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Figure 1: (a) Comparison between stable diffusion (Rombach et al., 2022) and our method, where
stable diffusion fails to meet some detailed requirements (e.g., highlighted text) given lengthy text
prompt. (b) Fine-grained text-conditioned image synthesis with semantic refinement, where users
are allowed to regularize the generation with some semantic details of their interests. Note that our
approach supports emphasizing an arbitrary number of semantics at one time instead of performing
refinement step by step. Thus, for each triplet in (b), the last two columns are not refined from their
previous one, instead, all samples are produced independently.

ABSTRACT

Recent advance in text-to-image synthesis greatly benefits from large-scale vision-
language models such as CLIP. Despite the capability of producing high-quality
and creative images, existing methods often struggle in capturing details of the
text prompt, especially when the text is lengthy. We reveal that such an issue is
partially caused by the imperfect text-image matching using CLIP, where fine-
grained semantics may get obscured by the dominant ones. This work presents
a new diffusion-based method that favors fine-grained synthesis with semantic
refinement. Concretely, instead of getting a synthesis using the entire descrip-
tive sentence as the prompt, users can emphasize some specific words of their
own interests. For this purpose, we incorporate a semantic-induced gradient as a
reference input in each denoising step to help the model understand the selected
sub-concept. We find out that our framework supports the combination of multiple
semantics by directly adding up their corresponding gradients. Extensive results
on various datasets suggest that our approach outperforms existing text-to-image
generation methods by synthesizing semantic details with finer granularity.

1 INTRODUCTION

The advent of large-scale vision-language models (Radford et al., 2021), together with the success
of diffusion models (Ho et al., 2020; Song et al., 2020; Lu et al., 2022; Nichol & Dhariwal, 2021;
Watson et al., 2021), facilitates the development of text-to-image synthesis (Ramesh et al., 2021;
Zhou et al., 2022; Nichol et al., 2021; Ramesh et al., 2022b; Rombach et al., 2022; Sun et al., 2022).
These models enable the generation of diverse, high-quality images that match textual prompts, even
incorporating fantastic artistic styles (Hertz et al., 2022; Ruiz et al., 2022; Couairon et al., 2022; Gal
et al., 2022; Chen et al., 2022; Kawar et al., 2022). Despite the remarkable achievement, existing
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methods have been found to perform poorly when the description has rich details (as shown in
Figure 1a), which appears as an incomplete match with the description.
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Figure 2: Matching scores between texts and im-
ages predicted by CLIP. Image I3 fails to be paired
with sentence S2, but responds highly to the de-
tails (i.e., D1 and D2) within S2.

To look into the cause of this issue, we revisit
the working mechanism of vision-language
models by taking the popular CLIP (Radford
et al., 2021) model as an example. We find
that, given a text, CLIP may not always as-
sign the best matching image with the highest
score, especially when the text is long. For
example, although CLIP successfully pairs S1

and I1 in Figure 2, S2 is mistakenly paired to
I2, which is neither “with beard” nor “serious”.
But at the same time, I3 has high responses to
both “serious” and “beard”. This phenomenon
implies that, from the viewpoint of an imper-
fectly learned vision-language model, the de-
tailed information within a text may get con-
cealed by some other key concepts in the de-
scription, such as “man” in S2, making the text-image matching score unreliable.

Inspired by the above analysis, we come up with a new diffusion-based generative model to facilitate
fine-grained text-to-image synthesis. Our motivation is intuitive: since the one-time matching with
CLIP scores may fail to capture every detail within the text condition, we aim to highlight some
semantics (e.g., words and phrases) to help guide the generation more accurately. We call such a
process as semantic refinement, which is illustrated in Figure 1b. For this purpose, we redesign
the denoising pipeline of diffusion models. Concretely, in each denoising step, the network takes
a semantic-induced gradient as a reference input, alongside the image denoised from the previous
step, to refine the generation from the semantic perspective. In this way, users can easily rectify
the coarse-grained synthesis, which is predicted based on the entire sentence, with the gradients
obtained from their selected words.

We evaluate our approach, termed as SeReDiff, on a range of datasets. Compared to existing alter-
natives, our approach is capable of producing fine-grained synthesis that better meets the input text
condition without harming the image quality. The two examples provided in Figure 1b also demon-
strate the flexibility of our method in customizing and combining multiple semantics. Furthermore,
we show that our approach does not rely on any paired data or text annotations for training, but can
still achieve fine-grained text-conditioned synthesis in the inference phase.

2 RELATED WORK

Text-to-Image Synthesis. The diffusion model (Ho et al., 2020; Song et al., 2020; Dhariwal &
Nichol, 2021) has garnered considerable attention for its potential in image generation, particu-
larly in the field of text-to-image synthesis. Previous works, such as GLIDE (Nichol et al., 2021)
and DALLE2 (Ramesh et al., 2022b), have harnessed the power of CLIP (Radford et al., 2021) as
an encoder to produce images with high text-matching accuracy. However, these models are lim-
ited in their ability to generate only low-resolution (64x64) images, necessitating additional super-
resolution diffusion models (Saharia et al., 2022) for high-quality image generation. To address this
limitation, latent-diffusion (Rombach et al., 2022) has been proposed, which involves pretraining
an autoencoder and training a diffusion model in the latent space. These models have generated
high-quality images using limited computational resources. Nevertheless, due to the constraints of
CLIP, they tend to disregard details in the input text. Imagen (Ramesh et al., 2022a) uses a large,
general-purpose language model (Raffel et al., 2020) to encode the text, improving the quality and
consistency of text-to-image generation. Despite these improvements, current approaches still lack
the ability to generate images with the desired level of detail. Our approach provides a significant
improvement in generating high-quality images that closely align with the input text while also
offering users more control over the level of detail in the generated images.

Conditional Diffusion Model. A diffusion model (Ho et al., 2020) consists of two processes: the
forward process and the reverse process. The forward process is an explicit Markov process that
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adds Gaussian noise to the real data distribution x0 ∼ q(x0) in a step-by-step manner:

q(xt+1|xt) := N (xt+1;
√

1− βtxt, βtI), t ∈ [0, T ]. (1)

Here, β1, . . . , βT are fixed constants, and T is the number of time steps that is as large as possi-
ble to destroy the signal. The reverse process aims to approximate the posterior pθ(xt−1|xt) :=

N (xt−1;µθ(xt),Σθ(xt)) by training a model ϵθ with the training objective |ϵθ − ϵ|2. Some meth-
ods (Sohl-Dickstein et al., 2015; Vahdat et al., 2021; Dhariwal & Nichol, 2021) show that a pre-
trained diffusion model can be guided by a classifier by adding its gradient to the mean value of
images. GLIDE (Nichol et al., 2021) achieves text-conditioned image generation using a pre-trained
noisy CLIP as the classifier:

µ̂θ(xt|c) = µθ(xt|c) + sΣθ(xt|c)∇(f(xt) · g(c)), (2)

where s is the guidance scale, f(·) and g(·) are CLIP image and text encoders respectively. GLIDE
also uses classifier-free guidance (Ho & Salimans, 2022) by replacing the condition c with a null
condition randomly during training, and the reverse process is impelled close to µθ(xt|c) and away
from µθ(xt|∅) by:

µ̂θ(xt|c) = µθ(xt|c) + s · (µθ(xt|c)− µθ(xt|∅)). (3)
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Figure 3: Overview of our proposed SeReDiff, which is based on diffusion models and adopts a
language-free training strategy together with a two-stage denoising process. Given a source image
x0, we first retrieve some reference images from the database, which are used to help the model
better understand the semantics in x0. The CLIP embeddings from x0 and the retrieved images
are used as the condition of the first-stage denoising to generate a coarse image x̃t. Then, we
compute semantic-induced gradient (see Section 3.3) from x̃t and the noised version of reference
images, and employ such gradient as an addition input for the second-stage denoising, i.e., serving
as semantic refinement. At the inference stage, we replace the image-based retrieval with text-image
score matching w.r.t. the sementics of interests.

3 METHOD

3.1 OVERALL FRAMEWORK

Training Process. Our method aims to generate a high-quality image that accurately captures the
highlighted details from the input sentence. To achieve this, we propose a novel diffusion-based
generation framework, named SeReDiff. In a typical diffusion denoising process, the current image
xt is directly predicted from the next image xt+1 using a U-Net with a given condition c. To improve
this process, as shown in Figure 3 (a), we expand the input space of the U-Net from 3 channels to 6
channels and split the denoising process into two stages. In the first stage, a null image of the same
size as xt+1 is concatenated with the image from the previous time step xt+1 to predict a coarse
image x̃t = fθ(xt+1, ∅, t, c), where fθ(·) denotes the U-Net, whose weights are shared in the two
stages. In the second stage, the coarse image x̃t is concatenated with the gradient to predict the
denoised image xt, i.e., xt = fθ(x̃t, g, t, c). Here, g denotes the semantic-induced gradient, which
is computed as described in Sec 3.3.
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Sampling Process. During the sampling process, as shown in Figure 3 (b), we aim to generate an
image that aligns well with a given text description, while also incorporating the highlighted details.
Firstly, we use the entire sentence to obtain a source image embedding by either using a prior or
retrieving it from a database. Next, we employ the highlighted details to retrieve reference images,
and concatenate the embeddings of the source image and reference images. By using concise terms
to search for reference images, we ensure a strong alignment with the textual description. These
concatenated embeddings serve as the conditions for the U-Net to synthesize the coarse image x̃t. In
the second stage, we compute the semantic-induced gradient using a noised version of the reference
images and the coarse image x̃t. We then use this gradient, in conjunction with the coarse image, to
generate the image xt. This process continues from time step T until the final image is synthesized,
with all semantics employed to guide the sampling simultaneously.

3.2 SEMANTIC REFINEMENT WITH GRADIENT CONDITION

Why using gradient? Recall that our objective is to guide the diffusion sampling process toward
specific semantic directions. One intuitive approach is to directly concatenate the words extracted
from the input sentence into the cross-attention module of the U-Net and use a classifier for guidance
to generate the composite image. However, this approach has limitations in producing images with
all fine-grained details, as different conditions have varying degrees of semantic relevance, and the
more salient ones may dominate over the less prominent ones. Since the gradient has the same size
as the generated image and implies a change in desired semantic direction, we can leverage it as a
condition to guide the generation of the composite image. Previous works (Selvaraju et al., 2017;
Fu et al., 2020) have shown that fine-grained details can be obtained from the gradient of a classifier.
Therefore, we explore the potential of using the gradient as a condition to expand the 3-channel
image space into a 6-channel gradient and image space in the diffusion model, with the goal of
generating images with fine-grained details while maintaining semantic coherence.

How does gradient facilitate semantic refinement? Given a text prompt c as condition, the condi-
tional diffusion process (Dhariwal & Nichol, 2021) can be expressed as:

Pθ,φ(xt|xt+1, c) = ZPθ(xt|xt+1) · Pφ(c|xt). (4)

Here, Z is a constant, Pθ(xt|xt+1) represents the original diffusion process as a Gaussian distribu-
tion, Pφ(c|xt) is the posterior distribution for the condition c, which we will analyze in detail in the
following.

Assuming the classifier posterior distribution Pφ(c|xt) is smooth with respect to variable xt, this
highly-nonlinear term can thus be further decomposed into a more tractable form: the combination
of a linear term and a quadratic term. This decomposition serves as our key insight in designing
Semantic Refinement with gradient condition. By applying Taylor expansion at xt = µ, we can get

logPφ(c|xt) = C0 + (xt − µ)∇xt
logPφ(c|xt)|xt=u +

1

2
(xt − µ)T∇xt2 logPφ(c|xt)|xt=ϵ(xt − µ),

(5)
where both C0 and logPφ(c|xt)|xt=u are constant, ϵ ∈ [µ, xt] is a variable, ∇xt

and ∇2
xt

denote
the gradient and Hessian operator w.r.t. variable xt, respectively. For simplicity, in the following we
denote ∇xt logPφ(c|xt)|xt=u as g and ∇xt2 logPφ(c|xt)|xt=ϵ as G(xt, g).

Thus, Equation 4 can be represented as

log(Pθ(xt|xt+1) · Pφ(c|xt)) = log p(z) +
1

2
gTΨg + C1, z ∼ N (µ+Ψg,Ψ−1), (6)

where Ψ denotes (Σ−1 − G(xt, g))
−1 and C1 is a constant. Please refer to appendix A.1 for a

detailed derivation. A key insight of Equation 6 is that, for a given xt, the term 1
2g

TΨg is constant at
each timestep. Thus, the entire conditional transition distribution can be approximated as a Gaussian
distribution, where the variance is denoted as Ψ−1 and the mean is represented as:

µ̂(xt|c) = µθ(xt|c) + Ψg, (7)

This formulation represents an advancement over classical results (Sohl-Dickstein et al., 2015;
Dhariwal & Nichol, 2021), which only considered the first linear term to capture the conditional
transition. Whereas our method incorporates the second order term elegantly due to the Gaussian
nature of the mathematics involved and can capture the conditional transition more efficiently.
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Given that Ψg is related to both xt and g, the mean value in Equation 7 can be modeled as a neural
network:

µ̂(xt|c) = ϕθ(xt−1, t, g, c) = µθ(xt|c) + ψθ(g), (8)

where µθ(xt|c) predicts the mean of the unconditional process and ψθ(g) is used to capture Ψg.

Property of using gradient. Benefiting from the intrinsic linearity of the gradient operator, our
method presents a valid compositional performance. Given multiple semantic c1, c2, ..., cn as con-
ditions (Hinton, 2002), the conditional probability can then be factored as

Pθ,φ(xt|xt+1, c1, c2, ..., cn) = ZPθ(xt|xt+1)·Pφ(c1, c2, ..., cn|xt) = ZPθ(xt|xt+1)·
n∏

i=1

Pφ(ci|xt).

(9)
Here, gi denotes the gradient of the ith condition. Using Equation 6, we can compute the conditional
probability of multiple conditions as N (µ+Ψ

∑n
i=1 gi,Ψ

−1). This approach allows for the efficient
and accurate implementation of the conditional diffusion process, facilitating fine-grained generation
under multiple semantics.

3.3 SEMANTIC-INDUCED GRADIENT

To leverage gradient as a guiding signal in the diffusion sampling process, it is necessary to com-
pute it efficiently and effectively. Previous work on this topic, such as GLIDE (Nichol et al., 2021),
computes the dot product of noised image features and corresponding text features. However, this
approach requires pre-training of noised CLIPs for images at each time step, which is computa-
tionally expensive and time-consuming. Instead, we use a loss function of negative dot similarity
between CLIP embeddings of a generated image x̃t and reference images xreft . The gradient of this
loss w.r.t. the generated image embedding is computed to obtain the semantic-induced gradient:

g = ∇x̃t
f(x̃t) · f(xreft ), (10)

where f(·) denotes the CLIP image encoder. This way, we can efficiently guide the diffusion process
towards specific semantic directions without pre-training noisy CLIPs
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Figure 4: Analysis on preservation ratio of repre-
sentation topology, which is obtained by comput-
ing CLIP feature similarity extracted from 1000
image pairs from each dataset. We compute their
similarity by gradually destroying each image pair
via adding noise, the same as the diffusion process
in diffusion models.

To ensure that CLIP can work well with
noised images, we introduce a metric called
the Preservation Ratio of Representation Topol-
ogy. This metric measures the extent to which
image feature similarity is maintained as the
time step increases during the diffusion pro-
cess. Specifically, for an image S0, we calcu-
late its CLIP similarity between A0 and B0. If
f(S0) · f(A0) > f(S0) · f(B0) and this con-
dition holds at time step t such that f(St) ·
f(At) > f(St) · f(Bt), we consider A0 at time
step t as “preserved” (and “not preserved” oth-
erwise). We evaluate the Preservation Topology
Ratio on a random sample of 1000 images from
FFHQ and ImageNet datasets. The statistical
results in Figure 4 demonstrate that even at time
step 1000, the Preservation Topology Ratio for
ImageNet is still about 80%, and over 82% for
FFHQ dataset. Moreover, we observed that the
similarity scores for images considered as “not preserved” are close to each other even at time step
0. This finding supports the feasibility of computing the semantic-induced gradient directly from
two noised images, as an alternative to calculating it from image-text pairs.

Language-free training. The proposed semantic-induced gradient makes our training free of
text annotations and allows for a language-free training pipeline where only pure images partic-
ipate in the training process. Specifically, given an initial image x0, we first extract its CLIP
embedding e with CLIP image encoder and retrieve its K-nearest neighbors e1, e2, ..., ek from
the training database. Then we concatenate all the CLIP embeddings to form the condition
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c = concat(e, e1, e2, ..., ek). The retrieved images corresponding to these embeddings serve
as reference images x1, x2, ..., xk. We use the noised versions of reference images x1t , x

2
t , ..., x

k
t to

compute the gradients g1, g2, ..., gk with Equation 10. Finally, we add the gradients to get the final
gradient g according to Equation 9.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. In this section, we compare our method with state-of-the-art approaches (Zhou et al.,
2022; Xia et al., 2021a; Xu et al., 2018; Nichol et al., 2021; Liu et al., 2022) on various datasets
containing fine-grained text descriptions, including Mulit-Modal CelebA-HQ (MM HQ) (Xia et al.,
2021b) and CUB (Wah et al., 2011). For open-world results, we train our model on LAION-5b
dataset (Schuhmann et al., 2022). To demonstrate the independence of our method from text-image
pairs, we also present qualitative results obtained by training on AFHQ (Choi et al., 2020) and
LHQ (Skorokhodov et al., 2021).

Evaluation metrics. To evaluate the visual quality of our proposed method, we use the Fréchet
Inception Distance (FID) (Heusel et al., 2017) as a quantitative metric. However, since FID may not
always align with human perception and does not necessarily reflect the semantic consistency be-
tween the image and text, we additionally conduct a user study to assess the photorealism, text align-
ment, and detail matching of the generated images. Specifically, users are given a text description
that includes marked attributes and the corresponding generated image, and they are asked to rate
the photorealism and text alignment of the image and calculate the number of matching attributes
between the text and image. We evaluate our approach against several state-of-the-art methods,
including TediGAN (Xia et al., 2021a), LAFITE (Zhou et al., 2022), AttnGAN (Xu et al., 2018),
GLIDE (Nichol et al., 2021), Composable Diffusion (Liu et al., 2022) and Stable Diffusion (Rom-
bach et al., 2022). Additionally, we use two baselines for ablation: (1) one-stage diffusion model
without semantic refinement (Baseline) with identical parameter settings and training steps, and
(2) Baseline model with classifier guidance (BaselineC). For further details regarding implemen-
tation and evaluation settings, please refer to Appendix A.2 and A.3.

4.2 QUANTITATIVE RESULTS

We quantitatively compare our proposed method with state-of-the-art benchmarks on MM-HQ (Lee
et al., 2020) CUB (Wah et al., 2011) and Laion-5b (Schuhmann et al., 2022) datasets for fine-
grained text-to-image generation. For the MM-HQ dataset, we compare our method with StyleGAN-
based (Karras et al., 2019) methods LAFITE (Zhou et al., 2022) and TediGAN (Xia et al., 2021a). As
shown in Table 1, our method outperforms the StyleGAN-based methods in terms of image quality,
achieving the lowest FID score of 37.81 among all compared methods. Additionally, our method
achieves the highest performance in Text Alignment and Detail Matching, with a matching score
of over 90%, indicating that most fine-grained details described in the corresponding sentence are
generated. However, our method is slightly inferior to TediGAN (Xia et al., 2021a) in terms of pho-
torealism. The main reason is that our method only generates images with a resolution of 256×256
compared to TediGAN’s 1024×1024 resolution. Note that analytical results have shown that users
prefer higher resolution images. For CUB dataset, we compare our method with AttnGAN (Xu
et al., 2018) and LAFITE (Zhou et al., 2022), and we find that our method outperforms them in all
evaluation metrics.

4.3 QUALITATIVE RESULTS

Comparison with State-of-The-Art methods. Figure 5 displays the visual results of face images
generated by previous methods. LAFITE (Zhou et al., 2022) can produce coarse-grained attributes
such as “gender” and “hair style”, but fails to capture fine-grained attributes like “sad”, “green
eyes”, and “bushy beard”. The quality of the generated images also degrades significantly when
irregular attributes like “red beard” are involved. In contrast, TediGAN (Xia et al., 2021a) can
generate high-quality images, but the semantics of the generated images do not always match the
corresponding text descriptions. Our method outperforms both LAFITE and TediGAN, as it can
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Table 1: Quantitative comparison of different methods on MM-HQ (Lee et al., 2020) and CUB (Wah
et al., 2011) Dataset. ↓ means smaller number is better, while ↑ means larger number is better.

Dateset MM-HQ (Lee et al., 2020) CUB (Wah et al., 2011)

Method FID ↓ Photo
realism ↑ Text

Alignment ↑
Detail

Matching ↑ FID ↓ Photo
realism ↑ Text

Alignment ↑
Detail

Matching ↑
TediGAN 40.48 4.23 4.15 77.48% - - - -
AttnGAN - - - - 23.98 1.65 4.02 71.30%
LAFITE 39.06 3.26 4.54 89.00% 31.15 1.50 3.66 63.05%
Baseline 39.74 3.99 4.49 87.83% 22.03 1.50 3.27 50.35%
BaselineC 39.76 3.79 4.46 86.32% 21.62 1.73 3.19 48.85%
Ours 37.81 4.00 4.59 90.45% 17.66 4.32 4.10 74.10%

synthesize high-quality images with fine-grained details that accurately reflect the meaning of the
given text descriptions. Additionally, our method generates more realistic and natural results, such
as “square face”, “hat”, and “red beard”. Figure 6 showcases the visual results of bird images, where
our method stands out in terms of photo-realism and text alignment compared to other methods.

SeReDiffw/o RefinementLAFITE Baseline BaselineC

A little girl with short
straight yellow hair
and bangs has green
eyes looks sad .

An old man with
eyeglasses and
bushy beard
wearing a hat .

A middle aged
man with big nose
and square face and
short hair has red

beard .

TediGAN

Figure 5: Qualitative comparisons on MM-HQ dataset (Lee et al., 2020). This first colume shows the
input text prompt as the condition, while the remaining columns are samples produced by various
methods. The highlighted words indicated the semantics to be strengthened.

This bird is one of the 
most unique i have seen, 

small head, black mask face
with many different shades 

of orange as feathers .

Small round body with 
friendly look and green 

gray back and head with 
bars of yellow and dark 
gray on wings and tail .

AttnGAN Baseline BaselineC w/o RefinementLAFITE

A black and white bird 
with a white crown and 

black pointed beak .

SeReDiff

Figure 6: Qualitative comparisons on CUB dataset (Wah et al., 2011). This first colume shows the
input text prompt as the condition, while the remaining columns are samples produced by various
methods. The highlighted words indicated the semantics to be strengthened in our approach.
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Table 2: Quantitative comparison on composable text-to-image generation. Compose+X denotes
the implementation of composable diffusion using method X.

Method ↓ Photo
Realism ↑ Text

Alignment ↑
Detail

Matching ↑
Compose+GLIDE 4.81 3.86 75.23%
Compose+stable diffusion 4.81 3.89 75.52%
Structure diffusion 4.78 3.81 71.06%
Ours 4.85 4.62 91.69%

Open-world Text-to-Image Generation. We trained our model on LAION-5b (Schuhmann et al.,
2022) dataset and pre-trained a prior for mapping CLIP text features into image features to facili-
tate open-world generation. To evaluate our approach, we compare it with the pre-trained models
released by GLIDE (Nichol et al., 2021), Composable-Diffusion (Liu et al., 2022), and Stable Dif-
fusion (Rombach et al., 2022). Figure 7 presents the visual results of the different methods. The
results indicate that GLIDE (Nichol et al., 2021) is only capable of synthesizing a portion of the
semantics, as demonstrated by the example in which the description is “A blue bird and a flower,”
and GLIDE only synthesized “a blue bird” while neglecting “a flower”. Similarly, Composable-
Diffusion (Liu et al., 2022) generates images with mixed-up semantics, such as a furry couch gen-
erated from the description “A couch and a dog sitting in the living room.” While Stable Diffusion
produces higher-quality visuals, it still fails to capture fine-grained details such as “golden crown”
and “stars”. Interestingly, our method successfully generates images that compose all the semantics,
including counter-intuitive ones such as “A panda eats French fries with a red hat on the grassland.”

A couch and a
dog sitting in the

living room .

A white church 
sitting on a hill and 
Stars in the sky and
bare trees are beside 

the church .

An abandoned 
red vehicle and a

forest covered 
with snow .

A panda eats 
French fries with 
a red hat on the 

grassland .

A blue bird and 
a flower .

A pink sky and
Cherry Blossoms in 

front of  the mountain
and a blue mountain

in the horizon .

A white dog with 
a golden crown 

and red collar and 
the garden lawn .

SeR
eD

iff
G

L
ID

E
Stable 

D
iffusion

Figure 7: Illustrations of open-world text-to-image synthesis. The last row represents the input texts
with semantics of interest highlighted, while the rest rows shows the results of different methods.

4.4 COMPOSABLE TEXT-TO-IMAGE GENERATION.

Our method supports composable text-to-image generation, which allows users to combine multiple
textual descriptions into a single image. To evaluate the performance of our method in synthesizing
fine-grained details, we compare it with two state-of-the-art composable text-to-image synthesis
methods: Composable diffusion (Liu et al., 2022) and Structure-diffusion (Feng et al., 2022). Since
different training sets are employed by these methods, we cannot directly compare the FID scores
with them. Therefore, we mainly rely on human evaluations, which are presented in Table 2. Our
method outperforms the others in Photo Realism, Text Alignment and Detail Matching, achieving a
91.69% rate for Detail Matching, which is a 16.46% improvement over the best existing method.

The qualitative results of different methods are shown in Figure 8. All of the prompts are selected
from the paper of Structure-diffusion. The results of Composable diffusion (Liu et al., 2022) show
low quality and entangled concepts. For example, in the prompt “A yellow cat and wearing a blue
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plastic”, our method clearly separates the cat and blue plastic, while Composable-diffusion mixes
them together. Our method generates comparable results to Structure-diffusion (Feng et al., 2022)
in image quality but shows better disentanglement of concepts. For instance, in the prompt “A gold
clock and a green bench”, Sturcture-diffusion produces a gold-green clock.

A yellow cat and
wearing a blue plastic 

baseball hat

A gold clock and 
a green bench

A blue bird and 
a brown bowl

A black goat and two 
white goats

A red car and 
a white sheep

O
urs

Structure
D
iffusion

A red bird and 
a green apple

C
om
pose+SD

C
om
pose+G

L
ID
E

Figure 8: Illustration of different methods on composable text-to-image generation. Compose+X
denotes the implementation of composable diffusion using method X.

4.5 ABLATION STUDIES

Quantitative Evaluates. As presented in Table 1, our approach outperforms the baseline across
multiple metrics, including Image Quality, Text Alignment, and Detail Matching. Specifically, our
method achieves significant improvements in Image Quality, Text Alignment, and Detail Matching,
particularly on the CUB dataset, where Photorealism increases from 1.50 to 4.10, and the Detail
Matching is improved by 23.75%. While using classifier guidance (BaselineC) only slightly im-
proves the image quality. The poor results in Text Alignment and Detail Matching demonstrate the
limitations of this method.

Qualitative Evaluates. The qualitative results of our method and ablations are presented in Figure 5
and Figure 6. The Baseline method neglects fine-grained details, such as “square face” and “red
beard” in face images, and produces overall blurry results. Although BaselineC performs better
in modeling image details with sharper textures, the image distribution is severely damaged. In
contrast, our method without Semantic Refinement produces results that are visually plausible and
compatible with the conditioned texts. By incorporating the Semantic Refinement technique, we can
obtain more fine-grained results, as shown in the rightmost column of the figures. Additionally, the
semantics of the generated samples are enhanced, such as “hat,” and “red beard” in Figure 5 and
“white crown” and “black mask face” in Figure 6.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a new method called SeReDiff that addresses the limitations of existing
text-to-image methods in generating fine-grained images. Our approach uses a coarse-to-fine frame-
work, generating a coarse-grained image first and refining it with a Semantic Refinement module
that leverages multiple semantics. Our method offers language-free training and outperforms state-
of-the-art methods on multiple datasets. It also allows users to emphasize desired semantics for
flexible and customizable image synthesis.
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A APPENDIX

A.1 DETAILED FORMULATION OF SEMANTIC REFINEMENT

In this section, we present a detailed formulation of semantic refinement. We begin by expressing
the conditional diffusion transition as follows:

Pθ,φ(xt|xt+1, c) = ZPθ(xt|xt+1) · Pφ(c|xt). (a)

Here, Pθ(xt|xt+1) is a Gaussian distribution with mean µ and covariance matrix Σ, given by:

Pθ(xt|xt+1) = N (µ,Σ), (b)

log(Pθ(xt|xt+1)) = −1

2
(xt − µ)TΣ−1(xt − µ). (c)

Moreover, the classifier posterior distribution Pφ(c|xt) can be expanded around xt = µ using a
Taylor series expansion as follows:

logPφ(c|xt) = C0 + (xt − µ)∇xt
logPφ(c|xt)|xt=u +

1

2
(xt − µ)T∇xt2 logPφ(c|xt)|xt=ϵ(xt − µ),

(d)

To simplify the notation, we use g and G(xt, g) to denote ∇xt logPφ(c|xt)|xt=u and
∇xt2 logPφ(c|xt)|xt=ϵ, respectively.

log(Pθ(xt|xt+1) · Pφ(c|xt))

= −1

2
(xt − µ)TΣ−1(xt − µ) + (xt − µ)g +

1

2
(xt − µ)TG(xt, g)(xt − µ) + C1

= −1

2
(xt − µ)T (Σ−1 −G(xt, g))(xt − µ) + (xt − µ)g + C1

= −1

2
(xt − µ−Ψg)TΨ−1(xt − µ−Ψg) +

1

2
gTΨg + C1

= log p(z) +
1

2
gTΨg + C1, z ∼ N (µ+Ψg,Ψ−1). (e)

In this equation, Ψ = (Σ−1 −G(xt, g)) and C1 is a constant.

A.2 IMPLEMENTATION DETAILS

In our experimental setup, we employ 8 A100 GPUs to conduct experiments on various datasets such
as FFHQ (Karras et al., 2019), CUB (Wah et al., 2011), AFHQ (Karras et al., 2019), and LHQ (Sko-
rokhodov et al., 2021). Additionally, we use 48 A100 GPUs to perform experiments on the Laion-
5b (Schuhmann et al., 2022) dataset. To extract features, we utilize a ViT-L/14@336px (Radford
et al., 2021) CLIP image encoder and text encoder.

For training the diffusion model, we adopt the U-Net architecture used in the Dalle2 (Ramesh et al.,
2022b) decoder. The input and output dimensions of the U-Net are set to 6 and 3, respectively, but
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we scale the model width to 196 channels. The attention layer consists of 64 head channels with
an attention resolution of 8, 16, and 32. We set the learning rate to 1.2e − 4. During training, we
randomly set the condition and gradient to ∅ with probabilities of 10% and 50%, respectively. We
set the total diffusion timesteps to 1000. We also train a prior on Laion-5b dataset with parameters
introduced in (Ramesh et al., 2022b). During the sampling stage, we adopted the DDIM sampling
strategy with a sampling step of 50. Additionally, we incorporated classifier guidance with a guid-
ance scale of 3.

A.3 HUMAN EVALUATION DETAILS

In our user study, we conduct a human evaluation to assess the performance of different image gen-
eration methods on the CUB and MM-HQ datasets. We use three evaluation metrics: Photorealism,
Text Alignment, and Detail Matching. Fifty individuals participated in the evaluation process.

To evaluate Photorealism and Text Alignment, users are presented with a sample image and its
corresponding text description. They are then asked to rate the Photorealism and Text Alignment
of the image on a scale of 1 to 5. To simplify the evaluation process, we divide Photorealism into
three levels: Completely broken image (1 point), Image with artifact or blur (3 points), and Image
without artifact and blur (5 points). Similarly, for Text Alignment, we divide the evaluation into four
levels: Complete mismatch (1 point), Mismatch with most of the semantics (2 points), Match with
most of the semantics (4 points), and Complete match (5 points). For Detail Matching, we mark out
the details in the text description, and users are asked to indicate the number of details satisfied in
the sample image. The percentage of matched details is then calculated. Finally, we calculate the
average rating for each method based on all user ratings, which served as the final score.

A.4 LANGUAGE-FREE GENERATION.

Our approach leverages a language-free training strategy, enabling it to be trained on datasets without
text annotations, including AFHQ (Choi et al., 2020) and LHQ (Skorokhodov et al., 2021) datasets.
The upper row of Figure 9 displays some LHQ-generated samples. As observed in the odd columns,
our method without semantic refinement can generate the general semantics of the input text de-
scriptions. However, fine-grained details such as “pool,” “mountains,” and “streams” are missing.
In contrast, the proposed method with semantic refinement, shown in the even columns, largely re-
plenish these missing details. In the lower row of Figure 9, we demonstrate samples generated from
the AFHQ dataset. Our method captures the color of hair, ear shapes, and eye and mouth states
accurately.

There is a fast flowing waterfall is in the middle of 
the rock, the rock is covered with green vegetation, 

and there is a small pool of water next to the rock .

A photo of scene with steams flowing at the foot
of the mountains and green trees on the hills .

The lake is very peaceful, the water is very clear, 
the white clouds in the sky and the surrounding 

mountains are reflected in the water .

An orange cat with a white mouth, and 
pointed ears closed its eyes .

A dog has short orange hair and long pointed 
ears sticking out its tongue .

A white cheetah with its mouth wide
open shows its fangs .

Figure 9: Language-free training results of SeReDiff trained on LHQ (upper row) and AFHQ (lower
row). The odd columns show the images conditioned on the entire sentence, while the even columns
present the results produced after semantic refinement.
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A.5 EFFECTIVENESS OF SEMANTIC REFINEMENT.

We demonstrate the effectiveness of the proposed Semantic Refinement mechanism in enhancing
fine-grained details by progressively incorporating semantics, as shown in Figure 10. As more se-
mantics are incorporated, the generated images become increasingly refined and better aligned with
the given text description. Additionally, fine-grained details, such as “pointed nose” and “beard” are
emphasized.

A red 
butterfly sits 
on a yellow 
follower .

A man with a 
yellow T shirt  

black pants and 
white shoes .

A man with 
brown hair and 
pointed noise 

wearing eyeglasses 
and beard .

w/o Refinement + Semantic 1 + Semantic 1
+ Semantic 2

Figure 10: Illustration of the refinement process by emphasizing varying number of semantics.

A.6 DIVERSE RESULTS.

To demonstrate the capability of our method in generating diverse outputs based on a given text de-
scription, we conducted further experiments on several datasets, including Laion-5b, LHQ, FFHQ,
and AFHQ. The results of our qualitative analysis are presented in Figure 11, Figure 12, and Fig-
ure 13.
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An yellow dog 
with eagel's
wings is flying 
over the sea

An airship shaped 
like a pig floating 
over a wheat field, 
the tractor on the 
ground

The Totoro bus is 
driving on the 
water

At sunset, 
abandoned boats 
sit on the beach 
and flocks of birds 
fly across the sky

A robot ballerina 
dancing in a flower 
field at night with 
the moon in the 
background

a white dog and a 
kid with blue T 
shirt and hat are 
sitting on the lawn.

Figure 11: Illustrations of diverse open-world results. The left column represents the text descrip-
tions, and the rest of column are generated results with given text.
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a picture of a sunset with 
snow falling on the trees

a picture of snow covered 
peaks towering into the 
clouds

a scenic picture with white 
clouds in the sky and dense 
forests reflected in the water 
is a delight to the eyes

mist shrouds the forest, 
the sun casts a little 
shimmer, and only a few 
leaves float on the trunks 
of the trees

Under the blue sky is a 
white snowy mountain, and 
the reflection of the snow 
capped mountain is 
reflected on the calm lake

On the calm sea, there is a 
towering rock, and the 
sunset in the distance 
reflects the beautiful light

Figure 12: Illustrations of diverse results trained on LHQ dataset. The left column represents the
text descriptions, and the rest of column are generated results with given text.
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A little boy with a
cute hat is smiling,
showing his
uneven teeth

A middle aged
man with goatee
and bangs

A cat with green eyes 
and extremely long ears

A cat with white face
and black ears

A male lion has long 
hair and a big mouth 
with fangs leaking out

A young girl with long 
straight black hair and 
lipsticks is slightly smiling, 
she has bags under eyes

Figure 13: Illustrations of diverse results trained on FFHQ and AFHQdataset. The left column
represents the text descriptions, and the rest of column are generated results with given text.
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