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Abstract001

Autoregressive TTS leverages soft alignment002
generated by the attention mechanism, which003
provides the decoder with a well-designed con-004
text vector. Subsequently, the decoder receives005
both the semantic representation and the acous-006
tic representation generated at the previous007
time step. For this reason, autoregressive TTS008
achieves strong performance. Thus, we pro-009
pose novel algorithms to bring similar benefits010
to non-autoregressive TTS. First, we propose011
a method to distill soft alignments—originally012
provided by attention in autoregressive mod-013
els—into a flow matching model trained be-014
tween mel-spectrograms and text representa-015
tions. This allows non-autoregressive models016
to leverage attention-like context vectors with-017
out requiring autoregressive decoding. Second,018
we introduce an invertible encoder, designed019
based on normalizing flow, to disentangle se-020
mantic and residual acoustic representations.021
The invertible encoder maps the residual in-022
formation, which is absent in the context vec-023
tor, closer to a Gaussian distribution. During024
inference, we can treat the context vector as025
the semantic representation and Gaussian noise026
as the acoustic representation. Lastly, to im-027
prove zero-shot TTS performance, we propose028
a prompt-aware lightweight convolution, where029
the kernel weights are dynamically adjusted030
for each speech prompt. With the proposed031
methods, our non-autoregressive TTS model032
achieves comparable performance to existing033
autoregressive models.034

1 Introduction035

Zero-shot text-to-speech (TTS) (Casanova et al.,036

2022; Wang et al., 2023) aims to synthesize speech037

that reflects the voice characteristics of unseen038

speakers at inference time, without requiring any039

fine-tuning. Recent advances in large language040

models (LLMs), such as GPT (Achiam et al., 2023)041

and T5 (Ao et al., 2021), have inspired TTS archi-042

tectures to adopt similar transformer-based models043

Figure 1: The concepts of our proposed method that
supplements missing acoustic information in the seman-
tic representation and refines the existing upsampling
process.

and in-context learning strategies. In zero-shot 044

TTS, speaker-specific information is typically cap- 045

tured from a short speech prompt (e.g., 3-second 046

mel-spectrogram), enabling generalization to un- 047

seen speakers. This prompt-based paradigm has 048

shown significant performance improvements over 049

traditional speaker embedding approaches. For in- 050

stance, VALL-E (Wang et al., 2023) leverages a 051

decoder-only transformer and 60K hours of train- 052

ing data to achieve strong zero-shot performance 053

via in-context learning. Most state-of-the-art zero- 054

shot TTS systems (Kim et al., 2024; Lee et al., 055

2024) adopt autoregressive (AR) (Wang et al., 056

2017; Shen et al., 2018) architectures due to their 057

ability to model temporal dependencies and lever- 058

age rich contextual information. These models 059

generate acoustic features (e.g., mel-spectrograms 060

or codec tokens (Défossez et al., 2022)) sequen- 061

tially, using previously generated outputs as inputs 062

for subsequent steps. Additionally, attention mech- 063

anisms provide soft alignment between text and 064
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acoustic features, allowing the decoder to access065

a fine-grained context vector that has rich context066

information. Consequently, autoregressive TTS067

systems typically outperform non-autoregressive068

(NAR) (Ren et al., 2019, 2020) models in terms069

of speech quality. Since the AR TTS systems070

(Neekhara et al., 2024; Battenberg et al., 2024; Kim071

et al., 2024) try to overcome the instability or low072

latency of AR, the performance of AR becomes073

higher.074

On the other hands, apart from the general prob-075

lems arising from the aforementioned AR, NAR076

models tend to lag behind AR models in perfor-077

mance, mainly due to two reasons: (1) NAR mod-078

els lack access to previously generated acoustic079

features during decoding, and (2) most NAR mod-080

els rely on hard and shallow upsampling techniques081

(e.g., duration-based duplication) rather than soft,082

flexible alignment mechanisms. To bridge this gap,083

as shown in Figure 1, we introduce Residual mod-084

eling and soft alignment generation-based NAR-085

TTS that can be on par with performance of AR086

(RisoTTo) as follows:087

Soft Alignment Generation (SAG): In autoregres-088

sive TTS, attention mechanisms generate soft align-089

ments between text and acoustic features, allowing090

the decoder to condition on fine-grained contextual091

information. However, non-autoregressive mod-092

els cannot use such attention-based alignment, as093

acoustic frames are generated in parallel. Instead,094

they typically rely on hard and shallow upsampling095

methods. To address this limitation, we introduce096

SAG, which employs flow matching (Lipman et al.,097

2022), which uses only text representation, to gen-098

erate soft alignments between the mel-spectrogram099

and the text representation. This enables the model100

to leverage alignment information similar to that101

of autoregressive attention, enhancing contextual102

richness during inference.103

Invertible Encoder (IE): The invertible encoder104

disentangles acoustic and semantic information by105

modeling the residual component between the mel-106

spectrogram and the context vector. Specifically,107

it maps the residual acoustic features—those not108

captured by the semantic representation—into a109

Gaussian distribution using a normalizing flow. At110

inference time, acoustic information can be sam-111

pled from this distribution, complementing the se-112

mantic context and improving synthesis quality.113

Prompt-Aware Lightweight Convolution (PAL):114

Inspired by SC-CNN (Yoon et al., 2023), which im-115

proves zero-shot TTS by generating convolutional116

kernel weights from speaker embeddings, we adopt 117

a lightweight convolutional module whose ker- 118

nel weights are directly extracted from the speech 119

prompt. This enables prompt-adaptive feature 120

modulation and enhances generalization to unseen 121

speakers in zero-shot settings. 122

2 Background 123

2.1 Flow matching with OT path 124

Flow matching (Lipman et al., 2022) estimates 125

a probability path between data x1 and prior x0 126

distributions. (Lipman et al., 2022) defines opti- 127

mal transport (OT) path based on Gaussian condi- 128

tional probability path that forms a straight trajec- 129

tory between x0 and x1. The OT path on time 130

step t ∈ [0, 1] varies depending on µt and σt, 131

which can be defined as follows: µt = tx1 and 132

σt = 1− (1− σmin)t. Since a probability distribu- 133

tion on the OT path follows a Gaussian distribution, 134

xt on time step t can be computed by affine trans- 135

form as follows: xt = tx1 + (1− (1− σmin)t)x0. 136

Consequently, the vector field ut, which generates a 137

desired probability path, is defined via the ordinary 138

differential equation as follows: 139

dxt
dt

= ut = x1 − (1− σmin)x0. (1) 140

Flow matching is trained to predict the vector field 141

ut corresponding to xt using mean squared error 142

(MSE) loss function between predicted vector field 143

vt and the target ut. Thus, flow matching can gen- 144

erate data from prior distribution by repeating the 145

following equation until the time step t becomes 1 146

from 0: 147

xt+dt = xt + vtdt, (2) 148

where dt is set to 1
N and N is the total number of 149

sampling. 150

2.2 Invertible encoder 151

A Normalizing flow (NF) network is a type of 152

generative model that uses an inverse function of 153

flow to generate data. Inspired by (Rombach et al., 154

2020), we construct an NF network based on de- 155

coder of GlowTTS (Kim et al., 2020) to extract 156

the latent variable z from the conditional NF net- 157

work, as illustrated in Figure 2. This conditional 158

NF network takes two inputs: x and c, to generate a 159

conditional data distribution p(x|c) that is normal- 160

ized to the prior distribution. The log-likelihood of 161

the data distribution p(x|c) is calculated as follows: 162

log p(x|c) = log p(z|c) + log | det(∂f(x)
∂x

)|, (3) 163
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where p(z|c) represents the output of the NF net-164

work. To train the NF network, the negative165

log-likelihood − log p(x|c) is decomposed into166

Kullback-Leibler (KL) divergence and entropy as167

follows:168

KL(p(z|c)|q(z)) +H(x|c), (4)169

where q(z) is the prior distribution (typically stan-170

dard Gaussian), and H(x|c) denotes the constant171

data entropy. According to (Alemi et al., 2016),172

minimizing KL(p(z|c)|q(z)) reduces the mutual173

information between z and c, effectively disentan-174

gling z from c. This allows us to extract residual175

information z from x, independently of c, since176

q(z) is selected independently of c. The mutual177

information I(z, c) between z and c is represented178

by:179

I(z, c) =

∫
p(z, c) log

p(z, c)

p(z)p(c)
180

=

∫
p(z, c) log

p(z|c)
p(z)

181

=

∫
p(z, c) log p(z|c)−

∫
p(z) log p(z)182

≤
∫

p(z, c) log
p(z|c)
q(z)

= KL(p(z|c)∥q(z)). (5)183

3 Method184

We propose methods to improve the performance of185

zero-shot non-autoregressive text-to-speech (TTS)186

systems. Unlike autoregressive TTS models, non-187

autoregressive ones face difficulties in generating188

soft alignments between text and acoustic features189

due to the absence of autoregressive attention mech-190

anisms and acoustic context during inference. As a191

result, they typically rely on hard upsampling meth-192

ods, such as Gaussian upsampling (Donahue et al.,193

2020), which limits expressiveness and accuracy.194

To address this limitation, we introduce a Soft195

Alignment Generation (SAG) network based on196

flow matching that learns to produce soft align-197

ments between text and mel-spectrograms without198

access to acoustic features during inference. This199

allows for more flexible and semantically enriched200

context modeling. Additionally, to compensate for201

the lack of acoustic information, we propose an202

invertible encoder that disentangles residual acous-203

tic features from the mel-spectrogram and maps204

them to a Gaussian distribution. By sampling from205

this distribution during inference, we can reintro-206

duce acoustic context, bridging the gap between207

non-autoregressive and autoregressive decoding.208

Finally, to improve speaker adaptation, we propose 209

a prompt-aware lightweight convolution (LConv) 210

block, which uses speech prompts to modulate the 211

model dynamically in a zero-shot setting. 212

3.1 Model description 213

As shown in Figure 2, our non-autoregressive TTS 214

model consists of several modules. The speech 215

prompt encoder receives a speech prompt, which is 216

a randomly segmented 3-second mel-spectrogram 217

extracted from the reference speech, and encodes 218

it into a fixed-size vector s representing speaker 219

characteristics. This vector s is then used in the 220

prompt-aware LConv block, which integrates both 221

text and speaker information. Consequently, the 222

text encoder extracts a speaker-dependent text rep- 223

resentation hs. The representation hs is upsam- 224

pled by the Soft Alignment Generation (SAG) net- 225

work, which comprises a Conv2D-UNet-based flow 226

matching network and an attention mechanism. 227

The upsampled hs using SAG becomes a context 228

vector cs, which has the same length as the mel- 229

spectrogram. The context vector cs serves as a con- 230

ditional feature for the invertible encoder, which 231

takes the mel-spectrogram as input. Invertible en- 232

coder extracts residual information between cs and 233

mel-spectrogram, and mel decoder predicts the mel- 234

spectrogram conditioned on both the context vector 235

and residual information. Finally, the predicted 236

mel-spectrogram is refined to a higher-quality out- 237

put using a flow matching-based post-processing 238

network. 239

Text encoder comprises 6 Transformer blocks and 240

6 PAL blocks. Both the input and output dimen- 241

sions of the Transformer and PAL blocks are set to 242

256. Text encoder is conditioned by s and extracts 243

speaker-dependent text representation hs 244

Mel decoder mirrors the architecture of the text en- 245

coder, employing the same configuration of Trans- 246

former and PAL blocks. In the decoder’s the last 247

Transformer blocks, self-attention is replaced with 248

cross-attention (Transformer w/ CA) to incorporate 249

both the speech prompt and the output from the fi- 250

nal PAL block. A linear projection layer in the mel 251

decoder maps the 256-dimensional hidden repre- 252

sentations to the 80-dimensional mel-spectrogram 253

space. The predicted mel-spectrogram xpred is then 254

compared to the target mel-spectrogram xtarget 255

using the l2 loss as follows: Lmel = ||xtarget − 256

xpred||22. 257

Post-Processing network (PostNet) vpost is based 258

on flow matching conditioned on a prior distri- 259
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Figure 2: Overall architecture of RisoTTo. CA and SA denote cross and self attentions, respectively.

bution, which is obtained by adding Gaussian260

noise ϵ sampled from N(0, I) to the predicted mel-261

spectrogram xpred. This results in a prior distribu-262

tion defined as N(xpred, I). The vector field for the263

flow matching-based PostNet is then formulated264

based on this prior as follows:265

upostt = xtarget − (1− σmin)(xpred + ϵ). (6)266

vpost is trained by Lpost as follows:267

Lpost = ||upostt − vpost(xt, t; θpost)||, (7)268

where θpost is learnable parameters, and PostNet269

adopts the same Conv1D-UNet-based flow270

matching architecture as employed in Matcha-TTS271

(Mehta et al., 2024). To extract speaker infor-272

mation, we utilize a speech prompt encoder that273

generates a fixed-size embedding, following the274

reference encoder design of Grad-TTS (Popov275

et al., 2021). As discussed previously, such276

fixed-size representations may be less effective277

than directly leveraging the speech prompt for278

in-context learning. To address this limitation, we279

further incorporate in-context learning by using the280

speech prompt within the mel decoder. Additional281

details regarding other modules are provided in282

following sections.283

284

Figure 3: Architecrue of soft alignment generation net-
work. Âlog and white dotted box denote reconstructed
Alog and attention mechanism, respectively.

3.2 Soft Alignment Generation 285

As shown in Figure 3, soft Alignment Genera- 286

tion (SAG) consists of an attention mechanism, a 287

Conv2D-UNet-based flow matching network vSAG, 288

and a duration predictor. The attention mechanism 289

computes the matrix multiplication between the 290

speaker-dependent text representation hs and the 291

mel-spectrogram, providing a soft alignment that 292
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maximizes the speech likelihood of the TTS model,293

such as autoregressive TTS models:294

Attention(hs, xtarget) = softmax(xtargeth
T
s )hs = cs, (8)295

where cs denotes the context vector obtained by296

upsampling hs to match the length of the mel-297

spectrogram xtarget. As shown in Figure 3, the298

product xtargeths forms Alog, which serves as the299

target for the vSAG. We define a vector field from300

Ahard to Alog via the following ordinary differen-301

tial equation (ODE):302

uSAG
t = A1 − (1− σmin)A0, (9)303

where A1 and A0 denote Alog and Ahard + ϵ, re-304

spectively. The hard alignment matrix Ahard is305

obtained from Alog using monotonic alignment306

search (Kim et al., 2020). The network vSAG307

is trained to predict the vector field by minimiz-308

ing the LSAG between the predicted vector field309

vSAG(At, hs, t; θSAG) and the target vector field310

ut:311

LSAG =
∥∥uSAG

t − vSAG(At, hs, t; θSAG)
∥∥2
2
,

(At = tA1 + (1− (1− σmin)t)A0)
(10)312

where θSAG denotes the learnable parameters of the313

vSAG. During inference, the soft alignment matrix314

Asoft can be obtained by applying vSAG using only315

hs and Ahard, which is predicted from the duration316

predictor. The vector hs has 256 dimensions and317

length N corresponding to the phoneme sequence.318

It is repeated T times such as (Elias et al., 2021a),319

where T is the length of the mel-spectrogram. Thus,320

the repeated hs has a dimension of N × T × 256321

and is concatenated with At, resulting in a feature322

of dimension N × T × 257, which is then fed323

into vSAG. The network then predicts the vector324

field and generates Asoft from Ahard by iteratively325

applying326

At+dt = At + vSAG(At, hs, t; θSAG)dt, (11)327

where dt = 1
NSAG

and NSAG is the total number328

of sampling steps for vSAG, with t progressing329

from 0 to 1. vSAG is implemented as a Conv2D-330

based U-Net1, with the input channel size set to331

257. The number of feature channels in each block332

is reduced by a factor of 8 compared to the original333

implementation.334

Figure 4: Normalizing flow-based invertible encoder.
The residual information is projected from 80 to 256
dimensions to enable summation with the context vector.

3.3 Invertible Encoder 335

As mentioned in subsection 2.2, the invertible en- 336

coder models the residual information z between 337

the input and the conditional feature. Therefore, 338

we utilize it to extract acoustic information ab- 339

sent from the context vector, by processing the 340

mel-spectrogram. The architecture of the invert- 341

ible encoder is illustrated in Figure 4, which is 342

normalizing flow (Kingma and Dhariwal, 2018). 343

The normalizing flow takes the mel-spectrogram 344

xtarget as input and uses the context vector cs as a 345

conditional feature. Accordingly, we minimize the 346

mutual information between cs and z as follows: 347

LNF = KL(p(z|cs)|q(z)), (12) 348

where q(z) denotes the prior distribution of the in- 349

vertible encoder. By minimizing LNF, we align 350

z with the prior distribution. When LNF is mini- 351

mized, the mutual information between the residual 352

information z and the context vector cs is also min- 353

imized according to Eq. (5) as follows: 354

I(z, cs) ≤ LNF. (13) 355

Consequently, z captures acoustic information 356

that is not contained in cs but exists in the mel- 357

spectrogram. This approach compensates for the 358

insufficient information present in cs. 359

During inference, the invertible encoder is not re- 360

quired; instead, residual information can be sam- 361

pled directly from the prior distribution. We set the 362

prior distribution q(z) to a Gaussian distribution 363

N (0, 1). Since the decoder of RisoTTo is trained 364

1https://github.com/milesial/Pytorch-UNet
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Figure 5: Architecture of prompt-aware lightweight
convolution block.

with z distributed according to this Gaussian prior,365

similar effects can be observed by using Gaussian366

noise sampled from the prior distribution, as empir-367

ically demonstrated in prior numerical work (Lee368

et al., 2022; Li et al., 2025; Lee and Kim, 2019;369

Lee et al., 2020). This is conceptually similar to370

the use of z in VAEs, where the latent variable371

carries compressed but informative characteristics372

of xtarget. However, a known limitation of VAE373

(Kingma et al., 2013) is that the range of informa-374

tion extraced is inherently dependent on dimension375

of z. In contrast, our method effectively models376

the residual information between cs and xtarget377

through Eq. (13).378

3.4 Prompt-Aware lightweight convolution379

Lightweight convolution (Wu et al., 2019) em-380

ploys a fixed context window and reuses the same381

weights for all context elements, regardless of the382

current time step. This property can be particularly383

advantageous for TTS, where relevant context ele-384

ments tend to be more local compared to tasks such385

as machine translation or other language processing386

tasks, as discussed in (Elias et al., 2021b). There-387

fore, we adopt a lightweight convolution block388

composed of lightweight convolution, a gated lin-389

ear unit (GLU) (Veness et al., 2021), and a feed-390

forward layer with residual connections as shown391

in Figure 5. To further improve the performance392

of zero-shot TTS, we extend the lightweight con-393

volution with a speaker-adaptive mechanism in-394

spired by SC-CNN (Yoon et al., 2023). Specif-395

ically, SC-CNN utilizes speaker embeddings to396

modulate the convolutional kernel weights dynami-397

cally. Following this approach, the speech prompt 398

encoder receives a speech prompt—a 3-second 399

mel-spectrogram segment extracted from the refer- 400

ence speech—and generates a speaker embedding 401

s. This embedding s is then reshaped to serve as 402

the kernel weights of the lightweight convolution. 403

For the text encoder, which uses a 3×1 lightweight 404

convolution with 8 heads, s is reshaped from a 256- 405

dimensional vector to a 3 × 8 matrix. Similarly, 406

when applied to the mel decoder, which employs 407

a 17 × 1 lightweight convolution with 8 heads, s 408

is reshaped to 17 × 8. Through this process, the 409

lightweight convolution adapts its kernel weights 410

dynamically based on the speech prompt, allowing 411

it to extract local contexts that are tailored to each 412

speaker. This adaptive mechanism contributes to 413

improved zero-shot TTS performance. 414

3.5 Loss function 415

In this section, we describe the loss functions used 416

to train RisoTTo. The loss LSAG, defined in Eq. 417

(10), is used to train the SAG network to predict 418

the vector field between the hard alignment Ahard 419

and the soft alignment Asoft. The loss function 420

Ldur for training the duration predictor is defined 421

as the L2 distance between the target and predicted 422

durations. Target is obtained from Alog. Thus, the 423

total loss Ltotal function is described as follows: 424

Ltotal = Lmel+Lref+Ldur+λLNF+LSAG, (14) 425

where λ is hyper-parameter set to 10. 426

4 Experiments 427

We used LibriTTS-R (Koizumi et al., 2023) 428

datasets for training RisoTTo. We selected 2,395 429

speakers from LibriTTS-R consisting of 580 hours 430

of data from 2,456 speakers. Sampling rate was set 431

to 22,050Hz, and mel-spectrogram was extracted 432

with a hop size of 256 and a window size of 1024. 433

Among residual speakers, 20 and 41 speakers be- 434

came validation and test sets, respectively. In addi- 435

tion, we employ a NVIDIA RTX 3090 GPU with a 436

batch size of 32, and Adam optimizer (Kingma and 437

Ba, 2014) is used with a scheduled learning rate 438

same as FastSpeech2 (Ren et al., 2020). Finally, 439

we used g2p-en2 to convert the text into phoneme 440

sequence. Also, HiFi-GAN (Kong et al., 2020), 441

which is trained with same train set of RisoTTo, 442

was used as vocoder that converts mel-spectrogram 443

into waveform. 444

2https://github.com/Kyubyong/g2p
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Evaluation metrics: For fair evaluation, we em-445

ployed pre-trained NISQA-MOS (Mittag et al.,446

2021) to evaluate naturalness of speech, instead447

of human evaluation. For objective evaluation,448

speaker embedding cosine similarity (SECS), rep-449

resenting speaker similarity, was computed using450

ECAPA-TDNN (Desplanques et al., 2020) pre-451

trained with Voxceleb (Nagrani et al., 2017). Also,452

we evaluated speech intelligibility with word error453

rate (WER), using a pre-trained speech recognition454

model from the official implementation of whis-455

per (Radford et al., 2023) to measure transcription456

errors from generated samples. In the following ex-457

periments, the sampling numbers of flow matching458

in SAG and PostNet are 2 and 5, respectively.459

4.1 Alignment modeling via SAG460

We compared our soft alignment generation461

method with hard and Gaussian upsampling ap-462

proaches to evaluate the effectiveness of the pro-463

posed method. The hard upsampling method, used464

in most NAR models such as (Ren et al., 2020; Han465

et al., 2024), increases the length of the text rep-466

resentation by simply duplicating each phoneme467

according to its duration. In contrast, the Gaussian468

upsampling (Donahue et al., 2020) performs differ-469

entiable upsampling, which can improve the speech470

likelihood of the TTS model. This is achieved by471

computing a weighted sum of the text representa-472

tions to generate the context vector, optimized to473

minimize the mel-spectrogram loss (Lmel). How-474

ever, the range of the weighted sum is limited by the475

variance of the Gaussian distribution, which con-476

strains the flexibility of the filter. Since our method477

used attention mechanism that conducts weighted478

sum for whole text representation, which provides479

more flexibility than Gaussian upsampling. In in-480

ference, flow matching, which observes optimized481

soft alignment about text representation, generates482

soft alignment without mel-spectrogram. Table

Upsampling MOS(CI) WER SECS

Attention 4.24±0.09 4.83 0.694
Hard 3.85±0.05 5.11 0.649

Gaussian 4.07±0.11 5.37 0.672
SAG (ours) 4.19±0.10 5.03 0.681

Table 1: Zero-shot TTS performance of RisoTTo ac-
cording to upsampling mtehods. “CI” represents 95%
confidence intervals.

483
1 shows the results of RisoTTo using a different484

upsampling module instead of the SAG network. 485

Attention mechanism in Table 1 denotes soft align- 486

ment produced from attention mechanism with tar- 487

get mel-spectrogram. For this evaluation, we ran- 488

domly selected 6 unseen speakers for each upsam- 489

pling method from the test set and generated 5 ut- 490

terances per speaker. Gaussian upsampling outper- 491

formed hard upsampling, but Attention mechanism 492

provides more delicate soft alignment than it. Thus, 493

SAG network is trained using soft alignment of at- 494

tention mechanism and shows better performance 495

of Gaussian upsampling. 496

4.2 Residual modeling via invertible encoder 497

In this subsection, we demonstrate that the invert- 498

ible encoder effectively captures the residual in- 499

formation between the mel-spectrogram and the 500

context vector. This residual information should 501

be disentangled from the context vector. To vali- 502

date this, we employed Maximum Mean Discrep- 503

ancy (MMD)(Gretton et al., 2012), a statistical dis- 504

tance metric that measures the difference between 505

two probability distributions based on their sam- 506

ple means in a reproducing kernel Hilbert space. 507

A lower MMD value indicates greater similarity 508

between the distributions. Table 2 presents the 509

MMD scores between the context vector cs and 510

the residual variable z, comparing the use of the 511

invertible encoder and a variational autoencoder 512

(VAE) for residual modeling. The results show 513

that the z extracted by the invertible encoder ex- 514

hibits lower statistical similarity with cs than that 515

of the VAE, indicating better disentanglement. We

Algorithm (cs, z) (z, ϵ)

Invertible encoder 2.613 0.207
VAE 1.941 0.611

Table 2: The results of MMD score when using in-
vertible encoder and VAE. (a,b) denotes MMD score
between a and b. These score was computed using 50
utterances of validation set

516
also computed the MMD between z and samples 517

ϵ ∼ N(0, 1) drawn from the prior Gaussian dis- 518

tribution. The z from the invertible encoder is 519

closer to the prior distribution than that from the 520

VAE. In contrast, the VAE tends to produce a z 521

that is too close to the prior, leading to posterior 522

collapse—where z becomes uninformative. There- 523

fore, z from the VAE should not be forced to align 524

too closely with the prior distribution. This is a 525
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critical distinction between the invertible encoder526

and the VAE. The invertible encoder extracts a527

deterministic latent representation z, whereas the528

VAE produces a distribution from which stochas-529

tic variable z are sampled. Because the invertible530

encoder generates deterministic representations, it531

is inherently free from posterior collapse. As a re-532

sult, z can be more closely aligned with the prior533

distribution, which helps reduce the mismatch of z534

between training and inference phases in the TTS535

model.536

We further demonstrate that incorporating an invert-537

ible encoder can enhance the performance of non-538

autoregressive TTS models. In Table 3, the autore-539

gressive and non-autoregressive baselines refer to540

Transformer TTS (Li et al., 2019) and FastSpeech,541

which used linear layer-based feed forward layer,542

respectively. All models in Table 3 were trained on543

the LJSpeech-1.1 dataset (Ito and Johnson, 2017),544

which contains 13,100 utterances recorded by a545

single female speaker. We used 12,000 utterances546

for training, and 50 each for validation and testing.547

From each trained model, 15 utterances were gener-548

ated and evaluated. As presented in Table 3, the use549

of an invertible encoder leads to a more substantial550

performance improvement in non-autoregressive551

TTS compared to the conventional VAE-based ap-552

proach.

Model MOS(CI) WER

AR 3.73±0.11 6.93
NAR 3.38±0.13 7.05

NAR w/ IE 3.64±0.10 6.96
NAR w/ VAE 3.51±0.08 7.14

Table 3: The results on TTS models trained with
LJSpeech-1.1 dataset.

553

4.3 Evaluation554

Recently, many zero-shot TTS models were in-555

troduced but official implementation code is not556

released. Thus, we used audio samples obtained557

from official demo page. For the most fair eval-558

uation possible we selected comparison models,559

which have audio samples generated by same560

dataset (not LibriTTS-R), among representative561

zero-shot TTS models. Thus, VALL-E, T5-TTS,562

and NaturalSpeech2 releases audio samples gen-563

erated by VCTK (Christophe et al., 2017) that is564

not used to train RissoTTo and these comparison565

models. Audio samples of RisoTTo were 30 ut-566

Model MOS(CI) SECS WER

GT 4.62±0.04 0.840 3.88
VALL-E 3.92±0.10 0.541 6.42
T5-TTS 4.21±0.09 0.613 4.91

NaturalSpeech2 3.71±0.22 0.587 5.52
RisoTTo 4.18±0.11 0.629 5.31

RisoTTo w/o PostNet 3.94±0.10 0.553 5.84
RisoTTo w/o PAL 4.14±0.08 0.602 5.40

Table 4: The results on zero-shot TTS using VCTK
dataset. GT denotes ground truth of waveform.

terances generated by speech prompt of 5 unseen 567

speakers of VCTK dataset. VALL-E (Wang et al., 568

2023) is one of the most well-known zero-shot 569

TTS models, introducing a decoder-only architec- 570

ture to model discrete tokens from a neural au- 571

dio codec. T5-TTS (Neekhara et al., 2024), based 572

on an encoder-decoder architecture, was also in- 573

cluded as a representative autoregressive model. 574

Lastly, NaturalSpeech2 (Shen et al., 2023) is non- 575

autoregressive TTS using latent diffusion for gen- 576

erating latent representation of Encodec (Défossez 577

et al., 2022). As shown in Table 4, we compared 578

RisoTTo with the aforementioned models in terms 579

of MOS, SECS, and WER. The results demonstrate 580

that RisoTTo achieves superior performance com- 581

pared to VALL-E and NaturalSpeech2, despite be- 582

ing a non-autoregressive model. Also, RisoTTo 583

without PostNet, which means that RisoTTo gener- 584

ated mel-spectrogram using mel decoder, is better 585

than NaturalSpeech. While T5-TTS outperforms 586

RisoTTo in terms of MOS and WER, RisoTTo ex- 587

hibits a higher SECS, indicating better perceived 588

speaker similarity by prompt-aware lightweight 589

convolution (PAL). 590

5 Conclusion 591

We proposed three algorithm that can improve 592

performance of zero-shot non-autoregressive TTS. 593

Soft alignment generation upsamples text repre- 594

sentation to richer context vector, and invertible 595

encoder effectively models residual information 596

about acoustic representation. Then, prompt-aware 597

lightweight convolution enhances speaker similar- 598

ity via kernel weight depending on speech prompt. 599

Thus, RisoTTo achieved better performance com- 600

pared with representative zero-shot autoregressive 601

TTS. Our future work considers improvement of 602

latency and more diverse comparisons to evaluate 603

performance. 604
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Limitations605

One limitation of this study is that the compari-606

son models were not trained on the same dataset607

as ours. Instead, we relied on audio samples pro-608

vided on the official demo pages of those models.609

Consequently, direct comparisons may not fully610

reflect performance under identical training condi-611

tions. Furthermore, the evaluation scope was lim-612

ited, as it did not include a detailed investigation of613

inference latency. A more comprehensive compari-614

son—incorporating a wider range of baseline mod-615

els and controlled latency measurements—would616

further strengthen the findings.617
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