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Abstract

Text-to-3D synthesis has recently seen intriguing advances by combining the text-to-image
priors with 3D representation methods, e.g., 3D Gaussian Splatting (3D GS), via Score
Distillation Sampling (SDS). However, a hurdle of existing methods is the low efficiency,
per-prompt optimization for a single 3D object. Therefore, it is imperative for a paradigm
shift from per-prompt optimization to feed-forward generation for any unseen text prompts,
which yet remains challenging. An obstacle is how to directly generate a set of millions of 3D
Gaussians to represent a 3D object. This paper presents BrightDreamer, an end-to-end
feed-forward approach that can achieve generalizable and fast (77 ms) text-to-3D genera-
tion. Our key idea is to formulate the generation process as estimating the 3D deformation
from an anchor shape with predefined positions. For this, we first propose a Text-guided
Shape Deformation (TSD) network to predict the deformed shape and its new positions,
used as the centers (one attribute) of 3D Gaussians. To estimate the other four attributes
(i.e., scaling, rotation, opacity, and SH), we then design a novel Text-guided Triplane Gen-
erator (TTG) to generate a triplane representation for a 3D object. The center of each
Gaussian enables us to transform the spatial feature into the four attributes. The generated
3D Gaussians can be finally rendered at 705 frames per second. Extensive experiments
demonstrate the superiority of our method over existing methods. Also, BrightDreamer
possesses a strong semantic understanding capability even for complex text prompts. The
code is available in the supplementary materials.

1 Introduction

Text-to-3D generation has received considerable attention in the computer graphics and vision community
owing to its immersive potential across diverse applications, such as virtual reality and video gaming (Li
et al.l |2023al). Recently, with the emergence of diffusion models (Ho et al., 2020; Rombach et al., 2022)
and neural rendering techniques (Mildenhall et al.) 2021; [Kerbl et al., 2023), text-to-3D has witnessed an
unprecedented technical advancement. In particular, pioneering methods, such as DreamFusion (Poole et al.)
2022)), LatentNeRF (Metzer et al., [2023)), SJIC (Wang et al., |2023al), have sparked significant interest in the
research community, catalyzing a trend toward developing techniques for creating 3D assets from texts.
The follow-up methods then focus on either quality improvement (Raj et al.; 2023} [Shi et al.| 2023; |Wang
et al.l |2023b; [Liang et al., |2024)) or geometry refinement (Chen et al. |2023a} |Lin et all [2023) or training
efficiency (Tang et al.l 2023 |Yi et al.| 2023)).

The dominant paradigm of these methods is to randomly initialize a 3D representation model, e.g., Neural
Radiance Fields (NeRF) (Mildenhall et al.,[2021)) or 3D Gaussian Splatting (3D GS) (Kerbl et al.,|2023)), and
optimize such a model to align with a specific text prompt, as depicted in Fig. [1| (a). Unfortunately, these
methods suffer from two critical constraints. Firstly, as per-prompt optimization usually requires several
tens of thousands of iterations, this inefficiency brings a considerable obstacle to broader applications. It
is significantly different from the mainstream training paradigm in the field of 2D image generation (Song
et al., 2020; Rombach et al., |2022; Ramesh et al., |2022) or 3D-aware image generation (Schwarz et al.| [2020;
Chan et al., 2021} [Jiang et al. [2023; |Or-El et al.l |2022; |Chan et al,[2022)): a generative model is trained with
a collection of text-image pairs or images, and the model can generate the desired content from any input at
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the inference stage. Secondly, as shown in Fig. (a), existing methods often fail to accurately process the
complex texts. For example, the mainstream methods struggle in generating 3D content that input prompt
contains complex interaction between multiple entities. This limitation arises from the models being trained
on a single text prompt, resulting in a degraded capability in comprehensive semantic understanding.
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Figure 1: A comparison between per-prompt
optimization-based methods, and our feed-forward
generation-based approach with an end-to-end objec-
tive.

In this paper, we propose BrightDreamer, an end-to-end feed-forward framework that, for the first time,
can achieve generalizable and fast (77 ms) text-to-3D GS generation. BrightDreamer exhibits a robust
ability for complex semantic understanding (Fig. [2 (a)), and it demonstrates a substantial capacity for
generalization (Fig. [2 (b)). Additionally, like traditional generative models (Goodfellow et al. 2014), our
generator can interpolate between two inputs (Fig. [2] (¢)), allowing users to unleash their imagination and
creativity, thus expanding the potential for novel and nuanced design exploration. As stated before, the
3D GS representation of an object usually comprises several hundreds of thousands of 3D GS elements.
Thus, directly generating such a large collection is impractical. Our key idea is to redefine this generation
problem as its equal problem, i.e., 3D shape deformation. Specifically, we place and fix some anchor positions
to form the initial shape. Then, it can be deformed to the desired shape by giving different input prompts
through our designed Text-guided Shape Deformation (TSD) network (Sec. . Then, the new positions
can be set to the centers of the 3D Gaussian. Upon establishing the basic shape, we elaborately design
a Text-guided Triplane Generator (TTG) to generate a spatial representation of the 3D object (Sec. .
Subsequently, we utilize the spatial feature of each center of 3D Gaussian to represent its feature and translate
it into the remaining attributes (including scaling, rotation, opacity, and SH coefficient) through our well-
designed Gaussian Decoder (Sec. . For TTG, based on our re-analysis of the previous convolution-based
triplane generation process, we identified and solved two primary deficiencies. One issue involves the spatial
inhomogeneity observed during the calculation process, as shown in Fig. [ The other issue arises from the
single-vector style control mechanism similar to StyleGAN (Karras et al.|2019)), which complicates managing
relationships between multiple entities.

Our contributions can be summarized as follows: (I) We propose BrightDreamer, the first 3D Gaussian
generative framework to achieve generalizable and fast text-to-3D synthesis. (IT) We design the Text-guided
Shape Deformation (TSD) network to simplify the difficulty of direct generation of 3D Gaussians. We design
the Text-guided Triplane Generator (TTG) to generate the object’s spatial features and then decode them as
the 3D Gaussians. For TTG design, we re-analyze and solve the existing problems in the mainstream triplane
generator, including spatial inhomogeneity and text understanding problems. (III) Extensive experiments
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Figure 2: DreamGaussian (Tang et al. 2023) and LucidDreamer (Liang et al., [2024) are both optimized
for a single text. Our result is the direct generation. And for the display of our generalization, all the
prompts do not appear in our training set. (a) is for showing the complex text understanding. (b) is
to demonstrate our capability of understanding details. It is noteworthy that light purple, deep purple,
and light yellow don’t appear in the training set. (c) Interpolation between two prompts from color and
shape perspectives.

demonstrate that BrightDreamer not only can understand the complex semantics (while the per-prompt
optimization methods fail) but also can utilize its generalization capability to achieve generation control.

2 Related Works

Text-to-3D Generation. Existing methods can be grouped into two categories. 1) Optimization-based
methods typically commence with a randomly initialized 3D model, such as NeRF (Mildenhall et al.
2021, and subsequently employ text-image priors (Radford et all 2021} [Rombach et al., [2022) to guide
and optimize its parameters. After undergoing thousands of iterative refinements, this predefined 3D model
progressively morphs to embody the shape described by the corresponding text input. DreamField
represents the inaugural foray into text-to-3D methodology, utilizing the pre-trained text-image
model, CLIP (Radford et al. [2021)), as a guiding mechanism for the optimization process of a predefined
NeRF model. DreamFusion (Poole et all |2022) proposes the Score Distillation Sampling (SDS) to transfer
the prior of the 2D diffusion model (Ho et al.,2020) into a 3D representation model (Mildenhall et al., 2021}
[Miiller et al.| 2022), which achieves impressive performance and ignites the research enthusiastic for the text-
to-3D task. Inspired by this, numerous works (Wang et al., 2023b; 2024} [Liang et al.l 2024; |Tran et al., [2023}
[Yu et al} [Li et al.,[2025; [2024a} [Yang et al.l [2024b [Wu et al.l [2024)) are devoted to re-designing the SDS loss,
enabling much more local details of the 3D model. MVDream and PerpNeg
attempt to solve the Janus problem, i.e., multi-face problem in some text prompts. Though these
methods have great generalizability, it usually needs several hours to optimize a 3D model. 2) Generation-
based methods, by contrast, aim to directly generate a 3D model from a given text, streamlining the
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Figure 3: An overview of BrightDreamer. The details of Spatial Transformer, ResConv Block and
Upsample Block are shown in Fig.

process of text-to-3D generation. ATT3D (Lorraine et al., |2023)) is the first attempt to train a NeRF model
with multiple texts by SDS. Though its generalizability is limited, benefitting from SDS, the rendered image
is better than previous methods (Sanghi et al., 2022 (Chen et al. 2019; |[Fu et all [2022; [Liu et al., 2022)
and the generated content is not limited to 3D data (Mittal et al., [2022; [Sanghi et al., [2023). Instant3D (Li
et al.l 2024c) designs some modules to map the text input to the EG3D model (Chan et al. [2022)) and
then uses SDS to train this model. Concurrently, there are also some works focusing on text-to-image-to-3D
model route (Xu et al., [2024d; Tang et al., [2025; |[Lu et al.l 2024; Wei et all 2024} Xu et al.| 2024b; [Wang
et al., 2025; |[Liu et al., |2024; |[Yang et al. |2024a; [Hong et al.l 2023} [Zou et al., |2024; [Li et al.; [He et al.,
2024; |[Xu et all [2024c). However, due to the limited amount of 3D datasets, it is extremely hard to train
a generic model to implement this target well (Sec. . Different from the mentioned works, we propose
BrightDreamer, a generic framework that, for the first time, can achieve fast (77 ms) direct text-to-3DGS
generation. Moreover, our method doesn’t depend on 3D data, which shows a greater potential.

3D Gaussian Splatting (GS). Recently, 3D GS (Kerbl et al., 2023) has emerged as the leading method for
3D representation method of 3D objects or scenes, offering faster rendering speeds and greater application
potential than NeRF (Mildenhall et al., 2021). In a short time, a large number of methods have been
proposed to leverage 3D GS for diverse tasks, e.g., anti-aliasing novel view synthesis (Yu et al., [2023; [Yan
et al.l 2023b), SLAM (Yan et al, [2023a; [Keetha et al.,|2023; |[Matsuki et al., [2023; [Yugay et al.,[2023)), human
reconstruction (Li et al [2024b; [ Moreau et al.l |2023; [Kocabas et al.,|2023;|Abdal et al., [2023; |Li et al., |2023b;
Liu et al.,|2023)), dynamic scene reconstruction (Luiten et al., 2023} [Yang et al., 2023b; 'Wu et al.l 2023 |Yang
et al.l [2023a; (Xu et al., [2023), and 3D content generation (Xu et al., |2024a; |Chen et all 2023b} Tang et al.,
2023; [Yi et al., 2023; |Li et al [2023c} [Liang et al., |2024)). Our work builds on 3D GS, aiming to develop a
generic text-to-3D generation framework that can generate 3D GS with low latency (77 ms).

3 Method

Overview. BrightDreamer aims to generate 3D Gaussians directly from text prompts. After training, it
can generate the 3D GS model with a remarkably low generation latency (about 77ms). And, the generated
3D Gaussians can be rendered at an impressive inference speed of over 700 frames per second. Each 3D
Gaussian is defined by five attributes: center p’, scaling S, rotation R, opacity «, and SH coefficient SH.
Our key idea is two-fold: 1) Defining anchor positions, i.e., predefined positions, to estimate the center of
3D Gaussians; 2) Building implicit spatial representation, which can be decomposed to estimate the other
four attributes of 3D Gaussians.
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Intuitively, we propose BrightDreamer, and an overview is depicted in Fig. Given a text prompt as
input, we transform it to a 77 x 1024 embedding through the frozen CLIP text encoder. Next, the TSD
network (Sec. transforms the fixed anchor positions to the desired shape with text guidance. The new
positions are used as the centers of 3D Gaussians. We then design the TTG (Sec. to separately generate
three feature planes to construct the implicit spatial representation. Based on the centers of Gaussians, we
can obtain their spatial features, which are then transferred to the other attributes through the Gaussian
Decoder (Sec.[3.3)). Finally, we render 3D Gaussians to 2D images and use the SDS Loss (Poole et al.l [2022)
to optimize the whole framework. We now describe our BrightDreamer in detail.

3.1 Text-guided Shape Deformation (TSD)

The goal of TSD is to obtain the center (one attribute) of each 3D Gaussian. Considering that
directly outputting a huge number of center coordinates is extremely difficult, we overcome this hurdle by
deforming the anchor positions instead of generating them.

Anchor Position. The anchor positions are predefined positions, which are the fixed coordinates. It serves
as one of the inputs for the TSD. Specifically, we place the anchor positions on the vertices of a 3D grid,
as represented by the gray points in Fig. [3] Then, we design the TSD network to predict their deviation to
deform the initialized shape of the 3D grid, guided by the text prompt input.

Network Design. Asshown in Fig.|3|(a), the inputs of TSD are text prompts and anchor positions. Firstly,
the text prompts are encoded as the text embedding by an off-the-shelf text encoder, e.g., CLIP (Radford
or T5 (Raffel et al| [2020). Considering the possibility of the complex input sentence, it
remains non-trivial how to bridge each position and word in the sentence. The cross-attention
can quantify the correlation degree between each point and each word within a sentence. We
then employ the cross-attention to design a module to obtain the deviation from the anchor position. It
consists of the Layer Normalization (Ba et all 2016), Multi-Head Attention, Feed-Forward Network, and
shortcut connection (Vaswani et al., [2017). Consequently, certain positions, correlating more closely with
corresponding words in the sentence, are assigned with higher attention scores. This process enables the
aggregation of features that more accurately reflect the characteristics of the corresponding words. The
detailed computation process is formulated as follows:

Wao(p)Wk (y)
Nz

where p € R? is the 3D coordinate of the anchor position, y € R77*1924 i5 the text embedding of the input

output = FF N (softmax( ) - Wy (y)), (1)

prompt, 77 and 1024 are the sentence length and the embedding dimension, Wq(-), Wk (-) and Wy (+) are the
query, key, value transformation function, d is the feature dimension, FFN(-) is the feed-forward network.
The output of the TSD network is the offset A € R3 of the anchor positions. To ensure the stability of the
training, we control the maximum extent to which a point can deviate from the anchor position. Specifically,
given the degree of freedom S € R, we use the following equation to adjust the range of output into interval
(=86,8):

A =25 sigmoid(output) — . (2)

Finally, the deformed position p’ € R3, which represents the centers of 3D Gaussian corresponding to input
prompt, is formulated as follows:
P =p+A. (3)

3.2 Text-guided Triplane Generator (TTG)

After determining the centers of the 3D Gaussians, we need to obtain the other four attributes. To efficiently
assign features to each Gaussian, the objective of TTG is to generate an implicit spatial representa-
tion in space, represented by the triplane. Thus, we design a novel and highly efficient triplane generator
that takes text prompts as input.

One challenge is that the previous triplane generation approaches, such as EG3D (Chan et al. [2022)) and
Instant3D (Li et all, [2024c), exhibit the problem of spatial inhomogeneity, as shown in Fig. 4] Since they
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directly segment a feature map into three feature maps along the channel dimension, only a few areas are
computed together. For example, the position (0, 0) in the 2D space is unfolded to (0, 0, :), (0, :, 0), and (:,
0, 0), denoted by blue color in Fig. |4l Taking 1 x1 Conv as an example, only these three areas are calculated
together. On the contrary, (0, 0, :) is hardly possible to be calculated with (0, :, 1), because they do not
appear at the same pixel in the 2D feature map. The same applies to the 3 x 3 Conv. This means that only
a few areas share the same spatial information, while the others do not, thus causing spatial inhomogeneity.
For this, a simple yet effective way is to apply three generators (without sharing weights).

Another challenge is that given the complex
prompts, squeezing a sentence into a single style

.
:
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.
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feature vector to apply AdaIN (Karras et al., [2019; - :
2020; 2021) could result in a loss of local details. - K 2 0 TS o
Therefore, we need a more fine-grained generation Y7 T2 T

(a) Convolution kernel (b) Convolution kernel (c) Convolution kernel

method guided by the word level, thus can retain at (0,0) at(0,1) at (0,2)
more information of text encoder trained on large-
scale dataset. Naturally, calculating cross-attention
between the pixels of the feature map and words in
the sentence is a better choice.

Figure 4: The visualization of expanding 2D 1 x 1 con-
volution kernel (blue area) to 3D and its moving pro-
cess in previous convolutional triplane generator |Chan

et al.| (2022]).
To address these two challenges, we design the Text-

guided Triplane Generator (TTG), as shown in Fig. [3| (b). Our TTG is designed with the inspiration from
the spatial transformer block and residual convolutional block in Stable Diffusion (Rombach et al., 2022).
Considering the increased computational demand associated with pixel-wise self-attention in the feature
map of (Rombach et al., |2022), we do not incorporate this layer into our network. Instead, we find that
interleaved convolutional layers can sufficiently facilitate the interaction within the feature map. The detailed
designs are shown in Fig. ol For the whole pipeline, we first initialize a 2D input query according to its 2D
trigonometric function position encoding. Three ResConv Blocks and Spatial Transformer blocks are stacked
to assemble the prompt word features at low resolution through cross-attention. We then gradually increase
the resolution of the feature map through the stacks of ResConv Blocks, Spatial Transformer blocks, and
Upsample Block by five times, as depicted in Fig. 3| (b). Finally, we use a Conv layer to output the plane
feature. We describe the design of the Spatial Transformer block, ResConv block, and Upsample block in
detail.

Spatial Transformer Block. As Fig. [5[ (a) shows, the Spatial Transformer Block comprises two multi-
head cross-attention modules and a feed-forward network (Vaswani et al., |2017). The process is initiated
by flattening the 2D feature map into a 1D structure, thereby transforming the dimensions from (H, W, C)
to (H x W,C), with each pixel’s feature considered as the input query embedding. Subsequent to this
transformation, the features undergo normalization via Layer Normalization (Ba et all|2016). The normal-
ized features serve as queries, while the text embeddings act as keys and values in the computation of the
cross-attention feature. This cross-modality attention mechanism is designed to align the feature map with
the corresponding words in the input sentence. Following the application of two cross-attention modules,
the features are further refined through a feed-forward network. This sequence of operations also incorpo-
rates the use of skip connections, mirroring the original transformer architecture (Vaswani et al., |2017), to
facilitate effective feature processing and integration.

ResConv Block. As shown in Fig. |5 (b), the Residual Convolutional Block includes a Layer Normalization
layer, a SiLU activation function (Elfwing et al.,[2018)), and 3x3 convolutional layers, with the skip connection
between input and output.

Upsample Block. As depicted in Fig. [5[(c), the Upsample Block begins with interpolating the feature map
to enlarge it by a factor of 2x, followed by processing through a 3 x 3 convolutional layer.

3.3 3D Gaussians Decoder

We aim to obtain four additional attributes of 3D Gaussian necessary for generation. Once the triplane,
consisting of the three feature planes 7y, 7., Ty, is generated, we can obtain the feature vector F € R32
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of each Gaussian based on its center p’. This feature vector is then converted into the additional attributes,
including opacity o € R, scaling S € R3, rotation R € R*, and I-order SH coefficient.

Specifically, we first project the 3D coordinate onto three
planes, X-Y, X-Z, and Y-Z. Based on the projected 2D
coordinates, we can derive the features Fyy, Fuz, Fy-
according to the interpolation with their four vertex in
the 2D feature maps. To ensure the gradient back-
propagation is evenly distributed across all three planes,
we utilize an averaging operation to aggregate these fea-
tures, thereby obtaining the 3D Gaussian’s feature F.
Given that the attributes of 3D Gaussian can be cate-
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gorized into two groups, i.e., shape and color, we develop
two distinct transformation modules Fypape and Fioor-
Each module is a lightweight, two-layer Multi-Layer Per-
ceptron (MLP) network. To enhance the gradient back-
propagation to the TSD, the center of 3D Gaussian p’ is et ing
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Figure 5: A detailed illustration of spe-
cific blocks. (a) Spatial Transformer Block.
(b) Residual Convolutional Block. (c¢) Upsam-

le Block.
Upon obtaining all attributes of 3D Gaussian, our generatl‘%n process is completed. We can render it from

arbitrary view direction to 2D images.

S = (b—a) - sigmoid(S) + a. (5)

3.4 Optimization

Our training commences with the selection of B prompts from the training set. These prompts are then fed
into our 3D Gaussians generator, which is tasked with generating the corresponding 3D GS representation of
the objects. Following this, we proceed to randomly sample C' view directions to render C' 2D images. The
B x C rendered images are supervised through the Score Distillation Sampling (SDS) loss function (Poole]
2022), as Eq. [6] shows, in conjunction with the Perp-Neg (Armandpour et al] [2023). In this way, our
generator can gradually construct a mapping relationship between text and 3D.

Veﬁ(d% X = g@(y)) é Et,e U}(t) (€¢ (Zt; y/u t)_ 6)% ) (6)

where vy is the input prompt embedding of the generator, # denotes the trainable parameters of 3D Gaussians
generator, ¢ denotes the parameters of denoising network, x is the generated image by process go(+), w(t)
is the weighting function with time step ¢ in the denoising schedule, € is the random noise, z; is the noisy
latents encoded from =z, y is the input prompt, and 3’ adjusted text according to the sampling view direction,
€4(+) is the predicted noise.

4 Experiments

This section first outlines the implementation details, inference speed, parameter count, and training dataset.
The following comparison experiments focus on four aspects: (I) comparison with per-prompt text-
t0-3DGS, (II) fine-tuning the generated 3DGS model and then comparing with per-prompt text-to-3DGS,
(III) comparison with amortized text-to-NeRF, (IV) comparison with text-to-image-to-3DGS methods.
Finally, we present interesting findings regarding unseen words and conduct ablation studies to validate
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Figure 6: Comparison with per-prompt methods.

the network design. It’s worth noting that all prompts in the experiments don’t appear in the
training dataset.

4.1 Implementation Details

Our codebase is constructed on the PyTorch frame-  Table 1: The generation latency (millisecond) and ren-
work (Paszke et al. [2019) with Automatic Mixed dering speed (FPS, Frames Per Second).

Precision Training (AMP) and Gradient Check-

pointing technology (Chen et al.,|2016). We use the Device ‘ Generation Latency Rendering Speed

Adam optlmlzer (Kingma &_Ega 2014) with a con- RTX 3090 24GB 79 ms 693 FPS
stant learning rate of 5 x 1072, 31 of 0.9 and B2 of  Ag00 s0GB 77 ms 705 FPS

0.99. We train our generator using the DeepFloyd
IF UNet to calculate the SDS Loss (Eq. |§[) The prompt batch size is set to 64 and the
camera batch size is set to 4. All our experiments are conducted on a server with 8 GPUs with 80GB memory.
We set the freedom 3 (Eq.[2)) to 0.2, and the range of scaling (a,b) (Eq.[5) to (=9, —3). The anchor position
is placed as a 643 3D grid, and the resolution of the generated triplane is 256 x 256. The generator is trained
on a single prompt set including vehicle, daily life, and animal descriptions, in a total of 30K sentences.
In Tab. [1} we show the inference latency on a single A800 GPU and a single RTX3090 GPU, which shows
a large margin improvement, compared to optimization-based methods, which need several hours. Our
generator contains about 500M trainable parameters. We provide the training and inference pseudo
code in supplementary materials.

4.2 Comparison with other methods

We compare our method with previous text-to-3DGS methods. The comparison experiments setting
includes four aspects: (I) comparison with per-prompt text-to-3DGS, including DreamGaussian (Tang et al.
2023), GSGEN (Chen et all 2023b) and LucidDreamer (Liang et al., [2024) (II) fine-tuning the generated
3DGS model, and then compare with per-prompt text-to-3DGS, (III) comparison with amortized text-
to-NeRF, including Instant3D :Li et al.L , (IV) comparison with text-to-image-to-3DGS methods,
including LGM (Tang et al.,[2025) and GRM 2024d)). Besides, we present the quantitative results
of human preference.

4.2.1 Per-prompt Text-to-3DGS

We select the current SoTA open-source text-to-3DGS methods, including DreamGaussian (Tang et al.
2023)), GSGEN (Chen et all [2023b]) and LucidDreamer (Liang et all, 2024) for comparison. In this setting,
we directly input the text prompt to BrightDreamer and use the same prompt to optimize the 3D GS model




Under review as submission to TMLR

in other methods. As shown in the first four columns of Fig. [} the other methods are hard to generate
semantic-aligned 3D GS models from complex text prompts, primarily due to their limited capability in
comprehending intricate text inputs. A similar conclusion can be found in the works (Jiang et al., [2024;
|Zhou et al.; |Cheng et al.; Bai et al [2023; [Epstein et al.). It is hard to optimize a 3D GS model for a prompt
containing multiple objects. Our method, trained across a diverse distribution of multiple text prompts,
exhibits a robust capability to comprehend complex prompts effectively.

4.2.2 Quickly Finetuning after generation

We demonstrate that the 3D GS model generated

GRM LGM
by BrightDreamer can be efficiently fine-tuned using %) A
per-prompt optimization methods to enhance qual- ' ‘ @ ﬁ @ %
ity. Specifically, we use the ISM (Liang et al.,|2024)

loss to optimize the generated 3D GS model for sev- “Electric luxury SUV, apple red, spacious, advanced tech”

eral hundred iterations. As evidenced in the last col- a0 — .
umn of Fig.[6] the third and sixth columns of Fig. [7] ﬁa |§ e ‘_: ?’/\ %
the model’s quality of details significantly improves o N . % v/ \\‘/

within just several minutes.

Ours

“Family minivan, yellow, large capacity, economical”

> 9 \ -y ~ \
4.2.3 Amortized Text-to-NeRF b & Z z x
I {

We compare BrightDreamer with SoTA open-source
amortized Text-to-NeRF methods, Instant3D
_ It is worth noting that our method Figure 8: Comparison with text-to-image-to-3DGS
is the first amortized Text-t0-3DGS method. More- methods.

over, our method inherits numerous advantages of

3D GS over NeRF. Since ATT3D (Lorraine et al.|
2023)) and Latte3D (Xie et al., 2024) don’t open their code and demo, we don’t compare with them. As

shown in Fig. [7] our semantic alignment is better. Furthermore, benefiting from the training efficiency of
3D GS, we can quickly fine-tune the generated 3D GS model to enhance the details.

“A glamorous woman in a cocktail dress is dancing on the beach”

4.2.4 Text-to-image-to-3DGS

Besides the direct generation of text-to-3DGS, alternative methods also exist to achieve this goal. For
instance, LGM (Tang et al., 2025) and GRM (Xu et al., 2024d)) first generate the reference images using a
text-to-image diffusion model, followed by the creation of a 3D model from these images. However, since the
second phase of image-to-3DGS is trained on the limited 3D dataset, it is hard for them to generate the 3D GS
models for complex prompt input. As shown in Fig. 8] we demonstrate the comparison result. Furthermore,
since these methods require an intermediate image generation step, they are considerably slower than our
BrightDreamer approach.

4.2.5 Quantitative Comparison

As shown in Tab. 2] we provide the percentage nu-
merical comparison of human preference choice. We
present participants with five rendered videos along Preference 37.3% 7.2% 55.4%
with the corresponding text prompts generated by CLIP Score 0.322 0.286 0.324
five baseline models, allowing them to select their
preferred option for each case. Most of the users ex-
pressed a preference for the content generated by our model. Moreover, we also render the 10-view images
to compute CLIP similarity as the CLIP score.

Method ‘InstantSD LucidDreamer Ours

Table 2: Human Preference.

4.3 Discussion about Generalizability
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Beyond sentence-level generalizability, our findings indicate that BrightDreamer can also correctly interpret
some unseen words. As demonstrated in Fig. [0 although the word "banana' is absent from our training
dataset, BrightDreamer successfully identifies its color. This capability not only suggests a potential for
broad word-level generalizability but also confirms that BrightDreamer effectively learns the mapping from
text distribution to 3D GS distributions.

4.4 Ablation Studies

As shown in Fig. we validate our network de- - - - =
. .. y . - P, > s . e’
sign for training. Compared between Fig. (a) - N v = \g; NPy
and Fig. (b), our divided triplane generator can
reduce the degree of chaos in the space significantly,

which shows the necessity of our division. Notably, ' _ L
we adjust the number of blocks, i.e., network depth, Figure 9: Demonstration of word-level generalizability.

to achieve a similar number of parameters. As The word “banana” never appears in the training
Fig.[10] (a) and Fig. [10] (c) demonstrate, it is neces- S€t-

sary to pass the coordinate into the Fipqpe and Feoor. This design can construct a gradient pathway toward
the TSD Network, ensuring more accurate shape formulation.

“Racing car, banana, lightweight “Urban microcar, banana, ideal
aero kit, sequential gearbox” for city life, fuel-efficient”

5 Conclusion

In this paper, we introduce the first text-driven 3D

Gaussians generative framework, BrightDreamer, % a %
capable of generating 3D Gaussians within a re-

markably low latency of 77ms. To efficiently gen-

erate millions of 3D Gaussians, we innovatively de- Q’/ ;ﬁ‘ Qf
form anchor positions and use these new positions as
centers based on the input prompt. This approach
successfully overcomes the challenge of generating a
large number of positions. Regarding network archi-
tecture, we thoroughly reevaluate the triplane gener-
ation process and introduce an improved alternative
strategy. Our key contribution is to greatly enhance
the generalized 3D generation, offering a novel and
efficient way to create 3D assets from text prompts instantly. Extensive experiments demonstrate that
BrightDreamer possesses strong semantic understanding and generalization abilities. Due to the limited 3D
data, developing methods based on 2D diffusion is an important direction.

AR
2
\

(b) w/o Triplane (c) w/o Coordinate

(a) Complete Design Generator Division Shortcut

Figure 10: Ablation studies. All models are trained
for 10,000 iterations (incomplete training) with the
same configuration: (a) Our complete design, (b) Sin-
gle generator replacing three separate generators, (c)
Coordinate input removed from Fipqpe and Folor.

Future work. The spatial resolution of the generated 3D model is relatively low, resulting in a lack of
fine-grained detail. To address this problem, we will focus on reducing the gpu memory occupation of SDS
loss to achieve higher spatial resolution. Besides, since the LGM (Tang et al., [2025) and GRM (Xu et al.,
2024d)) can generate highly detailed single-object 3D GS models while our method can generate semantic-rich
3D GS models, developing a method that combines these two advantages is an interesting research direction.
We will also collect broader data to train a larger model. Furthermore, we will also incorporate the better
SDS loss design into our framework to achieve higher quality.
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A Training Details of BrightDreamer

For a clearer illustration of our training pipeline, we provide the details in Algorithm. We train our
BrightDreamer for about 2 days on a server with 8 GPUs with 80GB memory. Actually, a lower batch size
and less training time can also result in similar quality.

Algorithm 1 Training Procedures of BrightDreamer

Input: S, training prompts set ; B, batch size of prompts; C, batch size of cameras; max__iter, maximum
training iterations
for i + 1 to max_iter do
prompts < sample B prompts in S;
3D__GS + BrightDreamer(prompts);
loss + 0;
for i <+ 1to B do
cameras < randomly sample C' cameras;
images < render(3D_GS[i], cameras);
texts_dir < prompt[i] added front/side/back;
loss + loss + SDS(images, texts_dir); # Fq. 6
end for
optimizer.zero_ grad();
loss.backward();
optimizer.step();

end for
End.

B Inference Procedures of Our BrightDreamer

In Algorithm. 2] we provide the inference details of our BrightDreamer.

C Discussion about Generalization
In Fig. 2 of the main paper, we show the different combinations that don’t appear in the training prompts,
e.g., 'deep purple’ and ’light purple’. Here, we show the word that doesn’t appear in the training prompts

may also be understood. For example, ’banana’ doesn’t appear in the training process anymore. However,
as shown in Fig.[19 and Fig. it can generate the corresponding color accurately.

D More Visual Results

From Fig. 12 to Fig. 51, we provide more multi-view results of our Bright Dreamer. Our method shows strong
detail control ability.
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Algorithm 2 Inference Procedures of Our BrightDreamer

Input: p, the anchor positions; prompt, input text prompt;

Output: 3D_GS, the generated 3D GS;

# Shape Deformation

A + TSD(p, prompt);

p' < p+0;

# Triplane Generation

Tay < TTG_XY (prompts);

e < TTG_XZ(prompts);

myz < TTG_YZ(prompts);

# 3D Gaussian Decoding
0,1]], 72y

Fr» + grid_sample(p'[..., [0, 2]], 7z2);
[1,2]], 72);

Fuy < grid_sample(p']...,

Fy- < grid_sample(p'[...,

F 4 (Foy + Foy + Fuy) / 3;
S, R, & = Fspape(F, p');

SH ¢« Footor (F. p):

# 3D GS Construction
3D_GS + GaussianModel();
3D_GS._xyz + p;
3D_GS._opacity + «;

3D _GS._rotation < S;
3D_GS._scaling + R;

3D GS. feature_dc «+ SH,;
return 3D_GS;

End.
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Figure 11: Electric luxury SUV, apple red, spacious, advanced tech
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Figure 12: Electric luxury SUV, yellow, spacious, advanced tech
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Figure 13: Electric luxury SUV, forest green, spacious, advanced tech
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Figure 14: Electric luxury SUV, cyan, spacious, advanced tech
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Figure 15: Electric luxury SUV, deep blue, spacious, advanced tech
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Figure 16: Electric lu

xury SUV, light purple, spacious, advanced tech
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Figure 17: Racing car, deep red, lightweight aero kit, sequential gearbox
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Figure 18: Racing car, blaze orange, lightweight aero kit, sequential gearbox
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Figure 19: Racing car, banana, lightweight aero kit, sequential gearbox
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Figure 20: Racing car, green, lightweight aero kit, sequential gearbox
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Figure 21: Racing car, cyan, lightweight aero kit, sequential gearbox
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Figure 22: Family minivan, purple, large capacity, economical
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Figure 23: Family minivan, yellow, large capacity, economical
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Figure 24: Family minivan, apple red, large capacity, economical
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Figure 25: Family minivan, orange, large capacity, economical
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Figure 26: Urban microcar, orange, ideal for city life, fuel-efficient
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Figure 27: Urban microcar, banana, ideal for city life, fuel-efficient
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Figure 28: Electric coupe, forest green, sleek design, autonomous features
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Figure 29: Electric coupe, pearl white, sleek design, autonomous features
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Figure 30

: Vintage convertible, orange, chrome bumpers, white-wall tires
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Figure 31: Vintage convertible, apple red, chrome bumpers, white-wall tires
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Figure 32: Vintage convertible, yellow, chrome bumpers, white-wall tires
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Figure 38: a fat man is trimming his plants
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Figure 39: a fat and elderly man is trimming his plants
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Figure 40: an elderly man is trimming his plants
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Figure 41: a man is playing with a dog
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Figure 42: a man wearing a backpack is playing with a dog
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Figure 43: a man is playing with a dog on the lawn
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Figure 44: a

man is playing with a dog

on the beach
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Figure 45: a man is mowing the lawn
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Figure 46: a man wearing a hat is mowing the lawn
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Figure 47: a woman is mowing the lawn
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Figure 48: a woman in a long dress is mowing the lawn
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Figure 49: A glamorous woman in a cocktail dress is dancing in the park
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Figure 50: A glamorous woman in a cocktail dress is dancing on the beach
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