
Locality Sensitive Teaching

Zhaozhuo Xu
Rice University
zx22@rice.edu

Beidi Chen
Stanford University

beidic@stanford.edu

Chaojian Li
Rice University

chaojian.li@rice.edu

Weiyang Liu
University of Cambridge and MPI-IS Tübingen

wl396@cam.ac.uk

Le Song
Biomap and MBZUAI
dasongle@gmail.com

Yingyan Lin
Rice University

yingyan.lin@rice.edu

Anshumali Shrivastava
Rice University and ThirdAI Corp.

anshumali@rice.edu

Abstract

The emergence of the Internet-of-Things (IoT) sheds light on applying the ma-
chine teaching (MT) algorithms for online personalized education on home de-
vices. This direction becomes more promising during the COVID-19 pandemic
when in-person education becomes infeasible. However, as one of the most influ-
ential and practical MT paradigms, iterative machine teaching (IMT) is prohibited
on IoT devices due to its inefficient and unscalable algorithms. IMT is a paradigm
where a teacher feeds examples iteratively and intelligently based on the learner’s
status. In each iteration, current IMT algorithms greedily traverse the whole train-
ing set to find an example for the learner, which is computationally expensive in
practice. We propose a novel teaching framework, Locality Sensitive Teaching
(LST), based on locality sensitive sampling, to overcome these challenges. LST
has provable near-constant time complexity, which is exponentially better than
the existing baseline. With at most 425.12× speedups and 99.76% energy savings
over IMT, LST is the first algorithm that enables energy and time efficient machine
teaching on IoT devices. Owing to LST’s substantial efficiency and scalability, it
is readily applicable in real-world education scenarios.

1 Introduction

During the COVID-19 pandemic, there is an increasing demand for learning at home. Computer-
based personalized education (CBPE) [1, 2, 3] on Internet-of-Things (IoT) devices become essential
as it improves the accessibility of students to the educational resources and reduces the potential
privacy risks. Due to the popularity of Coursera, Duolingo, and EdX, online on-device educa-
tion has become increasingly more important nowadays. To better understand and improve the
CBPE approaches in this context, we consider machine teaching (MT) [4] as a simplified yet helpful
paradigm. Specifically, MT defines the problem where a machine teacher constructs a minimal set of
examples that allows a student to learn a target concept repeatedly. However, MT on the IoT device
is still prohibitive for two primary reasons: (1) MT technique does not allow real-time interaction
between teachers and students. It is designed to work over a static set and cannot incorporate real-
time student feedback, (2) MT can not support on-device training due to the expensive cost spent in
constructing this minimal teaching set.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



00
00
00
…

11

00
01
10
…

11

ℎ" ℎ# Buckets
…
…

Empty
…
…

LSH Sampler

Provide Information and Feedbacks

0 0 … 0 1

00

00

00
…

11

…

…
…

…

…

00
01

10
…

11

ℎ"" ℎ#"… Buckets

…

…

Empty

…

…

Query

Feed Samples

TeacherDataset Student

Select Samples

1. Data Preprocessing 2. Iterative Teaching

Figure 1: A brief overview of the proposed LST algorithm. There are two stages: 1) during data preprocessing,
the indices of data samples are stored in LSH hash tables. 2) during the teaching stage, in each iteration, the
machine teacher uses the student’s information to query an example from hash tables. Then the machine teacher
feeds the example to the student.

As a result, a more practical paradigm – iterative machine teaching (IMT) [5, 6] has been proposed to
achieve state-of-the-art teaching performance. In IMT, the teacher interacts with the student in every
iteration and aims to teach the target concept with a minimum number of iterations. Although IMT
reduces both teaching set size and teaching iterations, it is still not efficient enough. The time and
energy required by IMT are prohibitively expensive on IoT devices. There are two primary reasons:
(1) IMT is not designed for real-time teaching. Current IMT uses a deterministic greedy algorithm,
which traverses the entire dataset to find the optimal teaching example during each iteration. This
linear time scan costs excessive time in real-world datasets, preventing more frequent interactions
between machine teachers and students. (2) IMT has poor energy efficiency because the greedy scan
requires scoring and ranking on the training examples. The energy budget of IoT devices such as
integrated CPU-GPU System-on-Chips (SoCs) cannot afford this expensive energy consumption in
real-world teaching. Clearly, there is a gap between IMT and its deployment on IoT devices.

Contemporary IMT literature focuses on developing and analyzing theories, models, or paradigms
in teaching. Few studies are addressing the trade-offs between teachability and efficiency. Although
some IMT algorithms manage their potential applications in crowd-sourcing [7, 8, 9], personal edu-
cation [4], or online data poison [10, 11], they do not consider the edge computing and IoT settings
and ignore the substantial potential impact behind it.

Our work proposes a time and energy-efficient IMT algorithm, namely Locality Sensitive Teaching
(LST), that enables machine teaching on IoT devices. A real-life teaching observation inspires LST:
a human teacher teaches a target concept to the student efficiently based on his or her knowledge
in mind rather than a brutal-force scan over all the course materials. Similarly, an efficient IMT
algorithm should provide optimal examples by looking up from a data structure rather than traversing
the entire example set. Our LST algorithm effectively pre-indexes the teaching examples in hash
tables. Then, given the student’s current state at each iteration, we regard it as a query and generate
examples through efficient sampling using the hash tables [12]. Moreover, we significantly improve
the time and energy efficiency by reducing the expensive linear scan into a lightweight lookup in
hash tables. As a result, LST could be compatible with edge computing on IoT devices.

Our proposal, LST, comes with three key questions: (1) how to reformulate the IMT problem as a
sampling problem that involves efficient hash table data structures? (2) how to maintain the identical
teachability of IMT when utilizing the efficient hash table structures? (3) how to provide an efficient
LST implementation on IoT devices that reduce energy and time consumption?

At a high level, we tackle these challenges as follows:

• We reformulate IMT as an adaptive inner product sampling problem. We partition the teaching
materials into two parts: (1) query: current state of student and the optimal model possessed by
the machine teacher, (2) data: teaching examples denoted as feature-label pairs. We apply an
asymmetric transformation that projects both parts as vectors. Then, we argue that the original
IMT formula can be formulated as an adaptive inner product sampling. Given the query vector,
the task is to sample data vectors with large inner products. Therefore, locality sensitive sampling
can be introduced for efficient teaching examples generation.

2



• We demonstrate, both theoretically and empirically, that LST preserves the teachability of IMT.
Theoretically, we prove the LST can achieve exponential teachability with high probability. Em-
pirically, the experiments on real-world teaching indicate that LST matches or even exceed the
teachability of original IMT.

• We provide a novel LST system design on integrated CPU-GPU SoC platforms that performs
time and energy-efficient teaching in real-world settings. We re-partition the locality sensitive
sampling procedure into two parts: GPU-friendly random projection and CPU-friendly hash table
lookups. Then, we exploit the benefits of fast matrix multiplications on GPU and efficient hash
table lookups implemented on CPUs. Therefore, our LST system takes full advantage of the
memory-constrained CPU-GPU SoCs.

Through extensive experiments in real-world teaching scenarios, we demonstrate that LST per-
forms exponential teachability that matches or even exceeds IMT while achieving at most 425.12×
speedups and 99.76% energy savings on IoT devices. On server-based evaluation, LST achieves
more than 2000× speedups over IMT.

2 Related Work and Preliminaries

2.1 Iterative Machine Teaching

In machine teaching, a machine teacher obtains a minimal training set for a student to learn a con-
cept. [4, 13] introduce a general teaching framework and build its connections to curriculum learn-
ing [14]. [15] studies the machine teaching for Bayesian learners in exponential family and provides
the teaching example by solving an optimization problem. [16] gives the linear learners’ teaching
dimension. Machine teaching has been found useful in cybersecurity [17], human-computer inter-
action [18], and human education [19]. [20, 6, 21] study the teaching scenario where the teacher
aims to teach multiple concepts to a forgetful learner. [22, 6] assume that the learner is black-box
and study how the teaching should be performed. [23, 6] discuss how the teacher can teach multiple
different learners. [24, 25, 26] connect the machine teaching problem with inverse reinforcement
learning by studying an inverse reinforcement learner. [27, 2] consider the machine teaching from
an interpretable perspective. [28, 29] discuss the teaching model with a version space learner. [3]
provides machine teaching extensions in human-in-the-loop settings. [30, 31, 32] study the machine
teaching in theory.

Previous machine teaching works focus on the improvement of teachability. [5] proposes the iter-
ative teaching paradigm. In this paradigm, an omniscient teacher model knows almost everything
about the student. Then, the omniscient teacher provides training examples based on the student’s
status. [33] further generalizes this teaching scenario and introduces an optimal control approach
to address sequential machine teaching. Built upon the same framework as [5], [6] looks into the
IMT problem when the learner becomes black-box. [34] proposes to perform iterative teaching by
label synthesis while still preserving the provable teaching speedup. In our work, we address the
scalability bottleneck of IMT by leveraging the power of locality sensitive hashing.

This paper follows the same teaching setting as [5]. Without loss of generality, we mainly discuss
the omniscient teaching model where the teacher knows the learner’s full information. We apply our
LST to speed up the omniscient teacher. We note that it is straightforward to improve the teaching
quality and efficiency of more advanced teaching models using our proposed method.

2.2 Hashing-based Sampling

This section briefly describes the recent development of efficient sampling and estimation via local-
ity sensitive hashing (LSH) [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The intuition of LSH is
to hash similar items into the a bucket of a hash table via functions such as random projection. For
details of LSH, we refer to Appendix A.

We denote p as the collision probability of LSH function. Therefore, given a query, an item will
be retrieved with probability p. The precise form of p is determined by the LSH function family.
This sampling view of LSH has been used in a wide range of applications, such as neural networks
training [47, 48], kernel density estimation [49], outlier detection [50], and optimization [51].

The success of LSH in efficient inner product search sheds light on its application in adaptive sam-
pling. More specifically, in this paper, given a collection C of input and a query Q, candidates S are

3



(a) Vanilla IMT (b) Our Proposed LST

Figure 2: A motivating example on COVID-19 Teaching via CT images. The first 12 examples selected by
IMT and LST examples are presented on (a) and (b). We mark each COVID image with a green circle and each
regular image by the red cross. We observe that our proposed LST selects diverse, confusing images while IMT
keeps selecting the same two images. Details are shown in Appendix D.

drawn from C, in which each xi ∈ C is sampled with pi ≤ 1, using LSH algorithm with special de-
signed hashing [52]. Note here pi is a monotonically increasing function of Q · xi. Therefore, once
we pay a linear preprocessing cost that maps C into hash tables, the adaptive sampling for query Q
could be done via a few hash lookups. The LSH sampler component in Figure 1 demonstrates the
sampling process using LSH. Similar to what has been mentioned in [51], the sampling scheme is
not a valid distribution, i.e.,

∑
xi∈C pi 6= 1. Given a query, the probability of sampling xi is not

independent of the probability of sampling xj (i 6= j). However, we can still use it for unbiased
estimation. pi is a monotonic function of Q · xi because pi = (1 − (1 − g(Q · xi))K)L, where
g(Q · xi) is the collision probability.

3 Locality Sensitive Teaching

This section first shows that finding a teaching example in the current IMT can be reformulated as an
adaptive inner product sampling (AIPS) problem. Then we propose our LST algorithm to effectively
and efficiently perform this adaptive sampling via Locality Sensitive Sampling (LSS).

3.1 A Motivating Example

To showcase the significance of LST, we conduct an experiment on teaching students to recognize
COVID-19 from CT images. We apply both LST and IMT on a binary-class CT image dataset [53]
(labeled as normal or COVID-19, details are in Appendix D). After these 12 examples, LST achieves
less loss than IMT. Figure 2 shows the comparison of teaching examples. One can observe that LST’s
teaching examples yield more diversity because of the randomness it introduces. In contrast, IMT
simply repeats two examples without giving a broader view of the other teaching set examples. This
phenomenon suggests LST’s potential to achieve more intuitively plausible teaching.

3.2 Reformulating IMT as Adaptive Sampling

Following a similar notation from [5], we denoteN as the number of samples, and S = {(xi, yi)|0 <
i ≤ N} as the input samples along with their labels . Then, we construct a student model with loss
function ` and learning rate η. Given the model, we denote wt as the parameter of the student model
at iteration t. w∗ is the optimal parameter obtained by the omniscient teacher. In each iteration, IMT
selects an example by performing the following greedy algorithm:

Problem 1 (Greedy Teaching Algorithm (GTA) ). Given a large set S, the optimal parameter w∗
and model parameter wt, we want to solve the following optimization problem:

xt, yt = arg min
(x,y)∈S

η2 ‖∇l‖22 − 2η
〈
wt − w∗,∇l

〉
, (1)

where we have∇l = ∂`(〈wt,x〉,y)
∂wt

.

This deterministic greedy algorithm is usually sub-optimal. For illustration, we present a toy ex-
ample. We random sample 4 points from the synthetic dataset used by [5] and Section E. The data
visualization is shown in Figure 3(a). Given the w∗ generated in [5], we perform logistic regression
using IMT with GTA for 5 steps. We also perform a brutal-force scan over all possible choices in

4



each iteration to find the optimal path in the first 5 steps. Train loss versus iterations is plotted in
Figure 3(b). All methods are rerun 10 times. We observe that given the optimal path ”AAAAA”,
GTA always chooses ”CCCCC”.

To tackle the issue, we reformulate Problem 1 to Problem 2 via transformation functions f, g. We
take linear regression and logistic regression classification as examples and derive corresponding
f, g (shown in Appendix B). For other losses, we can derive f, g similarly when they are locally
linearized. AIPS introduces randomness to help escape from local optima. As a result, AIPS per-
forms close to the optimal path on average. Here the parameter c is determined by the LSH. In
toy example, AIPS chooses among ”AAAAA”, ”AAAAC” and ”AACAA”, which are near-optimal
path. Therefore, the loss of AIPS in each iteration outperforms GTA in Figure 3(b).

Problem 2 (Adaptive Inner Product Sampling (AIPS)). Given a large set S and a query point
q = g(w∗, wt), and 0 < c < 1, we aim to sample an example (x, y) ⊂ S that for any (x′, y′) ∈ S,
f(x, y)>g(w∗, wt) satisfies:

f(x, y)>g(w∗, wt) ≥ c
(
f(x′, y′)>g(w∗, wt)

)
. (2)

where f and g are transformation functions with the same dimension.

3.3 Locality Sensitive Sampling as the Key Ingredient

Our algorithm uses LSS as an efficient sampler for Problem 2. Figure 1 shows the complete work-
flow of the proposed LST. Note that wt changes in every iteration, and for every iteration, O(N)
computation is required to solve Problem 1. This time complexity is prohibitive in large-scale teach-
ing problems. Therefore, we propose an efficient algorithm to perform IMT by sampling the trans-
formed data vectors that produce large inner products f(x, y)>g(w∗, wt) at the cost of O(1).

-0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

y

Data Visualization

A

B
C

D

(a)

0 1 2 3 4 5

Iteration

0.65

0.66

0.67

0.68

0.69

0.7

T
ra

in
 l
o

s
s

Train loss versus iteration

GTA

AIPS

Optimal

(b)

Figure 3: A toy example. (a) visualization of data from
2 classes, red means 0, and blue is 1. (b) Performance
after 5 iterations of example path chosen by (1) GTA,
(2) AIPS, (3) Optimal.

Our algorithm guarantees to find an example for
the student model that produces the maximum
inner product of f(x, y)>g(w∗, wt) with high
probability. The LSS process is designed to
sample from a weighted distribution. The prob-
ability distribution function in this distribution
is a monotonic function of the resulting inner
product. We argue that such adaptive sampling
should perform much better than random sam-
pling. It is because the probability of selecting
the correct sample is 1

N for random sampling.
On the other hand, for adaptive sampling, this
probability is much larger than 1

N , because by
definition, the probability is monotonic to the
value of the inner product.

Moreover, for any monotonic function, the sampling probability distribution changes according to
the updates on w. Due to monotonicity, the highest probability of choosing the sample which pro-
duces the maximum inner product in each iteration is always the highest. The key insight here is
that there are two qualities in the inner product, f(x, y) and g(w∗, wt). With successive iteration,
g(w∗, wt) will change while f(x, y) is always fixed. Therefore, we only need to perform one-time
pre-processing to obtain f(x, y) from all x, y pairs in S and put f(x, y) into the LSH tables. Then
we can use g(w∗, wt) as the query for efficient LSS. Then in the following iterations, the hash table
data structure remains the same while the query changes to g(w∗, wt+1). Therefore, a few hash
table lookups are usually sufficient to perform the sampling. The guarantee of the query time is
theoretically analyzed in section 4. The detailed sampling process is presented in Algorithm 2. The
overall LST algorithm is put in Algorithm 1. In conclusion, after we pay a one-time pre-processing
effort of building the hash tables, we need a few or even one lookup in each iteration to obtain a
high-quality teaching example, which is far better than a random example and may outperform GTA
example.

There are few technical subtleties due to the square of the gradient term. We present it in Equation 1.
In Appendix B, we derive the full terms of f(x, y) and g(w∗, wt) which is similar to a quadratic
kernel. Both f and g are the corresponding feature expansion transformation. To increase the

5



efficiency of LST, we apply asymmetric transforms (details also in Appendix B) to deal with the
quadratic terms and demonstrate its validated performance in practice (see experiments in section 6).

Algorithm 1: Locality Sensitive Teaching
(LST)
Result: Model w
Input: D = {x, y}, w∗, wt, η;
π ←− permute(1, L);
for i in π do

h1...hL ←−
H1(f(xi, yi))...HL(f(xi, yi));

insert i (id) in L hash tables;
end
l←− 0;
while not converged do

j ←− LSS(f(w∗, wt)) (Algorithm 2) ;
w ←− w − η(∇L(xj , yj))

end
return w

Algorithm 2: Locality Sensitive Sampling
(LSS)
Result: Sample id
Input: Query q;
l←− 0;
π ←− permute(1, L);
for i in π do

compute H(q) for hash table i;
if Bucket B for H(q) is not Empty then

S ←− elements in in B;
id←− random(S);

else
l←− l + 1;

end
end
return id

4 Theoretical Insights and Discussions

As shown in section 3.2, we reformulate IMT as an adaptive inner product sampling (AIPS) and
provide LST. Here we provide comparison between LST and the current IMT. As shown in Appendix
B, GTA used in IMT can be regarded as argmaxi g(w

∗, w)>f(xi, yi), which is an exact maximum
inner product search (MIPS) problem. [5, 6] only show improvements over SGD, suggesting that
GTA is a local optimal solution.

Our AIPS algorithm introduces randomness to GTA. If both ‖f(xi, yi)‖ and ‖g(w∗, w)‖ are as-
sumed to be the same constant, then from [52], we see GTA and nearest neighbor search (NNS)
problem are equivalent, formally,

argmax
i
g(w∗, w)>f(xi, yi) ≈ argmin

i
‖g(w∗, w)− f(xi, yi)‖

Instead of doing exact MIPS, AIPS random samples a c − approximate nearest neighbor defined
above. The efficiency of AIPS is directly quantified by ρ = log p1

log p2
< 1, where p1, p2 are defined in

Section 2.2. The space complexity grows as O(n1+ρ), while the query time grows as O(nρ log n),
where n is the size of the dataset. Thus, smaller ρ indicates better theoretical performance.
Theorem 1. With a data-structure using functions from (S0, cS0, p1, p2)-sensitive LSH familyH, it
takes query time O(nρ log n) and space O(n1+ρ) to solve AIPS, where ρ = log p1

log p2
.

Theorem 1 shows the time and space complexity for AIPS. In section F, we provide an ablation study
of efficiency and accuracy trade-off of our algorithm. Furthermore, asymmetric transformations can
be used in accelerating AIPS. A similar trade-off with proofs is shown in [52].
Theorem 2 (Exponential Teachability of LST). Following the theoretical setting in the synthesis-
based teaching [5], the teacher is assumed to be able to provide any examples from

X = {x ∈ Rd, ‖x‖ ≤ R},
Y = {−1, 1} (Classification) or R (Regression)

Let η 6= 0 denote the fixed learning rate of the student. Let `(·, ·) denote the loss function. Moreover,
`(·, ·) has the following propriety: for any w ∈ Rd, there exists a γ with γ 6= 0 and ‖γ‖ ≤ R

‖w−w∗‖
that, if x̂ = γ(w − w∗) and ŷ ∈ Y , we have

0 < γ∇〈w,x̂〉`(〈w, x̂〉, ŷ) ≤
1

η
. (3)

Suppose for a (S0, cS0, p1, p2)-sensitive hashing function family H where S0=
maxi f(x̂, ŷ)

>g(w∗, wi) and
x̂ = γ

(
wt − w∗

)
and ŷ ∈ Y, (4)

6



then LST can achieve exponential teachability with probability at least p1 in a single iteration.

Theorem 2 shows the condition and probability of LST to achieve exponential teachability in each
iteration. There is a probability p1 to perfectly imitate the omniscient teacher. More importantly, it
introduces some randomness into the teaching algorithm and therefore makes the teaching examples
more diverse and plausible for humans. Note that, all Lipschitz smooth and strongly convex loss
functions can satisfy Equation 3. Using Theorem 2, we can easily extend LST’s exponential teacha-
bility to the other teaching scenarios such as combination-based teaching [5], (rescaled) pool-based
teaching [5] and black-box teaching [6]. Detailed proofs are shown in Appendix C.

Time Complexity Analysis: Theorem 1 and 2 provide the analysis for the LSS algorithm to achieve
the exponential teachability with provably sub-linear time complexity. In practice, we need to pay
one-time pre-processing timeO(NKL) to build the hash tables, whereN is the number of samples,
K is the number of hash functions in each hash table, and L is the number of hash tables. During
inference, we usually only use a few lookups (typically just one), i.e., O(1) complexity, in each
iteration to get a high-quality teaching example. We also conduct an empirical experiment to show
the dedicated trade-off between the accuracy and efficiency using differentK andL. Therefore, LST
reduces the time complexity for each teaching iteration from O(N) to O(1) by hash table lookups.

5 Locality Sensitive Teaching on Integrated CPU-GPU SoC

In this section, we present the LST system implemented on an integrated CPU-GPU SoC platform.
In recent machine learning based IoT applications such as autonomous driving, smart home, and
intelligent robots, devices with integrated CPU-GPU architecture (e.g., NVIDIA’s Jetson [54] series)
is gaining increasing preference. The smart co-optimization[55, 56] of machine learning algorithms
on CPU and GPU resources determines their overall performance on IoT deployment. In this work,
our system design is based on two observations: (1) The CPU resources could be more utilized on
the integrated CPU-GPU SoC. For instance, a dual-core NVIDIA Denver 2 64-bit CPU and a quad-
core ARM Cortex-A57 are equipped on NVIDIA TX2 [57] SoC. Vision-based machine learning
applications such as object detection [55] do not regard on-chip CPU as a computation resource.
In our problem, if we can migrate some of the computation to those powerful CPUs, the overall
efficiency can be improved. (2) Hashing is cheap on CPU. Most GPUs suffer memory constraints.
Although GPU-based LSH hash tables are 1.5x faster over CPU [58] in nearest neighbor search, it
stores the hash table entirely on GPU memory. As a result, the availability of GPU for other machine
learning operations is limited. To tackle the issue, hybrid CPU-GPU LSH systems [58, 59] become
powerful in both academics and industry.

In our LST systems on integrated CPU-GPU SoC, we implement LSH by separating the random
projection and hash table lookups into GPU and CPU. We first generate hash codes of data vectors
by GPU-based random matrix multiplication via CuPy [60] and compiled CUDA kernels. Then, we
insert the hash codes to hash tables built on the CPU. The query vector is transformed into hash codes
in the query phase using the same random matrix in GPU. Then, the query hash codes are sent to the
CPU and perform hash table lookups. We provide Cython wrapping for the implementation to make
it PyTorch friendly. We believe this implementation would be more beneficial for the community as
it can be easily plugged into any deep learning model.

6 Experiments

In this section, we experiment the effectiveness and efficiency of LST in various scenarios. We first
perform the algorithmic level evaluation of LST on different datasets. There are three questions that
we would like to answer: (1) does the LST performs better or the same compared to the current IMT
in teaching the learner model towards faster convergence in iteration-wise? (2) compared to the IMT,
does the LST algorithm reduce the computation time when achieving the same performance? (3)
is the proposed LST algorithm scalable in the dataset that the IMT is almost infeasible in practice?
Next, we conduct experiments to demonstrate the scalability of LST on IoT devices. There are two
questions that we would like to answer: (1) does the LST’s teachability robust to IoT devices? (2)
compared to IMT, is the LST energy efficient on IoT devices? Note that we present the results of
regression in this section. For classification results, please refer to Appendix E.

7



0 500 1000 1500 2000

Iteration

0

20

40

60

80

100

120

T
ra

in
 l
o
s
s

Train loss versus iteration

Stochastic SGD

LST

IMT

(a) abalone train

0 500 1000 1500 2000

Iteration

0

20

40

60

80

100

120

T
e
s
t 
lo

s
s

Test loss versus iteration

(b) abalone test

0 500 1000 1500 2000 2500 3000

Iteration

0

0.1

0.2

0.3

0.4

T
ra

in
 l
o
s
s

Train loss versus iteration

Stochastic SGD

LST

IMT

(c) space ga train

0 500 1000 1500 2000 2500 3000

Iteration

0

0.1

0.2

0.3

0.4

T
e
s
t 
lo

s
s

Test loss versus iteration

(d) space ga test

0 100 200 300 400

Iteration

0

0.2

0.4

0.6

0.8

1

T
ra

in
 l
o
s
s

Train loss versus iteration

Stochastic SGD

LST

IMT

(e) mg train

0 100 200 300 400

Iteration

0

0.2

0.4

0.6

0.8

1

T
e
s
t 
lo

s
s

Test loss versus iteration

(f) mg test

0 50 100 150 200

Iteration

30

40

50

60

70

80

90

T
ra

in
 l
o
s
s

Train loss versus iteration

Stochastic SGD

LST

IMT

(g) slice train

0 50 100 150 200

Iteration

2.5

2.55

2.6

2.65

T
e
s
t 
lo

s
s

10
4 Test loss versus iteration

(h) slice test

Figure 4: Average train and test loss versus iteration of: abalone in (a) and (b), space ga in (c) and (d), mg
in (e) and (f), slice in (g) and (h). Results have demonstrated that both LST and the current IMT are superior
to stochastic SGD in guiding the learner model towards faster convergence. Meanwhile, LST has a similar
performance with IMT as their train and test losses descend almost the same way.

Datasets. In the experiments, we use four regression datasets to demonstrate the performance of our
LST. First, we use abalone, space ga [61] and mg dataset from LIBSVM [61] and UCI dataset [62].
The abalone dataset contains 4177 8-dimensional feature vectors. The space ga and mg datasets
contain 3107 and 1385 7-dimensional vectors, respectively. Then we test LST’s performance on
large scale regression datasets to validate its scalability. We use slice dataset from UCI dataset [62].
slice dataset contains 53500 training samples and 42800 testing samples. Each sample is a 74-
dimensional vector. We use slice only for algorithm level evaluation as it causes memory exhaustion
on IoT devices. We randomly split 30% of samples in each dataset as a test set while others are
training set. All datasets are under MIT license.

6.1 Evaluation on Locality Sensitive Teaching

In this section, we present the performance of our proposed LST algorithm in teaching regression
models towards fast convergence. The evaluation is on a server with 1 Nvidia Tesla V100 GPU and
two 20-core/40-thread processors (Intel Xeon(R) E5-2698 v4 2.20GHz). Given the four regression
datasets, we set the learner model as a linear regression model with Mean Square Error (MSE) loss
to compare the performance of LST, IMT, and stochastic SGD. Here, we consider the stochastic
SGD as a random teaching approach. In each step, the three algorithms above choose an example
from the dataset and feed it into the learner. The learner model then processes the example and
performs AdaGrad[63] to update the weights accordingly. We use early stopping on the learner
model to prevent overfitting. Details of LST for classification are in Appendix E.

Convergence. In Figure 4, we plot the train/test loss versus iteration for three teaching approaches
mentioned above on the 4 regression dataset. From the (a), (b), (c), and (d), we observe that the LST
and IMT [5] algorithm teaches the learner models that converge to optimum with much less iterations
than stochastic SGD. This performance shows that both LST and IMT leads to faster iteration-wise
convergence of learner models in train and test set. Moreover, in each step, the learners’ train and
test losses taught by LST are close or even better than IMT. In sub-figure (c) and (d), we show
that LST also approximates IMT in teaching towards faster convergence even when the gap of train
losses and test losses between IMT and stochastic SGD are small. This result demonstrates that
LST’s approximation error to the optimal path is affordable even in some settings that IMT only
has few advantages towards stochastic SGD. In sub-figure (e) and (f), we demonstrate that LST and
IMT share similar performance in large scale regression sets (e.g.slice) on average. Moreover, we
observe that about 30% LST instances outperform IMT. The effectiveness experiment answers the
first question. LST can achieve the same fast convergence effect in iteration-wise when compared

8



-2 0 2 4 6 8 10

Train time (log)

0

10

20

30

40

50

T
ra

in
 l
o

s
s

Train loss versus time

LST

IMT

(a) abalone

-2 0 2 4 6 8 10

Train time (log)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
ra

in
 l
o

s
s

Train loss versus time

(b) space ga

-4 -2 0 2 4 6

Train time (log)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

in
 l
o

s
s

Train loss versus time

(c) mg

0 2 4 6 8 10

Train time (log)

30

35

40

45

50

55

60

T
ra

in
 l
o

s
s

Train loss versus time

(d) slice

Figure 5: Average train loss versus the train time (seconds in log scale) of abalone in (a), space ga in (b), mg
in (c), slice in (d). The time unit is second. Results have shown that LST is 2000x times faster than the current
IMT to achieve the same loss at each step.

to IMT. With non-negligible probability, LST’s teachability outperforms IMT in teaching regression
towards convergence with fewer iterations.

Speed. In Figure 5, we plot the train loss versus train time (seconds in log scale) for LST and IMT
in four regression sets. In each iteration, we record the time for teaching algorithms to select an
example and the weight update time for the learners given this example. In the four sub-figures, we
observe a consistent gap between two approaches in time. At the same loss level during training,
our LST teaches 2000× faster than IMT on average. For the large scale slice dataset, it takes
404.95 seconds on average for IMT to finish one iteration. This long-time prevents IMT from
online deployment at scale. Our LST tackles the issue by reducing the time to 0.196 seconds while
preserving the same performance in iteration-wise. This significant acceleration makes LST scalable
in large scale teaching scenarios. This experiment answers the second and third questions. LST is
2000× faster than IMT while achieving the same iteration-wise fast convergence. Moreover, LST is
efficient in teaching when performed on large scale datasets. We also perform a parameter study in
Appendix F.

6.2 Scalability on IoT Devices

Dataset Energy Savings Speedups
abalone 99.76% 425.12×
space ga 99.34% 149.07×
mg 98.73% 117.20×
Table 1: Efficiency of LST over IMT on TX2

In this section, we compare LST and IMT on Nvidia
TX2 devices. For detailed settings, we refer to Ap-
pendix G. We first observe that the iteration-wise
performance remains identical to the evaluation on
the server. This phenomenon answers the first ques-
tion: LST’s teachability is robust in IoT devices
by achieving exactly the same iteration-wise conver-
gence as server-based experiments. Then, in Table 1, we present the energy savings and speedups
of LST over IMT on four datasets. According to the results, we observe that LST achieves at least
98.73% energy savings and 117.20× speedups over IMT. In the synthetic classification dataset,
LST is 306.12× faster than IMT with 99.67% energy savings. This performance gain is fewer than
server-based experiments due to the less available resources on TX2 SoCs (e.g., 105W power bud-
get CPU in sever setting vs. 7.5W power budget in IoT setting). However, this improvement is still
promising and answer the second question: LST can gain at most 99.76% energy savings with over
100× speedups compared with IMT on IoT devices.

7 Concluding Remarks

The inefficiency of iterative machine teaching (IMT) prevents it from being used in IoT-based teach-
ing scenarios at home. There is no sub-linear time iterative teaching algorithm that enables teaching
in large-scale real-world settings before our work. The paper proposes a practical and fast teach-
ing approach. By reformulating IMT’s optimization problem to an adaptive sampling problem, we
propose a Locality Sensitive Teaching (LST) algorithm. LST achieves exponential teachability and
reduces the time complexity of each iteration fromO(N), whereN is the number of teaching exam-
ples, to fewO(1) lookups in hash tables. Moreover, we design an LST system that fully exploits the
resources of integrated CPU-GPU SoCs on IoT devices. We demonstrate, both theoretically and em-
pirically, LST’s teachability improvements, speed acceleration, and tremendous energy reductions

9



over IMT during experiments on IoT devices. The development of LST makes teaching algorithms
feasible on more on-device personalized education applications.

Acknowledgements

Zhaozhuo Xu and Anshumali Shrivastava are supported by the National Science Foundation IIS-
1652131, BIGDATA-1838177, AFOSR-YIP FA9550-18-1-0152, the ONR DURIP Grant, and the
ONR BRC grant on Randomized Numerical Linear Algebra. Chaojian Li and Yingyan Lin are
supported by the National Science Foundation EPCN under No. 1934767. Weiyang Liu is supported
by a Cambridge-Tübingen Fellowship, an NVIDIA GPU grant, DeepMind and the Leverhulme Trust
via CFI. We would like to thank Tracy Volz and Elizabeth Festa for great discussion on scientific
writing.

References
[1] Christos Athanasiadis, Enrique Hortal, Dimitrios Koutsoukos, Carmen Zarco Lens, and

Stylianos Asteriadis. Personalized, affect and performance-driven computer-based learning.
In CSEDU (1), pages 132–139, 2017. 1

[2] Oisin Mac Aodha, Shihan Su, Yuxin Chen, Pietro Perona, and Yisong Yue. Teaching categories
to human learners with visual explanations. In CVPR, 2018. 1, 3

[3] Edward Johns, Oisin Mac Aodha, and Gabriel J Brostow. Becoming the expert-interactive
multi-class machine teaching. In CVPR, 2015. 1, 3

[4] Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach
toward optimal education. In AAAI, 2015. 1, 2, 3

[5] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B. Smith, James M.
Rehg, and Le Song. Iterative machine teaching. In ICML, 2017. 2, 3, 4, 6, 7, 8, 19

[6] Weiyang Liu, Bo Dai, Xingguo Li, Zhen Liu, James Rehg, and Le Song. Towards black-box
iterative machine teaching. In ICML, 2018. 2, 3, 6, 7

[7] Yao Zhou, Fenglong Ma, Jing Gao, and Jingrui He. Optimizing the wisdom of the crowd:
Inference, learning, and teaching. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3231–3232, 2019. 2

[8] Yikun Ban and Jingrui He. Generic outlier detection in multi-armed bandit. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 913–923, 2020. 2

[9] Yao Zhou, Arun Reddy Nelakurthi, Ross Maciejewski, Wei Fan, and Jingrui He. Crowd teach-
ing with imperfect labels. In Proceedings of The Web Conference 2020, pages 110–121, 2020.
2

[10] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against autoregressive
models. In AAAI, 2016. 2

[11] Xuezhou Zhang, Xiaojin Zhu, and Laurent Lessard. Online data poisoning attacks. In Learning
for Dynamics and Control, pages 201–210, 2020. 2

[12] Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based
samplers and estimators for partition function computation in log-linear models. arXiv preprint
arXiv:1703.05160, 2017. 2, 15

[13] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N Rafferty. An overview of machine
teaching. arXiv preprint arXiv:1801.05927, 2018. 3

[14] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In ICML, 2009. 3

10



[15] Xiaojin Zhu. Machine teaching for bayesian learners in the exponential family. In NIPS, 2013.
3

[16] Ji Liu, Xiaojin Zhu, and H Gorune Ohannessian. The teaching dimension of linear learners. In
ICML, 2016. 3

[17] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In AAAI, 2015. 3

[18] Christopher Meek, Patrice Simard, and Xiaojin Zhu. Analysis of a design pattern for teaching
with features and labels. arXiv preprint arXiv:1611.05950, 2016. 3

[19] Faisal Khan, Bilge Mutlu, and Xiaojin Zhu. How do humans teach: On curriculum learning
and teaching dimension. In NIPS, 2011. 3

[20] Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause,
Pietro Perona, Yisong Yue, and Adish Singla. Teaching multiple concepts to a forgetful learner.
In NeurIPS, 2019. 3

[21] Yao Zhou, Arun Reddy Nelakurthi, and Jingrui He. Unlearn what you have learned: Adaptive
crowd teaching with exponentially decayed memory learners. In KDD, 2018. 3

[22] Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, and Xiaojin Zhu. Teaching a black-box learner.
In ICML, 2019. 3

[23] Teresa Yeo, Parameswaran Kamalaruban, Adish Singla, Arpit Merchant, Thibault Asselborn,
Louis Faucon, Pierre Dillenbourg, and Volkan Cevher. Iterative classroom teaching. In AAAI,
2019. 3

[24] Luis Haug, Sebastian Tschiatschek, and Adish Singla. Teaching inverse reinforcement learners
via features and demonstrations. In NeurIPS, 2018. 3

[25] Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla. Learner-
aware teaching: Inverse reinforcement learning with preferences and constraints. arXiv
preprint arXiv:1906.00429, 2019. 3

[26] Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive
teaching algorithms for inverse reinforcement learning. In IJCAI, 2019. 3

[27] Yuxin Chen, Oisin Mac Aodha, Shihan Su, Pietro Perona, and Yisong Yue. Near-optimal
machine teaching via explanatory teaching sets. In AISTATS, 2018. 3

[28] Yuxin Chen, Adish Singla, Oisin Mac Aodha, Pietro Perona, and Yisong Yue. Understanding
the role of adaptivity in machine teaching: The case of version space learners. In NeurIPS,
2018. 3

[29] Mohamadreza Ahmadi, Bo Wu, Yuxin Chen, Yisong Yue, and Ufuk Topcu. Barrier certificates
for assured machine teaching. In ACC, 2019. 3

[30] Ziyuan Gao, Hans Ulrich Simon, and Sandra Zilles. On the teaching complexity of linear sets.
In ALT, 2015. 3

[31] Sandra Zilles, Steffen Lange, Robert Holte, and Martin Zinkevich. Teaching dimensions based
on cooperative learning. In COLT, 2008. 3

[32] Rahim Samei, Pavel Semukhin, Boting Yang, and Sandra Zilles. Algebraic methods proving
sauer’s bound for teaching complexity. Theoretical Computer Science, 558:35–50, 2014. 3

[33] Laurent Lessard, Xuezhou Zhang, and Xiaojin Zhu. An optimal control approach to sequential
machine teaching. arXiv preprint arXiv:1810.06175, 2018. 3

[34] Weiyang Liu, Zhen Liu, Hanchen Wang, Liam Paull, Bernhard Schölkopf, and Adrian Weller.
Iterative teaching by label synthesis. In NeurIPS, 2021. 3

11



[35] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In STOC, 1998. 3

[36] Piotr Indyk and David Woodruff. Polylogarithmic private approximations and efficient match-
ing. In Theory of Cryptography. 2006. 3

[37] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry (SoCG), pages 253–262, 2004. 3

[38] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 1018–1028. SIAM, 2014. 3

[39] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1225–1233. Curran Associates, 2015. 3

[40] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing (STOC), pages 793–801, 2015. 3

[41] Piotr Indyk and Tal Wagner. Approximate nearest neighbors in limited space. In Conference
On Learning Theory, pages 2012–2036. PMLR, 2018. 3

[42] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-
based time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 47–66. SIAM,
2017. 3

[43] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in
high dimensions. arXiv preprint arXiv:1806.09823, 7, 2018. 3

[44] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for
nearest neighbor search. In International Conference on Learning Representations, 2019. 3

[45] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya Razenshteyn, and M Sadegh
Riazi. {SANNS}: Scaling up secure approximate k-nearest neighbors search. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), pages 2111–2128, 2020. 3

[46] Xiaoyun Li and Ping Li. Rejection sampling for weighted jaccard similarity revisited. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2021. 3

[47] Ryan Spring and Anshumali Shrivastava. Scalable and sustainable deep learning via random-
ized hashing. arXiv preprint arXiv:1602.08194, 2016. 3

[48] Beidi Chen, Tharun Medini, and Anshumali Shrivastava. Slide: In defense of smart al-
gorithms over hardware acceleration for large-scale deep learning systems. arXiv preprint
arXiv:1903.03129, 2019. 3, 15

[49] Benjamin Coleman and Anshumali Shrivastava. Sub-linear race sketches for approximate ker-
nel density estimation on streaming data. In Proceedings of The Web Conference 2020, pages
1739–1749, 2020. 3

[50] Chen Luo and Anshumali Shrivastava. Arrays of (locality-sensitive) count estimators (ace)
anomaly detection on the edge. In Proceedings of the 2018 World Wide Web Conference,
pages 1439–1448, 2018. 3

[51] Beidi Chen, Yingchen Xu, and Anshumali Shrivastava. Fast and accurate stochastic gradient
estimation. Advances in Neural Information Processing Systems, 32:12339–12349, 2019. 3,
4, 15

[52] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips). In NIPS, 2014. 4, 6

12



[53] Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset: a ct scan dataset
about covid-19. arXiv preprint arXiv:2003.13865, 2020. 4, 19

[54] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H Anderson, F Donelson
Smith, Alex Berg, and Shige Wang. An evaluation of the nvidia tx1 for supporting real-time
computer-vision workloads. In 2017 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 353–364. IEEE, 2017. 7

[55] Waqar Ali and Heechul Yun. Protecting real-time gpu applications on integrated cpu-gpu soc
platforms. ArXiv e-prints, 2017. 7

[56] Soroush Bateni, Zhendong Wang, Yuankun Zhu, Yang Hu, and Cong Liu. Co-optimizing per-
formance and memory footprint via integrated cpu/gpu memory management, an implemen-
tation on autonomous driving platform. In 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 310–323. IEEE, 2020. 7

[57] NVIDIA Inc. NVIDIA Jetson TX2. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-tx2/, accessed 2020-09-01. 7,
21

[58] Yiqiu Wang, Anshumali Shrivastava, Jonathan Wang, and Junghee Ryu. Flash: Randomized al-
gorithms accelerated over cpu-gpu for ultra-high dimensional similarity search. arXiv preprint
arXiv:1709.01190, 2017. 7

[59] Nicholas Meisburger and Anshumali Shrivastava. Tera-slash: A distributed energy-efficient
mpi based lsh system for tera-scale similarity search. arXiv preprint arXiv:2008.03260, 2020.
7

[60] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. Cupy: A
numpy-compatible library for nvidia gpu calculations. In NIPS LearningSys Workshop, 2017.
7

[61] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 8, 19

[62] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. 8

[63] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.
8

[64] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In STOC, 2002.
15

[65] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4700–4708, 2017. 19

[66] Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The amsterdam
library of object images. IJCV, 2005. 19

[67] Siddharth Gopal. Adaptive sampling for sgd by exploiting side information. In ICML, 2016.
19

[68] Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. Halo:
Hardware-aware learning to optimize. In Proceedings of the European Conference on Com-
puter Vision (ECCV), September 2020. 21

[69] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. Fastdepth:
Fast monocular depth estimation on embedded systems. In 2019 International Conference on
Robotics and Automation (ICRA), pages 6101–6108. IEEE, 2019. 21

13

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
http://www.csie.ntu.edu.tw/~cjlin/libsvm


[70] Patrick Mochel and Mike Murphy. sysfs - The filesystem for exporting kernel objects. https:
//www.kernel.org/doc/Documentation/filesystems/sysfs.txt, accessed 2019-11-
21. 21

[71] Texas Instruments Inc. INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus
Voltage Monitor. http://www.ti.com/product/INA3221, accessed 2019-11-21. 21

14

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
http://www.ti.com/product/INA3221

