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Casual Insights into Parler’s Content Moderation Shift:
Effects on Toxicity and Factuality

Anonymous Author(s)
Abstract
Social media platforms employ various content moderation tech-
niques to remove harmful, offensive, and hate speech content. The
moderation level varies across platforms; even over time, it can
evolve in a platform. For example, Parler, a fringe social media
platform popular among conservative users, was known to have
the least restrictive moderation policies, claiming to have open
discussion spaces for their users. However, after linking the 2021
US Capitol Riots and the activity of some groups on Parler, such as
QAnon and Proud Boys, on January 12, 2021, Parler was removed
from the Apple and Google App Store and suspended from Amazon
Cloud hosting service. Parler would have to modify their moder-
ation policies to return to these online stores. After a month of
downtime, Parler was back online with a new set of user guidelines,
which reflected stricter content moderation.

In this paper, we studied the moderation changes performed by
Parler and their effect on the toxicity of its content. We collected
a large longitudinal Parler dataset with 17M parleys from 432K
active users from February 2021 to January 2022, after its return
to the Internet and App Store. To the best of our knowledge, this
is the first study investigating the changes in content moderation
policies of Parler using data-driven approaches and also the first
Parler dataset after its brief hiatus. Our quasi-experimental analysis
indicates that after the change in Parler’s moderation, all forms of
toxicity saw a significant decrease (𝑝 < 0.001). Finally, we found
an increase in the factuality of the news sites being shared, as well
as a decrease in the number of conspiracy/pseudoscience sources.

CCS Concepts
• Information systems → Web mining; Social networking
sites.
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1 Introduction
Social media has become a powerful tool that reflects the best
and worst aspects of human communication. On one hand, they
allow individuals to freely express opinions, engage in interpersonal
communication, and learn about new trends and stories. On the
other hand, they have also become fertile grounds for several forms
of abuse, harassment, and the dissemination of misinformation [11,
52, 59, 81]. Social media platforms, hence, continue to adopt and
evolve their content moderation techniques and policies to address
these issues while trying to respect freedom of speech and promote
a healthier online environment.

Social media platforms, however, do not follow unified methods
and policies for content moderation [82]. While some social media
platforms adopt more stringent content moderation rules, others,
like Parler, pursue a laissez-faire approach. Parler, launched in 2018,
adhered to this hands-off moderation philosophy, contending that
it promoted richer discussions and protected users’ freedom of
speech [76]. This was until January 6th, 2021, when Parler gained
much notoriety for being home to several groups and protesters
who stormed Capitol Hill [38, 75]. Subsequently, due to its content
moderation policies and concerns about the spread of harmful or
extremist content, Parler faced significant consequences. It was
not only terminated by its cloud service provider, Amazon Web
Services but also removed from major app distribution platforms,
including the App Store and the Google Play store [35].

For Paler to return to the Apple App Store, it had to enact substan-
tial revisions to its hate speech policies.1 This included a complete
removal of the ability for users on iOS devices to access objection-
able and Not Safe for Work (NSFW) content. As a result, Parler’s
updated policies introduced more stringent moderation policies
aimed at curbing hate speech on the platform [53]. While several
other prior studies have focused on the impact of de-platforming
users or certain communities [8, 20, 51, 70, 72, 74], or investigated
how content moderation has an impact on activities of problematic
users [8, 88], our work is the first that investigates the impact of
stricter content moderation policies on the platform’s content and
its existing userbase. In particular, we investigated two research
questions: RQ1: Did changes to Parler’s content moderation guide-
lines had any significant impact on the user-generated content?
RQ2: How have Parler’s content moderation revisions changed its
existing users’ characteristics?

To assess these effects, we conducted a quasi-experimental Difference-
in-Difference (DiD) analysis [5], monitoring user posts for toxic
content, insults, identity attacks, profanity, and threats. In addition,
we explored shifts in conversation topics and quantified the pres-
ence of biased posts and posts with non-factual links, utilizing data
sourced from Media Bias Fact Check (MBFC) [2].

To answer the above research questions, we used the data from
Aliapoulios et al. [9] as the seed dataset (we call this dataset a
1Example of changes in Parler CG: https://tinyurl.com/yda6pfmj
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pre-policy change dataset), and we tried to collect the posts for the
same sample of users (i.e., 4M). Using our custom build crawler, we
could collect about 17M parleys of 432K active users from February
2021 to January 2022. We labeled our dataset as a post-policy policy
change dataset. To the best of our knowledge, ours is the first dataset
that was collected after Parler came back online. We will make our
dataset available to the public. To measure the effect of Parler’s
content moderation changes, we used the Difference-in-Difference
(DiD) regression analysis, which is arguably one of the strongest and
widely used quasi-experimental methods in causal inference [26, 34,
42, 47]. This analysis helped us understand how and if the outcomes,
e.g., the number of toxic posts, have changed after Parler changed
its moderation guidelines.

Thus, in this paper, we have the following contributions and
findings:

(1) Our work shows how content moderation effectiveness can
be tested employing data-driven analysis on data obtained
from the platform (here Parler).

(2) We collected Parler data after its return to the Internet and
App Store, hence, the first-ever post-de-platforming dataset.

(3) Using DiD approach, we found that Parler was effective
in removing the abusive and toxic content of users’. We
observe that all the Perspective attributes had a significant
decrease (𝑝 < 0.001).

(4) Our findings showed an increase in both follower and fol-
lowing counts, as well as an uptick in users with verified
and gold badges. This suggests the potential growth of Par-
ler’s user base and the continued presence of older users
who were active before the moderation policy changes.

(5) We observed an improvement in factuality and credibil-
ity scores from the pre-moderation dataset to the post-
moderation dataset. Additionally, we noted a reduction in
the sharing of conspiracy and pseudoscience source links.
However, there was an increase in the sharing of question-
able source links in the post-moderation change dataset.

2 Related Works
Fringe Communities: Over the past few years, scholarships
have extensively studied various fringe platforms such as Gab,
4chan [16, 46, 50, 83, 93]. When compared to other fringe social
media, Parler is younger. Due to this, we notice that not a lot of
studies have focused on collecting or establishing a framework to
collect data from Parler [10, 69]. There have been studies comparing
topics of discussion on Parler and Twitter [69, 83]. Although there
exists work in this domain, most of the work is focused on exploring
the existence or prevalence of a single topic. Hitkul et al. [69]
uses the capitol riots, a pivotal movement in Parler’s history, to
compare topics of discussion between Parler and Twitter. Works
have analysed the language in Parler in several aspects such as
QAnon content [13, 83], and COVID-19 vaccines [12]. We believe
that our work differs in this aspect as we are studying the changes
localized to Parler and how users reacted to a brief hiatus of Parler.

Studies about Deplatforming: Jhaver et al. [51] examined
how deplatforming users on Twitter could impact their userbase.
They found that banning significantly reduced the number of con-
versations about all three individuals on Twitter and the toxicity
levels of supporters declined. Trujillo & Cresci [88] found that

interventions had strong positive effects on reducing the activ-
ity of problematic users both inside and outside of r/The_Donald.
Some scholarships have examined the effects of deplatforming
individuals on the sites that sanctioned influencers move to post-
deplatforming [8, 47, 70, 72, 74, 77]. These researchers found a com-
mon result, that deplatforming significantly decreased the reach
of the deplatformed users, however, the hateful and toxic rhetoric
increased. Unlike previous studies, instead of exploring how users’
discourse changes when switching to different platforms, we exam-
ine the same users’ discourse when the platform undergoes stricter
content moderation policies.

Hate Speech Detection and Classification: Empirical work
on toxicity has employed machine learning based detection algo-
rithms to identify and classify offensive language, hate speech,
and cyberbully [28, 68]. Features including lexical properties, such
as n-gram features [61], character n-gram features [58], charac-
ter n-gram, demographic and geographic features [90], sentiment
scores [29, 84] average word and paragraph embeddings [31, 61],
and linguistic, psychological, and effective features inferred using
an open vocabulary approach [32] have been used to detect hate
speech. Google’s Perspective API [37] has been extensively used in
the previous studies [7, 32, 39, 45, 64, 78, 80, 94].

Media Bias Fact Check: Gruppi et al. [41] used MBFC ser-
vice to label websites and the tweets pertaining to COVID-19
and 2020 Presidential elections embedded inside these articles.
Weld et al. [91] analyzed more than 550 million links spanning
4 years on Reddit using MBFC. MBFC is widely used for labeling
credibility and factuality of news sources for downstream analy-
sis [18, 21, 22, 27, 33, 44, 55, 60, 85, 91] and as ground truth for
prediction tasks [19, 30, 40, 67, 86].

3 Background & Data Collection
We will now describe in detail about Parler and also our data col-
lection methodology.

Parler: Parler is a microblogging website that was launched
in August 2018. Parler marketed itself as being “built upon a foun-
dation of respect for privacy and personal data, free speech, free
markets, and ethical, transparent corporate policy” [43]. Parler is
known for its minimal restrictions and many right-wing individu-
als, citing censorship from mainstream platforms joined Parler [82].
However, after linking the 2021 US Capitol Riots and the activity
of some groups on Parler, such as QAnon and Proud Boys, on Jan-
uary 12, 2021, Parler was removed from the Apple App Store, the
Google Play Store, and Amazon Web Services [35]. Parler had to
change considerably its hate speech policy to return to the Apple
App Store [53]. Parler came back online with a new cloud service
provider in early February 2021 [73]. On April 14th, 2023, Parler
was bought a digital media conglomerate Starboard, and currently,
is back online as rebranded Parler 3.0 [66].

Pre Policy Change Dataset: The data collection tool used
in Aliapoulios et al. [9] managed to collect user information for
almost all of the users present at the time based on estimates pub-
lished by Parler. They also managed to collect posts and comments
from these users dating back to 2018 when Parler was created. The
study collected user information from more than 13.25M users’ and
randomly selected 4M users out of these, and collected about 99M
posts (or parleys), and about 85M comments from August 1st, 2018

2
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to January 11, 2021 for these 4M users’. In our study, we call this
dataset the pre-policy change dataset. We used these 4M users as
the seed dataset to collect data post-policy changes instituted by
Parler.

Post Policy Change Parler Dataset: Parler started to employ
a different mechanism for authenticating API requests in February
of 2021. Due to these changes, we could no longer collect data from
all users. Hence, we first obtained the list of 4M users provided in
the pre-policy change dataset for which the authors collected posts
and comments [10] and used our custom-build framework to get
the content posted by the same users. Using this framework, we
collected information about the post body, any URLs posted, a URL
to the location of any media posted, the date posted, the number
of echoes, and other metadata, such as the badges of the poster.
Authors in [9] obtained the metadata of 13.25M users, hence we
also tried to collect the metadata of these users. We will make both
our dataset and framework public.

Post Policy Change Dataset Statistics: From the 4M users,
we could collect 17,389,610 parleys from 432,654 active users. Our
dataset consists of parleys from February 1st, 2021 to January 15th,
2022. We used the /pages/feed endpoint, which returns the parleys
(posts) posted by a specific user using their username. Note that,
this endpoint is different from the endpoint that is used to collect
the 13.25M users’ metadata, and hence we were only able to ob-
tain 432K users’ parleys. Several users from the initial seed dataset
of 4M were no longer active. Manually checking these accounts
we found that they had either deleted their accounts, or changed
their usernames, or did not post any parley after Parler’s return, or
switched to private accounts. Note, we did not include any users’
post if their account was private. We label them as missing users.
Even though we are unsure if these users were suspended by Parler
or they decided to leave Parler, we nevertheless analyzed and com-
pared these users with those that remained active. Since we only
collected posts from 432,654 users, we acknowledge that certain
trends and analyses conducted might not be accurately reflected on
the platform. However, as of January 2022, months after returning
to the Apple app store, Parler disclosed that they estimate to have
around 700,000 to 1M active users [3]. This ensures that we have
collected a significant part of the data to study and base our findings
on.

These parleys (17M) consisted of users posting around 9M links
and plain text in the body. A majority of these posts were primary
posts that had no parent. If a parley is an original parley and is not
an echo of another parley, it is known as a primary post with no
parent. We collected the full-text body, a URL if a link was shared,
the title of the parley, the date of creation, flags for trolling, sensitive
and self-reported, an upvoted flag, a counter of echoes and likes. We
noticed that Parler has a trolling flag, which might be set manually
by moderators or automatically by the platform.

We also tried to collect profile information for 13.25M users
from the pre-policy change dataset. We used the pages/profile/view
endpoint, that returns the metadata of the user. We found that
12,497,131 of these users still had a valid Parler account, so we
could collect metadata for these users. For a vast majority of the
accounts, Parler returned the number of followers, the number
of following, status (account available or deleted), the number of
and types of badges given to the user, a description of all badges

available on Parler at the time of collection, date of parley creation,
whether the account is private or public, and also whether the
account is being followed by or a follower of the user logged in. A
minority of profiles have one or more of these fields missing due
to changes on the Parler platform from when the user created the
account and the time of data collection.

Twitter Data Collection (Baseline): Major and contentious
events, such as the U.S. presidential election, can influence the
toxicity in any social media platform. Since our statistical analy-
sis cannot account for such confounding factors, we hypothesize
that similar trends may be observable on other social media plat-
forms like Twitter, which did not implement policy changes during
the same period. If we observe different trends or varying effect
levels, we can be more confident that the shifts in outcomes are
attributable to Parler’s content moderation adjustments. For a com-
parative baseline, we gathered a sample of Twitter data from the
same timeframe and analyzed the trends before and after Parler’s
policy changes. To collect the data, we used Twitter V2 API [89]
and collected posts daily using the exact timeline of the datasets.
To circumvent the API restrictions, we collected 27K posts daily
and restricted the posts to English. After the data collection was
done, we were able to collect 24.16M posts for a pre-policy timeline
and 9.69M for a post-policy timeline.

Ethical consideration. We only gathered posts from Parler
profiles set to public and did not attempt to access private accounts.
We used the same backend APIs that a user browser would request
data from. We only obtained the random sample from Twitter API
and did not collect any metadata information about the users whose
profiles were set as private.

4 Methodology
We now describe how we operationalized users’ behavior and char-
acteristics to answer our two research questions.

Measuring Toxicity Scores. To understand the differences in
the user discourse in the pre-moderation dataset vs. in the post-
moderation dataset, we utilized the Google Perspective API, which
is a state-of-the-art toxicity detection tool [37]. This AI-based tool
investigates the provided text and assigns a score between 0 to
1, with a higher score indicating more severity for a particular
attribute. We obtained the following attributes: Severe toxicity, Pro-
fanity, Identity Attacks, Threats, Insults, Toxicity

For our study, we collected the likelihood scores for each at-
tribute. While collecting the scores, English was used as the default
language for all posts since previous studies showed us that a large
majority of Parler’s userbase was using English as their language
of choice to communicate with other Parler users [9]. Before send-
ing the posts to Perspective API, we pre-processed the posts by
removing URLs, hashtags, etc. as these can lead to wrong scores or
errors computing the scores by the API. We also pre-processed our
Twitter dataset (Baseline) and obtained the scores via Perspective
API. While we acknowledge that Perspective API has weaknesses
in detecting toxicity [49], however, prior works have found that it
is successful in detecting forms of toxic language in the generated
text [63], and also multiple prior works have used Perspective API
for toxicity detection [7, 32, 45, 80], hence it is reasonable to use
the API for our study.
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Assessing Bias and Factuality: We analyzed the links that
were shared on Parler using the Media Bias Fact Check (MBFC)
service [2]. MBFC is an independent organization that uses vol-
unteer and paid contributors to rate and store information about
news websites [2]. MBFC can be used to measure the factuality of
the URL, the presence of any bias, the country of origin, and the
presence of conspiracy or pseudoscience, questionable sources, and
pro-science sources. We used a list of links shared from both of our
datasets to obtain labels for:
- Factuality: Referred to as how factual a website is. Scored between
0-5, where a score of 0 means that a website is not factual and a five
is very factual. MBFC defines that for a website to be very factual
and get a score of 5, it should pass its fact-checking test as well as
make sure that critical information is not omitted.
- Bias: MBFC assigns a bias rating of Extreme left, left, left-center,
least biased, right-center, right, and extreme right. To assign a bias
rating to a website, MBFC contributors check the website’s stance
on American issues, which divides left-biased websites from right-
biased websites [1].
- Presence of conspiracy-pseudoscience: Websites that publish unver-
ified information related to known conspiracies such as the New
World Order, Illuminati, False flags, aliens, anti-vaccine, etc.
- Usage of questionable sources: MBFC defines this as a questionable
source exhibits any of the following: extreme bias, overt propaganda,
poor or no sourcing to credible information, a complete lack of trans-
parency, and/or is fake news. Fake News is the deliberate attempt to
publish hoaxes and/or disinformation for profit or influence.

Casual Inference: We employed a quasi-experimental ap-
proach to measure the effect of Parler’s content moderation change.
We leveraged a causal inference strategy calledDifference-in-difference
(DiD) model [5]. In the DiD analysis, we track the casual effect of
our dependent variable, i.e., toxicity attributes over time and using
regression, by comparing the set of units where the event happened
treatment group (i.e., Changes in Parler’s content moderation policies
after its return) in relation to units where the event did not happen
control group. In our case, our treatment group is Parler and control
group is Twitter. It is important to regress the behavior on time;
otherwise, we could easily misinterpret a steadily increasing (or
decreasing) time series as a treatment effect when comparing the
averages of behavior prior to and post treatment [15]. Hence, DiD
analysis allows us to claim that the toxicity changed at the time of,
instead of simply reflecting a general trend. Herein we employ a
linear regression model to estimate the effect of 𝛿 of the changes in
Parler’s content moderation policies after its return:

𝑌 = 𝛽1𝑇 + 𝛽2𝑃 + 𝛿𝑇𝑃 + 𝜖 (1)

where 𝑌 is the toxicity score; 𝑇 is a dummy variable indicating the
treatment (=1) and control (=0) group; 𝑃 is a dummy variable indi-
cating observation collected before (=0) or after (=1) treatment. We
estimate the coefficient 𝛿 associated with the interaction between
the dummy variables 𝑇 and 𝑃 using OLS to obtain the average
treatment effect. 𝛽1 indicates the difference between treatment and
the control group before changes in Parler’s content moderation
guidelines (treatment), 𝛽2 indicates the change in the outcome over
time for the control group i.e., Twitter (post treatment), and 𝛿 indi-
cates the impact of the changes of content moderation guidelines
on Parler (DiD).

We choose DiD over ITS (Interrupted Time Series) analysis be-
cause, DiD method is widely recognized in the econometrics and
casual inference community for handling quasi-experimental inter-
ventions [14, 92]. Additionally, DiD yields a single causal estimand
(i.e., 𝛿), which would simplify the interpretation of results, wherein
ITS provides six separate estimates (three for Parler and three for
Twitter).
5 Results
5.1 Impact of Changes to Parler Content

Moderation
To have a balanced dataset, and since our post-moderation dataset
spans approximately 11 months, we filtered the pre-moderation
dataset for 11 months (i.e., February 2020 to January 2021). We also
employed the same step for our Twitter dataset. After filtering the
data, we clustered the data points based on the day the parley or
the tweet was posted. After clustering the data per day, we set the
Perspective Score for all the tweets’ or parleys’ as 0 if they were
below 0.5, values above or equal to 0.5 and we kept the absolute
value. We choose a threshold of 0.5, because prior research has used
this threshold to distinguish if a post is toxic or not [7, 80]. We then
averaged the scores per day to get a final score that we passed to
our DiD regression model. To check the robustness of our method,
we ran a regression model, where we did not use a threshold, and
obtained the same results as we obtained when using the threshold,
hence our model is robust.

Table 1 shows the results of our DiD analysis. We compared
the trends that we observed in Parler to that of Twitter. Since we
cannot control for various co-founding factors, we used Twitter as
a baseline to understand if the changes were just local to Parler or
was this a trend in other social media platforms also).

Table 1: Difference in Difference (DiD) regression results for
toxicity attributes.

Event Dependent variable: Toxicity Confidence Intervals
Treatment 0.1058 (0.000)∗∗∗ [0.099, 0.113]
Post Treatment -0.0028 (0.411) [-0.010, 0.004]
DiD (𝛿) -0.0814 (0.000)∗∗∗ [-0.091, -0.072]
Event Dependent variable: Severe Toxicity Confidence Intervals
Treatment 0.1173 (0.000)∗∗∗ [0.114, 0.120]
Post Treatment -0.0024 (0.099) [-0.005, 0.000]
DiD (𝛿) -0.0570 (0.000)∗∗∗ [-0.061, -0.053]
Event Dependent variable: Profanity Confidence Intervals
Treatment 0.0691 (0.000)∗∗∗ [0.063, 0.075]
Post Treatment 0.0012 (0.702) [-0.005, 0.007]
DiD (𝛿) -0.0693 (0.000)∗∗∗ [-0.078, -0.061]
Event Dependent variable: Threat Confidence Intervals
Treatment 0.1605 (0.000)∗∗∗ [0.157, 0.164]
Post Treatment -0.0044 (0.025)∗ [-0.008, -0.001]
DiD (𝛿) -0.0414 (0.000)∗∗∗ [-0.047, -0.036]
Event Dependent variable: Insult Confidence Intervals
Treatment 0.1479 (0.000)∗∗∗ [0.143, 0.153]
Post Treatment 0.0082 (0.000)∗∗∗ [0.004, 0.013]
DiD (𝛿) -0.0820 (0.000)∗∗∗ [-0.089, -0.075]
Event Dependent variable: Identity Attack Confidence Intervals
Treatment 0.1282 (0.000)∗∗∗ [0.125, 0.131]
Post Treatment 0.0087 (0.000)∗∗∗ [0.006, 0.012]
DiD (𝛿) -0.0382 (0.000)∗∗∗ [-0.042, -0.034]
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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As we can observe from Table 1, after Parler came back online
and instituted the changes to its content moderation guidelines,
Toxicity, Severe Toxicity, Profanity, Threat, Insult, and Identity Attack
all decreased significantly (𝑝 < 0.001). Additionally, we can ob-
serve that our Treatment variable, which indicates whether Parler
and Twitter were different in effectively moderating our different
dependent variables before the changes in guidelines, shows that
Parler on average had a higher significant level of Toxicity, Severe
Toxicity, Profanity, Threat, Insult, and Identity Attack than Twit-
ter (𝑝 < 0.001). Interestingly, our Post Treatment variable, Twitter
users’ Threat posts saw a statistically significant decrease (𝑝 < 0.05),
which can signify that after Parler came back online, there was a
general trend that saw a decrease in users’ threatening posts, which
might negate the findings for Threat for Parler (𝛿), however, if we
observe for Insult and Identity Attack, we saw that there was a
statistically significant increase in Twitter (𝑝 < 0.001), meanwhile
we saw an opposite for Parler (𝛿), hence we can conclude that while
there was a general decrease in Threat posts, overall the changes to
content moderation guidelines in Parler had a positive effect, i.e.,
lowering the abusive content of users. Additionally, Table 1 also
shows the confidence intervals for all our variables. As we can see
for all our dependent variables, 95% of the time we would believe
that did (𝛿), the effect of this on our various dependent variables,
is between the various lower and upper bounds. This also clearly
shows that the various differences in propositions are significant
especially when investigating Parler pre- and post- moderation
changes. Future scholarships can use our dataset, to understand
why there was an overall decrease in Threat posts.

To further disentangle these findings, we plotted the results from
our DiD model. Figure 1 shows the result. The red solid lines shows
the 𝛿 i.e., DiD, green line denotes when Parler changed its guidelines
and came back after its hiatus. As we can observe, across all the
attributes, the model shows a statistically significant decrease, i.e.,
the red line (𝛿) drops after the intervention is instituted in Parler.
Interestingly, we can visually observe that Profanity (Fig. 1c), Severe
Toxicity (Fig. 1d), and Toxicity (Fig. 1f) shows the biggest decrease
compared to other attributes. Interestingly, we can observe that
Twitter pre-intervention time series is much more variable than
that of post-intervention. We found that the reason we had this
variability, is due to the data that we obtained in the pre-policy
timeline (24.16M) compared to 9.69M in the post-policy timeline
dataset. Additionally, we also found far lesser number of posts that
were toxic, i.e., that were above the 0.5 threshold. Additionally,
we can observe that there is a high peak for all the perspective
attributes, except for Profanity around day 600–620. We found that
this was due to Jack Smith, being named as the special counsel in
the Former President Donald Trump investigations [23, 36].

Summary: In summary, our Difference-in-difference (DiD)
model revealed that there was a statistically significant decrease
across all the Perspective attributes of Parler users’ after Parler
returned back online with stricter moderation guidelines (as shown
in Table 1). We can observe that our Treatment (i.e., 𝛽1) was positive
for all the Perspective attributes, signifying that users’ on Parler
were on average posting more abusive content than the users’ on
Twitter. Additionally, we can observe that only Threat was the only
variable that saw a statistically decrease not only in Parler but
also Twitter. Hence, we can conclude that Parler’s changes to the

moderation policy had a positive effect in decreasing the toxic and
abusive content of its users, hence answering our RQ1.
5.2 Analysis on Parleys
To understand if Parler moderation change had an impact on the
user base, other than users’ speech, we also performed various
analyses, on no. of following, followers, badges changed, the topic of
conversation, and what were the changes in the bias and credibility
in the URLs being shared changed or not. This analysis helped us
in answering our RQ2.

Comparing Users’ Characteristics Pre- and Post-Policy
Change Datasets:

Table 2: Comparison of Users Characteristics

Pre Policy Change Post Policy Change
Metric Min Max Mean Median Min Max Mean Median
Followers 0 2,300,000 20.65 1 0 6,048,750 34.8 1
Following 0 126,000 28.28 6 0 479,412 33.4 8

We extracted following and followers counts from both datasets
to understand if any of these metrics have changed significantly
after the moderation policy changes. Since these variables are not
captured in time, and we have two different distributions, we can-
not perform DiD regression analysis. The resulting values did not
form a normal distribution, so we used the Mann-Whitney test. We
could reject the null hypothesis that users in the pre and post-policy
change datasets have the same distribution for followers and follow-
ings. We found that there is an increase in the number of followings
(𝑀𝑒𝑑𝑝𝑟𝑒 = 6 vs. 𝑀𝑒𝑑𝑝𝑜𝑠𝑡 = 8, 𝑝 < 0.0001), hence indicating that
users are still active on Parler. Interestingly, we can also observe
that both following and followers increased in the post-moderation
dataset. We hypothesize that these are new users’ who joined Parler.

Table 3: Most Popular Websites Shared on Parler

Website Pre Policy Post Policy Change(%)
image-cdn.parler.com 7,318,992 1 −99.99
youtube.com 2,499,198 225,562 −83.44
youtu.be 1,812,871 19 −99.99
bit.ly 893,603 5 −99.99
twitter.com 803,514 42,638 −89.92
media.giphy.com 539,389 545 −99.79
i.imgur.com 532,365 5,779 −97.85
facebook.com 520,796 318 −99.87
thegatewaypundit.com 469,855 610,512 +13.01
breitbart.com 328,953 240,547 −15.52
foxnews.com 298,285 136,956 −37.06
instagram.com 168,160 22,932 −75.99
rumble.com 164,949 744,132 +63.71
theepochtimes.com 136,294 33,937 −60.12
hannity.com 13,017 148,026 +83.83
justthenews.com 50,638 147,984 +49.01
www.theblaze.com 2,006 122,111 +96.76
www.westernjournal.com 6,399 119,551 +89.83
bongino.com 17,251 114,334 +73.77
www.bitchute.com 104,462 87,672 −8.73

We extracted badges for every user in the dataset of pre and
post-moderation policy change as seen in Table 4. Interestingly, we
found that the number of users with the Private badge has decreased
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Figure 1: Difference in Difference (DiD) plots for Perspective Attributes. X-axis denotes the days, and y-axis denotes the average
Perspective API scores.

Table 4: Badges assigned to users in the pre and post-policy policy change datasets

Badge Description Pre Change Post Change
Verified This badge means Parler has verified the account belongs to a real person and not a bot. Since verified users can change

their screen name, the badge does not guarantee one’s identity.
25,734 236,431

Gold A Gold Badge means Parler has verified the identity of the person or organization. Gold Badges can be influencers, public
figures, journalists, media outlets, public officials, government entities, businesses, or organizations (including nonprofits).
If the account has a Gold Badge, its parleys and comments come from real people.

589 668

Integration Partner Used by publishers to import articles and other content from their websites 64 N/A
RSS feed These accounts automatically post articles directly from an outlet’s website 99 13
Private If you see this badge, the account owner has chosen to make the account private. This badge may also be applied to accounts

that are locked due to community guideline violations
596,824 337,717

Verified Comments Users with a verified badge who are restricting comments to only other verified users. 4,147 N/A
Parody Parler approved parody accounts. 37 N/A
Parler Employee This badge is applied to Parler employees’ personal accounts, should they wish. Their parleys are their own views and not

Parler’s.
25 28

Real Name Users using their real name 2 N/A
Parler Early Signifying Parler’s earliest members, this badge appears on accounts opened in 2018. 81 822
Parler Official These accounts - @Parler, @ParlerDev, and others - issue official statements from the Parler team. N/A 5

in the post-moderation policy dataset. Please note that we did not
attempt to collect any parleys of users who had private badge. The
badge information was extracted from the metadata of these users.
We also see quite a large number of users going through Parler’s
verification process to prove that their account is not a bot. We
notice an increase which could prove that users are still active
on Parler since receiving the verified badge requires user action
and is not automatic. A sharp increase in the number of verified
users might be due to users’ fear of an influx of bots as Parler was
growing as a platform and attracting attention from other social
media users. There is an increase in the number of Gold badges
which could mean that existing Parler users have gained popularity
to require a Gold badge.

Parley Content Analysis: We used textual data collected with
Parleys from our data collection phase, to investigate what were
users discussing about on Parler, in both the pre and post policy

change dataset. To extract the most popular topics we used the La-
tent Dirichlet Allocation (LDA) topic modeling technique [17]. First,
we removed all the URLs any Unicode characters, and stopwords
present in the text before using LDA to extract popular topics. We
use a corpus of stopwords from the Natural Language Toolkit as
a list of stopwords to remove from our data. We noticed a lot of
interest in the 2020 US Elections in the pre-policy change dataset.
This can be attributed to the fact that the elections took place dur-
ing the period of pre-policy dataset collection and most news and
discussions about the subject were before post-policy parleys were
collected [10]. We noticed a reduction in the usage of words like
Where We Go as 1, We Go as All (WWG1WGA). This term is associ-
ated with the QAnon conspiracy movement. We also found several
Parler-specific words such as Parleys present in the earlier dataset.
We theorize that the cause for this might be due to users migrating
from other social media platforms like Twitter and Facebook which
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do not use these terms. We also noticed Parler users were increas-
ingly using the word patriots, which is how Republican lawmakers
described the rioters [54].

Links Shared in Parleys: We examined the shared links on
parleys to understand any trends, with the goal that aligning these
trends with the rhetoric around online communities would allow a
better understanding of the changes. To extract links being shared
to external websites from Parleys, we used every Parley in both
the pre-and post-policy change datasets and checked for any valid
URLs being present. Then, we extracted only the top-level domain
names from each URL being shared. We also stored the number
of times each domain has been shared and used it to measure the
popularity of websites in each dataset.

From Table 3, we can see the sharp rise in the popularity of
Rumble links (64%) on Parler, as Rumble does not remove content
regarding misinformation and election integrity and MBFC label
this website as Right Biased and Questionable [57, 82]. Also, during
our data collection period, the USA recently had its Presidential
elections, hence we see that highlighted in our analysis. We can also
notice a decline in Twitter links being shared. These observations
could be explained by the sharp rise in the rhetoric surrounding
censorship on Twitter and other popular social media platforms [4].
We also saw that there was a sharp increase in the number of
The Blaze links (97%) being shared. Using the MBFC service we
found that this website is labelled by the service as Strongly Right
Biased and Questionable [56]. Observing that a large number of
sites are being shared, we studied links shared on Parler using the
Media Bias Fact Check (MBFC) service. We were able to collect
labels for 3,937 (2.59%) and 1,081 (1.75%) of all links being shared on
Parleys from the pre and post-moderation policy change datasets,
respectively. We were not able to collect labels for all the URLs
as the majority of them were websites such as YouTube, Twitter,
and Instagram (please see Table 3) and MBFC do not provide labels
for them, hence our results are generalizable, as we were able to
capture a majority of the websites for which MBFC provides labels
and hence, understanding how the policy change had an impact on
users’ speech.
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Figure 2: Histogram of MBFC Labels

Figure 2 shows our results. At first, we noticed a decrease in
the number of conspiracy-pseudoscience news articles in Figure 2c.
However, interestingly, we saw an increase in the number of ques-
tionable source articles that were being shared in the post-policy
change dataset, as shown in Figure 2d. This implies that Parler still
does not remove URLs that are spreading overt propaganda and
fake news, hence concurring with the findings of [82]. In Figure 2a
we also notice that most links with a score between Very Low and
Low were from the pre-policy change while post-moderation links
are scattered across higher ranges between Low and High. Interest-
ingly, in Figure 2b, we see that Parler users are sharing more URLs,
from the Left Center & Right websites. This is interesting, as the
majority of Parler users are highly conservative [24]. In summary,
using the labels returned by MBFC, we found that the credibility
(factuality) of the URLs being shared did increase. We also notice
a substantial decrease in the number of conspiracy-pseudoscience
news articles. This is interesting, as in 2022, there were notable
conspiracy theories such as mpox (monkeypox), orchestrated by
vaccine manufacturers, that Bill Gates was involved in the outbreak,
is transmitted solely via sexual interactions, and that the WHO re-
leased the virus to gain more power [6, 95]. However, interestingly
Parler users were now sharing more questionable source URLs than
before.

Summary In summary, we observed that there was a statistically
significant increase in the number of followings after Parler came
back online. We also found that Parler users’ Verified their accounts
more than in the pre-moderation change dataset. Interestingly, we
found that Parler users were increasingly using the word patriots.
Using MBFC, we found that credibility (factuality) of the URLs
being shared did increase. We also notice a substantial decrease in
the number of conspiracy-pseudoscience news articles. However,
interestingly Parler users were now sharing more questionable
source URLs than before. Hence, there were considerable changes
in Parler users’ hence answering our RQ2.

6 Discussion
Our results indicate a positive impact of the changes to content
moderation guidelines that Parler instituted after its ban. Our quasi-
experimental analysis revealed that, after Parler instituted the
changes, all the Perspective attributes saw a statistically signifi-
cant decrease (𝑝 < 0.001). Additionally, observing from Table 1, we
can observe that Severe Toxicity, Threat, and Identity Attack saw the
biggest decrease compared to other attributes. This is interesting, as
this is in direct contrast with what prior studies have found i.e., an
increase in toxic rhetoric of users. Our research on the other hand
highlights that when Parler changed the guidelines, the existing
users’ toxic rhetoric decreased. Using MBFC, we found that the
credibility (actuality) of URLs shared by users on Parler, increased,
which is in direct contrast to what was observed in [88].

Effectiveness of policy change. Scholarships have widely stud-
ied the effect of deplatforming on users and its effect on the user’s
toxic rhetoric [8, 51, 88]. Our research, however, sheds light on
when a platform (i.e., Parler) has to change its content moderation
policies to be allowed back online. Additionally, our research shows
how the users who were active on Parler before it was taken of-
fline and after Parler returned online, their toxic rhetoric decreased
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significantly (please refer to Table 1), and how the credibility of
links that were shared pre- and post policy change increased, a
direct contrast to the findings in [88]. Furthermore, our results
also show broadly, how changes to content moderation policies
can effectively decrease the toxic rhetoric of existing users. How-
ever, some users migrated from Parler to other fringe social media
such as Rumble, Gab, and Telegram, and scholarships have found
that they became more active on these fringe platforms [47], which
raises concerns about how platforms need to effectively design their
moderation strategies in times of social unrest, as one size cannot fit
all the situations [25, 82]. Furthermore, there can be an unintended
effect where users might become more toxic on these fringe plat-
forms [48], hence there is a need for collective and simultaneous
actions to reduce the toxic rhetoric of these users as echoed by [47].
Future endeavors must investigate how to balance effective content
moderation while still keeping with some platform’s guarantee of
First Amendment protections can be devised.

Importance of this study. To the best of our knowledge, ours
is the first study that provides the social computational commu-
nity with (a) a first-ever Parler dataset after its return, and (b) a
framework that could be utilized in obtaining data from Parler. Our
dataset provides a unique opportunity for computational social sci-
entists to study users’ behaviors, interactions, and topics discussed
among such an understudy group of people with specific mind-
sets. Some important topics that can be explored from our dataset,
which would be of interest to the wider community are: what type
of misinformation was prevalent, understanding vaccine hesitancy
of Parler users, since our dataset was collected around the same
period, etc. Furthermore, Parler was bought by Starboard in 2023
and was shut down the same day [71], however, Parler is now back
online and re-branded itself as Parler 3.0 [66] with new changes to
its content moderation guidelines [65] hence, our dataset as well
as the framework, provides the perfect opportunity for scholar-
ships to audit the changes of policy for Parler, from its inception in
2018 (Parler 1.0) to its first policy change in 2021 (Parler 2.0) to its
current state i.e., Parler 3.0. Additionally, Singhal et al. [82] found
that Parler did not have any form of soft moderation intervention.
However, the new Parler 3.0 content moderation guidelines have
introduced a form of soft moderation called Time Out [65]. Hence,
our dataset can be used to study the effectiveness of Time Outs.

Limitations & Future Work In our current dataset, i.e., the
post-policy change dataset, we could not collect a random sample
of users, hence our analysis might not yield a full-scale impact of
the moderation policy change. The other limitation of our work
is that users might have changed their usernames when Parler
was reinstated back online, to evade possible detection. We also
acknowledge that Google’s Perspective API as a toxicity detection
also contains certain limitations and biases [62, 79, 87]. Furthermore,
our work also does not capture the impact of users’ hateful rhetoric
when they moved to other platforms after Parler was taken offline.
In the future, we plan to study the user comments on posts to
understand if the moderation changes are being reflected in the
comments, as comments can also shed light on the moderation
changes that Parler undertook.

7 Conclusion
On January 12, 2021, Parler was removed from Apple and Google
App Stores and Amazon Web Services, stopped hosting Parler con-
tent shortly after. This was blamed on Parler’s refusal to remove
posts inciting violence following the 2021 US Capitol Riots. Parler
was eventually allowed back after they strengthen their moderation
to remove hateful content. Our study investigated the effect of these
policy changes on the user discourse by comparing users’ rhetoric
in pre- and post-policy change datasets.

Our quasi-experimental analysis indicates that after the change
in Parler’s moderation, all forms of toxicity saw a significant de-
crease (𝑝 < 0.001). Finally, we found an increase in the factuality
of the news sites being shared, as well as a decrease in the number
of conspiracy or pseudoscience sources being shared.
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