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ABSTRACT
Understanding traveler behavior and accurately predicting travel
mode choice are at the heart of transportation planning and policy
making. Traditional methods relying on raw numbers and struc-
tured feature representations have limitations on capturing the
complex interdependency and qualitative factors that may impact
on travel behavior in the real-world, particularly the rich contextual
nuances underlying individual decision-making processes. Large
languagemodels (LLMs) with promising capabilities for understand-
ing contextual information across domains provides new pathways
for travel behavior modeling. In this study, we propose, TransMode-
LLM, an innovative framework designed to predict travel modes
from natural language descriptions of travelers and their trips. We
start by analyzing the importance of features to identify and select
key impacting factors (i.e. individual, household and trip charac-
teristics) to enrich context for decision-making. To enhance the
performance of LLMs for transportation-specific tasks, we propose
a domain-enhanced prompting strategy that incorporates standard-
ize mode definitions.We further explore various learning paradigms
(zero-shot and one/few-shot learning) to understand their impact
on travel mode prediction using natural language. Finally, we build
an evaluation system to compare the performance of the proposed
LLM-based approach against state-of-the-art traditional models. Ex-
tensive experiments are conducted on the real-world travel survey
dataset and the results demonstrate the competitive performance of
LLM-based approach such as prediction accuracy compared to the
traditional methods. This study advances the application of LLMs
in travel behavior modeling, providing promising and valuable in-
sights for both academic research and transportation policy-making
in the future.
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1 INTRODUCTION
Understanding individual mobility and travel behavior is vitally im-
portant in several areas of transportation, including transportation
planning, traffic management, and transport policy. The majority
of previous studies on travel mode prediction are based on tradi-
tional statistical models like multinomial logit models to advanced
machine learning techniques, both relying on structured data to
establish relationships between traveler characteristics and mode
choices [20, 40]. These methods, while valuable, often struggle to
capture the complex contextual nuances and heterogeneous pat-
terns that influence travel decisions.

While previous research has compared the effectiveness of vari-
ous statistical approaches, a fundamental limitation persists: these
methods typically operate with predefined variables that may not
capture the contextual nuances impacting individual travel deci-
sions. The rapid development of Large Language Models (LLMs)
presents an opportunity to address this gap. Trained on vast amounts
of text data, LLMs demonstrate significant advantages in possessing
remarkable capabilities in understanding context, reasoning about
complex relationships, and generating human-like responses.

Recently, researchers have shown an increased interest in ap-
plied the advanced techniques from LLMs to understand and predict
human behavior across various domains including law, economics,
political science, and social science [2, 3, 31, 43]. Drawing inspira-
tion from this foundation, we propose, TransMode-LLM, an inno-
vative framework designed to predict travel modes from natural
language descriptions of travelers and their trips. Our methodol-
ogy begins with a literature-based selection of impacting factors,
followed by feature importance analysis to identify the most signif-
icant predictors. We then transform these structured variables into
narrative descriptions to enable LLMs to process and reason with
contextual information that might bemissed in traditional modeling
approaches. Specifically, we introduce domain-enhanced prompting
strategies and learning paradigms (zero-shot and few-shot learning
approach) to enhance LLMs’ understanding capabilities for travel
mode prediction. To validate the proposed LLM-based approach,
we conduct experiments on the real-world dateset, in which we
compare our model with the state-of-the-art models with high-
performance. The results demonstrate that our proposed model
has the potential to yield competitive performance against estab-
lished baseline models. By combining traditional travel behaviour
prediction methods with the contextual intelligence of LLMs, our
proposed methodology offers a novel pathway to advance travel
mode prediction beyond conventional limitations.
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2 RELATEDWORK
2.1 Travel mode prediction
Recent years have witnessed a growing academic interest in travel
mode prediction. A number of techniques have been developed on
mode prediction, such as traditional statistical models and advanced
machine learning models. The majority of the studies in early years
on travel mode prediction focused on discrete choice models such
as multinomial logit and nested logit models. These models are
based on random utility theory, which estimates the probability
of a traveler choosing a particular mode based on the perceived
utility among alternative modes. Utility is typically constructed as
a function of various attributes, such as travel time, travel cost, and
comfort [4]. These models provide a theoretical foundation and
interpretability, however, the principle limitations of these methods
is the assumptions on the independence of irrelevant alternatives
and linear-in-parameters utility functions [40], which may not
adequately capture the complexity of real-world travel behavior.

To address the limitations of traditional discrete choice models,
researchers have increasingly explored the application of advanced
machine learning techniques in travel mode prediction. Evidence
from a number of studies has confirmed the effectiveness ofmachine
learning techniques in travel mode prediction [13, 20, 25, 36].

However, these traditional approaches including statistical mod-
els and advanced machine learning-based approaches are limited
by their reliance on raw numbers and structured feature representa-
tions that may fail to capture the rich contextual nuances, complex
interdependencies, and qualitative factors that may pose an impact
on travel behaviour in the real-world. LLMs, can potentially address
these gaps using their ability to process and reason with natural
language descriptions of travel information.

2.2 Large language models
Large language models (LLMs), refer to transform-based language
models containing hindered of billions or more of parameters
trained on massive text data [39], such as GPT-3 [6], GPT-4 [1] and
LLAMA [34]. These models demonstrate strong natural language
understanding capabilities and can solve complex tasks through
text generation. In recent years, researchers have shown an in-
creased interest in applied the advanced techniques from LLMs to
understand and predict human behavior across various domains
including economics, political science, and social science [2, 3, 43].
Despite the successful application in various research fields, only
a limited number of using LLMs on travel mode prediction have
been identified [23, 26].

While prior research has demonstrated the potential of LLMs
in travel behavior prediction, several significant gaps remain in
the current literature. First, previous work lacks comprehensive
analysis of which attributes are most influential for LLM-based
travel mode prediction and how to optimally transform structured
travel data into natural language descriptions that may effectively
capture the nuances of travel decision-making. Second, current
approaches have been evaluated on limited datasets with restricted
transportation mode options that may not adequately represent
the diverse travel patterns commonly used in the world, thereby
raising questions about the generalizability and applicability to
larger and more diverse datasets. Third, while few-shot learning

has been explored, there remains insufficient investigation into how
different prompting strategies i.e. incorporating enhanced domain
knowledge in specialized areas—and feature representations can be
beneficial to improve prediction accuracy. Finally, existing studies
lack extensive comparative experiments and rigorous analysis with
traditional machine learning approaches across different model con-
figurations, dataset sizes, and evaluation metrics. This will limit the
understanding of the cases that LLMs provide superior performance
over traditional methods or fall behind them.

To address these gaps, we propose, TransMode-LLM, an inno-
vative framework designed to predict travel modes from natural
language descriptions of travelers and their trips. Starting from
a literature-based selection of impacting factors, followed by fea-
ture importance analysis, we aim to identify the most significant
attributes. We continue to propose a framework that transforms
these impacting attributes into narrative descriptions to enable
LLMs to process and reason with contextual information. In details,
we introduce domain-enhanced prompting strategies and learning
paradigms (zero-shot and few-shot learning approach) to enhance
LLMs’ understanding capabilities for travel mode prediction. To val-
idate the proposed LLM-based approach, we conduct experiments
on the real-world dateset, in which we compare our model with the
state-of-the-art high-performance models with an establishment of
comprehensive evaluation metrics.

3 METHODS
In this study, we propose a novel methodological framework for
travel mode prediction that combines traditional statistical ap-
proaches and advanced natural language processing techniques.
By transforming structured transportation data into rich contex-
tual narratives processable by large language models (LLMs), we
develop a comprehensive framework for travel behavior analysis
with enhanced interpretability and predictive capability.

This section presents our methodology consisting of three main
steps. We begin with a literature-based selection of impacting fac-
tors, followed by feature importance analysis to identify the most
significant predictors. We then transform these structured variables
into narrative descriptions to enable LLMs to process and reason
with contextual information that might be missed in traditional
modeling approaches.

3.1 Data preparation
The dataset used in this study is the National Household Travel
Survey conducted by the Federal Highway Administration (FHWA),
which is a periodic national survey data supporting transporta-
tion planners and policymakers in their decision-making [12]. The
performance of travel behavior analysis relies on the quality of
input data, particularly when developing generative and predic-
tive models for travel mode choice. As such, we first implement a
comprehensive two-stage filtering methodology to address incon-
sistencies within the National Household Travel Survey (NHTS)
dataset that could otherwise compromise model validity.

The first step was applied a speed-distance-time consistency
filter to identify physically implausible trip records such as walk-
ing trips with calculated speeds exceeding 5 mph or vehicle trips
with unrealistically low speeds. Subsequently, a socio-demographic
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consistency filter targeted logical inconsistencies between the char-
acteristics of the individuals and the reported travel behaviors, such
as underage drivers, non-drivers operating vehicles, young chil-
dren traveling unaccompanied on public transit, and private vehicle
trips without an identified driver. After filtering, the final dataset
contains 22,868 trips with 85 attributes. Statistical validation demon-
strates that the filtered dataset exhibits more realistic distributions
across all travel modes, with particularly significant improvements
in walking, cycling, and public transit categories. By addressing
both physical and logical inconsistencies, these preprocessing steps
significantly enhances data reliability for travel behavior analysis,
enabling more accurate prediction of travel mode choice.

3.2 Preliminary analysis
Before entering the heart of the methodology by using natural lan-
guage transformations to enable contextual reasoning by LLMs, we
perform preliminary analysis to identify and prioritize impacting
variables from the processed dataset introduced in the last section.
We first identify potentially impacting factors from the literature,
following by applying feature importance analysis to select the
top 15 impacting factors. This two-stage selection process can help
reduce the dimensionality to prevent overfitting and focuses com-
putational resources, aiming to capture the most relevant factors
of mode choice behavior.
Impacting factors of travel behavior

To perform travel mode choice prediction, a comprehensive un-
derstanding of the determinants influencing travel behavior is im-
portant. Zhou (2012) established a six-category framework for fac-
tors impacting mode choice: physical environment and urban form,
mode-specific attributes, trip-makers’ personal characteristics, trip
parameters, travel demand management (TDM) measures, and psy-
chological factors [42]. Building upon this foundation and drawing
from the methodological approach presented by Hörl and Balac
(2021) [17], this study explores five distinct categories of influential
factors: individual socio-demographic characteristics, household
characteristics, trip characteristics, built environment, and pric-
ing factors. This refined categorization enables a more structured
analysis of the complex interactions between personal, household,
trip-specific, environmental, and economic variables that collec-
tively shape travel behavior patterns.

• Individual socio-demographic characteristics:
Individual socio-demographic characteristics play an impor-
tant role in travel behaviour in many perspectives, including
mode use, distances traveled, travel frequency and etc. [15].
According to the definition given by Lu et al. (1999) [24],
individual socio-demographics characteristics includes age,
gender, car license status and employment status. These char-
acteristics pose a direct impact on travel behaviour and also
impact travel behaviour indirectly via their impact on ac-
tivity participation such as subsistence, maintenance, recre-
ation and other. In this case, the relevant characteristics to
be considered includes age, gender, driving license status
and employment status.

• Household characteristics:
Household information is also a very important factor on
travel behaviour. A latest literature review conducted by Hu

et al. (2023) indicates that there is a relationship between
household information and individual activity and travel
behaviors [18]. Other research also point out the similar find-
ings [15, 24, 33]. The characteristics of household described
in these studies include the number of children, number of
workers, number of vehicles, household income, household
type and location. These characteristics will be involved for
analysis in this study.

• Trip characteristics:
To comprehensively capture the characteristics of the trips,
three categories are included: geospatial context, temporal
patterns and engaged activities during the trips. Geospa-
tial context refers to the origin and destination of the trip,
stops during the trips as well as the travel distances. Tempo-
ral patterns include the type of the travel day (weekday or
weekend), departure and arrival times, stop time and travel
duration. Regarding to the engaged activities, their relevant
attributes typically include the overall trip purpose, the num-
ber of stops made during the journey and corresponding
purposes.

• Built environment:
Built environment thought to be influencing travel mode
choice have been explored in several studies [7, 10, 11, 21].
Ewing and Cervero (2010), categorized the characteristics
of the built environment that impacts travel mode choice as
density, diversity, design, destination accessibility, distance
to transit [11]. In this analysis, key built environment vari-
ables considered include urban/rural designation (URBRUR),
population size category (MSASIZE), and heavy rail availabil-
ity (RAIL), which collectively capture the fundamental built
environment characteristics and transportation infrastruc-
ture elements that shape travel opportunities and constraints
across different geographical contexts.

• Pricing factors:
Economic considerations are an important contributory fac-
tor to the travel mode choice through direct financial incen-
tives and constraints that shape travel mode decisions. The
pricing factors embedded in transportation systems, particu-
larly fuel prices and parking costs function as market signals
that directly affect the relative affordability of different travel
modes. Parking costs, considered as powerful travel demand
management tools that can substantially alter mode choice
decisions in urban environments where alternatives to pri-
vate vehicle usage exist. Several studies have explored that
the parking costs have an influence on travel mode choice
[16, 32, 35, 38]. Similarly, research have indicated the im-
pact of fuel price on travel mode choice [9, 14, 19]. In this
study, two key pricing variables are considered: regional
gasoline prices (GASPRICE), measured in cents during the
household’s travel week, and parking payment status (PARK),
which indicates whether travelers encountered monetary
costs for vehicle storage.

To summarize, the selected variables from the preliminary anal-
ysis are summarized in Table 1.
Feature importance analysis

2025-06-24 02:36. Page 3 of 1–10.
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Table 1: Summary of factors impacting travel behavior

Category Factor Variable Name Definition

Individual
socio-demographic
characteristics

Age R_AGE Respondent age
Gender R_SEX Respondent sex
Driving license status DRIVER Driver status
Employment status WORKER Employment status of respondent

Household
characteristics

Household size HHSIZE Total number of people in household
Number of vehicles HHVEHCNT Total number of vehicles in household
Household income HHFAMINC Household income
Number of drivers DRVRCNT Number of drivers in the household
Number of workers WRKCOUNT Count of workers in household
Homeownership HOMEOWN Whether home owned or rented

Trip characteristics

Trip purpose TRIPPURP General purpose of trip
Trip purpose (specific) WHYTRP1S Trip purpose summary
Travel duration TRVLCMIN Trip Duration in Minutes
Travel distance TRPMILES Calculated Trip distance converted into miles
Day type TDWKND Weekend trip
Start time STRTTIME 24 hour local start time of trip
End time ENDTIME 24 hour local end time of trip

Built environment

Urban/Rural designation URBRUR Household in urban/rural area
Population size MSASIZE Population size category of the MSA from the

five-year ACS API
Life cycle classification LIF_CYC Life Cycle classification for the household
Rail availability RAIL MSA heavy rail status for household

Pricing factors Gasoline price GASPRICE Weekly regional gasoline price, in cents, during
the week of the household’s travel day

Parking costs PARK2_PA Amount paid for parking

To identify the most impacting factors on travel mode choice
from the literature, we continue to conduct a systematic feature im-
portance analysis. Following Cherepanova et al. (2023) which com-
pares a number of feature-selection methods on tabular datasets [8],
we apply multiple feature selection methods to overcome algorithm-
specific biases and ensure robust identification of impacting factors.
The analysis involves six basic methods (Univariate Statistical Test,
Lasso, Random Forest, XGBoost, First-Layer Lasso, and Deep Lasso)
and three advanced techniques (Adaptive Group Lasso, LassoNet,
and FT-Transformer with Attention Map Importance).

The performance evaluation of our feature selection methods
revealed that XGBoost achieved the highest classification accuracy
(87.55%), followed by Univariate Statistical Test (86.46%) and First-
Layer Lasso (86.01%). By aggregating rankings across all algorithms,
we identified the top 15 most impacting factors of travel mode
choice. The results demonstrate that trip distance emerges as the
most consistently important impacting feature, followed by travel
time, age, and gender. Other significant impacting factors include
driver status, urban/rural classification, household size, household
income, vehicle ownership and trip purpose.

3.3 Natural Language Description Generation
Transforming structured data into natural language descriptions
is key step taken to adapt travel mode prediction for large lan-
guage model processing. This transformation enables the LLM to
leverage its pre-trained knowledge and contextual understanding
capabilities.

The problem can be formulated as follows:
Let 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} denote the set of features for a particu-

lar trip record, where each feature 𝑥𝑖 belongs to one of the five
categories identified in our preliminary analysis: individual socio-
demographic characteristics, household characteristics, trip charac-
teristics, built environment factors, or pricing factors. We define a
transformation function𝐷 that maps this feature vector to a natural
language description:

𝐷 : 𝑋 → 𝑇 (1)

where 𝑇 is the space of all possible natural language descrip-
tions. The function𝐷 is implemented as a template-based generator
that constructs coherent, contextually rich descriptions following a
consistent narrative structure.

Based on our feature importance analysis, we prioritize the most
influential features identified by our ensemble of feature selection
methods. For each trip record, a natural language description is
generated, which captures the relevant characteristics of both the
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traveler and the trip. These descriptions are constructed using a
consistent template that incorporated key features such as:

• Age and gender of the traveler (R_AGE, R_SEX)
• Driver and employment status (DRIVER, WORKER)
• Household characteristics (HHFAMINC, HHSIZE, HHVE-
HCNT, HOMEOWN)

• Trip distance, duration and purpose (TRPMILES, TRVLCMIN,
TRIPPURP)

• Built environment (URBRUR, RAIL, MSASIZE)
• Pricing factors (GASPRICE)

The resulting descriptions provide a comprehensive narrative
that captures the essential context of each trip while preserving the
information content of the original feature vector. This approach
allows the LLM to process transportation data in a format that
aligns with its pre-training, enabling more nuanced interpretation
of the relationships between features.

For example:
Consider a 44-year-old female who is a driver and is
employed. She is living in a household with 3 people,
and 1 vehicle, with a household income of $125,000 to
$149,999, in a home that is owned with a mortgage. She
is traveling for shopping, for a distance of 1.3 miles,
with an expected travel time of 10 minutes. She lives in
an urban area, with no access to rail transit, in an MSA
of 500,000 to 999,999, where the gas price is $4.30 per
gallon. What is the most likely transportation mode she
would choose for this trip?

3.4 LLM-Based Travel Mode Prediction
Problem formulation

Travel mode choice prediction can be formulated as a classifica-
tion problem where the objective is to predict the mode of trans-
portation𝑚 ∈ 𝑀 that a traveler will choose for a specific trip, given
a set of features 𝑋 describing personal, household, trip-specific, en-
vironmental, and economic variables that collectively shape travel
behavior patterns. Therefore, this problem is represented as follows:

𝑃 (𝑚 |𝑋 ) = 𝑓 (𝑋, 𝜃 ) (2)
where 𝑓 is a classification function with parameters 𝜃 that maps
input features to probability distributions over possible transporta-
tion modes.

We propose reformulating this problem by transforming the
structured feature vector 𝑋 into a natural language description 𝐷 ,
and then leveraging large language models to predict the travel
mode:

𝑃 (𝑚 |𝑋 ) ≈ 𝑃 (𝑚 |𝐷 (𝑋 )) (3)
where the probability of selecting travel mode𝑚 given features 𝑋
is approximated by the probability assigned by the LLM to mode
𝑚 given the natural language description 𝐷 (𝑋 ). 𝐷 is a transforma-
tion function that converts structured data into a natural language
description.
Prompting Strategy

The LLM-based travel mode prediction, where LLMs act as trans-
portation analysts/planners to predict the most likely travel mode

for an individual based on the contextual descriptions, represents
an expansion of LLMs functionality from general tasks to domain-
specific applications. The effectiveness of LLM-based travel mode
prediction depends significantly on how the task is presented to the
model. Using natural language to get desired responses from LLMs,
known as prompting, is indeed a critical and challenging design
technique in particular for domain specialization. One reason be-
hind this is that domain-specific topics are often under-represented
and involve complex concepts, terminology and relationships, mak-
ing them harder to complete domain-specific tasks effectively [22].
To address this issue, we propose a domain-enhanced prompting to
improve the effectiveness of LLMs for travel mode prediction tasks.

In detail, we incorporate standardized mode definitions inspired
by theNational Household Travel Survey indomain-enhanced prompt-
ing [5]. By conducting pre-testing via Chatbot, we find that LLMs
without domain knowledge on travel mode tend to interpret ’car’ as
a more general vehicle concept that encompasses various passenger
vehicles, while demonstrating less precise differentiation between
specialized categories such as vans, SUVs/crossovers, and pickup
trucks. Therefore, this strategy provides the model with domain-
specific knowledge that may enhance its contextual understanding
of transportation terminology.

Domain-Enhanced Prompting Example

System: You are a transportation analyst. Based on the descrip-
tion of a person and her/his trip, predict which transportation
mode they are most likely to use from these options: Car, Van,
SUV/Crossover, Pickup truck, School bus and Walk.
Car: A privately owned and/or operated licensed motorized vehicle
including cars and station wagons.
SUV/Crossover: A privately owned and/or operated vehicle that
is a hybrid of design elements from a van, a pickup truck, and a
station wagon (e.g., Chevrolet Blazer, Ford Bronco, Jeep Cherokee).
Van: A privately owned and/or operated van or minivan designed
to carry 5 to 13 passengers or to haul cargo. Pickup truck: A pri-
vately owned and/or operated motorized vehicle with an enclosed
cab and an open cargo area in the rear. Typically seats 2-6 passen-
gers.
School bus: Any bus owned, leased, or operated by a school or
school district, used to transport students to/from school or related
activities.
Walk: This category includes walking and jogging.
Respond with ONLY the transportation mode name (Car,
SUV/Crossover, Van, Pickup truck, School bus, or Walk).
User: [Natural language description of traveler and trip]

The overview of the research framework is shown in Figure 1.
Model Selection and Comparison

The task designed for LLMs in this study focuses on predicting
the most likely travel mode based on natural language descrip-
tions which includes socio-demographic and trip-related attributes
obtained from real-world survey data. To evaluate the predictive
performance of LLMs for travel mode prediction, multiple LLMs
varying in size and design architectures are selected to perform a
systematic comparison. This comparison is motivated by the need
to understand cost-effectiveness trade-offs in the adaption of LLMs
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Figure 1: Research Framework of LLM-Based Travel Mode
Prediction.

in travel mode prediction and transportation planning applications
and also to explore whether specialized reasoning capabilities in
certain models might better capture the complex decision-making
processes in travel behavior.

Our selection included the full-scale GPT-4o [27] and its variant
GPT-4o-mini which is designed for resource-efficient inference with
reduced computational costs [28], as well as o3-mini and o4-mini,
which are compact O-series reasoning models representing third
and fourth generation architectures, respectively [29, 30].

With this comparative comparison among different models, it
helps us to assess whether model size (e.g., GPT-4o vs GPT-4o mini)
correlates directly with performance of travel mode prediction tasks,
or if specialized architectures (e.g., o3 mini vs o4 mini) might offer
advantages irrespective of their parameter count. In addition, this
approach provides insights into the cost-effectiveness trade-offs
between comprehensive and compact models for applications.
Learning Paradigms

In addition to selecting and comparing the performance of dif-
ferent large language models on travel mode prediction, we inves-
tigate different learning paradigms to understand their impact on
predicting travel mode using natural language. Specifically, follow-
ing the work established by Brown et al. [6], three learning ap-
proaches, zero-shot, one shot and few-shot learning, are considered
in this study, which is categorized by the number of demonstra-
tions provided at inference time. Specifically, zero-shot learning
means prompt an LLM with no demonstration examples while
one-shot and few-shot learning involve providing one or multiple
demonstration examples, respectively.

Zero-shot learning in this study tests the inherent capabilities of
LLMs for travel mode prediction without task-specific training. This
approach leverages the pre-trained knowledge embedded within
LLMs to make predictions based solely on the contextual under-
standing of natural language descriptions. In contrast, one-shot and

few-shot learning involves providing a single and a small number
of task-specific demonstrations at inference time as conditioning
without permitting weight updates, respectively [6]. This approach
may be advantageous for travel mode prediction, where labeled
data is often scarce. In addition to one-shot learning, four more
distinct few-shot configurations, providing 2, 3, 5, and 10 examples
for the model to learn from, are selected to explore their impacts
on the predictive performance on travel mode.

4 EXPERIMENTS
4.1 Experimental Setup
We evaluate the performance of large language models (LLMs) on
the task of travel mode prediction by considering different models
learning paradigms and prompting strategies. LLMs, acting as trans-
portation analysts in this study, predict the most likely travel mode
based on structured textual descriptions of individual travelers and
their trip attributes. These descriptions are generated using features
identified by importance analysis of the National Household Travel
Survey (NHTS) dataset. In addition, to ensure practical relevance
and computational efficiency, we focus on six (out of 20) travel
modes: Car, Van, SUV/Crossover, Pickup truck, School bus, and
Walk in this study which account for over 90% of recorded trips and
coverage typical travel patterns. The experiments are implemented
using Python and the OpenAI API.

4.2 Baselines
To evaluate our proposed LLM-based approach, we select high-
performing statistical classifiers based on the extensive comparative
analysis conducted by [37]. Their study evaluated 86 classifiers from
14 model families on the National Household Travel Survey (NHTS)
2017 dataset—structurally analogous to our dataset and identified
LogitBoost and Gradient Boosting consistently superior performers
across various sample sizes and datasets. We compare our proposed
LLM-based approach with these two predictive models.

4.3 Implementation Details
We evaluate model performance across multiple data scales using
subsets of 100, 200, 500, and 1,000 samples to assess scalability and
robustness. For each sample size, we implement stratified train-test
splits with an 8:2 ratio in both LogitBoost and Gradient Boosing
methods. Moreover, to guarantee fair comparison between these
two methods and LLM-based approaches, we use identical test sets
across all methodologies within each sample size configuration.
Regarding the details of LLMs’ implementation, the temperature
is set to 0 for models that support it (GPT-4o, GPT-4o-mini) to
obtain deterministic outputs. Turning on to the details of few-shot
learning approach, we examine few-shot learning effectiveness
using 1, 2, 3, 5, and 10 demonstration examples. The selection of
few-shot examples follows a stratified sampling strategy designed
to maximize representational diversity and mode coverage.

4.4 Evaluation Metrics
We use the following commonly used metrics to evaluate the pre-
dictive performance of LLM-based approach compared to the high-
performing statistical approaches mentioned in the last section.
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• Accuracy: Overall percentage of correctly predicted modes
• F1-macro: Unweighted average of F1 scores for each class,
measuring balanced performance across imbalanced labels.

• F1-weighted: F1 scores weighted by class support (the num-
ber of true instances for each class).

Performance assessment employs multiple metrics. Let𝑦𝑖 denote
the predicted mode for sample 𝑖:

Accuracy =
1

|Dtest |
∑︁

𝑖∈Dtest

1[𝑦𝑖 = 𝑦𝑖 ] (4)

F1macro =
1
|𝑚 |

∑︁
𝑚∈𝑀

F1𝑚 (5)

F1weighted =
∑︁
𝑚∈𝑀

|𝑀𝑚 |
|Dtest | F1𝑚 (6)

where𝑀 is the set of travel modes and F1𝑚 is the F1-score for
mode𝑚.
Accuracy

The primary evaluation metric in this study is accuracy, the
overall proportion of correct predictions compared to the actual
travel mode from the dataset. Table 2 summarizes the compara-
tive results for zero-shot learning approaches with and without
domain-enhanced prompting strategies. The results demonstrate
that LLMs in zero-shot learning setting show promising perfor-
mance compared to traditional methods like Gradient Boosting and
LogitBoost across varying sample sizes. At the smallest sample size,
LogitBoost achieves exceptional performance (65.00% accuracy at
n=100), significantly outperforming all LLMs. However, this ad-
vantage diminishes with the sample size increasing. The proposed
LLM-based approach on travel mode prediction outperforms base-
line models for larger samples. Regarding to the comparison with
and without domain knowledge given, it is interesting to find that
GPT-4o-mini which has a substantially smaller model size com-
pared to the full GPT-4o model, achieves comparable accuracy to
the full-scale model at the smallest sample size. It suggests that cost-
efficient models can perform competitively with domain-enhanced
strategy.

Interestingly, we also find that the performance advantage of
domain-enhanced models over their non-domain counterparts be-
comes more pronounced as sample size increases, suggesting that
domain knowledge becomes more valuable with more data. In addi-
tion, GPT-4o performs best at smaller sample sizes among zero-shot
models, while o4-mini dominates at larger scales, indicating differ-
ent models may be optimal for different tasks.

In summary, the results suggests that while baseline models
have the advantage of leveraging limited data effectively, LLMs re-
quire substantial evaluation samples to demonstrate their predictive
capabilities.

Turning on to few-shot learning, we focus on the best-performing
few-shot learning model for each sample size and compare its ac-
curacy with the corresponding zero-shot accuracy to evaluate the
improvement. The results are summarized in Table 3. From the ta-
ble, it demonstrates few-shot learning approach has the potential to
improve prediction accuracy performance over zero-shot learning
for LLMs. Typically requiring 2-5 examples, few-shot learning can
help improve accuracy. For example, with a sample size of 100, the

accuracy of the o4-mini model increases from 25.00% to 50.00%.
Similar trends are observed with the o3-mini model, where accu-
racies improve when provided with 3 and 5 examples for sample
sizes of 200 and 500, respectively. At the same time, we also find
that few-shot learning does not universally outperform zero-shot
approaches as expected. With a sample size of 1,000, the o4-mini
model with 2 examples achieves an accuracy of 51.50% which is
slightly lower than its zero-shot performance of 55.5%. This perfor-
mance align with the findings in other literature [6, 41]. Zhao et al.
(2020) [41] pointed out that the performance of few-shot learning
seemingly minor methodological decisions such as prompt format-
ting, example selection, and ordering can pose a significant impact
on performance, with accuracy ranging from near-chance levels to
state-of-the-art performance. This area can be further investigated
in the future research.

We take o3-mini as an example to provide detailed analysis
and compare the performance for zero-shot learning and few-shot
learning, as shown in Table 4.

The results demonstrate that few-shot learning consistently im-
proves o3-mini’s performance across all sample sizes. At smaller
sample sizes (n=100), few-shot learning improves prediction ac-
curacy from 30.0% to 45.0% (+15.0 percentage points) with just 2
given examples. Moreover, the improvement from few-shot learn-
ing exhibits an inverse relationship with sample size. The optimal
number of examples varies across sample sizes, with no clear mono-
tonic relationship. Small sample sizes (n=100, n=200) benefit from
multiple examples (2-5), while larger samples achieve optimal per-
formance with fewer examples (1-3). This pattern suggests that
as the evaluation set grows larger, the model may already have
sufficient context to perform well, requiring minimal additional
guidance from few-shot examples.

In summary, these findings reveal a complex trade-off between
model complexity, data requirements, and performance consistency,
with important implications for practical deployment in transporta-
tion planning applications where data availability and prediction
accuracy requirements vary significantly.
F1 Scores

Table 5 presents the comparative results of F1-macro and F1-
weighted scores varying by LLM architectures (GPT-4o, GPT-4o-
mini, o3-mini, and o4-mini) and learning paradigms (zero-shot and
few-shot) across different sample sizes. From the table, it is obvi-
ous that o4-mini demonstrates superior F1-weighted performance
(0.5101) of zero-shot learning approach with a sample size of 1,000,
underscoring its effectiveness in prioritizing majority travel modes,
while its F1-macro score, 0.4826 in the same sample size under 3-
shot learning approach indicates robust handling of minority travel
modes, suggesting it a versatile model for balanced performance.

In contrast, gpt-4o performs stable but less divergent F1-macro
and F1-weighted scores, peaking at 0.4481 and 0.4099 respectively
under 5-shot learning approach with a sample size 1,000. This sug-
gests gpt-4o model consistent but less specialized behavior across
travel mode distributions. Furthermore, the significant improve-
ment in gpt-4o-mini’s F1-macro (from 0.2143 to 0.3985 in the case
of 1,000 sample size) under few-shot learning highlights the effi-
cacy of example-based learning for enhancing minority travel mode
prediction, though its modest F1-weighted gains indicate limited
impact on majority travel modes. It is also worthy noting that in
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Table 2: Accuracy of Models under Zero-shot learning across Sample Sizes

Sample Size Gradient Boosting LogitBoost
Best Zero-shot Learning Models

Without Domain Domain-enhanced
Accuracy Best Model Accuracy Best Model

100 0.4500 0.6500 0.4000 GPT-4o 0.4000 GPT-4o-mini
200 0.4750 0.4750 0.5000 GPT-4o 0.5500 o4-mini
500 0.5300 0.4500 0.5400 o4-mini 0.5300 o4-mini
1,000 0.4800 0.4800 0.5250 o4-mini 0.5550 o4-mini

Table 3: Accuracy of Models under Few-shot Learning across Sample Sizes

Sample Size
Best Few-shot Learning Models

Few-shot Best Model Zero-shot ImprovementAccuracy (Examples) Accuracy
100 0.5000 o4-mini (3) 0.2500 +0.2500 (+100.0%)
200 0.5000 o3-mini (5) 0.3750 +0.1250 (+33.3%)
500 0.5000 o3-mini (3) 0.4100 +0.0900 (+18.0%)
1,000 0.5150 o4-mini (2) 0.5550 -0.0400 (-7.2%)

Table 4: Zero-shot vs Few-shot Performance for o3-mini across Sample Sizes

Sample Size Zero-shot Few-shot No. of Improvement
Accuracy Accuracy Examples (%)

100 0.3000 0.4500 2 +15.0
200 0.3750 0.5000 5 +12.5
500 0.4100 0.5000 3 +9.0
1,000 0.4350 0.4750 1 +4.0

the case with larger sample sizes, the convergence of F1-macro
and F1-weighted scores across most models reflects improved class
balance handling, yet o4-mini’s persistent divergence suggests a
unique architectural bias toward majority travel mode optimization.
In summary, these findings highlight the importance of aligning
model selection and shot configuration with specific evaluation
metrics, thereby providing valuable guidance and suggestions for
applying LLMs in knowledge discovery tasks in the future where
class imbalance is a critical factor.

5 CONCLUSION
This study proposes a novel framework using the contextual reason-
ing capabilities of large language models (LLMs) to predict travel
mode choice from natural language descriptions of travel survey
data. In this study, we transform structured features into richly de-
scriptive textual inputs including sociodemographic, trip, and built
environment and economic contexts, bridging the gap between
traditional quantitative modeling and emerging language-based AI
techniques. Furthermore, we introduce domain-enhanced prompt-
ing strategies and learning paradigms (zero-shot and few-shot learn-
ing) to enhance LLMs’ understanding capabilities for travel mode
prediction. By conducting extensive experiments across varying
sample sizes using the real-world dataset,the results demonstrate
that this LLM-based approach has the potential to yield competitive
performance against established baseline models, even in low-data
regimes through the application of proposed domain-enhanced

prompting strategy and few-shot learning. In addition, to evaluate
the performance of the proposed LLM-based approach comprehen-
sively, three commonly used metrics (Accuracy, F1-macro score
and F1-weighted) are selected in this study. These findings high-
light the dual potential of large language models in transportation
research: not only as powerful predictive tools but also as inter-
pretable frameworks that can provide insights into the multifaceted
nature of travel decisions, which also offers significant advantages
for transportation planning practitioners and policymakers who
require explainable model outputs for decision-making processes.

This research opens several promising avenues for future investi-
gation. Advanced prompt engineering techniques, such as chain-of-
thought reasoning, could further improve model performance and
interpretability. Moreover, domain-specific pretraining of language
models on transportation field could yield specialized models better
attuned to the nuances of travel behavior modeling.
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