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ABSTRACT

This work provides the first finite-time convergence guarantees for linearly con-
strained stochastic bilevel optimization using only first-order methods, requiring
solely gradient information without any Hessian computations or second-order
derivatives. We address the unprecedented challenge of simultaneously handling
linear constraints, stochastic noise, and finite-time analysis in bilevel optimiza-
tion, a combination that has remained theoretically intractable until now. While
existing approaches either require second-order information, handle only uncon-
strained stochastic problems, or provide merely asymptotic convergence results,
our method achieves finite-time guarantees using gradient-based techniques alone.
We develop a novel framework that constructs hypergradient approximations via
smoothed penalty functions, using approximate primal and dual solutions to over-
come the fundamental challenges posed by the interaction between linear con-
straints and stochastic noise. Our theoretical analysis provides explicit finite-time
bounds on the bias and variance of the hypergradient estimator, demonstrating
how approximation errors interact with stochastic perturbations. We prove that
our first-order algorithm converges to (δ, ϵ)-Goldstein stationary points using
Θ(δ−1ϵ−5) stochastic gradient evaluations, establishing the first finite-time com-
plexity result for this challenging problem class and representing a significant the-
oretical breakthrough in constrained stochastic bilevel optimization.

1 INTRODUCTION

Bilevel optimization is a powerful paradigm for hierarchical decision-making in machine learning,
including hyperparameter tuning Franceschi et al. (2018), meta-learning Finn et al. (2017), and
reinforcement learning Konda and Tsitsiklis (1999).

The standard formulation can be written as the following optimization problem:

min
x∈X

f(x, y∗(x)) s.t. y∗(x) ∈ argmin
y∈S(x)

g(x, y), (1)

Here S(x) denotes the feasible set of the lower-level problem (e.g., S(x) = Rm in the uncon-
strained case, or S(x) = {y : h(x, y) ≤ 0} for constrained cases). Furthermore, we define
F (x) := f(x, y∗(x)) to be the overall bilevel objective as a function of x. Traditional methods
of solving bilevel optimization often face scalability challenges Pedregosa (2016); Franceschi et al.
(2017), including implicit differentiation with its requisite Hessian computations Amos and Kolter
(2017); Ji and Yang (2021); Khanduri et al. (2024); Hu et al. (2023); Ghadimi and Wang (2018),
and iterative differentiation characterized by high memory and computational demands. Shen et al.
(2024); Brauer et al. (2024)

A recent breakthrough in bilevel optimization by Kwon et al. (2023); Liu et al. (2022) proposes us-
ing reformulation and penalty-based approaches to design a fully first-order gradient proxy. Several
follow-up works based on this breakthrough have emerged, including improving finite time con-
vergence of unconstrained bilevel optimization Chen et al. (2024a); Yang et al. (2023); Chen et al.
(2024b); Kwon et al. (2024), constrained bilevel optimization Khanduri et al. (2023); Kornowski
et al. (2024); Yao et al. (2024); Lu and Mei (2024), and applications of bilevel algorithms to ma-
chine learning Pan et al. (2024); Zhang et al. (2024); Petrulionytė et al. (2024).
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However, many real-world scenarios involve stochastic objectives and constraints together, where
gradients are noisy estimates from samples. While methods for unconstrained stochastic bilevel op-
timization have advanced (e.g., Ghadimi and Wang (2018); Kwon et al. (2023); Liu et al. (2022)),
the confluence of stochasticity and explicit LL linear constraints poses significant unresolved chal-
lenges. A critical gap persists: no existing methods offer finite-time convergence guarantees for
bilevel problems that are simultaneously stochastic and linearly constrained in the lower-level prob-
lem.

This paper bridges this gap by introducing the Fully First-order Constrained Stochastic Approxi-
mation (F2CSA) algorithm. We build upon the deterministic framework of Kornowski et al. (2024),
developing a novel smoothed, stochastic hypergradient oracle tailored for bilevel problems with lin-
early constrained LL subproblems and stochastic objectives. The key to our approach is a smoothed
reformulation that handles inexact dual variables, enabling robust hypergradient estimation from
noisy first-order information and inexact LL solves. Our theoretical analysis, based on Lipschitz
continuity and careful variance-bias tradeoffs, yields the first finite-time complexity guarantees for
reaching (δ, ϵ)-Goldstein stationary points in this setting.

Our contributions include:

• Stochastic Inexact Hypergradient Oracle: We develop a stochastic inexact hypergradient ora-
cle based on a smoothed Lagrangian method with penalty weights α1 = α−2 and α2 = α−4

where α > 0. This oracle approximates hypergradients with bias bounded by O(α) and vari-
ance bounded by O(1/Ng) using Ng first-order gradient evaluations. Our smoothed Lagrangian
method generalizes the approach from Kornowski et al. (2024) to allow approximate primal-dual
lower-level solutions for constructing inexact hypergradient oracles.

• Convergence Guarantees: We apply the stochastic inexact hypergradient oracle with parameter
α = ϵ and Ng = O(ϵ−2) to design a double-loop algorithm for stochastic bilevel optimization
problems with linear constraints. This algorithm attains a (δ, ϵ)-Goldstein stationary point of F (x)

with total first-order oracle complexity Õ(δ−1ϵ−5). This generalizes the deterministic bilevel op-
timization result with linear constraints (rate Õ(δ−1ϵ−4)) to the stochastic setting.

Our work provides the first finite-time convergence guarantees for linearly constrained stochastic
bilevel optimization under standard stochastic assumptions, providing a theoretically sound yet prac-
tical alternative to traditional bilevel optimization approaches.

2 RELATED WORK

Penalty Methods and First-Order Reformulations. To reduce the computational cost of second-
order derivatives in bilevel optimization, recent works have proposed scalable, first-order algorithms
based on penalty formulations Kwon et al. (2023); Liu et al. (2022). These techniques transform
constrained bilevel problems into single-level surrogates that can be solved efficiently with conver-
gence guarantees, where deterministic, partially stochastic, and fully stochastic bilevel optimization
can achieve ϵ-stationary point in O(ϵ−2), O(ϵ−4), O(ϵ−6) gradient calls, respectively Chen et al.
(2024b). The convergence rate of the deterministic case can be further improved to O(ϵ−1.5) by
momentum-based method Yang et al. (2023).

Bilevel Optimization with Linear Constraints. Due to the nonsmoothness of constrained bilevel
optimization problems, Kornowski et al. (2024) focuses on Goldstein stationarity Goldstein (1977)
and designs a new penalty method to achieve a zero-th order algorithm with O(δ−1ϵ−3) convergence
and a first-order algorithm with O(δ−1ϵ−4) convergence to a (ϵ, δ)-Goldstein stationary point. On
the other hand, Yao et al. (2024); Lu and Mei (2024) consider a different stationarity using ϵ-KKT
stationarity, where Lu and Mei (2024) achieves a O(ϵ−7) convergence rate, and Yao et al. (2024)
achieves a O(ϵ−2) rate under a stronger assumption of access to projection operators. Compared to
Goldstein stationarity, an ϵ-KKT stationary point requires satisfying approximate KKT conditions
(small constraint violation and small gradient norm of the Lagrangian), and hence is a stronger con-
dition. We choose Goldstein’s notion here as it naturally handles the nonsmoothness arising from
the piecewise definition of F (x) due to changing active constraints. (Notably, Yao et al. (2024) use
a doubly regularized gap function approach and obtain fast rates to an ϵ-KKT point under convexity
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and with projection oracles; our method assumes strong convexity and LICQ but applies to noncon-
vex F (x) and uses Goldstein’s criterion.)

Nonsmooth and nonconvex optimization. The nonsmooth and nonconvex structure of bilevel op-
timization with constraints makes its analysis closely related to nonsmooth nonconvex optimization.
The best-known convergence result is given by Zhang et al. (2020), which establishes optimal con-
vergence rates of O(δ−1ϵ−3) for the deterministic case and O(δ−1ϵ−4) for the stochastic case. Our
result of Õ(δ−1ϵ−5) is one factor of ϵ away from the optimal stochastic rate, indicating potential
room for improvement. In particular, future work could explore using momentum (e.g., as in Yang
et al. (2023)) or variance-reduction techniques to potentially improve the ϵ-dependence.

3 PROBLEM FORMULATION AND PENALTY-BASED APPROXIMATION

We consider the following linearly constrained bilevel optimization problem:

min
x∈X

F (x) := Eξ [f(x, y
∗(x); ξ)]

s.t. y∗(x) ∈ argmin
y∈Rm:h(x,y)≤0

Eζ [g(x, y; ζ)]
(2)

Here, x ∈ Rn denotes the upper-level (UL) decision variable constrained to a closed convex set
X ⊆ Rn, and y ∈ Rm is the lower-level (LL) variable. The UL and LL objective functions f(x, y; ξ)
and g(x, y; ζ) are stochastic, depending on random variables ξ and ζ, respectively, which model
data or simulation noise. Expectations are taken with respect to the underlying distributions of these
random variables.

The LL feasible region is defined by a set of p linear inequality constraints:
h(x, y) := Ax−By − b ≤ 0, (3)

where A ∈ Rp×n, B ∈ Rp×m, and b ∈ Rp are known matrices and vector. We assume the norm of
the matrices are bounded by a given constant: ∥A∥ ≤ M∇h and ∥B∥ ≤ M∇h, which also ensures
that the Jacobian of the constraint function h(x, y) is bounded.

Directly solving the stochastic bilevel problem is challenging due to the implicit dependence of
F (x) on y∗(x) and the presence of noise in gradient and function evaluations.

3.1 ASSUMPTIONS

We apply the following standard assumptions to our problem.
Assumption 3.1 (Smoothness and Strong Convexity). We make the following assumptions on the
objectives f, g, constraints h, and associated matrices:

(i) Upper-Level Objective f : The function f(x, y) is Cf -smooth in (x, y) (i.e., its gradient ∇f
is Cf -Lipschitz continuous). The function f(x, y) is also Lf -Lipschitz continuous in (x, y).

Note: Lf -Lipschitz continuity of f implies that its gradient norm is bounded, i.e.,
∥∇f(x, y)∥ ≤ Lf .

(ii) Lower-Level Objective g: The function g(x, y) is Cg-smooth in (x, y) (i.e., its gradient
∇g is Cg-Lipschitz continuous). For each fixed x ∈ X , the function g(x, ·) is µg-strongly
convex in y, with µg > 0. The gradient norm is bounded: ∥∇g(x, y)∥ ≤ Lg . This strong
convexity ensures a unique LL minimizer y∗(x) for each x, necessary for our hypergradient
formulation. The bounded gradient assumption is standard in stochastic optimization.

(iii) Constraint Qualification (LICQ): The Linear Independence Constraint Qualification
holds for the lower-level constraints at the optimal solution y∗(x) for all x ∈ X . (Specifi-
cally, the Jacobian of the active constraints with respect to y, given by −B restricted to its
active rows, has full row rank.)

Under Assumption 3.1, the uniqueness of the LL solution y∗(x) and multipliers λ∗(x) is guaranteed.
LICQ can potentially be relaxed to weaker qualifications at the cost of more complex analysis; we
impose LICQ for simplicity.
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Assumption 3.2 (Global Lipschitz continuity of LL solution). The optimal lower-level solution
map y∗(x) is globally Ly-Lipschitz continuous in x on X . That is, there exists Ly ≥ 0 such that
∥y∗(x)− y∗(x′)∥ ≤ Ly∥x− x′∥ for all x, x′ ∈ X .

This assumption is standard in bilevel optimization (Facchinei and Pang, 2003). Given global
Lipschitzness, the UL objective F (x) = f(x, y∗(x)) is LF -Lipschitz continuous with LF ≤
Lf,x + Lf,yLy . This ensures y∗(x) varies Lipschitzly with x, which we use to control errors in
our convergence analysis.

We assume access only to noisy first-order information via stochastic oracles.

Assumption 3.3 (Stochastic Oracles). Stochastic first-order oracles (SFOs) ∇f̃(x, y, ξ),
∇g̃(x, y; ζ) are available, satisfying:

(i) Unbiasedness: E[∇f̃(x, y; ξ)] = ∇f(x, y) and E[∇g̃(x, y; ζ)] = ∇g(x, y).

(ii) Bounded Variance: E[∥∇f̃ −∇f∥2] ≤ σ2 and E[∥∇g̃ −∇g∥2] ≤ σ2.

Assumptions 3.1–3.3 are standard in bilevel optimization and provide the necessary smoothness,
convexity, and stability conditions for our analysis.

3.2 GOLDSTEIN STATIONARITY

Due to the potential nonsmoothness of F (x), we target Goldstein stationarity, a robust concept for
nonsmooth optimization.
Definition 3.1 (Goldstein Subdifferential (Goldstein, 1977)). For an LF -Lipschitz function F :
Rn → R, x ∈ Rn, δ > 0:

∂δF (x) := conv

 ⋃
z∈Bδ(x)

∂F (z)


where ∂F (z) is the Clarke subdifferential, and Bδ(x) is the δ-ball around x.
Definition 3.2 ((δ, ϵ)-Goldstein Stationarity). A point x ∈ X is (δ, ϵ)-Goldstein stationary if

dist(0, ∂δF (x) +NX(x)) ≤ ϵ,

where NX(x) is the normal cone to X at x.

4 ERROR ANALYSIS FOR STOCHASTIC HYPERGRADIENT

We first control the effect of inexact dual variables on the penalty gradient and propagate this
control to the shift of the penalized lower-level minimizer (Lemmas 4.1 and 4.2), which together
yield an O(α) bias for the oracle (Lemma 4.3). We then bound the sampling variance by O(1/Ng)
(Lemma 4.4); Theorem 4.1 consolidates these bounds, and Lemma 4.5 records the inner method
cost Õ(α−2).

Notation: We use tildes for stochastic/inexact quantities: ỹ∗(x), λ̃(x) (approximate LL primal-
dual solutions), ỹ(x) (approximate penalized minimizer), and ∇F̃ (x) (stochastic hypergradi-
ent estimator). True quantities lack tildes: y∗(x), λ∗(x), and ∇F (x). The estimator ∇F̃ (x) =
∇xLλ̃,α(x, ỹ(x)) approximates ∇F (x) with bias O(α) and variance O(1/Ng) (Lemmas 4.3
and 4.4).

4.1 STOCHASTIC IMPLEMENTATION

We compute the stochastic hypergradient oracle via a penalty formulation with smooth activation as

Remark 4.1 (Inner Loop Complexity). The approximate LL solution (ỹ∗(x), λ̃(x)) in Step 3 is
obtained via a stochastic primal-dual method with updates: yt+1 = yt − ηy∇y g̃(x, yt; ζt) and
λt+1 = max{0, λt + ηλ(Ax − Byt+1 − b)}. With g(x, ·) strongly convex and smooth, this attains
O(δ) accuracy in O(κg log(1/δ)) iterations (Lemma 4.5). Setting δ = Θ(α3) and α = Θ(ϵ) yields
O(κg log(1/ϵ)) iterations.
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Algorithm 1 Stochastic Penalty-Based Hypergradient Oracle

1: Input: Point x ∈ Rn, accuracy parameter α > 0, variance bound σ2 (bound on gradient noise
variance per Assumption 3.3), batch size Ng

2: Set: α1 = α−2, α2 = α−4, δ = Θ(α3)

3: Compute approximate lower-level solution (ỹ∗(x), λ̃(x)) by a stochastic primal-dual (SPD)
method (see Lemma 4.5) such that ∥ỹ∗(x) − y∗(x)∥ ≤ O(δ) and ∥λ̃(x) − λ∗(x)∥ ≤ O(δ),
where y∗(x) and λ∗(x) denote the true lower-level minimizer and corresponding optimal mul-
tiplier

4: Define the smooth Lagrangian Lλ̃,α(x, y) using the penalty Lagrangian (Eq. (4)) and smooth
activation function ρ(x) (defined below)

5: Compute ỹ(x) = argminy Lλ̃,α(x, y) by stochastic gradient steps such that ∥ỹ(x)−y∗
λ̃,α

(x)∥ ≤
δ, where y∗

λ̃,α
(x) := argminy Lλ̃,α(x, y)

6: Collect Ng i.i.d. samples {ξj}
Ng

j=1 and compute ∇F̃ (x) = 1
Ng

∑Ng

j=1 ∇xL̃λ̃,α(x, ỹ(x); ξj)

7: Output: ∇F̃ (x)

Smooth Activation Function: To regularize constraint activation near the boundary, define ρi(x) =
σh(hi(x, ỹ

∗(x))) · σλ(λ̃i(x)) where:

σh(z) =


0 if z < −τδ
τδ+z
τδ if − τδ ≤ z < 0

1 if z ≥ 0

, σλ(z) =


0 if z ≤ 0
z
ϵλ

if 0 < z < ϵλ
1 if z ≥ ϵλ

with τ = Θ(δ) and ϵλ > 0 being small positive parameters.

The penalty function for hypergradient estimation is:

Lλ̃,α(x, y) = f(x, y) + α1

(
g(x, y) + (λ̃(x))Th(x, y) −g(x, ỹ∗(x))) +

α2

2

p∑
i=1

ρi(x) · hi(x, y)
2

(4)
where α1 = α−2 and α2 = α−4 for α > 0. The terms with λ̃(x) and ỹ∗(x) promote KKT consis-
tency and enforce constraints through a smoothed quadratic penalty.

The oracle outputs ∇F̃ (x) with expectation E[∇F̃ (x)] = ∇xLλ̃,α(x, ỹ(x)). Its mean-squared error
decomposes into bias and variance relative to ∇F (x):

E[∥∇F̃ (x)−∇F (x)∥2] = E[∥∇F̃ (x)− E[∇F̃ (x)]∥2]︸ ︷︷ ︸
Variance

+ ∥E[∇F̃ (x)]−∇F (x)∥2︸ ︷︷ ︸
Bias2

(5)

We first bound the effect of using λ̃(x) in place of λ∗(x) on the gradient of the penalty Lagrangian.

Lemma 4.1 (Lagrangian Gradient Approximation). Assume ∥λ̃(x) − λ∗(x)∥ ≤ Cλδ and under
Assumption 3.1 (iii), let α1 = α−2, α2 = α−4, and τ = Θ(δ). Then for fixed (x, y):

∥∇Lλ∗,α(x, y)−∇Lλ̃,α(x, y)∥ ≤ O(α1δ + α2δ).

Proof sketch. Consider ∆λ := λ∗(x) − λ̃(x) and decompose the gradient difference into a lin-
ear penalty part and a quadratic penalty part. For the linear term, ∥∇h∥ is bounded by Assump-
tion 3.1(iii) and ∥∆λ∥ ≤ Cλδ, yielding O(α1δ). For the quadratic term, only near-active con-
straints contribute where |hi(x, ỹ

∗(x))| ≤ τδ, and one obtains two pieces: α2

∑
i(ρ

∗
i − ρ̃i)hi∇hi

and α2

2

∑
i h

2
i∇(ρ∗i − ρ̃i). Using |hi| = O(δ) in these regions, ∥∇hi∥ bounded, and ∥∇(ρ∗i − ρ̃i)∥ =

O(1/δ), both pieces are O(α2δ). Combining yields O(α1δ + α2δ).

Building on this result, we next bound the difference between exact solutions for true and approxi-
mate dual variables:
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Lemma 4.2 (Solution Error). Let y∗λ,α(x) := argminy Lλ,α(x, y) with α1 = α−2 and α2 = α−4.

Assume the target accuracy parameter α is small enough that µpen = α1µg− 1
2Cf > 0, where Cf is

the smoothness constant of f and µg is the strong convexity constant of g(x, ·) as per Assumption 3.1.
This ensures µpen ≥ 1

2α1µg , so that Lλ,α(x, y) is µ = Ω(αµg)-strongly convex in y.

If the dual approximation satisfies ∥λ̃(x)− λ∗(x)∥ ≤ Cλδ and the gradient bound from Lemma 4.1
holds, then:

∥y∗λ∗,α(x)− y∗
λ̃,α

(x)∥ ≤ Csol

µ
(α1 + α2)δ,

where the constant Csol depends on Cλ and M∇h (Assumption 3.1(iii) on ∥∇h∥ bound).

Strong convexity together with Lemma 4.1 yields the stated solution bound.

With controlled approximation errors, we now derive a systematic bias bound.

4.2 BIAS ANALYSIS (DETERMINISTIC ERROR)

The bias is the deterministic error E[∇F̃ (x)]−∇F (x), due to the penalty surrogate and the use of
inexact inner solutions (λ̃, ỹ) in place of (λ∗, y∗, y∗λ∗,α).

Lemma 4.3 (Hypergradient Bias Bound). Let ∇xLλ,α(x, y) denote the partial gradient of the
penalty Lagrangian with respect to x. Assume it is LH,y-Lipschitz in y and LH,λ-Lipschitz in
λ. With α1 = α−2, α2 = α−4, choose δ = Θ(α3) and suppose ∥ỹ(x) − y∗

λ̃,α
(x)∥ ≤ δ and

∥λ̃(x)− λ∗(x)∥ ≤ Cλδ. If Lλ∗,α(x, ·) is µ-strongly convex with µ ≥ cµα
−2, then

∥E[∇F̃ (x)]−∇F (x)∥ ≤ Cbiasα,

where Cbias depends only on LH,y , LH,λ, Cg , Cλ, cµ, and the penalty constant Cpen. Here LH,y

and LH,λ are the Lipschitz constants of ∇xLλ,α(x, y) with respect to y and λ (from the lemma
assumptions); Cg is the Lipschitz constant of ∇yg (from Assumption 3.1(ii)); Cλ is an upper bound
on ∥λ∗(x)∥ (guaranteed by strong convexity and LICQ); cµ is a positive constant linking the lower-
level strong convexity to α−2 (see Lemma 4.2); and Cpen is the penalty parameter in our formulation
(determined by the choice of α1 and α2 sufficiently large such that the penalty term dominates any
curvature of f ).

Proof sketch. By the triangle inequality, write ∥E[∇F̃ (x)] − ∇F (x)∥ ≤ T1 + T2 + T3, where
T1 = ∥∇xLλ̃,α(x, ỹ(x))−∇xLλ̃,α(x, y

∗
λ̃,α

(x))∥ ≤ LH,y δ = O(α3) for δ = Θ(α3);
T2 = ∥∇xLλ̃,α(x, y

∗
λ̃,α

(x)) −∇xLλ∗,α(x, y
∗
λ∗,α(x))∥ ≤ LH,λCλ δ + LH,y ∥y∗λ̃,α(x) − y∗λ∗,α(x)∥

and Lemma 4.2 gives ∥y∗
λ̃,α

− y∗λ∗,α∥ ≤ (Csol/µ)(α1 + α2)δ, so with α1 = α−2, α2 = α−4,
δ = Θ(α3), µ = Θ(α−2) we obtain T2 = O(α);
T3 = ∥∇xLλ∗,α(x, y

∗
λ∗,α(x)) − ∇F (x)∥ = O(Cpenα) by Kornowski et al. (2024). Hence

∥E[∇F̃ (x)]−∇F (x)∥ = O(α).

Thus the bias scales as O(α) when the inner accuracy is set to δ = Θ(α3). This means that ∇F̃ (x)
is an α-accurate estimator of ∇F (x) in expectation.

4.3 VARIANCE ANALYSIS (STOCHASTIC ERROR)

The variance, Varx,λ̃,ỹ(∇F̃ (x)) = Ex,λ̃,ỹ[∥∇F̃ (x) − E[∇F̃ (x)]∥2], quantifies the error due to a
finite batch size Ng in estimating E[∇F̃ (x)].
Lemma 4.4 (Variance Bound). Under Assumption 3.3 (i)–(ii), let σ2 be a uniform bound on

Varx,λ̃,ỹ
(
∇xL̃λ̃,α(x, ỹ; ξ)

)
.

With a mini-batch of Ng i.i.d. samples in Algorithm 1, the conditional variance of the hypergradient
estimate satisfies

Varx,λ̃,ỹ
(
∇F̃ (x)

)
≤ σ2

Ng
.
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Proof Sketch. The hypergradient estimate ∇F̃ (x) is the average of Ng i.i.d. random vectors Gj =

∇xL̃λ̃,α(x, ỹ; ξj).

By Assumption 3.3(ii), each term Gj has conditional variance bounded by σ2, i.e.,

Varx,λ̃,ỹ(Gj) ≤ σ2. Since the samples ξj are i.i.d., the terms Gj are conditionally independent, and
the conditional variance of their average is bounded accordingly. This follows standard mini-batch
averaging analysis.

4.4 COMBINED ERROR BOUNDS

We combine the bias and variance bounds to characterize the overall accuracy of the hypergradient
oracle.

Theorem 4.1 (Accuracy of Stochastic Hypergradient). Let ∇F̃ (x) be the output of Algorithm 1 with
penalty parameters α1 = α−2, α2 = α−4, and inner accuracy δ = O(α3). There exists a constant
Cbias such that:

E[∥∇F̃ (x)−∇F (x)∥2] ≤ 2C2
biasα

2 +
2σ2

Ng
.

Proof Sketch. We apply the standard bias–variance decomposition. The bias term is bounded using
Lemma 4.3, which shows that the expected output of the oracle approximates the true gradient up to
an O(α) error. - The variance term is controlled using Lemma 4.4, which shows that averaging Ng

noisy gradients leads to variance bounded by σ2/Ng .

Adding these two contributions and applying Jensen’s inequality yields the desired total error bound.

Lemma 4.5 (Inner-loop Oracle Complexity). Fix α > 0 and set α1 = α−2, α2 = α−4, δ = Θ(α3).
Let g(x, ·) be µg-strongly convex and Cg-smooth, and the stochastic oracles of Assumption 3.3
have variance σ2. Choose the mini-batch size Ng = σ2/α2. Running Algorithm 1 with Õ

(
α−2

)
stochastic first-order oracle (SFO) calls in its inner loops yields a stochastic inexact gradient ∇F̃ (x)
characterized by bias of O(α) and variance of O(α2).

5 STOCHASTIC BILEVEL ALGORITHM AND CONVERGENCE ANALYSIS

We now introduce the principal algorithm, F2CSA (Algorithm 2), which leverages the previously
analyzed stochastic hypergradient oracle within a non-smooth, non-convex optimization framework.

We then present detailed convergence proofs that provide rigorous guarantees for identifying (δ, ϵ)-
Goldstein stationary points.

Algorithm 2 provides an iterative framework leveraging our inexact stochastic hypergradient oracle.
The method maintains a direction term ∆t, updated using a momentum-like step involving the ora-
cle’s output gt = ∇F̃ (zt) and subsequently clipped to ensure ∥∆t∥ ≤ D. The output iterates xk are
constructed by averaging sample points zt to approximate the Goldstein subdifferential Goldstein
(1977); Zhang et al. (2020); Davis and Drusvyatskiy (2019).

Remark 5.1 (Integration with Stochastic Hypergradient Oracle). Algorithm 2 uses Algorithm 1 as its
gradient estimation subroutine. We fix α = Θ(ϵ), Ng = Θ(σ2/α2), and δ = Θ(α3) as constants (set
as functions of ϵ at the outset) rather than using time-decaying schedules. The step size η = Θ(δϵ3)
is constant (Theorem 5.1); in practice we tune η but do not decay it due to clipping.

5.1 CONVERGENCE TO GOLDSTEIN STATIONARITY

The following theorem establishes convergence to (δ, ϵ)-Goldstein stationarity (Definition 3.2) with
an inexact gradient oracle having bounded error.

Theorem 5.1 (Convergence with Stochastic Hypergradient Oracle). Suppose F : Rn → R is LF -
Lipschitz. Let ∇F̃ (·) be a stochastic hypergradient oracle satisfying:

7
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Algorithm 2 Nonsmooth Nonconvex Algorithm with Inexact Stochastic Hypergradient Oracle

1: Input: Initialization x0 ∈ Rn, clipping parameter D > 0, step size η > 0, Goldstein accuracy
δ > 0, iteration budget T ∈ N, inexact stochastic gradient oracle ∇F̃ : Rn → Rn

2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample st ∼ Unif[0, 1]
5: xt = xt−1 +∆t, zt = xt−1 + st∆t

6: Compute gt = ∇F̃ (zt) by running Algorithm 1 with Ng = Θ(σ2/α2) samples, so the inexact
gradient has bias O(α) and variance O(α2).

7: ∆t+1 = clipD(∆t − ηgt) {clipD(v) := min{1, D
∥v∥} · v}

8: end for
9: M = ⌊ δ

D ⌋, K = ⌊ T
M ⌋ {Group iterations for Goldstein subdifferential}

10: for k = 1, . . . ,K do
11: xk = 1

M

∑M
m=1 z(k−1)M+m

12: end for
13: Output: xout ∼ Uniform{x1, . . . , xK}

1. Bias bound: ∥E[∇F̃ (x)]−∇F (x)∥ ≤ Cbiasα

2. Variance bound: E[∥∇F̃ (x)− E[∇F̃ (x)]∥2] ≤ σ2

Ng

Then running Algorithm 2 with parameters D = Θ( δϵ
2

L2
F
), η = Θ( δϵ

3

L4
F
), and Ng = Θ(σ

2

α2 ) outputs

a point xout such that E[dist(0, ∂δF (xout))] ≤ ϵ + O(α), using T = O(
(F (x0)−inf F )L2

F

δϵ3 ) calls to
∇F̃ (·).

Proof Sketch. We first take Ng = Θ(σ2/α2) to get bias O(α) and variance O(α2).

Clip online gradient descent telescopes; error terms are O(η) (stability) and O(Dα) (stochastic).

Choose M = Θ(ϵ−2) and D = Θ(δϵ2) so ∥zt − xk∥ ≤ MD ≤ δ and the block average lies in
∂δF (xk).

Set η = Θ(δϵ3) and run T = O(((F (x0) − inf F )L2
F )/(δϵ

3)) to obtain E[dist(0, ∂δF (xout))] ≤
ϵ+O(α).

Finally, set α = Θ(ϵ) to conclude Θ(ϵ) stationarity.

Using Theorem 5.1, we can finally show the overall complexity of stochastic constrained bilevel
optimization.
Theorem 5.2 (Complexity of solving stochastic constrained bilevel optimization). The total
stochastic first-order oracle (SFO) complexity is

T ·Ng = Θ

(
F (x0)− inf F

δϵ3

)
·Θ

(
σ2

ϵ2

)
= Θ

(
(F (x0)− inf F )σ2

δϵ5

)
(6)

Including logarithmic factors from the inner loops, this becomes:

SFO complexity = Õ

(
(F (x0)− inf F )σ2

δϵ5

)
= Õ(δ−1ϵ−5) (7)

6 EXPERIMENTS

To validate our theoretical analysis and assess the practical performance of the proposed F2CSA
algorithm, we conduct experiments on synthetic bilevel optimization problems. We compare our
method against SSIGD Khanduri et al. (2023) and DSBLO Khanduri et al. (2024), both Hessian-
based approaches by Khanduri et al. SSIGD uses an implicit gradient approach while DSBLO em-
ploys a doubly stochastic bilevel method. These comparisons highlight the computational advan-
tages of our first-order approach over methods requiring second-order information.
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6.1 PROBLEM SETUP

We evaluate our approach on toy bilevel problems with box constraints:

minx∈Rdf(x, y∗(x)) := 1
2x

⊤Qux+ c⊤u x+ 1
2y

⊤Py + x⊤Py (8)

s.t. y∗(x) ∈ argminy∈[−1,1] g(x, y) :=
1
2y

⊤Qly + c⊤l y + x⊤y (9)

Parameters Qu, Ql, P, cu, cl are sampled from zero-mean Gaussians. Stochasticity is introduced by
adding Gaussian noise N (0, σ2) to the quadratic terms during gradient evaluations with noise stan-
dard deviation σ = 0.01. All algorithms use identical problem instances, initial points, random
seeds, and the same lower-level solver to ensure fair evaluation. Step sizes are calibrated to be
comparable across methods: SSIGD employs diminishing step sizes with β = 10−4, DSBLO uses
adaptive step size selection, and F2CSA utilizes fixed step size η = 10−5, reflecting their different
algorithmic structures.

6.2 RESULTS AND ANALYSIS

compare3_dim50_cons10_seed1234.pdf

Figure 1: Loss convergence trajectories for
F2CSA, SSIGD, and DSBLO in dimension 50.

time_vs_dim_line_plot.pdf

Figure 2: Computational cost scaling with prob-
lem dimension.

CONVERGENCE PERFORMANCE

Figure 1 shows convergence trajectories on a 50-dimensional problem. All three methods converge
to similar final loss values, with F2CSA maintaining stable convergence. The comparable perfor-
mance of F2CSA to Hessian-based methods is consistent with our theoretical analysis in Lemma 4.3,
which bounds the oracle error at O(α) bias and O(1/Ng) variance.

COMPUTATIONAL SCALABILITY

Figure 2 shows computational cost scaling with problem dimension from d = 100 to d = 4000. The
plot reveals a crossover point around d = 1000: for d < 1000, Hessian-based methods (DSBLO and
SSIGD) are faster, while for d > 1000, F2CSA becomes increasingly advantageous. At d = 4000,
F2CSA requires 7.7 seconds compared to 22.6 seconds for DSBLO and 22.0 seconds for SSIGD,
representing approximately 3× speedup. The plot shows F2CSA maintains near-linear growth, while
Hessian-based methods exhibit super-linear growth as dimension increases.

KEY INSIGHTS

The experimental results demonstrate that F2CSA achieves comparable convergence performance to
Hessian-based methods while providing superior computational efficiency in high dimensions. The
crossover around d = 1000 and the 3× speedup at d = 4000 validate the theoretical advantage of
our first-order approach, which avoids quadratic-scaling Hessian computations. This makes F2CSA
well-suited for high-dimensional applications where computational efficiency is critical.
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7 CONCLUSION AND FUTURE WORK

We introduced a fully first-order framework for linearly constrained stochastic bilevel optimiza-
tion and established the first finite-time guarantee to (δ, ϵ)-Goldstein stationarity using a smoothed
penalty-based hypergradient oracle. Section 4 quantified the oracle’s error via an O(α) bias and
O(1/Ng) variance, which, together with the inner-loop cost in Lemma 4.5, yielded the cali-
brated choice Ng = Θ(σ2/α2) and inner tolerance δ = Θ(α3). Section 5 integrated this or-
acle into a clipped nonsmooth algorithm attaining E[dist(0, ∂δF (xout))] ≤ ϵ + O(α) in T =
O(((F (x0) − inf F )L2

F )/(δϵ
3)) iterations; setting α = Θ(ϵ) implies the overall SFO complex-

ity Õ(δ−1ϵ−5). Experiments corroborated the theory: F2CSA scales favorably in high dimensions,
trading a small loss gap for speed, and outperforms Hessian-based baselines in wall-clock time at
large d without sacrificing solution quality.

Two limitations are noteworthy. First, the rate is one factor of ϵ from the best-known stochastic
nonsmooth complexity, suggesting headroom for variance reduction or momentum. Second, our
analysis hinges on LICQ, strong convexity of the lower level, and linear constraints; relaxing these
raises technical challenges. (LICQ could potentially be relaxed to weaker conditions at the cost of
more complex analysis.)

Promising directions include: (i) variance-reduced estimators or momentum to approach
Õ(δ−1ϵ−4); (ii) structure-aware penalties stable under weaker qualifications; (iii) specialized treat-
ments of one-sided stochasticity; and (iv) extending to nonlinear constraints. These would broaden
practicality in meta-learning, RL, and large-scale ERM scenarios.
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A APPENDIX

Lemma 4.1 (Lagrangian Gradient Approximation). Assume ∥λ̃(x) − λ∗(x)∥ ≤ Cλδ and under
Assumption 3.1 (iii), let α1 = α−2, α2 = α−4, and τ = Θ(δ). Then for fixed (x, y):

∥∇Lλ∗,α(x, y)−∇Lλ̃,α(x, y)∥ ≤ O(α1δ + α2δ).

Proof. Define penalty Lagrangian:

Lλ,α(x, y) = f(x, y) + α1(g(x, y) + λTh(x, y)− g(x, ỹ∗(x))) (10)

+
α2

2

p∑
i=1

ρi(x)hi(x, y)
2 (11)

with activation ρi(x) = σh(hi(x, ỹ
∗(x))) · σλ(λi(x)) and dual error ∆λ = λ∗(x)− λ̃(x).

The gradient difference decomposes as:

∇Lλ∗,α −∇Lλ̃ = α1(∇h)T∆λ︸ ︷︷ ︸
Linear Term

+ ∇∆Q︸ ︷︷ ︸
Quadratic Term

(12)

where ∆Q = α2

2

∑p
i=1 ∆ρi(x)hi(x, y)

2 with ∆ρi(x) = ρ∗i (x)− ρ̃i(x).

Linear Term in (12):

From h(x, y) = Ax−By − b, we have:
∥∇h∥ ≤ ∥A∥+ ∥B∥ ≤ 2MAB (13)

Using (13) and ∥∆λ∥ ≤ Cλδ:

∥α1(∇h)T∆λ∥ ≤ α1 · 2MAB · Cλδ = O(α1δ) (14)

Quadratic Term in (12):

The quadratic gradient expands to:

∇∆Q = α2

p∑
i=1

∆ρihi∇hi︸ ︷︷ ︸
(T1)

+
α2

2

p∑
i=1

h2
i∇∆ρi︸ ︷︷ ︸

T2

(15)

(T1): ∆ρi ̸= 0 only for near-active constraints where |hi(x, ỹ
∗(x))| ≤ τδ = O(δ).

For constraint values:
hi(x, y)− hi(x, ỹ

∗(x)) = Bi(ỹ
∗(x)− y) (16)

=⇒ |hi(x, y)− hi(x, ỹ
∗(x))| ≤ MABδ (17)

Using (17): |hi(x, y)| ≤ O(δ) +MABδ = O(δ) for near-active constraints.

With |∆ρi| ≤ 1 and ∥∇hi∥ ≤ 2MAB :
∥∆ρihi∇hi∥ ≤ O(δ) =⇒ ∥T1∥ ≤ α2p ·O(δ) = O(α2δ) (18)

(T2): ∥∇∆ρi∥ = O(1/δ) only when |hi(x, ỹ
∗(x))| = O(δ).

In these regions: |hi(x, y)| = O(δ) so:

h2
i · ∥∇∆ρi∥ = O(δ)2 ·O(1/δ) = O(δ) (19)

Using (19):

∥T2∥ ≤ α2

2
p ·O(δ) = O(α2δ) (20)

From (14), (18), and (20):
∥∇Lλ∗,α −∇Lλ̃∥ ≤ O(α1δ) +O(α2δ) +O(α2δ) = O(α1δ + α2δ) (21)
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Lemma 4.2 (Solution Error). Let y∗λ,α(x) := argminy Lλ,α(x, y) with α1 = α−2 and α2 = α−4.

Assume the target accuracy parameter α is small enough that µpen = α1µg− 1
2Cf > 0, where Cf is

the smoothness constant of f and µg is the strong convexity constant of g(x, ·) as per Assumption 3.1.
This ensures µpen ≥ 1

2α1µg , so that Lλ,α(x, y) is µ = Ω(αµg)-strongly convex in y.

If the dual approximation satisfies ∥λ̃(x)− λ∗(x)∥ ≤ Cλδ and the gradient bound from Lemma 4.1
holds, then:

∥y∗λ∗,α(x)− y∗
λ̃,α

(x)∥ ≤ Csol

µ
(α1 + α2)δ,

where the constant Csol depends on Cλ and M∇h (Assumption 3.1(iii) on ∥∇h∥ bound).

Proof. For brevity, let y∗λ∗,α(x) = y∗λ∗ and y∗
λ̃,α

(x) = y∗
λ̃

. From the definition of these minimizers,
we have the first-order optimality conditions:

∇yLλ∗,α(x, y
∗
λ∗) = 0 (22)

∇yLλ̃,α(x, y
∗
λ̃
) = 0 (23)

The lemma assumes that Lλ,α(x, y) is µ-strongly convex in y (for relevant λ, including λ∗). Thus,
Lλ∗,α(x, ·) is µ-strongly convex. A standard property of a µ-strongly convex function ϕ(y) with
minimizer y∗1 is that for any y2:

µ∥y∗1 − y2∥2 ≤ ⟨∇yϕ(y
∗
1)−∇yϕ(y2), y

∗
1 − y2⟩

Applying this with ϕ(y) = Lλ∗,α(x, y), y∗1 = y∗λ∗ , and y2 = y∗
λ̃

:

µ∥y∗λ∗ − y∗
λ̃
∥2 ≤ ⟨∇yLλ∗,α(x, y

∗
λ∗)−∇yLλ∗,α(x, y

∗
λ̃
), y∗λ∗ − y∗

λ̃
⟩

Using the optimality condition from Eq. (22), ∇yLλ∗,α(x, y
∗
λ∗) = 0, this simplifies to:

µ∥y∗λ∗ − y∗
λ̃
∥2 ≤ ⟨−∇yLλ∗,α(x, y

∗
λ̃
), y∗λ∗ − y∗

λ̃
⟩

Now, we add and subtract ∇yLλ̃,α(x, y
∗
λ̃
) inside the inner product (and use ∇yLλ̃,α(x, y

∗
λ̃
) = 0

from Eq. (23)):

µ∥y∗λ∗ − y∗
λ̃
∥2 ≤ ⟨∇yLλ̃,α(x, y

∗
λ̃
)−∇yLλ∗,α(x, y

∗
λ̃
), y∗λ∗ − y∗

λ̃
⟩

(since ∇yLλ̃,α(x, y
∗
λ̃
) = 0)

Applying the Cauchy-Schwarz inequality:

µ∥y∗λ∗ − y∗
λ̃
∥2 ≤ ∥∇yLλ̃,α(x, y

∗
λ̃
)−∇yLλ∗,α(x, y

∗
λ̃
)∥ · ∥y∗λ∗ − y∗

λ̃
∥

If y∗λ∗ ̸= y∗
λ̃

, we can divide by ∥y∗λ∗ − y∗
λ̃
∥:

µ∥y∗λ∗ − y∗
λ̃
∥ ≤ ∥∇yLλ∗,α(x, y

∗
λ̃
)−∇yLλ̃,α(x, y

∗
λ̃
)∥

Lemma 4.1 states that for any fixed (x, y), ∥∇Lλ∗,α(x, y)−∇Lλ̃,α(x, y)∥ ≤ O(α1δ + α2δ). This
implies there exists a constant, which we identify with Csol from the lemma statement (where Csol
depends on Cλ and M∇h), such that:

∥∇Lλ∗,α(x, y
∗
λ̃
)−∇Lλ̃,α(x, y

∗
λ̃
)∥ ≤ Csol(α1 + α2)δ

Substituting this into the inequality above:

µ∥y∗λ∗ − y∗
λ̃
∥ ≤ Csol(α1 + α2)δ

Dividing by µ (which is positive as µ = Ω(αµg) and µg > 0, α > 0) yields the result:

∥y∗λ∗,α(x)− y∗
λ̃,α

(x)∥ ≤ Csol

µ
(α1 + α2)δ

If y∗λ∗ = y∗
λ̃

, the inequality holds trivially. This completes the proof.
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Lemma 4.3 (Hypergradient Bias Bound). Let ∇xLλ,α(x, y) denote the partial gradient of the
penalty Lagrangian with respect to x. Assume it is LH,y-Lipschitz in y and LH,λ-Lipschitz in
λ. With α1 = α−2, α2 = α−4, choose δ = Θ(α3) and suppose ∥ỹ(x) − y∗

λ̃,α
(x)∥ ≤ δ and

∥λ̃(x)− λ∗(x)∥ ≤ Cλδ. If Lλ∗,α(x, ·) is µ-strongly convex with µ ≥ cµα
−2, then

∥E[∇F̃ (x)]−∇F (x)∥ ≤ Cbiasα,

where Cbias depends only on LH,y , LH,λ, Cg , Cλ, cµ, and the penalty constant Cpen. Here LH,y

and LH,λ are the Lipschitz constants of ∇xLλ,α(x, y) with respect to y and λ (from the lemma
assumptions); Cg is the Lipschitz constant of ∇yg (from Assumption 3.1(ii)); Cλ is an upper bound
on ∥λ∗(x)∥ (guaranteed by strong convexity and LICQ); cµ is a positive constant linking the lower-
level strong convexity to α−2 (see Lemma 4.2); and Cpen is the penalty parameter in our formulation
(determined by the choice of α1 and α2 sufficiently large such that the penalty term dominates any
curvature of f ).

Proof. The quantity to bound is the bias ∥E[∇F̃ (x)] −∇F (x)∥ = ∥∇xLλ̃,α(x, ỹ(x)) −∇F (x)∥.
We decompose this error into three parts using the triangle inequality:

∥∇xLλ̃,α(x, ỹ(x))−∇F (x)∥ ≤ ∥∇xLλ̃,α(x, ỹ(x))−∇xLλ̃,α(x, y
∗
λ̃,α

(x))∥︸ ︷︷ ︸
T1

(24)

+ ∥∇xLλ̃,α(x, y
∗
λ̃,α

(x))−∇xLλ∗,α(x, y
∗
λ∗,α(x))∥︸ ︷︷ ︸

T2

(25)

+ ∥∇xLλ∗,α(x, y
∗
λ∗,α(x))−∇F (x)∥︸ ︷︷ ︸
T3

(26)

(T1): This term bounds the error from the inexact minimization of Lλ̃,α(x, ·). Using the LH,y-
Lipschitz continuity of ∇xLλ̃,α(x, y) with respect to y (as assumed in the lemma statement) and the
condition ∥ỹ(x)− y∗

λ̃,α
(x)∥ ≤ δ (from the lemma statement, where δ = Θ(α3)):

T1 ≤ LH,y∥ỹ(x)− y∗
λ̃,α

(x)∥ ≤ LH,yδ = O(δ). (27)

(T2): This term bounds the error from using the approximate dual λ̃(x) instead of the true dual
λ∗(x) in defining the penalty Lagrangian and its minimizer. Using the triangle inequality:

T2 ≤ ∥∇xLλ̃,α(x, y
∗
λ̃,α

(x))−∇xLλ̃,α(x, y
∗
λ∗,α(x))∥

+ ∥∇xLλ̃,α(x, y
∗
λ∗,α(x))−∇xLλ∗,α(x, y

∗
λ∗,α(x))∥. (28)

The first part of the sum is bounded by LH,y∥y∗λ̃,α(x) − y∗λ∗,α(x)∥ (using the assumed LH,y-

Lipschitz continuity of ∇xLλ̃,α(x, y) w.r.t y). The second part is bounded by LH,λ∥λ̃(x)− λ∗(x)∥
(using the assumed LH,λ-Lipschitz continuity of ∇xL·,α(x, y

∗
λ∗,α(x)) w.r.t the dual variable).

Invoking Lemma 4.2 for ∥y∗
λ̃,α

(x) − y∗λ∗,α(x)∥ ≤ Csol
µ (α1 + α2)δ, and using the condition

∥λ̃(x)− λ∗(x)∥ ≤ Cλδ (from Assumption 3.3, with δ = Θ(α3) as per this lemma’s setup):

T2 ≤ LH,y ·
Csol

µ
(α1 + α2)δ + LH,λ · Cλδ (29)

= O

(
(α1 + α2)δ

µ

)
+O(δ). (30)

Given α1 = α−2, α2 = α−4, so (α1 + α2) = O(α−4). With δ = Θ(α3) and µ = Θ(α−2) (from
the lemma condition µ ≥ cµα

−2), the first term is O
(

α−4α3

α−2

)
= O(α). The second term O(δ) is

O(α3). Thus, T2 = O(α).

(T3): This term measures the inherent approximation error of the idealized penalty method (using
true λ∗ and exact minimization y∗λ∗,α(x)) with respect to the true hypergradient ∇F (x). As per the
lemma’s setup, this is bounded by:

T3 = ∥∇xLλ∗,α(x, y
∗
λ∗,α(x))−∇F (x)∥ ≤ Cpenα, (31)
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for some problem-dependent constant Cpen.

Combining Terms: Summing the bounds for T1, T2, and T3, with δ = Θ(α3):

∥∇xLλ̃,α(x, ỹ(x))−∇F (x)∥ ≤ O(δ) +O(α) +O(Cpenα) (32)

= O(α3) +O(α) +O(α) = O(α). (33)

Since E[∇F̃ (x)] = ∇xLλ̃,α(x, ỹ(x)), we conclude that ∥E[∇F̃ (x)] − ∇F (x)∥ ≤ Cbiasα. The
conditions δ = Θ(α3) and µ = Θ(α−2) ensure that all error components are either O(α) or of a
smaller order.

Lemma 4.4 (Variance Bound). Under Assumption 3.3 (i)–(ii), let σ2 be a uniform bound on

Varx,λ̃,ỹ
(
∇xL̃λ̃,α(x, ỹ; ξ)

)
.

With a mini-batch of Ng i.i.d. samples in Algorithm 1, the conditional variance of the hypergradient
estimate satisfies

Varx,λ̃,ỹ
(
∇F̃ (x)

)
≤ σ2

Ng
.

Proof. Let Gj = ∇xL̃λ̃,α(x, ỹ; ξj) for j = 1, . . . , Ng . Conditional on x, λ̃, ỹ, these Gj are i.i.d.
random vectors with mean Ex,λ̃,ỹ[Gj ] = ∇xLλ̃,α(x, ỹ(x)) = Ex,λ̃,ỹ[∇F̃ (x)].

The conditional variance of the averaged estimator is:

Varx,λ̃,ỹ(∇F̃ (x)) = Varx,λ̃,ỹ

 1

Ng

Ng∑
j=1

Gj

 =
1

N2
g

Varx,λ̃,ỹ

 Ng∑
j=1

Gj

 (34)

Since the Gj are independent conditional on x, λ̃, ỹ, we have:

Varx,λ̃,ỹ

 Ng∑
j=1

Gj

 =

Ng∑
j=1

Varx,λ̃,ỹ(Gj) (35)

By our Assumption 3.3(ii), Varx,λ̃,ỹ(Gj) ≤ σ2 for all j. Therefore:

Varx,λ̃,ỹ(∇F̃ (x)) =
1

N2
g

Ng∑
j=1

Varx,λ̃,ỹ(Gj) ≤
1

N2
g

Ng∑
j=1

σ2 =
Ngσ

2

N2
g

=
σ2

Ng
(36)

Thus, the variance of the hypergradient estimator is bounded by σ2

Ng
.

Theorem 4.1 (Accuracy of Stochastic Hypergradient). Let ∇F̃ (x) be the output of Algorithm 1 with
penalty parameters α1 = α−2, α2 = α−4, and inner accuracy δ = O(α3). There exists a constant
Cbias such that:

E[∥∇F̃ (x)−∇F (x)∥2] ≤ 2C2
biasα

2 +
2σ2

Ng
.

Proof. i) Using the bias-variance decomposition and properties of conditional expectation:

E[∥∇F̃ (x)−∇F (x)∥2] = E[∥∇F̃ (x)− E[∇F̃ (x)] + E[∇F̃ (x)]−∇F (x)∥2] (37)

By the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

E[∥∇F̃ (x)−∇F (x)∥2] ≤ 2E[∥∇F̃ (x)− E[∇F̃ (x)]∥2] + 2∥E[∇F̃ (x)]−∇F (x)∥2 (38)
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The first term is the expected conditional variance:

E[∥∇F̃ (x)− E[∇F̃ (x)]∥2] = E[Ex,λ̃,ỹ[∥∇F̃ (x)− E[∇F̃ (x)]∥2]] (39)

= E[Varx,λ̃,ỹ(∇F̃ (x))] (40)

From Lemma 4.4, we know that Varx,λ̃,ỹ(∇F̃ (x)) ≤ σ2

Ng
. Therefore:

E[∥∇F̃ (x)− E[∇F̃ (x)]∥2] ≤ σ2

Ng
(41)

The second term is the squared bias, which from Lemma 4.3 is bounded by:

∥E[∇F̃ (x)]−∇F (x)∥2 ≤ (Cbiasα)
2 = C2

biasα
2 (42)

Combining these bounds:

E[∥∇F̃ (x)−∇F (x)∥2] ≤ 2 · σ
2

Ng
+ 2 · C2

biasα
2 (43)

= 2C2
biasα

2 +
2σ2

Ng
(44)

Lemma 4.5 (Inner-loop Oracle Complexity). Fix α > 0 and set α1 = α−2, α2 = α−4, δ = Θ(α3).
Let g(x, ·) be µg-strongly convex and Cg-smooth, and the stochastic oracles of Assumption 3.3
have variance σ2. Choose the mini-batch size Ng = σ2/α2. Running Algorithm 1 with Õ

(
α−2

)
stochastic first-order oracle (SFO) calls in its inner loops yields a stochastic inexact gradient ∇F̃ (x)
characterized by bias of O(α) and variance of O(α2).

Proof. We count the stochastic-gradient oracle calls made in one execution of Algorithm 1. The
inner tolerance is δ = Θ(α3).

C1. Lower-level pair (ỹ∗, λ̃∗): For every outer iterate x, the constrained LL objective g(x, ·) is µg-
strongly convex and Cg-smooth (Assumption 3.1). A stochastic primal-dual (SPD) algorithm with
mini-batches satisfies linear convergence E∥yt − y∗∥2 ≤

(
1− 1

κg

)t
D2

0, κg := Cg/µg Hence

t1 = O
(
κg log(1/δ)

)
= O

(
Cg

µg
log 1

δ

)
oracle calls give ∥ ỹ∗ − y∗∥, ∥ λ̃∗ − λ∗∥ ≤ δ.

C2. Penalty minimisation (ỹ): With α1 = α−2 and α2 = α−4 we analyze Lλ̃∗,α(x, ·):

• Strong convexity. The term α1g contributes α1µg; the smooth term f can subtract at most
Cf curvature. For sufficiently small α, µpen ≥ α1µg/2.

• Smoothness. Because each hi is affine in y, the quadratic penalty has Hessian bounded by
α2∥B∥2, so Lpen = Θ(α2)

Therefore the condition number is

κpen =
Lpen

µpen
= Θ

(
α−2/µg

)
.

A linear-rate variance-reduced method (SVRG) requires t2 = O
(
κpen log(1/δ)

)
=

O
(
α−2 log(1/δ)/µg

)
oracle calls to attain ∥ỹ − y∗

λ̃∗,α
∥ ≤ δJohnson and Zhang (2013).

C3. Total inner cost: Summing t1 and t2 and adding the mini-batch evaluations:
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cost(x) = O
((Cg

µg
+ α−2

µg

)
log 1

δ

)
+ Ng.

Because δ = Θ(α3), log(1/δ) = 3 log(1/α) (absorbed into Õ(·)) and α−2 dominates Cg for small
α, so

cost(x) = Õ
(
α−2/µg

)
+Ng.

Using Lemma 4.4, Ng should satisfy σ/
√
Ng ≍ α, hence Ng = Θ(σ2/α2). Plugging in,

cost(x) = Õ(α−2) ( constants depending on µg and σ2 are absorbed).

With this batch size, E
∥∥∇̃F (x) − ∇F (x)

∥∥ ≤ O(α) + σ/
√
Ng = O(α), so the oracle outputs an

α-accurate hyper-gradient.

Set α = Θ(ε) for outer-loop tolerance ε; the inner cost becomes Õ(ε−2)

Theorem 5.1 (Convergence with Stochastic Hypergradient Oracle). Suppose F : Rn → R is LF -
Lipschitz. Let ∇F̃ (·) be a stochastic hypergradient oracle satisfying:

1. Bias bound: ∥E[∇F̃ (x)]−∇F (x)∥ ≤ Cbiasα

2. Variance bound: E[∥∇F̃ (x)− E[∇F̃ (x)]∥2] ≤ σ2

Ng

Then running Algorithm 2 with parameters D = Θ( δϵ
2

L2
F
), η = Θ( δϵ

3

L4
F
), and Ng = Θ(σ

2

α2 ) outputs

a point xout such that E[dist(0, ∂δF (xout))] ≤ ϵ + O(α), using T = O(
(F (x0)−inf F )L2

F

δϵ3 ) calls to
∇F̃ (·).

Proof. For any t ∈ [T ], since xt = xt−1 +∆t, we have by the fundamental theorem of calculus:

F (xt)− F (xt−1) =

∫ 1

0

⟨∇F (xt−1 + s∆t),∆t⟩ds (45)

= Est∼Unif[0,1][⟨∇F (xt−1 + st∆t),∆t⟩] (46)

= E[⟨∇F (zt),∆t⟩] (47)
where equation (47) follows from our algorithm’s definition of zt = xt−1 + st∆t. Summing over
t ∈ [T ] = [K ×M ]:

inf F ≤ F (xT ) = F (x0) +

T∑
t=1

E[⟨∇F (zt),∆t⟩] (48)

= F (x0) +

K∑
k=1

M∑
m=1

E[⟨∇F (z(k−1)M+m),∆(k−1)M+m − uk⟩]︸ ︷︷ ︸
regret of online gradient descent

+

K∑
k=1

M∑
m=1

E[⟨∇F (z(k−1)M+m), uk⟩]︸ ︷︷ ︸
Gradient norm

(49)

where we’ve added and subtracted ⟨∇F (zt), uk⟩ in (49) for any sequence of reference points
u1, . . . , uK ∈ Rd satisfying ∥ui∥ ≤ D for all i.

The first double sum represents the regret of online gradient descent with stochastic gradients. For
any t ∈ [T ]:

∥∆t+1 − uk∥2 = ∥clipD(∆t − ηg̃t)− uk∥2 (50)

≤ ∥∆t − ηg̃t − uk∥2 (51)

= ∥∆t − uk∥2 + η2∥g̃t∥2 − 2η⟨∆t − uk, g̃t⟩ (52)
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where (51) follows since projection onto a convex set decreases distance. Rearranging (52):

⟨g̃t,∆t − uk⟩ ≤
∥∆t − uk∥2 − ∥∆t+1 − uk∥2

2η
+

η∥g̃t∥2

2
(53)

Now, we decompose the key inner product using the bias-variance structure of our stochastic gradi-
ent oracle:

E[⟨∇F (zt),∆t − uk⟩] = E[⟨g̃t,∆t − uk⟩] + E[⟨∇F (zt)− g̃t,∆t − uk⟩] (54)

First term in eq. (54): For the first term in (54), using inequality (53):

E[⟨g̃t,∆t − uk⟩] ≤ E
[
∥∆t − uk∥2 − ∥∆t+1 − uk∥2

2η
+

η∥g̃t∥2

2

]
(55)

For the expected squared norm in (55), using the bias-variance decomposition and the L-Lipschitz
property of F :

E[∥g̃t∥2] = E[∥Ezt [g̃t] + (g̃t − Ezt [g̃t])∥2] (56)

≤ E[∥Ezt [g̃t]∥2] + E[∥g̃t − Ezt [g̃t]∥2] (57)

≤ L2 +
σ2

Ng
(58)

= L2 +O(α2) = O(1) (for small α = o(1) and L is a given constant) (59)

where (57) follows from the orthogonality of bias and variance terms. Therefore, we have:

E[⟨g̃t,∆t − uk⟩] ≤ E
[
∥∆t − uk∥2 − ∥∆t+1 − uk∥2

2η

]
+O(η) (60)

Second term in eq. (54): based on Cauchy-Schwarz inequality and noting that both ∥∆t∥ ≤ D
and ∥uk∥ ≤ D by construction, we have:

E[⟨∇F (zt)− g̃t,∆t − uk⟩] ≤ E[∥∇F (zt)− g̃t∥ · ∥∆t − uk∥] (61)
≤ 2D · E[∥∇F (zt)− g̃t∥] (62)

By triangle inequality and the properties of our stochastic oracle:

E[∥∇F (zt)− g̃t∥] ≤ E[∥∇F (zt)− Ezt [g̃t]∥] + E[∥Ezt [g̃t]− g̃t∥] (63)
≤ Cbiasα+ E[∥Ezt [g̃t]− g̃t∥] (64)

For the variance term in (64), by Jensen’s inequality:

E[∥Ezt [g̃t]− g̃t∥] ≤
√

E[∥Ezt [g̃t]− g̃t∥2] (65)

=
√

E[Ezt [∥Ezt [g̃t]− g̃t∥2]] (66)

=
√

E[Varzt(g̃t)] ≤
σ√
Ng

(67)

where (66) follows from the tower property of conditional expectation, and (67) uses our variance
bound assumption. When Ng = Θ(σ

2

α2 ) ensures:

E[∥∇F (zt)− g̃t∥] ≤ Cbiasα+
σ√
Ng

= Cbiasα+O(α) = O(α) (68)

Therefore, combining (62) and (68), we can bound the second term in eq. (54) by:

E[⟨∇F (zt)− g̃t,∆t − uk⟩] ≤ 2D ·O(α) = O(Dα) (69)
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Putting together first term and second term : Combining (60) and (69):

E[⟨∇F (zt),∆t − uk⟩] ≤ E
[
∥∆t − uk∥2 − ∥∆t+1 − uk∥2

2η

]
+O(η) +O(Dα) (70)

Summing (70) over t = (k − 1)M +m with m = 1, . . . ,M for a fixed k:
M∑

m=1

E[⟨∇F (z(k−1)M+m),∆(k−1)M+m − uk⟩]

≤
M∑

m=1

E
[∥∆(k−1)M+m − uk∥2 − ∥∆(k−1)M+m+1 − uk∥2

2η

]
+

M∑
m=1

O(η) +

M∑
m=1

O(Dα) (71)

≤
E[∥∆(k−1)M+1 − uk∥2 − ∥∆(k−1)M+M+1 − uk∥2]

2η
+O(Mη) +O(MDα) (72)

Since ∥∆t∥ ≤ D and ∥uk∥ ≤ D, we have ∥∆t − uk∥ ≤ 2D ∀t. Therefore, we can further bound
(72) by:

E[∥∆(k−1)M+1 − uk∥2 − ∥∆(k−1)M+M+1 − uk∥2]
2η

+O(Mη) +O(MDα) (73)

≤4D2

2η
+O(Mη) +O(MDα)

=O(
D2

η
+Mη +MDα) (74)

Since this inequality holds for all η ∈ R+, we can choose η = O( D√
M
) to minimize the upper bound

to get the tightest upper bound:
M∑

m=1

E[⟨∇F (z(k−1)M+m),∆(k−1)M+m − uk⟩] ≤ O(D
√
M +MDα) (75)

PART 2: BOUNDING THE REGRET OF ONLINE GRADIENT DESCENT IN EQ. (49)

For the second term in (49), we choose uk strategically to extract the Goldstein subdifferential:

uk = −D ·
∑M

m=1 ∇F (z(k−1)M+m)

∥
∑M

m=1 ∇F (z(k−1)M+m)∥
(76)

With this choice of uk:
M∑

m=1

⟨∇F (z(k−1)M+m), uk⟩ = −D ·

∥∥∥∥∥
M∑

m=1

∇F (z(k−1)M+m)

∥∥∥∥∥ (77)

= −DM ·

∥∥∥∥∥ 1

M

M∑
m=1

∇F (z(k−1)M+m)

∥∥∥∥∥ (78)

Substituting (75) and (78) into (49), and then into (48):

F (x0)− inf F ≥
K∑

k=1

[
−O(D

√
M)−O(MDα) +DM ·

∥∥∥∥∥ 1

M

M∑
m=1

∇F (z(k−1)M+m)

∥∥∥∥∥
]

(79)

Solving for the average over k:

1

K

K∑
k=1

∥∥∥∥∥ 1

M

M∑
m=1

∇F (z(k−1)M+m)

∥∥∥∥∥ ≤ F (x0)− inf F

DMK
+O(

1√
M

) +O(α) (80)
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For the randomly chosen output xout ∼ Uniform{x1, . . . , xK}:

E

[∥∥∥∥∥ 1

M

M∑
m=1

∇F (z(k−1)M+m)

∥∥∥∥∥
]
≤ F (x0)− inf F

DMK
+O(

1√
M

) +O(α) (81)

The key insight is that these averages approximate the Goldstein subdifferential. Since
∥z(k−1)M+m − xk∥ ≤ MD ≤ δ (by our choice of M = ⌊ δ

D ⌋), we have:

∇F (z(k−1)M+m) ∈ ∂δF (xk) for all m ∈ [M ] (82)

By convexity of the Goldstein subdifferential:

1

M

M∑
m=1

∇F (z(k−1)M+m) ∈ ∂δF (xk) (83)

Therefore, from (81) and (83):

E[dist(0, ∂δF (xout))] ≤
F (x0)− inf F

DMK
+Θ

(
1√
M

)
+Θ(α) (84)

To achieve E[dist(0, ∂δF (xout))] = Θ(ϵ), we set α = Θ(ϵ) and balance the remaining terms:

F (x0)− inf F

DMK
+Θ

(
1√
M

)
≤ ϵ (85)

Let C0 = F (x0)− inf F . We need both terms to be Θ(ϵ):

C0

DMK
= Θ(ϵ) (86)

1√
M

= Θ(ϵ) (87)

From (87), we get:

1√
M

= Θ(ϵ) =⇒ M = Θ

(
1

ϵ2

)
(88)

Since M = ⌊ δ
D ⌋, we have M ≈ δ

D , which gives us:

δ

D
= Θ

(
1

ϵ2

)
=⇒ D = Θ

(
δϵ2

)
(89)

Let’s set D = Θ(δϵ2) and M = Θ
(

1
ϵ2

)
to satisfy this constraint. From (86), we can determine K:

C0

DMK
= Θ(ϵ) =⇒ K = Θ

(
C0

DMϵ

)
(90)

Substituting our choices for D and M :

K = Θ

(
C0

δϵ2 · 1
ϵ2 · ϵ

)
(91)

= Θ

(
C0

δϵ

)
(92)

Let’s set K = Θ
(
C0

δϵ

)
to satisfy this constraint. For the step size η, we need to ensure stability of

the algorithm. Based on standard analysis of stochastic gradient methods, we typically set:

η = Θ

(
D√
M

)
= Θ

(
δϵ2 · ϵ

)
= Θ

(
δϵ3

)
(93)
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Therefore, our final parameter settings are:

D = Θ(δϵ2) (94)

M = Θ

(
1

ϵ2

)
(95)

K = Θ

(
C0

δϵ

)
(96)

η = Θ(δϵ3) (97)

Therefore, these parameter choices lead to E[dist(0, ∂δF (xout))] ≤ ϵ+O(α)
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