
k=0

1āk
(ak)P (sk+1|sk, ak)

12

Published as a conference paper at ICLR 2024

We observe that the expression does not depend on the prescribed policy, so it equals Pπ′
(s̃τtz =

s′, ãtz = a|s̃0 = s0) and the induction base holds.

Assume that Eq. (5) holds up until t = n− 1, with t ≥ tz . Let denote t′ = n, we aim to prove that

Pπ(s̃t′ = s′|s̃0 = s) = Pπ′
(s̃t′ = s′|s̃0 = s). (7)

Then, we can write

Pπ(s̃t′ = s′|s̃0 = s)

=
∑
st∈S,
at∈A

Pπ(s̃t′ = s′, s̃t = st, ãt = at|s̃0 = s)

=
∑
st∈S,
at∈A

Pπ(s̃t′ = s′|ãt = at, s̃t = st, s̃0 = s)

Pπ(ãt = at|s̃t = st, s̃0 = s)Pπ(s̃t = st|s̃0 = s)

=
∑
st∈S,
at∈A

P (s′|st, at)Pπ(ãt = at|s̃t = st, s̃0 = s)Pπ(s̃t = st|s̃0 = s).

By Eq. 2, ãt only depends on state-action sequences up to τt. Let’s differentiate on the value of zt.

If zt = 0, then τt = t and by construction of π′ we can write:

Pπ(ãt = at|s̃t = st, s̃0 = s) = Pπ(ãt = at|s̃τt = st, s̃0 = s) = Pπ′
(ãt = at|s̃τt = st, s̃0 = s).

⇒ Pπ(s̃t′ = s′|s̃0 = s) =
∑
st∈S,
at∈A

P (s′|st, at)Pπ′
(ãt = at|s̃τt = st, s̃0 = s)Pπ(s̃t = st|s̃0 = s).

If zt > 0, then τt < t and we can write: Pπ(ãt = at|s̃t = st, s̃0 = s) = Pπ(ãt = at|s̃0 = s)

⇒ Pπ(s̃t′ = s′|s̃0 = s) =
∑
st∈S,
at∈A

P (s′|st, at)Pπ(ãt = at|s̃0 = s)Pπ(s̃t = st|s̃0 = s).

Since t = n− 1, by the induction hypothesis we can rewrite

Pπ(ãt = at|s̃0 = s) =
∑

sτt∈S
Pπ(ãt = at, s̃τt = sτt |s̃0 = s)

=
∑

sτt∈S
Pπ′

(ãt = at, s̃τt = sτt |s̃0 = s)

= Pπ′
(ãt = at|s̃0 = s)

⇒ Pπ(s̃t′ = s′|s̃0 = s) =
∑
st∈S,
at∈A

P (s′|st, at)Pπ′
(ãt = at|s̃0 = s)Pπ(s̃t = st|s̃0 = s).

13

Published as a conference paper at ICLR 2024

In the two cases, we now study the last term in the above equations, Pπ(s̃t = st|s̃0). We have

Pπ
(s̃t = st|s̃0 = s)

=
∑

st−1,··· ,stz∈S
at−1,··· ,atz∈A

Pπ
(s̃t = st, s̃t−1 = st−1, ãt−1 = at−1, · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

=
∑

st−1,··· ,stz∈S
at−1,··· ,atz∈A

Pπ
(s̃t = st|s̃t−1 = st−1, ãt−1 = at−1, · · · , s̃tz = stz , ãtz = atz , s̃0 = s)

Pπ
(s̃t−1 = st−1, ãt−1 = at−1, · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

=
∑

st−1,··· ,stz∈S
at−1,··· ,atz∈A

P (st|st−1, at−1)

Pπ
(s̃t−1 = st−1, ãt−1 = at−1, · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

=
∑

st−1,··· ,stz∈S
at−1,··· ,atz∈A

P (st|st−1, at−1)

Pπ
(s̃t−1 = st−1|ãt−1 = at−1, s̃t−2 = st−2, ãt−2 = at−2, · · · , s̃tz = stz , ãtz = atz , s̃0 = s)

Pπ
(ãt−1 = at−1, s̃t−2 = st−2, ãt−2 = at−2, · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

Lemma A.1
=

∑
st−1,··· ,stz∈S
at−1,··· ,atz∈A

P (st|st−1, at−1)P (st−1|st−2, at−2)

Pπ
(ãt−1 = at−1, s̃t−2 = st−2, ãt−2 = at−2, · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

=
∑

st−1,··· ,stz∈S
at−1,··· ,atz∈A

P (st|st−1, at−1)P (st−1|st−2, at−2)

Pπ
(ãt−1 = at−1|s̃t−2 = st−2, ãt−2 = at−2 · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

Pπ
(s̃t−2 = st−2, ãt−2 = at−2 · · · , s̃tz = stz , ãtz = atz |s̃0 = s)

=

...

=
∑

st−1,··· ,stz∈S
at−1,··· ,atz∈A

(t−tz∏
i=0

P (st−i|st−i−1, at−i−1)

)

(t−tz−1∏
j=1

Pπ
(ãt−j = at−j |s̃t−j−1 = st−j−1, ãt−j−1 = at−j−1, · · · , s̃tz = stz , ãtz = atz , s̃0 = s)

)
Pπ

(s̃tz = stz |ãtz = atz , s̃0 = s)Pπ
(ãtz = atz |s̃0 = s)

(1)
=

∑
st−1,··· ,stz∈S
at−1,··· ,atz∈A

(t−tz∏
i=0

P (st−i|st−i−1, at−i−1)

)(t−tz−1∏
j=1

Pπ
(ãt−j = at−j |s̃τt−j

= sτt−j
)

)

Pπ
(s̃tz = stz |ãtz = atz , s̃0 = s)Pπ

(ãtz = atz |s̃0 = s)

We continue and write

(2)
=

∑
st−1,··· ,stz∈S
at−1,··· ,atz∈A

(t−tz∏
i=0

P (st−i|st−i−1, at−i−1)

)(t−tz−1∏
j=1

qd′τt−j
(sτt−j

)(at−j)

)

Pπ
(s̃tz = stz |ãtz = atz , s̃0 = s)Pπ

(ãtz = atz |s̃0 = s)

(3)
=

∑
st−1,··· ,stz∈S
at−1,··· ,atz∈A

(t−tz∏
i=0

P (st−i|st−i−1, at−i−1)

)(t−tz−1∏
j=1

qd′τt−j
(sτt−j

)(at−j)

)

Pπ
(s̃tz = stz |ãtz = atz , s̃0 = s)

∑
s′τtz

∈S

(
qd′τtz

(sτtz
)(atz

)

14

Published as a conference paper at ICLR 2024

In (2) and (3) we used equation 2. We now analyze the last term implying on π and show that it is
not policy dependant:
Pπ

(s̃tz = stz |ãtz = atz , s̃0 = s) = Pπ
(s̃tz = stz |s̃0 = s)

=
∑

stz−1,··· ,s1∈S
atz−1,··· ,a0∈A

Pπ
(s̃tz = stz , s̃tz−1 = stz−1, ãtz−1 = atz−1, · · · , s̃1 = s1, ã1 = a1, ã0 = a0|s̃0 = s)

=
∑

stz−1,··· ,s1∈S
atz−1,··· ,a0∈A

1

Pπ(s̃0 = s)
Pπ

(s̃tz = stz , s̃tz−1 = stz−1, ãtz−1 = atz−1, · · · , s̃1 = s1, ã1 = a1, ã0 = a0, s̃0 = s)

(4)
=

∑
stz−1,··· ,s1∈S
atz−1,··· ,a0∈A

1

µ(s)
µ(s)

tz−1∏
i=0

P (si+1|si, ai)1āi
(ai)

 =
∑

stz−1,··· ,s1∈S
atz−1,··· ,a0∈A

tz−1∏
i=0

P (si+1|si, ai)1āi
(ai)

 ,

where (4) results from Th. 4.1.

Thus, if we decompose Pπ′
(s̃t′ = s′|s̃0 = s) according to the exact same derivation as we did for

Pπ(s̃t′ = s′|s̃0 = s), we obtain that at t′ = n:

Pπ(s̃t′ = s′|s̃0 = s) = Pπ′
(s̃t′ = s′|s̃0 = s). (8)

As a preceding step in the induction process, this results holds at τt′ ≤ t′ = n:

Pπ(s̃τt′ = s′|s̃0 = s) = Pπ′
(s̃τt′ = s′|s̃0 = s). (9)

As a result, at t′ = n we have

Pπ′
(s̃τt′ = s′, ãt′ = a|s̃0 = s)=Pπ′

(ãt′ = a|s̃τt′ = s′, s̃0 = s)Pπ′
(s̃τt′ = s′|s̃0 = s)

(a)
= Pπ′

(ãt′ = a|s̃τt′ = s′, s̃0 = s)Pπ(s̃τt′ = s′|s̃0 = s)

(b)
= Pπ(ãt′ = a|s̃τt′ = s′, s̃0 = s)Pπ(s̃τt′ = s′|s̃0 = s)

=Pπ(s̃τt′ = s′, ãt′ = a|s̃0 = s),

where (a) follows from Eq. 9; (b) by construction of π′
τt(s

′)(a) in Eq. 6. Finally, assuming it is
satisfied at t = n− 1, the induction step is proved for t = n, which ends the proof.

15

Published as a conference paper at ICLR 2024

B ALGORITHM

We briefly describe the EfficientZero algorithm from (Ye et al., 2021) and highlight the places where
novelties are introduced in DEZ. In EfficientZero, there are several actors running in parallel:

• The Self-play actor fetches the current networks of the model (representation, dynamics,
value, policy prediction and reward networks: H,G,V,P,R). It samples episodes accord-
ing to these networks, following the algorithm 1. Although the algorithm relies on episode
sampling, the differences from the original version of EfficientZero, Ye et al. (2021) reside
also in the episode post processing. After generating the trajectory, each episode is edited,
associating each state st with the executed action at time t rather than the decided action at
that time. This modification ensures that the replay buffer contains an episode that is effec-
tively free of delays, allowing the utilization of existing learning procedures for effective
learning. In addition, for the learner’s sake, the self-play actors store statistics and outputs
of the consecutive MCTS searches to the replay buffer.

• The CPU rollout workers (Ye et al., 2021) are responsible for preparing the batch contexts
(selecting indexes of trajectories, and defining boundaries of valid episodes).

• GPU batch workers (Ye et al., 2021) effectively place batches on the GPUs and trigger the
learner with an available batch signal.

• The Learner itself updates weights of the different networks using the several costs func-
tions: the innovative similarity cost (for efficient dynamics learning), the reward cost, the
policy cost, and the value cost.

As previously highlighted, it is important to note that, aside from modifications to the Self-Play
actor and the testing procedure, our approach does not necessitate changes to the architecture. It is
adaptable and can be integrated into any model-based algorithm.

Technically, the challenges were to incorporate the parallel forward of the four environments for
effectiveness; to plan for the initial action queue based on the initial observation as described in
Section 6; and to manipulate episodes according to the delay values in a complex structure of obser-
vations, actions, reward, and statistics of MCTS searches.

16

Published as a conference paper at ICLR 2024

Algorithm 1 DEZ: acting in environments with stochastic delays. PQR stands for Pending Queue
Resolver (see Fig. 1)
n← 0
while n < STEPS do
H,G,V,P,R ← Hθ,Gθ,Vθ,Pθ,Rθ

Sample new episode (s0, z0, a0, . . . sT , zT , aT)
Initialize queues:
Default action queue: [a−M , . . . , a−1] = ā. Delay queue: [z−M , . . . , z−1] = [M, . . . ,M].
t← 0
while episode not terminated do

Observe st, zt
Query from the delayed environment the estimated pending queue:
[ât, . . . , ât+zt−1] = PQR(at−M , . . . , at−1, zt−M , . . . , zt−1)
ŝt+1 = g(st, ât)
...
ŝt+zt = g(ŝt+zt−1, ât+zt−1)
πt = MCTS(ŝt+zt)
at ∼ πt

Shift the action and delay queues and insert at and zt.
t← t+ 1

end while
Post process the episode (s0, z0, a0, . . . sT , zT , aT) and compute effective decision times

τ0, . . . , τT
Add (s0, τ0, a0, . . . sT , τT , aT) to the Replay Buffer.
n← n+ T

end while

C EXPERIMENTS

C.1 CONVERGENCE PLOTS FOR CONSTANT DELAY

Figure 5 gives the learning curves of DEZ together with the baselines for constant delay.

17

Published as a conference paper at ICLR 2024

Figure 5: Convergence plots for 15 Atari games on constant delays in {5, 15, 25}.

C.2 CONVERGENCE PLOTS FOR STOCHASTIC DELAY

Figure 6 gives the learning curves of DEZ together with the baselines for stochastic delay.

18

Published as a conference paper at ICLR 2024

Figure 6: Convergence plots for 15 Atari games on stochastic delays with maximal delay M ∈
{5, 15, 25} and probability p = 0.2.

C.3 DEZ ON LARGE DELAYS

Here, we add results for very large delays in Asterix and Hero Atari games. As expected, the scores
decrease as the delay increases, due to the complexity and error in planning.

19

Published as a conference paper at ICLR 2024

Figure 7: Scores on two Atari games with stochastic delays up to M = 45. Left: Asterix. Right:
Hero.

C.4 SUMMARY OF SCORES ON ATARI GAMES

We summarize the scores and standard deviations obtained for DEZ (ours) and baselines Oblivious
EfficientZero of (Ye et al., 2021) and Delayed DQN of (Derman et al., 2021) on 15 Atari games.
The following table shows scores on constant delays.

Game m = 5 m = 15 m = 25
Obl. EZ Delayed

DQN
Delayed EZ Obl. EZ Delayed

DQN
Delayed EZ Obl. EZ Delayed

DQN
Delayed EZ

Alien 335.5
±24.88

484.33
±73.67

993.25
±311.5

287.86
±30.57

421.33
±58.0

512.0
±109.75

278.8
±29.0

454.0
±120.5

497.25
±185.75

Amidar 50.8 ±5.2 64.0 ±20.0 111.8
±16.4

12.43
±2.86

61.67
±22.0

72.0 ±18.2 3.2 ±1.4 59.5 ±15.5 68.0 ±15.2

Assault 234.5
±21.25

369.0
±91.0

1056.5
±281.25

208.6
±33.2

371.0
±93.67

674.75
±59.75

179.75
±20.0

389.5
±107.5

636.6
±92.4

Asterix 348.43
±56.43

486.25
±242.75

10758.2
±5809.0

244.4
±25.4

304.75
±160.0

1160.71
±447.86

186.4
±15.4

248.33
±136.33

673.4
±314.8

BankHeist 13.25
±4.25

17.0 ±13.5 180.2
±33.2

11.4 ±2.2 13.67
±12.67

35.6 ±17.4 12.5 ±3.0 14.17
±10.83

29.4 ±14.6

Boxing -4.5 ±1.25 2.33 ±9.33 2.0 ±4.75 -5.2 ±1.8 1.5 ±5.5 -3.25 ±4.25 -11.75
±2.25

2.0 ±8.0 -1.25 ±5.0

Gopher 373.5
±43.0

294.67
±190.33

1882.0
±978.75

306.6
±44.4

287.0
±196.5

932.0
±365.0

307.25
±36.0

239.0
±157.0

812.2
±372.4

Hero 4867.6
±497.4

948.67
±1157.33

11233.2
±1478.2

1949.4
±156.0

717.0
±1107.5

9630.4
±1874.4

1364.5
±273.5

843.5
±1124.5

5908.8
±1707.4

MsPacman 520.0
±43.83

849.6
±293.6

1091.4
±338.8

386.0
±40.2

665.2
±178.2

934.5
±360.5

367.5
±35.0

616.67
±91.67

716.2
±377.6

NameThisGame 1707.17
±151.67

2171.0
±658.75

5021.4
±1007.2

1725.4
±149.0

2099.67
±577.0

3926.17
±697.17

1863.0
±202.0

2083.0
±568.25

3591.2
±1033.4

Qbert 323.29
±51.29

358.5
±141.5

13085.5
±2510.5

214.2
±27.4

343.0
±52.67

3241.6
±1009.6

227.0
±50.6

320.33
±83.67

622.0
±285.6

RoadRunner 1540.29
±293.57

816.0
±912.33

18485.25
±4068.75

89.8 ±62.0 970.25
±535.5

4636.0
±948.4

106.0
±71.5

1066.5
±521.0

2642.2
±846.2

StarGunner 631.0
±64.14

992.0
±232.33

1841.2
±462.6

596.71
±63.43

883.5
±211.5

937.83
±137.17

557.17
±61.5

944.25
±135.0

874.4
±175.2

TimePilot 1876.71
±340.29

2809.75
±1265.5

2048.5
±1564.75

2264.4
±432.6

1981.25
±908.75

2584.0
±1277.25

2659.0
±323.5

2871.67
±1090.0

2615.4
±1595.0

WizardOfWor 434.25
±71.5

545.25
±312.5

1150.8
±664.6

348.8
±60.8

525.67
±226.67

1066.0
±569.8

368.25
±60.75

608.33
±304.67

845.4
±472.4

Table 1: Summary of mean scores on 15 Atari games with constant execution delay M ∈ {5, 15, 25}
on 32 episodes for each of the four trained seeds.

The following table shows scores on stochastic delays.

20

Published as a conference paper at ICLR 2024

Game m = 5 m = 15 m = 25
Obl. EZ Delayed

DQN
Delayed EZ Obl. EZ Delayed

DQN
Delayed EZ Obl. EZ Delayed

DQN
Delayed EZ

Alien 348.43
±52.14

366.0
±231.67

796.6
±205.4

318.0
±29.71

333.0
±118.5

820.33
±325.67

257.71
±20.86

324.5
±100.5

607.8
±288.8

Amidar 41.5 ±6.17 37.0
±21.67

220.25
±43.0

23.4 ±5.8 48.5 ±27.0 145.67
±30.67

7.33 ±2.83 40.0 ±17.5 95.8 ±32.4

Assault 376.0
±20.14

267.0
±140.67

1068.25
±299.0

293.0
±23.0

242.5
±110.5

1132.0
±286.33

203.4
±30.0

251.5
±98.5

790.6
±191.8

Asterix 507.3
±35.9

268.33
±148.0

6535.5
±4392.75

256.67
±33.5

239.5
±133.0

1225.0
±934.33

233.17
±16.33

234.5
±168.5

636.0
±396.6

BankHeist 15.0 ±3.33 13.0
±12.67

140.0
±30.6

16.17
±2.33

6.5 ±7.5 91.67
±26.67

14.0 ±2.5 9.0 ±12.0 27.33
±16.0

Boxing -2.6 ±4.0 -3.0 ±6.0 20.2 ±9.0 -4.43 ±1.71 -4.0 ±9.0 2.5 ±6.0 -5.5 ±1.75 -3.0 ±6.5 3.33 ±6.33
Gopher 424.38

±35.62
145.0
±127.33

1855.4
±828.4

364.33
±67.5

198.0
±168.0

1633.0
±709.0

347.4
±31.8

130.0
±118.5

1378.25
±676.25

Hero 4813.88
±475.75

492.0
±856.0

11798.8
±1539.6

2466.67
±345.0

669.5
±1006.0

11890.33
±1372.0

1887.83
±303.17

619.0
±1027.5

8127.25
±2681.25

MsPacman 530.0
±64.62

444.0
±276.0

1443.6
±498.4

452.4
±55.0

439.0
±192.0

1173.0
±612.33

397.17
±66.17

399.0
±162.5

940.6
±455.8

NameThisGame 1933.33
±127.33

1673.0
±912.33

5395.0
±1244.4

1991.0
±160.0

1760.0
±780.5

5029.33
±1085.33

1513.44
±243.0

1761.0
±769.0

5027.4
±1099.8

Qbert 548.8
±207.0

208.67
±113.33

3747.6
±2603.8

154.0
±26.0

296.5
±88.5

4121.67
±1829.0

176.75
±30.5

303.0
±78.5

1553.0
±1275.5

RoadRunner 1254.0
±161.33

668.0
±649.5

9978.6
±2914.6

876.4
±166.8

227.0
±515.5

12906.33
±3311.0

488.75
±113.62

260.5
±352.0

2173.0
±1103.0

StarGunner 700.2
±71.6

378.5
±234.0

1931.8
±607.4

656.33
±59.5

604.0
±321.5

1235.33
±249.67

666.14
±59.86

621.5
±356.0

939.33
±199.33

TimePilot 2304.75
±309.5

1529.67
±972.67

1425.6
±1347.8

1997.17
±326.33

1905.25
±1307.5

2128.0
±1308.0

2405.5
±379.83

2523.5
±1488.0

1931.33
±1778.0

WizardOfWor 541.8
±125.8

288.5
±247.0

1270.0
±985.4

383.8
±53.2

336.0
±304.0

1175.0
±900.0

409.5
±59.67

294.5
±233.5

1038.67
±721.67

Table 2: Summary of mean scores on 15 Atari games with stochastic execution delay with maximal
delay M ∈ {5, 15, 25} on 32 episodes for each of the four trained seeds.

D COMPUTATIONAL RESSOURCES

The computational costs associated with training DEZ in environments with delays increase in pro-
portion to the delay values. This escalation arises from the multiple applications of the forward
network during inference.

EfficientZero’s architectural design harnesses the efficiency of C++/Cython for its Monte Carlo Tree
Search (MCTS) implementation, intelligently distributes computation across CPU and GPU threads,
thereby enabling parallel processing. Our experimental setup included two RTX 2080 TI GPUs. In
the context of DEZ, each training run comprised 130,000 environment interactions and 150,000
training steps. We provide training duration statistics for the three delay configurations we em-
ployed:

For M = 5, the training duration exhibited fluctuations over a period of 20 hours. For M = 15, the
training duration exhibited fluctuations over a period of 22 hours. For M = 25, the training duration
exhibited fluctuations over a period of 25 hours.

The training duration of Oblivious EfficientZero is lightly shorter due to the omission of multi-step
forward processing. For any delay value we tested, the training duration exhibited fluctuations over
a period of 20 hours.

21

	Introduction
	Related work
	Preliminaries
	Stochastic Execution-Delay MDP
	Effective decision time
	SED-MDP process distribution

	Stochastic-Delay EfficientZero
	Experiments
	Constant delays
	Stochastic delays

	Discussion
	Reproducibility
	A formulation for stochastic delays
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Algorithm
	Experiments
	Convergence Plots for Constant Delay
	Convergence Plots for Stochastic Delay
	DEZ on Large delays
	Summary of scores on Atari games

	Computational Ressources

