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ABSTRACT

This work provides the first finite-time convergence guarantees for linearly con-
strained stochastic bilevel optimization using only first-order methods, requiring
solely gradient information without any Hessian computations or second-order
derivatives. We address the unprecedented challenge of simultaneously handling
linear constraints, stochastic noise, and finite-time analysis in bilevel optimiza-
tion, a combination that has remained theoretically intractable until now. While
existing approaches either require second-order information, handle only uncon-
strained stochastic problems, or provide merely asymptotic convergence results,
our method achieves finite-time guarantees using gradient-based techniques alone.
We develop a novel framework that constructs hypergradient approximations via
smoothed penalty functions, using approximate primal and dual solutions to over-
come the fundamental challenges posed by the interaction between linear con-
straints and stochastic noise. Our theoretical analysis provides explicit finite-time
bounds on the bias and variance of the hypergradient estimator, demonstrating
how approximation errors interact with stochastic perturbations. We prove that
our first-order algorithm converges to (, €)-Goldstein stationary points using
(6~ 1e75) stochastic gradient evaluations, establishing the first finite-time com-
plexity result for this challenging problem class and representing a significant the-
oretical breakthrough in constrained stochastic bilevel optimization.

1 INTRODUCTION

Bilevel optimization is a powerful paradigm for hierarchical decision-making in machine learning,
including hyperparameter tuning [Franceschi et al| (2018), meta-learning [Finn et al.| (2017), and
reinforcement learning [Konda and Tsitsiklis| (1999).

The standard formulation can be written as the following optimization problem:

min f(z,y"(z)) st y"(z) € argming(z,y), (D)
oeX ves(x)

Here S(z) denotes the feasible set of the lower-level problem (e.g., S(z) = R™ in the uncon-
strained case, or S(z) = {y : h(z,y) < 0} for constrained cases). Furthermore, we define
F(z) = f(z,y*(z)) to be the overall bilevel objective as a function of . Traditional methods
of solving bilevel optimization often face scalability challenges Pedregosal (2016); [Franceschi et al.
(2017), including implicit differentiation with its requisite Hessian computations |Amos and Kolter
(2017); Ji and Yang| (2021); |Khandur1 et al.| (2024); Hu et al.| (2023); |Ghadimi and Wang| (2018)),
and iterative differentiation characterized by high memory and computational demands. Shen et al.
(2024); Brauer et al.| (2024)

A recent breakthrough in bilevel optimization by |Kwon et al.| (2023)); |L1iu et al.| (2022) proposes us-
ing reformulation and penalty-based approaches to design a fully first-order gradient proxy. Several
follow-up works based on this breakthrough have emerged, including improving finite time con-
vergence of unconstrained bilevel optimization |Chen et al.| (2024a); Yang et al.| (2023)); (Chen et al.
(2024b); Kwon et al.| (2024), constrained bilevel optimization | Khanduri et al.| (2023)); [Kornowski
et al.| (2024); Yao et al.| (2024); Lu and Mei| (2024)), and applications of bilevel algorithms to ma-
chine learning |Pan et al.|(2024)); Zhang et al.[(2024); |Petrulionyté et al.| (2024)).



However, many real-world scenarios involve stochastic objectives and constraints together, where
gradients are noisy estimates from samples. While methods for unconstrained stochastic bilevel op-
timization have advanced (e.g., (Ghadimi and Wang| (2018)); Kwon et al.| (2023); [Liu et al.| (2022)),
the confluence of stochasticity and explicit LL linear constraints poses significant unresolved chal-
lenges. A critical gap persists: no existing methods offer finite-time convergence guarantees for
bilevel problems that are simultaneously stochastic and linearly constrained in the lower-level prob-
lem.

This paper bridges this gap by introducing the Fully First-order Constrained Stochastic Approxi-
mation (F2CSA) algorithm. We build upon the deterministic framework of Kornowski et al.| (2024),
developing a novel smoothed, stochastic hypergradient oracle tailored for bilevel problems with lin-
early constrained LL subproblems and stochastic objectives. The key to our approach is a smoothed
reformulation that handles inexact dual variables, enabling robust hypergradient estimation from
noisy first-order information and inexact LL solves. Our theoretical analysis, based on Lipschitz
continuity and careful variance-bias tradeoffs, yields the first finite-time complexity guarantees for
reaching (9, €)-Goldstein stationary points in this setting.

Our contributions include:

* Stochastic Inexact Hypergradient Oracle: We develop a stochastic inexact hypergradient ora-
cle based on a smoothed Lagrangian method with penalty weights &1 = a2 and ap = =%
where o > 0. This oracle approximates hypergradients with bias bounded by O(«) and vari-
ance bounded by O(1/N,) using N, first-order gradient evaluations. Our smoothed Lagrangian
method generalizes the approach from Kornowski et al.[(2024)) to allow approximate primal-dual
lower-level solutions for constructing inexact hypergradient oracles.

* Convergence Guarantees: We apply the stochastic inexact hypergradient oracle with parameter
a = eand N, = O(e?) to design a double-loop algorithm for stochastic bilevel optimization
problems with linear constraints. This algorithm attains a (4, €)-Goldstein stationary point of F'(x)
with total first-order oracle complexity 0(5 ~1¢=5). This generalizes the deterministic bilevel op-
timization result with linear constraints (rate 0(6 ~1e=%)) to the stochastic setting.

Our work provides the first finite-time convergence guarantees for linearly constrained stochastic
bilevel optimization under standard stochastic assumptions, providing a theoretically sound yet prac-
tical alternative to traditional bilevel optimization approaches.

2 RELATED WORK

Penalty Methods and First-Order Reformulations. To reduce the computational cost of second-
order derivatives in bilevel optimization, recent works have proposed scalable, first-order algorithms
based on penalty formulations Kwon et al.| (2023); [Liu et al.| (2022). These techniques transform
constrained bilevel problems into single-level surrogates that can be solved efficiently with conver-
gence guarantees, where deterministic, partially stochastic, and fully stochastic bilevel optimization
can achieve e-stationary point in O(e~2), O(e=*), O(¢~%) gradient calls, respectively Chen et al.
(2024b). The convergence rate of the deterministic case can be further improved to O(e~*) by
momentum-based method |Yang et al.[(2023)).

Bilevel Optimization with Linear Constraints. Due to the nonsmoothness of constrained bilevel
optimization problems, |[Kornowski et al.[(2024)) focuses on Goldstein stationarity |Goldstein| (1977)
and designs a new penalty method to achieve a zero-th order algorithm with O(6~te~%) convergence
and a first-order algorithm with O(§~'e~*) convergence to a (e, )-Goldstein stationary point. On
the other hand, |Yao et al.| (2024)); [Lu and Mei| (2024) consider a different stationarity using e-KKT
stationarity, where [Lu and Meil (2024) achieves a O(e~") convergence rate, and [Yao et al.| (2024)
achieves a O(e~2) rate under a stronger assumption of access to projection operators. Compared to
Goldstein stationarity, an e-KKT stationary point requires satisfying approximate KKT conditions
(small constraint violation and small gradient norm of the Lagrangian), and hence is a stronger con-
dition. We choose Goldstein’s notion here as it naturally handles the nonsmoothness arising from
the piecewise definition of F'(x) due to changing active constraints. (Notably, Yao et al. (2024) use
a doubly regularized gap function approach and obtain fast rates to an e-KKT point under convexity



and with projection oracles; our method assumes strong convexity and LICQ but applies to noncon-
vex F'(x) and uses Goldstein’s criterion.)

Nonsmooth and nonconvex optimization. The nonsmooth and nonconvex structure of bilevel op-
timization with constraints makes its analysis closely related to nonsmooth nonconvex optimization.
The best-known convergence result is given by [Zhang et al.|(2020), which establishes optimal con-
vergence rates of O(6~1e~3) for the deterministic case and O (5~ e~ *) for the stochastic case. Our
result of O(d~1e=%) is one factor of € away from the optimal stochastic rate, indicating potential
room for improvement. In particular, future work could explore using momentum (e.g., as in Yang
et al.|(2023)) or variance-reduction techniques to potentially improve the e-dependence.

3 PROBLEM FORMULATION AND PENALTY-BASED APPROXIMATION

We consider the following linearly constrained bilevel optimization problem:

gg}% F(z) = E¢ [f(z,y"(2); )]

st. y*(z) € argmin E¢[g(z,y; )]
yER™:h(z,y)<0

2)

Here, x € R"™ denotes the upper-level (UL) decision variable constrained to a closed convex set
X CR", and y € R™ is the lower-level (LL) variable. The UL and LL objective functions f(x, y; §)
and g(z,y; () are stochastic, depending on random variables £ and (, respectively, which model
data or simulation noise. Expectations are taken with respect to the underlying distributions of these
random variables.

The LL feasible region is defined by a set of p linear inequality constraints:
h(z,y) := Az — By —b <0, 3)
where A € RP*™, B € RP*™ and b € R? are known matrices and vector. We assume the norm of

the matrices are bounded by a given constant: ||A|| < My, and ||B|| < My, which also ensures
that the Jacobian of the constraint function h(z, y) is bounded.

Directly solving the stochastic bilevel problem is challenging due to the implicit dependence of
F(z) on y*(x) and the presence of noise in gradient and function evaluations.

3.1 ASSUMPTIONS

We apply the following standard assumptions to our problem.

Assumption 3.1 (Smoothness and Strong Convexity). We make the following assumptions on the
objectives f, g, constraints h, and associated matrices:

(i) Upper-Level Objective f: The function f(x,y) is Cy-smooth in (x,y) (i.e., its gradient V f
is C'g-Lipschitz continuous). The function f(x,y) is also L g-Lipschitz continuous in (., y).

Note: L¢-Lipschitz continuity of f implies that its gradient norm is bounded, i.e.,
IVf(@,y)l <Ly

(ii) Lower-Level Objective g: The function g(x,y) is Cg-smooth in (x,y) (i.e., its gradient
Vg is Cy-Lipschitz continuous). For each fixed x € X, the function g(x,-) is {14-strongly
convex in y, with g > 0. The gradient norm is bounded: |V g(x,y)|| < Lg. This strong
convexity ensures a unique LL minimizer y*(x) for each x, necessary for our hypergradient
formulation. The bounded gradient assumption is standard in stochastic optimization.

(iii) Constraint Qualification (LICQ): The Linear Independence Constraint Qualification
holds for the lower-level constraints at the optimal solution y* (z) for all x € X. (Specifi-
cally, the Jacobian of the active constraints with respect to y, given by —B restricted to its
active rows, has full row rank.)

Under Assumption|3.1] the uniqueness of the LL solution * () and multipliers A*(x) is guaranteed.
LICQ can potentially be relaxed to weaker qualifications at the cost of more complex analysis; we
impose LICQ for simplicity.



Assumption 3.2 (Global Lipschitz continuity of LL solution). The optimal lower-level solution
map y*(x) is globally L-Lipschitz continuous in x on X. That is, there exists L, > 0 such that
ly*(z) —y*(2")|| < Lyllx — «'|| forall z, 2" € X.

This assumption is standard in bilevel optimization (Facchinei and Pang) [2003). Given global
Lipschitzness, the UL objective F'(z) = f(z,y*(x)) is Lp-Lipschitz continuous with Ly <
Ly, + Ly, L,. This ensures y*(x) varies Lipschitzly with x, which we use to control errors in
our convergence analysis.

We assume access only to noisy first-order information via stochastic oracles.

Assumption 3.3 (Stochastic Oracles). Stochastic first-order oracles (SFOs) V f(x,y,f),
V§(z,y; ) are available, satisfying:

(i) Unbiasedness: B[V f(x,y;&)] = V f(x,y) and E[V§(z,y; ()] = Vg(,y).
(ii) Bounded Variance: E[|Vf — V f||?] < 0% and E[||V§ — Vg|]?] < o2

Assumptions are standard in bilevel optimization and provide the necessary smoothness,
convexity, and stability conditions for our analysis.

3.2 GOLDSTEIN STATIONARITY

Due to the potential nonsmoothness of F'(z), we target Goldstein stationarity, a robust concept for
nonsmooth optimization.

Definition 3.1 (Goldstein Subdifferential (Goldstein, [1977)). For an L p-Lipschitz function F :
R* R, ze€R™ §>0:

Os F(x) := conv U OF (z)
2€Bj(z)
where OF (z) is the Clarke subdifferential, and Bs(x) is the §-ball around x.
Definition 3.2 ((J, €)-Goldstein Stationarity). A point x € X is (0, €)-Goldstein stationary if

dist(0,05F(x) + Nx (z)) <,

where N'x () is the normal cone to X at .

4 ERROR ANALYSIS FOR STOCHASTIC HYPERGRADIENT

We first control the effect of inexact dual variables on the penalty gradient and propagate this
control to the shift of the penalized lower-level minimizer (Lemmas and [4.2), which together
yield an O(«) bias for the oracle (Lemma4.3). We then bound the sampling variance by O(1/N,)
(Lemma @D; Theorem [4.1] consolidates these bounds, and Lemma [4.5] records the inner method
cost O(a™2).

Notation: We use tildes for stochastic/inexact quantities: §*(z), A(z) (approximate LL primal-

dual solutions), ¢(z) (approximate penalized minimizer), and VF(x) (stochastic hypergradi-
ent estimator). True quantities lack tildes: y*(z), A*(z), and VF(z). The estimator VF(z) =
Va.L; (@, §(x)) approximates VF(x) with bias O(c) and variance O(1/Ny) (Lemmas
and[d.4).

4.1 STOCHASTIC IMPLEMENTATION

We compute the stochastic hypergradient oracle via a penalty formulation with smooth activation as

Remark 4.1 (Inner Loop Complexity). The approximate LL solution (§*(x), \(x)) in Step 3 is
obtained via a stochastic primal-dual method with updates: yi+1 = yi — n,Vyg(x,ys; () and
At+1 = max{0, As + nx(Ax — Byi41 — b)}. With g(x, -) strongly convex and smooth, this attains
O(0) accuracy in O(kg4log(1/0)) iterations (Lemma. Setting § = ©(a?) and o = O (e) yields
O(rgqlog(1/€)) iterations.



Algorithm 1 Stochastic Penalty-Based Hypergradient Oracle

1: Input: Point € R", accuracy parameter o > 0, variance bound 2 (bound on gradient noise
variance per Assumption , batch size N,

2: Set: vy =a 2, a0 =%, 5 = O(a?)

3: Compute approximate lower-level solution (*(z), A(z)) by a stochastic primal-dual (SPD)
method (see Lemma such that [|7*(z) — y*(z)| < O(6) and [A(z) — X ()| < O(),
where y*(z) and \*(z ) denote the true lower—level minimizer and corresponding optimal mul-
tiplier

4: Diﬁne the smooth Lagrangian L;\,a(x, y) using the penalty Lagrangian (Eq. {@)) and smooth
activation function p(x) (defined below)

5: Compute §(x) = argmin, L5 ,(z,y) by stochastic gradient steps such that ||7(x) —y;f\ya(a:) I <

6, where y§ (z):=argmin, Ls ,(z,y)
6: Collect N, i.i.d. samples {&; };Vzgl and compute VF(z) = N%? Z;»V:gl Vxﬂxa (x,9(x); &)
7: Output: VF(x)

Smooth Activation Function: To regularize constraint activation near the boundary, define p;(z) =
on(hi(z, 7 (x))) - ox(Ai(x)) where:

0 if z < —76 0 ifz<0
on(z)=q 2 if —76<2<0, oaz)=(Z f0<z<e
1 ifz>0 1 ifz>ey

with 7 = ©(9) and €, > 0 being small positive parameters.
The penalty function for hypergradient estimation is:
P

Ly a(2:y) = F(@,) + a1 (9(2,9) + A@) hi@,y) —g(@. 5" @) + 5 D pile) - hila, )

i=1

- “)
where a1 = a2 and ag = a~* for @ > 0. The terms with A(x) and §*(x) promote KKT consis-
tency and enforce constraints through a smoothed quadratic penalty.

The oracle outputs V F'(x) with expectation E[V F(z)] = V, L 5. (2, §()). Its mean-squared error
decomposes into bias and variance relative to VF (z):

E(|VE(z) = VF(2)|*] = E[|VF(z) — EVF(@)]|’] + |[E[VF(2)] - VF(2)|

Variance Bias?

(&)

We first bound the effect of using 5\(:13) in place of \*(x) on the gradient of the penalty Lagrangian.

Lemma 4.1 (Lagrangian Gradient Approximation). Assume | X(z) — \*(z)|| < C\6 and under
Assumption[3.1\(iii), let o = a2, ap = a~*, and 7 = O(8). Then for fixed (x,y):

HVL)\*a(l‘vy) - VLS\7Q(.’I,‘,y)|| < O(al(s + a25)'

Proof sketch. Consider A\ := \*(x) — A(x) and decompose the gradient difference into a lin-

ear penalty part and a quadratic penalty part. For the linear term, ||[Vh] is bounded by Assump-

tion 3.1iii) and [|[AX|| < C\6, yielding O(16). For the quadratic term, only near-active con-

straints contribute Where |hi(z, 5" (x))| < 7, and one obtains two pieces: oz Y . (p; — pi)hiVh;

and 2 Y. h?V pi)- Using |h;] = O(6) in these regions, || Vh;|| bounded, and ||V (p} — 5;)|| =
1/25 both pleces are O(az0). Combining yields O(a10 + ag0).

Building on this result, we next bound the difference between exact solutions for true and approxi-
mate dual variables:



Lemma 4.2 (Solution Error). Let y5 ,(x) := argmin, Ly o(x,y) withay = a~? and ag = o™,

Assume the target accuracy parameter o is small enough that fipe, = o fig — %C '+ > 0, where Cy is
the smoothness constant of f and p4 is the strong convexity constant of g(, -) as perAssumption

This ensures fipen > QOzlug, so that Ly o (x,y) is i = Q(apg)-strongly convex in y.

If the dual approximation satisfies | \(z) — X\*(z)|| < C\6 and the gradient bound from Lemma
holds, then:

Y- (@) — ¥5 (%)
where the constant C,; depends on C, and My, (Assumption iii ) on ||V h|| bound).

CSO
< l(Oé1 + )9,
1

Strong convexity together with Lemma[@.1]yields the stated solution bound.

With controlled approximation errors, we now derive a systematic bias bound.

4.2 BIAS ANALYSIS (DETERMINISTIC ERROR)

The bias is the deterministic error E[V F(z)] — VF(z), due to the penalty surrogate and the use of
inexact inner solutions (A, §) in place of (A", y*, y3. ,)-

Lemma 4.3 (Hypergradient Bias Bound). Ler V,Lj o(x,y) denote the partial gradient of the
penalty Lagrangian with respect to x. Assume it is Ly -Lipschitz in y and Ly x-Lipschitz in
A With ap = a2 ay = a™?, choose § = O(a®) and suppose ||j(x) — v; (@)|| < 6 and
HX(x) — M (@)|| < CXS. If Lax oz, ) is p-strongly convex with p > cua_Q, then

IE[VE(2)] = VF(2)|| < Chiaser,

where Cyiqs depends only on Ly, Ly x, Cg, Ci, c,, and the penalty constant C,,. Here Ly,
and Ly » are the Lipschitz constants of VL o(x,y) with respect to y and X (from the lemma
assumpttons) Cy is the Lipschitz constant of V g (from Assumption @n )); C\ is an upper bound
on ||N*(z)]| ( guaranteed by strong convexity and LICQ); c,, is a positive constant linking the lower-
level strong convexity to a2 (see Lemma ; and C,,y is the penalty parameter in our formulation

(determined by the choice of oy and a suﬁ‘iciently large such that the penalty term dominates any
curvature of f).

Proof sketch. By the triangle inequality, write ||[E[V F(z)] — ( )W < T + T2 + T3, where
Ty = || VoL o (2, §(2)) = VaLs o (2,55 (@))]] < Ly 6 = O(a) for § = ©(a’);

Ty = [IVals o, 95 ,(2)) = Valara(@ 45 o (@) < LuaCx 6+ Liy [|ly5 () = 93 o (@)

and Lemma 4.2 gives ||y  — 3. ofl < ( sol/u)(al + a)d, so with a1 = a2, ag = a™4,
§ = 0(a?), p = O(a~?2) we obtain T2 O(a

[VaLa oz, y3x o () — VE(2)|| = O(Cpena) by [Kornowski et al.| (2024). Hence
[E[VE(z)] = VF(z)]| = O(). O

Thus the bias scales as O () when the inner accuracy is set to § = ©(a?). This means that VF'(z)
is an a-accurate estimator of V F'(x) in expectation.

4.3 VARIANCE ANALYSIS (STOCHASTIC ERROR)

The variance, Var, 5 y(Vﬁ’(m)) =E, 5 y[HVF(x) — E[VF(x)]||?], quantifies the error due to a
finite batch size N, in estimating E[V F'(z)].

Lemma 4.4 (Variance Bound). Under Assumption ( i)—(ii), let 0% be a uniform bound on

Varlc)\y(v LAQ(J: 7; f))

With a mini-batch of Ny i.i.d. samples in Algorithmm the conditional variance of the hypergradient
estimate satisfies

Var, (VF( )) <

EIR



Proof Sketch. The hypergradient estimate VF (x) is the average of N, i.i.d. random vectors G; =
VzLS\’a (xa ga gj)
By Assumption ii), each term G has conditional variance bounded by o2, i.e.,

Var, 5 g(Gj) < o2, Since the samples &; are i.i.d., the terms G are conditionally independent, and
the conditional variance of their average is bounded accordingly. This follows standard mini-batch

averaging analysis. O

4.4 COMBINED ERROR BOUNDS

We combine the bias and variance bounds to characterize the overall accuracy of the hypergradient
oracle.

Theorem 4.1 (Accuracy of Stochastic Hypergradient). Let V F(x) be the output ofAlgorithmwith
penalty parameters oy = a~ 2, ay = a~*, and inner accuracy 6 = O(a?®). There exists a constant
Clias Such that:
i 2 2 o, 20°
E[VF(x) - VF()IP] < 203,0° + S
g

Proof Sketch. We apply the standard bias—variance decomposition. The bias term is bounded using
Lemmal4.3] which shows that the expected output of the oracle approximates the true gradient up to
an O(a) error. - The variance term is controlled using Lemma which shows that averaging N,
noisy gradients leads to variance bounded by 0% /N,.

Adding these two contributions and applying Jensen’s inequality yields the desired total error bound.
O

Lemma 4.5 (Inner-loop Oracle Complexity). Fix o > 0 and set oy = a~ 2, ay = a™%, § = O(a?).
Let g(x,-) be pig-strongly convex and Cgz-smooth, and the stochastic oracles of Assumption
have variance o2. Choose the mini-batch size N, = 0?/a?. Running Algorithm |1\ with O(a’2)

stochastic first-order oracle (SFO) calls in its inner loops yields a stochastic inexact gradient VF (z)
characterized by bias of O(«) and variance of O(a?).

5 STOCHASTIC BILEVEL ALGORITHM AND CONVERGENCE ANALYSIS

We now introduce the principal algorithm, F2CSA (Algorithm [2), which leverages the previously
analyzed stochastic hypergradient oracle within a non-smooth, non-convex optimization framework.

We then present detailed convergence proofs that provide rigorous guarantees for identifying (4, €)-
Goldstein stationary points.

Algorithm 2] provides an iterative framework leveraging our inexact stochastic hypergradient oracle.
The method maintains a direction term A;, updated using a momentum-like step involving the ora-
cle’s output g; = VF(z,) and subsequently clipped to ensure ||A,|| < D. The output iterates x;, are
constructed by averaging sample points z; to approximate the Goldstein subdifferential |Goldstein
(1977); |Zhang et al.| (2020); Davis and Drusvyatskiy| (2019).

Remark 5.1 (Integration with Stochastic Hypergradient Oracle). AlgorithmPluses Algorithm[l|as its
gradient estimation subroutine. We fix e = ©(€), Ny = ©(0?/a?), and § = ©(a®) as constants (set
as functions of € at the outset) rather than using time-decaying schedules. The step size n = O(5€%)
is constant (Theorem|5.1)); in practice we tune 1 but do not decay it due to clipping.

5.1 CONVERGENCE TO GOLDSTEIN STATIONARITY
The following theorem establishes convergence to (4, €)-Goldstein stationarity (Definition [3.2) with
an inexact gradient oracle having bounded error.

Theorem 5.1 (Convergence with Stochastic Hypergradient Oracle). Suppose F' : R™ — R is Lp-
Lipschitz. Let VF (+) be a stochastic hypergradient oracle satisfying:



Algorithm 2 Nonsmooth Nonconvex Algorithm with Inexact Stochastic Hypergradient Oracle

1: Input: Initialization o € R", clipping parameter D > 0, step size n > 0, Goldstein accuracy

& > 0, iteration budget 7' € N, inexact stochastic gradient oracle VF:R" - R

Initialize: A1 =0

fort=1,...,T do
Sample s; ~ Unif|0, 1]
e =Tp—1 + Dy, 2 = T + 5ty
Compute g, = VF'(z;) by running Algorithmwith N, = O(0?/a?) samples, so the inexact
gradient has bias O(«) and variance O(a?).

7 Ay = clipp (A — nge) {clipp(v) := min{1, ﬁ} i

8: end for

9: M = [&], K = | L] {Group iterations for Goldstein subdifferential }

10: fork=1,...,K do

1.z, = ﬁ Z%ﬁ Z(k—1)M+m

12: end for

13: Output: 2oy ~ Uniform{z,..., x5}

AN

1. Bias bound: |E[VF(z)] — VF ()| < Cpiasx

2. Variance bound: E[HVF(JC) — ]E[VF(I)] 1]

IN

okl
Ng

Then running Algorithmwith parameters D = G(ﬁ), n= @(%3), and Ny = @(Z—i) outputs
F

17
a point T,y such that E[dist(0, 05 F (zo))] < € + O(«), using T = O(W)

VE().

B

calls to

Proof Sketch. We first take N, = ©(0?/a?) to get bias O(«) and variance O(a?).
Clip online gradient descent telescopes; error terms are O(n) (stability) and O(Da) (stochastic).

Choose M = O(e72) and D = O(8€?) so ||z; — x|| < MD < § and the block average lies in
D5 F ().
Set n = O(d¢®) and run T = O(((F(zo) — inf F)L%)/(d€?)) to obtain E[dist(0, 95 F (zouw))] <
e+ O(a).

Finally, set o« = O(€) to conclude ©(¢) stationarity. O

Using Theorem [5.1] we can finally show the overall complexity of stochastic constrained bilevel
optimization.

Theorem 5.2 (Complexity of solving stochastic constrained bilevel optimization). The fotal
stochastic first-order oracle (SFO) complexity is

F(zo) —inf F o? (F(xg) — inf F)o?
T-N,= _— - — | = 6
s=© ( ded ) © (62 © ded ©
Including logarithmic factors from the inner loops, this becomes:
~ ((F — inf F)o? ~
SFO complexity = O (( (z0) 3 :n Jo ) =00 ') (7
60

6 EXPERIMENTS

To validate our theoretical analysis and assess the practical performance of the proposed F2CSA
algorithm, we conduct experiments on synthetic bilevel optimization problems. We compare our
method against SSIGD [Khanduri et al.| (2023) and DSBLO |Khanduri et al.| (2024)), both Hessian-
based approaches by Khanduri et al. SSIGD uses an implicit gradient approach while DSBLO em-
ploys a doubly stochastic bilevel method. These comparisons highlight the computational advan-
tages of our first-order approach over methods requiring second-order information.



6.1 PROBLEM SETUP

We evaluate our approach on toy bilevel problems with box constraints:

mingera f(x,y*(x)) = %J;Tqu + CIJ? + %yTPy + ' Py (8)
sty () € argminge_q 3 9(z,y) = 3y Qu+ ¢ y+a'y )

Parameters Q.,, Q;, P, c,, ¢; are sampled from zero-mean Gaussians. Stochasticity is introduced by
adding Gaussian noise (0, 02) to the quadratic terms during gradient evaluations with noise stan-
dard deviation o = 0.01. All algorithms use identical problem instances, initial points, random
seeds, and the same lower-level solver to ensure fair evaluation. Step sizes are calibrated to be
comparable across methods: SSIGD employs diminishing step sizes with 3 = 10~%, DSBLO uses
adaptive step size selection, and F2CSA utilizes fixed step size 7 = 1075, reflecting their different
algorithmic structures.

6.2 RESULTS AND ANALYSIS

compare3_dim50_consl0_seedl234.pdfime_vs_dim_line_plot.pdf

Figure 1: Loss convergence trajectories for Figure 2: Computational cost scaling with prob-
F2CSA, SSIGD, and DSBLO in dimension 50. lem dimension.

CONVERGENCE PERFORMANCE

Figure [1| shows convergence trajectories on a 50-dimensional problem. All three methods converge
to similar final loss values, with F2CSA maintaining stable convergence. The comparable perfor-
mance of F2CSA to Hessian-based methods is consistent with our theoretical analysis in Lemmal4.3]
which bounds the oracle error at O(«) bias and O(1/N,) variance.

COMPUTATIONAL SCALABILITY

Figure[2]shows computational cost scaling with problem dimension from d = 100 to d = 4000. The
plot reveals a crossover point around d = 1000: for d < 1000, Hessian-based methods (DSBLO and
SSIGD) are faster, while for d > 1000, F2CSA becomes increasingly advantageous. At d = 4000,
F2CSA requires 7.7 seconds compared to 22.6 seconds for DSBLO and 22.0 seconds for SSIGD,
representing approximately 3 x speedup. The plot shows F2CSA maintains near-linear growth, while
Hessian-based methods exhibit super-linear growth as dimension increases.

KEY INSIGHTS

The experimental results demonstrate that F2CSA achieves comparable convergence performance to
Hessian-based methods while providing superior computational efficiency in high dimensions. The
crossover around d = 1000 and the 3x speedup at d = 4000 validate the theoretical advantage of
our first-order approach, which avoids quadratic-scaling Hessian computations. This makes F2CSA
well-suited for high-dimensional applications where computational efficiency is critical.



7 CONCLUSION AND FUTURE WORK

We introduced a fully first-order framework for linearly constrained stochastic bilevel optimiza-
tion and established the first finite-time guarantee to (J, €)-Goldstein stationarity using a smoothed
penalty-based hypergradient oracle. Section E] quantified the oracle’s error via an O(«) bias and
O(1/N,) variance, which, together with the inner-loop cost in Lemma [4.5] yielded the cali-
brated choice N, = O(0?/a?) and inner tolerance § = ©O(a?). Section [3] integrated this or-
acle into a clipped nonsmooth algorithm attaining E[dist(0, 05 F (zow))] < € + O(a) in T =
O(((F(zo) — inf F)L%)/(d¢€?)) iterations; setting « = ©(e) implies the overall SFO complex-
ity O((S ~1¢=5). Experiments corroborated the theory: F2CSA scales favorably in high dimensions,
trading a small loss gap for speed, and outperforms Hessian-based baselines in wall-clock time at
large d without sacrificing solution quality.

Two limitations are noteworthy. First, the rate is one factor of ¢ from the best-known stochastic
nonsmooth complexity, suggesting headroom for variance reduction or momentum. Second, our
analysis hinges on LICQ, strong convexity of the lower level, and linear constraints; relaxing these
raises technical challenges. (LICQ could potentially be relaxed to weaker conditions at the cost of
more complex analysis.)

Promising directions include: (i) variance-reduced estimators or momentum to approach
O(671e™*); (ii) structure-aware penalties stable under weaker qualifications; (iii) specialized treat-
ments of one-sided stochasticity; and (iv) extending to nonlinear constraints. These would broaden
practicality in meta-learning, RL, and large-scale ERM scenarios.
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A APPENDIX

Lemma 4.1 (Lagrangian Gradient Approximation). Assume |A(z) — X\*(z)|| < Cxd and under

Assumption(iii), letay = a2 ay = a4 and T = O(0). Then for fixed (x,y):
VL a(z,y) — VL3 ,(z,y)|| < O(a10 + a2d).

Proof. Define penalty Lagrangian:
Lya(@,y) = f(z,y) + ai(g(z,y) + A h(z,y) — gz, 5" (x)))

with activation p; () = oy, (hi(x, 7 ())) - ox(Mi(z)) and dual error AX = X*(z) — A(x).

The gradient difference decomposes as:

VLo —VEL; =a1(VR)TAN+ ZA,E

Linear Term Quadratic Term
where Ag = %2 Y7 Api(x)hi(z, y)? with Ap;(z) = pf(z) — pi().
Linear Term in (T2):
From h(z,y) = Az — By — b, we have:
VA <Al + B <2Mag

Using (T3) and ||AX]| < C\\6:

e (VR)TAXN|| < ay - 2Map - Cr6 = O(a16)
Quadratic Term in (12):
The quadratic gradient expands to:

P P
VAQ = as Y ApihiVhi+ 5 Y hIVAp,
i=1 1=1

(Th) T2

(T1): Ap; # 0 only for near-active constraints where |h;(x, 7*(z))| < 78 = O(9).

For constraint values:

hi(x,y) — hi(z, 5" (7)) = Bi(§" (z) — y)
= |hi(z,y) — hi(z, 7" (2))| < Mapo

Using (T7): |hi(z,y)| < O(8) + Mapd = O(d) for near-active constraints.
With |Ap;| < 1 and | Vh|| < 2Map:
|Ap;h; Vh;|| <O(8) = ||T1|| < agp-0() = O(azd)
(T2): [[VApi| = O(1/6) only when |h;(z, §"(x))| = O(0).
In these regions: |h;(x,y)| = O(9) so:
hi - IVAp] = 0(8)* - O(1/6) = O(s)

Using (19):
IT2]l < Sp- O(5) = O(azd)

From (T4), (18), and 20):
HVL)\*,Q - VLS\H S 0(0115) + O(O[Qé) + O(a25) = O(a15 + 042(5)

13

(10)

(1)

12)

13)

(14)

5)

(16)
A7)

(18)

19)

(20)
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Lemma 4.2 (Solution Error). Let y5 () := argmin, Ly o(z,y) witha; = o™ and ag = ™%
Assume the target accuracy parameter o is small enough that fipe, = o fig — %C '+ > 0, where Cy is
the smoothness constant of f and 1, is the strong convexity constant of g(x, -) as perAssumption

This ensures fipen > %alug, so that Ly o (x,y) is i = Q(apg)-strongly convex in y.
If the dual approximation satisfies | \(z) — X\*(z)|| < C\6 and the gradient bound from Lemma
holds, then:

sol

ay + as)d,
M(l 2)

193+ al2) = u5 (@) <

where the constant Cy,; depends on Cy and My, (Assumption iii ) on ||V h]| bound).

Proof. For brevity, let y3. ,(z) = y3. and y}‘\ a(:c) = yjf\ From the definition of these minimizers,
we have the first-order optimality conditions:

VyLaa(@,93-) =
vyLS\1a(I’ y?\)

The lemma assumes that Ly ,(z,y) is pu-strongly convex in y (for relevant ), including A*). Thus,
Ly« o(z,-) is p-strongly convex. A standard property of a u-strongly convex function ¢(y) with
minimizer yj is that for any ys:

pllyr = y2ll® < (Vyo(yr) — Vyod(y2), yi — y2)

Applying this with ¢(y) = L+ a(2,y), y7 = y3-, and y2 = y5:

(22)

0
0 (23)

pllyae = y5 I < (VyLaalz,y3-) = VyLara(2,45), 43 — ¥3)
Using the optimality condition from Eq. , VL« o(z,y5.) = 0, this simplifies to:
pllyre = w31 < (=VyLasalz,53), 93 = 33)

Now, we add and subtract VL5 ,(z,y}) inside the inner product (and use VL5 ,(z,y5) = 0

from Eq. (23)):
pllyx- = vill? < (VyLs o(@,93) = VyLas a(@,93), v — v5)
(since VyLs (z,y5) =0)

Applying the Cauchy-Schwarz inequality:
pllyae = v3I? < IVyLs o (2, 55) = VyLaalz, gl - lyie — w3l
If y3. # y5, we can divide by [|y3. — y;||:
pllyie =yl S NVyLas oz, y5) — VyLs o (2, y5) |l
Lemmastates that for any fixed (z,y), [[VLx- o(z,y) — VL5 (2, y)|| < O(a16 + a2d). This

implies there exists a constant, which we identify with C, from the lemma statement (where Cyg,
depends on C and Myy,), such that:

19 Ls ale,5) — VL3 o (@, 53| < Cunlon +2)5
Substituting this into the inequality above:

mllyre = u3ll < Cuol(ar + a2)d
Dividing by p (which is positive as . = Q(apg) and pg > 0, > 0) yields the result:

sol

C
. (a1 + a2)d

1930 (@) =5 , (@) <

If y3. = y5., the inequality holds trivially. This completes the proof. O
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Lemma 4.3 (Hypergradient Bias Bound). Ler V Ly o(x,y) denote the partial gradient of the
penalty Lagrangian with respect to x. Assume it is Ly ,-Lipschitz in y and Ly x-Lipschitz in
X With oy = a™ 2, ay = a™*, choose § = O(a?) and suppose ||jj(x) — y; (@)|| < 6 and
[A(z) = X(x)|| < OXS. If L= o(,-) is p-strongly convex with p > c,a~2, then
[E[VE(z)] = VF(2)| < Chiascr,

where Chias depends only on Ly, Ly, Cq Ci, c,, and the penalty constant C,,. Here Ly,
and Ly » are the Lipschitz constants of VoL o(x,y) with respect to y and X (from the lemma
assumptions); Cg is the Lipschitz constant of Vg (from Assumption 3. 1| Ill )); C\ is an upper bound
on || A*(z)]] (guamnteed by strong convexity and LICQ); c,, is a positive constant linking the lower-
level strong convexity to a2 (see Lemma ; and Ch,y, Is the penalty parameter in our formulation

(determined by the choice of ay and as suﬁ‘iciently large such that the penalty term dominates any
curvature of f).

Proof. The quantity to bound is the bias |E[VF(z)] — VF(z)| = [VaLs o (2, 9(2)) = VE(2)].
We decompose this error into three parts using the triangle inequality:

IVaLs o(#,5(x)) = VE(@)| < [VoLs o (2,5(x)) — Vo Ly (2,55 (@) 24)
T
+ I VaL; (=, yjf\,a(x)) = VoL o2, 95 ()]l (25)
T
+ [VaLasa(, Y3 o(2) — VE ()| (26)
T3

(T1): This term bounds the error from the inexact minimization of L5  (x,-). Using the Lp -
Lipschitz continuity of V, L5  («,y) with respect to y (as assumed in the lemma statement) and the
(z)|| < & (from the lemma statement, where § = O(a?3)):

Ty < Ligy 3(x) — 5, (@)]] < Lizyd = 0(9). @7)

condition [|§(z) — y5

(T»): This term bounds the error from using the approximate dual 5\(33) instead of the true dual
A*(z) in defining the penalty Lagrangian and its minimizer. Using the triangle inequality:

Ty < |[Vals o (2,95 (%)) = Vol o(@: 45+ o ()|
FIVaLs o (2,950 o (2) = VaLae a2, y3e o (2))]- (28)
The first part of the sum is bounded by Ly ,y|y; (z) — y3- o(z)| (using the assumed Ly -

Lipschitz continuity of VL5  («,y) w.r.t y). The second part is bounded by L » [A(z) — X ()|
(using the assumed Ly x-Lipschitz continuity of VxL.ﬂ(a:,yf\*’a(x)) w.r.t the dual variable).
Invoking Lemma for Hy;{a(x) — Y@ < %(Ozl + a2)0, and using the condition

[M(@) — A*(z)]| < Cxd (from Assumption with § = ©(a?) as per this lemma’s setup):

C&O
Ty < Liy- =, Lay + 02)0 + Ly - a6 (29)
:O((al _;OQ)(S)—&-O((S). (30)

Given a; = a2, az = a™%, 50 (a1 + ) = O(a™?). With § = O(a?) and pp = O(a™?) (from
‘53> = O(a). The second term O(9) is

the lemma condition p > cﬂa’z), the first term is O (a;,
O(a?). Thus, Ty = O(a).
(T3): This term measures the inherent approximation error of the idealized penalty method (using

true \* and exact minimization y3. ,(z)) with respect to the true hypergradient VF'(z). As per the
lemma’s setup, this is bounded by:

T3 = [[Val- a(2, 43+ 0(2)) = VE(2)[| < Cpencr, G
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for some problem-dependent constant Cpep.

Combining Terms: Summing the bounds for 77, T, and T3, with 6 = @(a3):

IVaLs o (z,5(2)) = VE(z)|| < O(6) + O(a) + O(Cpenv) (32)
= 0(a®) 4+ O(a) + O(a) = O(a). (33)
Since E[VF(x)] = V4L ,(z,§(z)), we conclude that |[E[VF(z)] — VF(z)| < Chisscr. The

conditions § = O(a?) and 1 = ©(a~2) ensure that all error components are either O(a) or of a
smaller order.

Lemma 4.4 (Variance Bound). Under Assumption ( i)—(ii), let 0% be a uniform bound on

Var, 5 y(me/;,a(l” Y; ‘f))

With a mini-batch of N i.i.d. samples in Algorithm the conditional variance of the hypergradient
estimate satisfies

Var, (VF( )) <

ER

Proof. Let G; = V E;\ o (@, 7€) for j = 1,..., N,. Conditional on z, \, §, these G; are i.i.d.
random vectors with mean E,, 5 /[G;] = VL5 a(x g(x)) = I;\Q[Vﬁ’(x)}

The conditional variance of the averaged estimator is:

Z

I & 1
Var, 5 (VF(x)) = Var_ 5 ; N, > G| = 2 Var, 5 G; (34)
; g j=1
Since the G; are independent conditional on x, \, , we have:
Ng Ng
Var, 55 [ DGy | =D Var, 55(G)) (33)
j=1 j=1
By our Assumption ii), Var, 5 Q(Gj) < o2 for all 5. Therefore:
N, N,
1 1 <= 5 Nygo? o
Var, 5 5(VE (@) = 57 2 Var ) <m = = (36)
9 j=1 9 j=1 g g
Thus, the variance of the hypergradient estimator is bounded by ]‘(,—2 O

Theorem 4.1 (Accuracy of Stochastic Hypergradient). Let V F(x) be the output ofAlgorithmwith

penalty parameters oy = a~ 2, ay = a~*, and inner accuracy 6 = O(a?®). There exists a constant

Clias Such that:
2

n 2
B[|VE(z) ~ VF@)|?] < 203,07 + .
g

Proof. 1) Using the bias-variance decomposition and properties of conditional expectation:

E[|VF(z) - VF(2)|*) = E[|VF(2) - E[VF(x)] + E[VF(2)] - VF(2)|*]  (37)

By the inequality ||a + b[|* < 2||al|? + 2||b]|*:
E[|VE(z) = VF(2)|]’] < 2E[|VE (z) — EVF(2)]|?] + 2|E[VF(2)] = VF(@)|I>  (38)
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The first term is the expected conditional variance:
E[|VF(z) —E[VF(2)]|?] = EE, 5 ;[IVF(2) — E[VF(x)]||*] (39)
= E[Var, 5 ;(VF())] (40)

From Lemma we know that Var,, 5 g(VF (2)) < ]‘(,—z Therefore:

o2

E[|VF(z) — E[VF(2)]|*] < N, (41)

The second term is the squared bias, which from Lemma is bounded by:

[E[VE(2)] = VF(@)|]* < (Chiasa)* = Cips® (42)
Combining these bounds:

_ 2
E[|VE () - VF(@)[?] 2+ 2 +2- G0 3)

g

202

= 20312‘5042 + Vg (44)
O

Lemma 4.5 (Inner-loop Oracle Complexity). Fix o > 0 and set oy = a2, ag = a=4, § = O(a?).
Let g(z,-) be pg-strongly convex and Cgy-smooth, and the stochastic oracles of Assumption

have variance o2. Choose the mini-batch size Ny = 0?/a?. Running Algorithm |1\ with O(a‘g)

stochastic first-order oracle (SFO) calls in its inner loops yields a stochastic inexact gradient VE (z)
characterized by bias of O(«) and variance of O(a?).

Proof. We count the stochastic-gradient oracle calls made in one execution of Algorithm [T} The
inner tolerance is § = O(a?).

Cl1. Lower-level pair (§*, \*): For every outer iterate x, the constrained LL objective g(:, -) is 14-
strongly convex and Cg-smooth (Assumption . A stochastic primal-dual (SPD) algorithm with

. e . . t
mini-batches satisfies linear convergence Ely; — y*[|? < (1 — =) D3, k4 := Cy/pq Hence
9

t1 = O(kglog(1/6)) = O(% log %)

oracle calls give || 7* — y*||, || \* — A*|| < 6.

4

C2. Penalty minimisation (§): With &y = o~ % and as = o * we analyze L.  (z,):

* Strong convexity. The term 1 g contributes oy fi4; the smooth term f can subtract at most
C'y curvature. For sufficiently small o, pipen > a1 ptg/2.

» Smoothness. Because each h; is affine in y, the quadratic penalty has Hessian bounded by
as|| B2, 50 Lpen = O(a2)

Therefore the condition number is

L en —_
Kpen = —> :®(a 2/ug).
Hpen
A linear-rate variance-reduced method (SVRG) requires ¢ = O(kpenlog(1/8)) =

O(a™?1log(1/6)/py) oracle calls to attain ||§ — y%, || < dJohnson and Zhang| (2013).

C3. Total inner cost: Summing ¢; and ¢» and adding the mini-batch evaluations:

17



cost(z) = O((% + %) log %) + N.

Because § = O(a?), log(1/8) = 3log(1/a) (absorbed into O(-)) and a2 dominates C, for small
@, SO

cost(x) = O~(a*2/ug) + Ny.
Using Lemma [4.4, N, should satisfy o/\/N, < a, hence N, = ©(c?/a?). Plugging in,
cost(x) = O(a~2) ( constants depending on 1, and o2 are absorbed).

With this batch size, EH@F(m) — VF(z)|| < O(a) + 0/y/Ny = O(a), so the oracle outputs an
a-accurate hyper-gradient.

Set a = () for outer-loop tolerance ¢; the inner cost becomes O (c~2) O

Theorem 5.1 (Convergence with Stochastic Hypergradient Oracle). Suppose F' : R™ — R is Lp-
Lipschitz. Let VF (+) be a stochastic hypergradient oracle satisfying:

1. Bias bound: |E[VF (z)] — VF(z)|| < Cpiascx

0_2
N!!

2. Variance bound: E[HVF(:Z:) — ]E[VF(J?)] 11%]

IN

Then running Algorithmwith parameters D = @(g), n = @(‘Z%S), and Ny = @(Z—z) outputs
F

L2
. . " . . (F(xo)—inf F)L%
a point oy such that Eldist(0, 05 F (2ou))] < € + O(a), using T = O(~——55—"L) calls to
VE().
Proof. Forany t € [T1, since x; = x;—1 + A, we have by the fundamental theorem of calculus:
1
F(If) - F(.Tt_l) = / <VF(It_1 + SAt), At>d5 (45)
0
= K, unifjo,1][(VF(zs—1 + 5:A¢), Ag)] (46)
=E[(VF(z),As)] (47)

where equation follows from our algorithm’s definition of z; = x;_1 + $;A;. Summing over
te[T)=[|K x M]:
T
inf F < F(ar) = F(xzo) + > E[(VF(z), Ar)] (48)
t=1
K M
= F(z0) + > > EUVF(2k-1)M4m)» A(h—1)Mtm — Ur)]

k=1m=1

regret of online gradient descent

K M

+D > EUVF(2(h-1)ar4m)s )] (49)

k=1m=1

Gradient norm
where we’ve added and subtracted (VF(z:),u) in for any sequence of reference points
up, ..., ux € R satistying ||lu;|| < D for all 4.

The first double sum represents the regret of online gradient descent with stochastic gradients. For
any t € [T7:

[A¢p1 — uk|® = |lclipp (A¢ — nge) — url|® (50)
<Ay = nge — wil? (51)
= || Ar — wel® + 0?|Ge I — 20(A¢ — uk, o) (52)
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where (5T)) follows since projection onto a convex set decreases distance. Rearranging (52)):

I?

1A = wil)® = [ Avsr —unll®  nllge

(G, Ay —ug) < (53)
2n 2

Now, we decompose the key inner product using the bias-variance structure of our stochastic gradi-
ent oracle:

E{VF(21), Ay — k)] = E[(g, Ae — u)] + E(VF (1) — Ge, Ay — ui)] (54)

First term in eq. (54): For the first term in (34), using inequality (33):

Ar— w2 — 1A — wnll? =12
E[<§t,At_uk>]§E || t uk” 27|’| t+1 Uk” +77||92t|| (55)

For the expected squared norm in (33), using the bias-variance decomposition and the L-Lipschitz
property of F":

E[llg:1*] = E[|E., [g] + (3¢ — E., [G:)]1?] (56)
< E[|E.,[3:]11°] + E[llg: — E=, [3e]11°] (57)
<I?+ ng (58)

=L?>+0(a*) =0(1) (forsmall @ = o(1) and L is a given constant)  (59)
where (57) follows from the orthogonality of bias and variance terms. Therefore, we have:

A — wg]® = [|Avsr — g

- |
E Ay — <E
[<gt7 t uk)] = 277

+0(n) (60)

Second term in eq. : based on Cauchy-Schwarz inequality and noting that both ||A;|] < D
and ||ug|| < D by construction, we have:

E[(VF(z0) = G, A — ur)] S E[[VF(z1) = Gell - | Ar — ugl] o)
<2D-E[[|VF(2t) — gl (62)

By triangle inequality and the properties of our stochastic oracle:
E[[VF(z) = g:ll] < E[IVF(2) — Bz, [g:][] + E[|[Ez,[9:] — g2 ] (63)
< Chias + E[[|E., [g:] — 3¢|] (64)

For the variance term in (64), by Jensen’s inequality:
E[|E-.[3:] = 3:ll] < VEIIE=, [3:] — glI?] (65)
= VE[E.,[[|E:, [ét] - E/tIIQH (66)

= +/E[Var,, (g:)] (67)

ﬁ

where (66) follows from the tower property of conditional expectation, and (67) uses our variance
bound assumption. When N, = O(Z; ) ensures:

E[[|VF(2:) = gell] < Coiasx +

7_ = Chiasa + O(a) = O(«) (68)
VN
Therefore, combining (62) and (68), we can bound the second term in eq. (54) by:
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Putting together first term and second term : Combining (60) and (69):
A — up]]? = [|Ae1 — up?

B(VF (), A — )] <E | 2

] +0() +0(Da)  (70)

Summing (70) over t = (k — 1)M + m withm = 1,..., M for a fixed k:

M
Z E[(VF(2(k—1)M+m)s A(k—1)M4m — Uk)]

m=1
M 2 2 M M
A x=1)04m — Ukll® = 1A R—1)M4m+1 — Ukl
< E 0] O(D 71
) [ - # 30+ > 0wa) (1)

E[”A(k—l)M-H - Uk||2 - ||A(k—1)M+M+1 - UkHz]
2n

+ O(Mn) + O(M Da) (72)

Since [|A]| < D and ||ug|| < D, we have ||[A; — uk|| < 2D Vt. Therefore, we can further bound
by:
E[|Ag-nyar+1 — unll® = [Ag-vymra41 = wl’]
2

+O(Mn)+O(MDa)  (73)

2
g% + O(My) + O(MDa)

D2
:O(T + Mn+ MDq) (74)

Since this inequality holds for all € R, we can choose n = O(\/%) to minimize the upper bound
to get the tightest upper bound:

M
> EUVF(zh-1)M4m)s Age—1)p14m — ur)] < O(DVM + M Da) (75)
m=1
PART 2: BOUNDING THE REGRET OF ONLINE GRADIENT DESCENT IN EQ. @

For the second term in (@9), we choose u, strategically to extract the Goldstein subdifferential:

M
g = —p . 2zm=t VEGGnpem) 76)

IS VE(Zg—1ymm) |

With this choice of uy:

M M
Z (VF(2(—1)Mtm)s uk) = — Z VF(z(—1)M+m) a7
m=1 m=1
| M
=DM ||+ ; VF(2h-1)M1+m) (78)
Substituting and (78)) into (@9), and then into ({A8):
F(zg) —inf F > Z O(DVM)—O(MDa)+ DM - H Z VE(2(k—1)M+m) ] (79)
Solving for the average over k:
K M
1 1 F(z) — inf F 1
e Z i Z VF(zg-1ymim)|| < lo)MK + O(m) +O(a) (80)
k=1 m=1
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For the randomly chosen output Zy ~ Uniform{z1, ...,z }:
1

E l \/M) + O(a) (81)

The key insight is that these averages approximate the Goldstein subdifferential. Since
|2(k—1)ar+m — Tx|| < MD < & (by our choice of M = |3 ), we have:

XM
M Z VF(Z(kfl)Mer)

m=1

F(xzg) —inf F
<
< DMK + O(

VE(2(k-1)M+m) € OsF(zy) for all m € [M]
By convexity of the Goldstein subdifferential:

(82)
| M
7 > VF(2(e-1)pm4m) € OsF (k) (83)
m=1
Therefore, from and (83):
. F(xg) —inf F 1
E F(zouw))] < — 4
050,05 F (o)) < TP 0 () + 0(a) (84)
To achieve E[dist(0, 05 F (zou))] = ©(€), we set & = ©(e) and balance the remaining terms:
F(xzp) —inf F 1
<
T ) ( W) <e (85)
Let Cy = F(xo) — inf F'. We need both terms to be O(e):
Co
1
— =0(e 87
== () )
From (7)), we get:
L _o@) — M=o (88)
O - -
Vot -
Since M = [ & |, we have M ~ 2

, which gives us:

O Uls gy

1
ps (@) — D=0 () (89)
Let’s set D = O(de?) and M =

() to satisfy this constraint. From (86), we can determine K
Co

Co
Dk o) = K=96 <DM6>
Substituting our choices for D and M:

Co
K=0(-—2
((562- L -e)

(90)

62

CO
=0 (6)

92)
Let’sset K = © %) to satisfy this constraint. For the step size n, we need to ensure stability of
the algorithm. Based on standard analysis of stochastic gradient methods, we typically set:

D
n=6 <m) — 050 =0 (56 ©3)
21



Therefore, our final parameter settings are:

D = 0(d€?)
- ()
o (§)

n = 0(5e?)

Therefore, these parameter choices lead to E[dist(0, 05 F (zon))] < € + O(«)
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