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Abstract

Autoregressive TTS leverages soft alignment
generated by the attention mechanism, which
provides the decoder with a well-designed con-
text vector. Subsequently, the decoder receives
both the semantic representation and the acous-
tic representation generated at the previous
time step. For this reason, autoregressive TTS
achieves strong performance. Thus, we pro-
pose novel algorithms to bring similar benefits
to non-autoregressive TTS. First, we propose
a method to distill soft alignments—originally
provided by attention in autoregressive mod-
els—into a flow matching model trained be-
tween mel-spectrograms and text representa-
tions. This allows non-autoregressive models
to leverage attention-like context vectors with-
out requiring autoregressive decoding. Second,
we introduce an invertible encoder, designed
based on normalizing flow, to disentangle se-
mantic and residual acoustic representations.
The invertible encoder maps the residual in-
formation, which is absent in the context vec-
tor, closer to a Gaussian distribution. During
inference, we can treat the context vector as
the semantic representation and Gaussian noise
as the acoustic representation. Lastly, to im-
prove zero-shot TTS performance, we propose
a prompt-aware lightweight convolution, where
the kernel weights are dynamically adjusted
for each speech prompt. With the proposed
methods, our non-autoregressive TTS model
achieves comparable performance to existing
autoregressive models.

1 Introduction

Zero-shot text-to-speech (TTS) (Casanova et al.,
2022; Wang et al., 2023) aims to synthesize speech
that reflects the voice characteristics of unseen
speakers at inference time, without requiring any
fine-tuning. Recent advances in large language
models (LLMs), such as GPT (Achiam et al., 2023)
and T5 (Ao et al., 2021), have inspired TTS archi-
tectures to adopt similar transformer-based models
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Figure 1: The concepts of our proposed method that
supplements missing acoustic information in the seman-
tic representation and refines the existing upsampling
process.

and in-context learning strategies. In zero-shot
TTS, speaker-specific information is typically cap-
tured from a short speech prompt (e.g., 3-second
mel-spectrogram), enabling generalization to un-
seen speakers. This prompt-based paradigm has
shown significant performance improvements over
traditional speaker embedding approaches. For in-
stance, VALL-E (Wang et al., 2023) leverages a
decoder-only transformer and 60K hours of train-
ing data to achieve strong zero-shot performance
via in-context learning. Most state-of-the-art zero-
shot TTS systems (Kim et al., 2024; Lee et al.,
2024) adopt autoregressive (AR) (Wang et al.,
2017; Shen et al., 2018) architectures due to their
ability to model temporal dependencies and lever-
age rich contextual information. These models
generate acoustic features (e.g., mel-spectrograms
or codec tokens (Défossez et al., 2022)) sequen-
tially, using previously generated outputs as inputs
for subsequent steps. Additionally, attention mech-
anisms provide soft alignment between text and



acoustic features, allowing the decoder to access
a fine-grained context vector that has rich context
information. Consequently, autoregressive TTS
systems typically outperform non-autoregressive
(NAR) (Ren et al., 2019, 2020) models in terms
of speech quality. Since the AR TTS systems
(Neekhara et al., 2024; Battenberg et al., 2024; Kim
et al., 2024) try to overcome the instability or low
latency of AR, the performance of AR becomes
higher.

On the other hands, apart from the general prob-
lems arising from the aforementioned AR, NAR
models tend to lag behind AR models in perfor-
mance, mainly due to two reasons: (1) NAR mod-
els lack access to previously generated acoustic
features during decoding, and (2) most NAR mod-
els rely on hard and shallow upsampling techniques
(e.g., duration-based duplication) rather than soft,
flexible alignment mechanisms. To bridge this gap,
as shown in Figure 1, we introduce Residual mod-
eling and soft alignment generation-based NAR-
TTS that can be on par with performance of AR
(RisoTTo) as follows:

Soft Alignment Generation (SAG): In autoregres-
sive TTS, attention mechanisms generate soft align-
ments between text and acoustic features, allowing
the decoder to condition on fine-grained contextual
information. However, non-autoregressive mod-
els cannot use such attention-based alignment, as
acoustic frames are generated in parallel. Instead,
they typically rely on hard and shallow upsampling
methods. To address this limitation, we introduce
SAG, which employs flow matching (Lipman et al.,
2022), which uses only text representation, to gen-
erate soft alignments between the mel-spectrogram
and the text representation. This enables the model
to leverage alignment information similar to that
of autoregressive attention, enhancing contextual
richness during inference.

Invertible Encoder (IE): The invertible encoder
disentangles acoustic and semantic information by
modeling the residual component between the mel-
spectrogram and the context vector. Specifically,
it maps the residual acoustic features—those not
captured by the semantic representation—into a
Gaussian distribution using a normalizing flow. At
inference time, acoustic information can be sam-
pled from this distribution, complementing the se-
mantic context and improving synthesis quality.
Prompt-Aware Lightweight Convolution (PAL):
Inspired by SC-CNN (Yoon et al., 2023), which im-
proves zero-shot TTS by generating convolutional

kernel weights from speaker embeddings, we adopt
a lightweight convolutional module whose ker-
nel weights are directly extracted from the speech
prompt. This enables prompt-adaptive feature
modulation and enhances generalization to unseen
speakers in zero-shot settings.

2 Background

2.1 Flow matching with OT path

Flow matching (Lipman et al., 2022) estimates
a probability path between data x; and prior g
distributions. (Lipman et al., 2022) defines opti-
mal transport (OT) path based on Gaussian condi-
tional probability path that forms a straight trajec-
tory between xg and x;. The OT path on time
step t € [0,1] varies depending on y; and oy,
which can be defined as follows: u; = tx; and
ot =1 — (1 — opmin)t. Since a probability distribu-
tion on the OT path follows a Gaussian distribution,
x¢ on time step ¢ can be computed by affine trans-
form as follows: z; = tx1 + (1 — (1 — opmin)t)xo.
Consequently, the vector field u;, which generates a
desired probability path, is defined via the ordinary
differential equation as follows:

d$t

dt
Flow matching is trained to predict the vector field
u corresponding to x; using mean squared error
(MSE) loss function between predicted vector field
vt and the target us. Thus, flow matching can gen-
erate data from prior distribution by repeating the
following equation until the time step ¢ becomes 1
from O:

=wu =21 — (1 — Omin)2o. (D

Tpqdt = Ty + vedt, )

where dt is set to % and N is the total number of
sampling.

2.2 Invertible encoder

A Normalizing flow (NF) network is a type of
generative model that uses an inverse function of
flow to generate data. Inspired by (Rombach et al.,
2020), we construct an NF network based on de-
coder of GlowTTS (Kim et al., 2020) to extract
the latent variable z from the conditional NF net-
work, as illustrated in Figure 2. This conditional
NF network takes two inputs: z and c, to generate a
conditional data distribution p(z|c) that is normal-
ized to the prior distribution. The log-likelihood of
the data distribution p(x|c) is calculated as follows:

of(x)
ox

log p(z|c) = log p(z|c) + log | det( ), 3)



where p(z|c) represents the output of the NF net-
work. To train the NF network, the negative
log-likelihood — log p(z|c) is decomposed into
Kullback-Leibler (KL) divergence and entropy as
follows:

KL(p(z[0)lq(2)) + H (z[c), 4)

where ¢(z) is the prior distribution (typically stan-
dard Gaussian), and H (z|c) denotes the constant
data entropy. According to (Alemi et al., 2016),
minimizing KL(p(z|c)|q(z)) reduces the mutual
information between z and c, effectively disentan-
gling z from c. This allows us to extract residual
information z from z, independently of ¢, since
q(z) is selected independently of c¢. The mutual
information (z, c) between z and c is represented
by:

I(z,c) :/p(z,c) log ppzz
. /p(z 10522

p(z)
/ (z,¢)log p(z

/ ) log p(z
< [ otz ((‘)) KLmlola(z). ©)

3 Method

We propose methods to improve the performance of
zero-shot non-autoregressive text-to-speech (TTS)
systems. Unlike autoregressive TTS models, non-
autoregressive ones face difficulties in generating
soft alignments between text and acoustic features
due to the absence of autoregressive attention mech-
anisms and acoustic context during inference. As a
result, they typically rely on hard upsampling meth-
ods, such as Gaussian upsampling (Donahue et al.,
2020), which limits expressiveness and accuracy.
To address this limitation, we introduce a Soft
Alignment Generation (SAG) network based on
flow matching that learns to produce soft align-
ments between text and mel-spectrograms without
access to acoustic features during inference. This
allows for more flexible and semantically enriched
context modeling. Additionally, to compensate for
the lack of acoustic information, we propose an
invertible encoder that disentangles residual acous-
tic features from the mel-spectrogram and maps
them to a Gaussian distribution. By sampling from
this distribution during inference, we can reintro-
duce acoustic context, bridging the gap between
non-autoregressive and autoregressive decoding.

Finally, to improve speaker adaptation, we propose
a prompt-aware lightweight convolution (LConv)
block, which uses speech prompts to modulate the
model dynamically in a zero-shot setting.

3.1 Model description

As shown in Figure 2, our non-autoregressive TTS
model consists of several modules. The speech
prompt encoder receives a speech prompt, which is
a randomly segmented 3-second mel-spectrogram
extracted from the reference speech, and encodes
it into a fixed-size vector s representing speaker
characteristics. This vector s is then used in the
prompt-aware LConv block, which integrates both
text and speaker information. Consequently, the
text encoder extracts a speaker-dependent text rep-
resentation hg. The representation hg is upsam-
pled by the Soft Alignment Generation (SAG) net-
work, which comprises a Conv2D-UNet-based flow
matching network and an attention mechanism.
The upsampled h; using SAG becomes a context
vector c¢g, which has the same length as the mel-
spectrogram. The context vector cs serves as a con-
ditional feature for the invertible encoder, which
takes the mel-spectrogram as input. Invertible en-
coder extracts residual information between ¢, and
mel-spectrogram, and mel decoder predicts the mel-
spectrogram conditioned on both the context vector
and residual information. Finally, the predicted
mel-spectrogram is refined to a higher-quality out-
put using a flow matching-based post-processing
network.

Text encoder comprises 6 Transformer blocks and
6 PAL blocks. Both the input and output dimen-
sions of the Transformer and PAL blocks are set to
256. Text encoder is conditioned by s and extracts
speaker-dependent text representation h

Mel decoder mirrors the architecture of the text en-
coder, employing the same configuration of Trans-
former and PAL blocks. In the decoder’s the last
Transformer blocks, self-attention is replaced with
cross-attention (Transformer w/ CA) to incorporate
both the speech prompt and the output from the fi-
nal PAL block. A linear projection layer in the mel
decoder maps the 256-dimensional hidden repre-
sentations to the 80-dimensional mel-spectrogram
space. The predicted mel-spectrogram .4 is then
compared to the target mel-spectrogram Ty, get
using the [2 loss as follows: Lmel = ||Ztarget —
xpred| ’%

Post-Processing network (PostNet) v, is based
on flow matching conditioned on a prior distri-
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Figure 2: Overall architecture of RisoTTo. CA and SA denote cross and self attentions, respectively.

bution, which is obtained by adding Gaussian
noise € sampled from N (0, I) to the predicted mel-
spectrogram Zp,.q. This results in a prior distribu-
tion defined as N (zpyeq, I). The vector field for the
flow matching-based PostNet is then formulated
based on this prior as follows:

Ufost = Ttarget — (1 - O'min)(-xpred + 6)~ (6)
Upost 18 trained by Lo as follows:
'Cpost = HUfOSt - 'Upost(mta t; epost)Ha (N

where 0,5 is learnable parameters, and PostNet
adopts the same ConvlD-UNet-based flow
matching architecture as employed in Matcha-TTS
(Mehta et al., 2024). To extract speaker infor-
mation, we utilize a speech prompt encoder that
generates a fixed-size embedding, following the
reference encoder design of Grad-TTS (Popov
et al.,, 2021). As discussed previously, such
fixed-size representations may be less effective
than directly leveraging the speech prompt for
in-context learning. To address this limitation, we
further incorporate in-context learning by using the
speech prompt within the mel decoder. Additional
details regarding other modules are provided in
following sections.
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Figure 3: Architecrue of soft alignment generation net-
work. A;,4 and white dotted box denote reconstructed
Ajog and attention mechanism, respectively.

3.2 Soft Alignment Generation

As shown in Figure 3, soft Alignment Genera-
tion (SAQG) consists of an attention mechanism, a
Conv2D-UNet-based flow matching network vs A,
and a duration predictor. The attention mechanism
computes the matrix multiplication between the
speaker-dependent text representation hg and the
mel-spectrogram, providing a soft alignment that



maximizes the speech likelihood of the TTS model,
such as autoregressive TTS models:

Attention(hs, Trarget) = softmax(:rtwgech)hs =cs, (8)

where c; denotes the context vector obtained by
upsampling h, to match the length of the mel-
spectrogram Tyqrget- As shown in Figure 3, the
product Zsargeths forms Aj,q, which serves as the
target for the vg 4. We define a vector field from
Ahard to Ajog via the following ordinary differen-
tial equation (ODE):

UEAG = Al - (1 - Umin)A07 (9)

where A; and Ag denote A;,, and Apyrq + €, re-
spectively. The hard alignment matrix Apg.q iS
obtained from A,;,, using monotonic alignment
search (Kim et al., 2020). The network vsaa
is trained to predict the vector field by minimiz-
ing the Lsag between the predicted vector field
vsac (A, hs, t;0s4¢) and the target vector field
Ut:

2
Lsac = ||uf™S — vsac(At, s, t;0sa6) || -
(At =tA; + (1 — (1 — O'min)t) A())

(10)

where 0 4 denotes the learnable parameters of the
vsAqG. During inference, the soft alignment matrix
Ajop¢ can be obtained by applying vs 4 using only
hs and Apgrq, which is predicted from the duration
predictor. The vector hg has 256 dimensions and
length N corresponding to the phoneme sequence.
It is repeated 7" times such as (Elias et al., 2021a),
where 71’ is the length of the mel-spectrogram. Thus,
the repeated hs has a dimension of N x T' x 256
and is concatenated with A, resulting in a feature
of dimension N x T x 257, which is then fed
into vsac. The network then predicts the vector
field and generates A, p; from Ayq,.q by iteratively

applying

Aprar = Av +vsac(As, hs, t;0sac)dt,  (11)

where dt = Neg and Ng ¢ is the total number
of sampling steps for vsag, with ¢ progressing
from O to 1. vgaqg is implemented as a Conv2D-
based U-Net!, with the input channel size set to
257. The number of feature channels in each block
is reduced by a factor of 8 compared to the original
implementation.

Invertible Residual information
encoder A

Unsqueeze

Affine coupling
layer
Dilated Invertible X8
Conv block 1x1 Conv

A

\

Context vector Mel spectrogram

- /

Figure 4: Normalizing flow-based invertible encoder.
The residual information is projected from 80 to 256
dimensions to enable summation with the context vector.

3.3 Invertible Encoder

As mentioned in subsection 2.2, the invertible en-
coder models the residual information z between
the input and the conditional feature. Therefore,
we utilize it to extract acoustic information ab-
sent from the context vector, by processing the
mel-spectrogram. The architecture of the invert-
ible encoder is illustrated in Figure 4, which is
normalizing flow (Kingma and Dhariwal, 2018).
The normalizing flow takes the mel-spectrogram
Ttarget s input and uses the context vector ¢, as a
conditional feature. Accordingly, we minimize the
mutual information between ¢, and z as follows:

Lne = KL(p(2[¢s)]4(2)), (12)

where ¢(z) denotes the prior distribution of the in-
vertible encoder. By minimizing Lnp, we align
z with the prior distribution. When Lng is mini-
mized, the mutual information between the residual
information z and the context vector ¢, is also min-
imized according to Eq. (5) as follows:

I(z,cs) < Lnr- (13)

Consequently, z captures acoustic information
that is not contained in ¢ but exists in the mel-
spectrogram. This approach compensates for the
insufficient information present in c;.

During inference, the invertible encoder is not re-
quired; instead, residual information can be sam-
pled directly from the prior distribution. We set the
prior distribution ¢(z) to a Gaussian distribution
N(0,1). Since the decoder of RisoTTo is trained

"https://github.com/milesial/Pytorch-UNet
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with z distributed according to this Gaussian prior,
similar effects can be observed by using Gaussian
noise sampled from the prior distribution, as empir-
ically demonstrated in prior numerical work (Lee
et al., 2022; Li et al., 2025; Lee and Kim, 2019;
Lee et al., 2020). This is conceptually similar to
the use of z in VAEs, where the latent variable
carries compressed but informative characteristics
of Zt4rget- However, a known limitation of VAE
(Kingma et al., 2013) is that the range of informa-
tion extraced is inherently dependent on dimension
of z. In contrast, our method effectively models
the residual information between cs and Tyqrget
through Eq. (13).

3.4 Prompt-Aware lightweight convolution

Lightweight convolution (Wu et al., 2019) em-
ploys a fixed context window and reuses the same
weights for all context elements, regardless of the
current time step. This property can be particularly
advantageous for TTS, where relevant context ele-
ments tend to be more local compared to tasks such
as machine translation or other language processing
tasks, as discussed in (Elias et al., 2021b). There-
fore, we adopt a lightweight convolution block
composed of lightweight convolution, a gated lin-
ear unit (GLU) (Veness et al., 2021), and a feed-
forward layer with residual connections as shown
in Figure 5. To further improve the performance
of zero-shot TTS, we extend the lightweight con-
volution with a speaker-adaptive mechanism in-
spired by SC-CNN (Yoon et al., 2023). Specif-
ically, SC-CNN utilizes speaker embeddings to
modulate the convolutional kernel weights dynami-

cally. Following this approach, the speech prompt
encoder receives a speech prompt—a 3-second
mel-spectrogram segment extracted from the refer-
ence speech—and generates a speaker embedding
s. This embedding s is then reshaped to serve as
the kernel weights of the lightweight convolution.
For the text encoder, which uses a 3 x 1 lightweight
convolution with 8 heads, s is reshaped from a 256-
dimensional vector to a 3 x 8 matrix. Similarly,
when applied to the mel decoder, which employs
a 17 x 1 lightweight convolution with 8 heads, s
is reshaped to 17 x 8. Through this process, the
lightweight convolution adapts its kernel weights
dynamically based on the speech prompt, allowing
it to extract local contexts that are tailored to each
speaker. This adaptive mechanism contributes to
improved zero-shot TTS performance.

3.5 Loss function

In this section, we describe the loss functions used
to train RisoTTo. The loss Lsag, defined in Eq.
(10), is used to train the SAG network to predict
the vector field between the hard alignment Aj-q
and the soft alignment A,,;. The loss function
Ly for training the duration predictor is defined
as the L2 distance between the target and predicted
durations. Target is obtained from A,,,. Thus, the
total loss L4 function is described as follows:

»Ctotal = »Cme] + »Cref + ﬁdur + /\»CNF + ﬁSAGy (14)
where A is hyper-parameter set to 10.

4 Experiments

We used LibriTTS-R (Koizumi et al., 2023)
datasets for training RisoTTo. We selected 2,395
speakers from LibriTTS-R consisting of 580 hours
of data from 2,456 speakers. Sampling rate was set
to 22,050Hz, and mel-spectrogram was extracted
with a hop size of 256 and a window size of 1024.
Among residual speakers, 20 and 41 speakers be-
came validation and test sets, respectively. In addi-
tion, we employ a NVIDIA RTX 3090 GPU with a
batch size of 32, and Adam optimizer (Kingma and
Ba, 2014) is used with a scheduled learning rate
same as FastSpeech2 (Ren et al., 2020). Finally,
we used g2p-en? to convert the text into phoneme
sequence. Also, HiFi-GAN (Kong et al., 2020),
which is trained with same train set of RisoTTo,
was used as vocoder that converts mel-spectrogram
into waveform.

Zhttps://github.com/Kyubyong/g2p



Evaluation metrics: For fair evaluation, we em-
ployed pre-trained NISQA-MOS (Mittag et al.,
2021) to evaluate naturalness of speech, instead
of human evaluation. For objective evaluation,
speaker embedding cosine similarity (SECS), rep-
resenting speaker similarity, was computed using
ECAPA-TDNN (Desplanques et al., 2020) pre-
trained with Voxceleb (Nagrani et al., 2017). Also,
we evaluated speech intelligibility with word error
rate (WER), using a pre-trained speech recognition
model from the official implementation of whis-
per (Radford et al., 2023) to measure transcription
errors from generated samples. In the following ex-
periments, the sampling numbers of flow matching
in SAG and PostNet are 2 and 5, respectively.

4.1 Alignment modeling via SAG

We compared our soft alignment generation
method with hard and Gaussian upsampling ap-
proaches to evaluate the effectiveness of the pro-
posed method. The hard upsampling method, used
in most NAR models such as (Ren et al., 2020; Han
et al., 2024), increases the length of the text rep-
resentation by simply duplicating each phoneme
according to its duration. In contrast, the Gaussian
upsampling (Donahue et al., 2020) performs differ-
entiable upsampling, which can improve the speech
likelihood of the TTS model. This is achieved by
computing a weighted sum of the text representa-
tions to generate the context vector, optimized to
minimize the mel-spectrogram loss (Le). How-
ever, the range of the weighted sum is limited by the
variance of the Gaussian distribution, which con-
strains the flexibility of the filter. Since our method
used attention mechanism that conducts weighted
sum for whole text representation, which provides
more flexibility than Gaussian upsampling. In in-
ference, flow matching, which observes optimized
soft alignment about text representation, generates
soft alignment without mel-spectrogram. Table

Upsampling MOS(CI) WER SECS
Attention 4.2440.09 4.83 0.694
Hard 3.85+0.05 5.11 0.649
Gaussian 4.07+£0.11 5.37 0.672
SAG (ours) 4.1940.10 5.03 0.681

Table 1: Zero-shot TTS performance of RisoTTo ac-
cording to upsampling mtehods. “CI” represents 95%
confidence intervals.

1 shows the results of RisoTTo using a different

upsampling module instead of the SAG network.
Attention mechanism in Table 1 denotes soft align-
ment produced from attention mechanism with tar-
get mel-spectrogram. For this evaluation, we ran-
domly selected 6 unseen speakers for each upsam-
pling method from the test set and generated 5 ut-
terances per speaker. Gaussian upsampling outper-
formed hard upsampling, but Attention mechanism
provides more delicate soft alignment than it. Thus,
SAG network is trained using soft alignment of at-
tention mechanism and shows better performance
of Gaussian upsampling.

4.2 Residual modeling via invertible encoder

In this subsection, we demonstrate that the invert-
ible encoder effectively captures the residual in-
formation between the mel-spectrogram and the
context vector. This residual information should
be disentangled from the context vector. To vali-
date this, we employed Maximum Mean Discrep-
ancy (MMD)(Gretton et al., 2012), a statistical dis-
tance metric that measures the difference between
two probability distributions based on their sam-
ple means in a reproducing kernel Hilbert space.
A lower MMD value indicates greater similarity
between the distributions. Table 2 presents the
MMD scores between the context vector ¢y and
the residual variable z, comparing the use of the
invertible encoder and a variational autoencoder
(VAE) for residual modeling. The results show
that the z extracted by the invertible encoder ex-
hibits lower statistical similarity with ¢ than that
of the VAE, indicating better disentanglement. We

Algorithm (cs,2) (z,€)
Invertible encoder 2.613 0.207
VAE 1.941 0.611

Table 2: The results of MMD score when using in-
vertible encoder and VAE. (a,b) denotes MMD score
between a and b. These score was computed using 50
utterances of validation set

also computed the MMD between z and samples
€ ~ N(0,1) drawn from the prior Gaussian dis-
tribution. The z from the invertible encoder is
closer to the prior distribution than that from the
VAE. In contrast, the VAE tends to produce a z
that is too close to the prior, leading to posterior
collapse—where z becomes uninformative. There-
fore, z from the VAE should not be forced to align
too closely with the prior distribution. This is a



critical distinction between the invertible encoder
and the VAE. The invertible encoder extracts a
deterministic latent representation z, whereas the
VAE produces a distribution from which stochas-
tic variable z are sampled. Because the invertible
encoder generates deterministic representations, it
is inherently free from posterior collapse. As a re-
sult, z can be more closely aligned with the prior
distribution, which helps reduce the mismatch of z
between training and inference phases in the TTS
model.

We further demonstrate that incorporating an invert-
ible encoder can enhance the performance of non-
autoregressive TTS models. In Table 3, the autore-
gressive and non-autoregressive baselines refer to
Transformer TTS (Li et al., 2019) and FastSpeech,
which used linear layer-based feed forward layer,
respectively. All models in Table 3 were trained on
the LISpeech-1.1 dataset (Ito and Johnson, 2017),
which contains 13,100 utterances recorded by a
single female speaker. We used 12,000 utterances
for training, and 50 each for validation and testing.
From each trained model, 15 utterances were gener-
ated and evaluated. As presented in Table 3, the use
of an invertible encoder leads to a more substantial
performance improvement in non-autoregressive
TTS compared to the conventional VAE-based ap-
proach.

Model MOS(CI) WER
AR 3.73+0.11  6.93
NAR 3.38+0.13  7.05
NARw/IE  3.64+0.10 6.96
NAR w/ VAE 3.51+£0.08 7.14

Table 3: The results on TTS models trained with
LJSpeech-1.1 dataset.

4.3 Evaluation

Recently, many zero-shot TTS models were in-
troduced but official implementation code is not
released. Thus, we used audio samples obtained
from official demo page. For the most fair eval-
uation possible we selected comparison models,
which have audio samples generated by same
dataset (not LibriTTS-R), among representative
zero-shot TTS models. Thus, VALL-E, T5-TTS,
and NaturalSpeech? releases audio samples gen-
erated by VCTK (Christophe et al., 2017) that is
not used to train RissoTTo and these comparison
models. Audio samples of RisoTTo were 30 ut-

Model MOS(CI) SECS WER

GT 4.62+0.04 0.840 3.88
VALL-E 3.924+0.10 0.541 6.42
T5-TTS 4.21£0.09 0.613 4091
NaturalSpeech2 3.71£0.22 0.587 5.52
RisoTTo 4.18+0.11 0.629 5.31
RisoTTo w/o PostNet  3.944+0.10 0.553 5.84
RisoTTo w/o PAL 4.14+0.08 0.602 5.40

Table 4: The results on zero-shot TTS using VCTK
dataset. GT denotes ground truth of waveform.

terances generated by speech prompt of 5 unseen
speakers of VCTK dataset. VALL-E (Wang et al.,
2023) is one of the most well-known zero-shot
TTS models, introducing a decoder-only architec-
ture to model discrete tokens from a neural au-
dio codec. T5-TTS (Neekhara et al., 2024), based
on an encoder-decoder architecture, was also in-
cluded as a representative autoregressive model.
Lastly, NaturalSpeech2 (Shen et al., 2023) is non-
autoregressive TTS using latent diffusion for gen-
erating latent representation of Encodec (Défossez
et al., 2022). As shown in Table 4, we compared
RisoTTo with the aforementioned models in terms
of MOS, SECS, and WER. The results demonstrate
that RisoTTo achieves superior performance com-
pared to VALL-E and NaturalSpeech2, despite be-
ing a non-autoregressive model. Also, RisoTTo
without PostNet, which means that RisoTTo gener-
ated mel-spectrogram using mel decoder, is better
than NaturalSpeech. While T5-TTS outperforms
RisoTTo in terms of MOS and WER, RisoTTo ex-
hibits a higher SECS, indicating better perceived
speaker similarity by prompt-aware lightweight
convolution (PAL).

5 Conclusion

We proposed three algorithm that can improve
performance of zero-shot non-autoregressive TTS.
Soft alignment generation upsamples text repre-
sentation to richer context vector, and invertible
encoder effectively models residual information
about acoustic representation. Then, prompt-aware
lightweight convolution enhances speaker similar-
ity via kernel weight depending on speech prompt.
Thus, RisoTTo achieved better performance com-
pared with representative zero-shot autoregressive
TTS. Our future work considers improvement of
latency and more diverse comparisons to evaluate
performance.



Limitations

One limitation of this study is that the compari-
son models were not trained on the same dataset
as ours. Instead, we relied on audio samples pro-
vided on the official demo pages of those models.
Consequently, direct comparisons may not fully
reflect performance under identical training condi-
tions. Furthermore, the evaluation scope was lim-
ited, as it did not include a detailed investigation of
inference latency. A more comprehensive compari-
son—incorporating a wider range of baseline mod-
els and controlled latency measurements—would
further strengthen the findings.
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