
QUAFL: FEDERATED AVERAGING MADE
ASYNCHRONOUS AND COMMUNICATION-EFFICIENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is an emerging paradigm to enable the large-scale dis-
tributed training of machine learning models, while still allowing individual nodes
to maintain local data. In this work, we take steps towards addressing two of the
main practical challenges when scaling federated optimization to large node counts:
the need for tight synchronization between the central authority and individual
computing nodes, and the large communication cost of transmissions between the
central server and clients. Specifically, we present a new variant of the classic
federated averaging (FedAvg) algorithm, which supports both asynchronous com-
munication and communication compression. We provide a new analysis technique
showing that, in spite of these system relaxations, our algorithm can provide similar
convergence to FedAvg in some parameter regimes. On the experimental side, we
show that our algorithm ensures fast convergence for standard federated tasks.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017) is a paradigm for large-scale
distributed learning, in which multiple clients, orchestrated by a central authority, cooperate to
jointly optimize a machine learning model given their local data. The key promise is to enable joint
training over distributed client data, often located on end devices which are computationally- and
communication-limited, without the data leaving the client device.
The basic optimization algorithm underlying the learning process is known as federated averaging
(FedAvg) (McMahan et al., 2017), and works roughly by having a central authority periodically
communicate a shared model to all clients; then, the clients optimize this model locally based on their
data, and communicate the resulting models to a central authority, which incorporates these models,
often via some form of averaging, after which it initiates the next iteration. This algorithmic blueprint
has been shown to be effective in practice (Li et al., 2020), and has also motivated a rich line of
research analyzing its convergence properties (Stich, 2018; Haddadpour & Mahdavi, 2019), as well
as proposing improved variants (Reddi et al., 2020; Karimireddy et al., 2020; Li & Richtárik, 2021).
Scaling federated learning runs into a number of practical challenges (Kairouz et al., 2021). One
natural bottleneck is synchronization between the server and the clients: as practical deployments
may contain thousands of nodes, it is infeasible for the central server to orchestrate synchronous
rounds among all participants. A simple mitigating approach is node sampling, e.g. (Smith et al.,
2017; Bonawitz et al., 2019); another, more general one is asynchronous communication, e.g. (Wu
et al., 2020; Nguyen et al., 2022b), by which the server and the nodes may work with inconsistent
versions of the shared model. An orthogonal scalability barrier is the high communication cost of
transmitting parameter updates (Kairouz et al., 2021), which may overwhelm communication-limited
clients. Several communication-compression approaches have been proposed to address this (Jin
et al., 2020; Jhunjhunwala et al., 2021; Li & Richtárik, 2021; Wang et al., 2022).
It is reasonable to assume that both these bottlenecks would need to be mitigated in practice: for
instance, communication-reduction may not be as effective if the server has to wait for each of
the clients to complete their local steps on a version of the model; yet, synchrony is assumed by
most references with compressed communication. Yet, removing synchrony completely may lead to
divergence, given that local data is usually heterogenous. Thus, it is interesting to ask if asynchrony
and communication compression, and heterogenous local data, can be jointly supported.
Contribution. In this paper, we address this by proposing an algorithm for Quantized Asynchronous
Federated Learning called QuAFL, which is an extension of FedAvg, specifically-adapted to support
both asynchronous communication and communication compression. We provide a theoretical
analysis of the algorithm’s convergence under compressed and asynchronous communication, and
experimental results on up to 300 nodes showing that it can also lead to practical performance gains.

1

Overview. The main idea behind QuAFL is that we allow clients to perform their local steps
independently of the round structure implemented by the server, and on a local, inconsistent version
of the parameters, assuming a probabilistic scheduling model. Specifically, all clients receive a copy
of the model when joining the computation, and start performing at most K ≥ 1 optimization steps
on it based on their local data. Independently, in each “logical round,” the server samples a set of s
clients uniformly at random, and sends them a compressed copy of its current model.
Whenever receiving the server’s message, clients immediately respond with a compressed version of
their current model, which may still be in the middle of the local optimization process, and therefore
may not include recent server updates, nor the totality of the K local optimization steps. In fact, we
even allow that, with some probability, some contacted clients do not take any steps at all. Clients
carefully integrate the received server model into their next local iteration, while the server does the
same with the client models it receives.
The key missing piece regards quantization. Directly applying standard compressors on transmitted
updates (Alistarh et al., 2017b; Karimireddy et al., 2019) runs into the issue that the quantization error
may be too large, as it is proportional to the norm of the (updated) model at the client. Resolving
this analytically would require either an unrealistic second-moment bound on the maximum gradient
update, e.g. (Chen et al., 2021), or variance-reduction techniques (Gorbunov et al., 2021), which
may be complex in practice. We circumvent this issue differently, by leveraging a lattice-based
quantizer (Davies et al., 2021), which has the property that the quantization error only depends on the
difference between the quantized model and a carefully-chosen “reference point.” We instantiate this
technique for the first time in the federated setting.
Our analysis technique relies on a new potential argument, which shows that the discrepancy between
the client and server models is always bounded. This bound serves to control the “noise” at different
steps due to model inconsistency, but also to ensure that the local models are consistent enough to
allow correct encoding and decoding via lattice quantization. The technique is complex yet modular,
and should allow further analysis of more complex algorithmic variants.
We validate our algorithm experimentally in the rigorous LEAF (Caldas et al., 2018) environment,
on a series of standard tasks. Specifically, in practice, QuAFL can compress updates by more than
3× without significant loss of convergence, and can withstand a large constant fraction of “slow”
clients submitting infrequent updates. Moreover, in a setting where client computation speeds are
heterogenous, QuAFL provides end-to-end speedup, since the server can progress without waiting
for all clients to complete their local computation.

2 RELATED WORK

The federated averaging (FedAvg) algorithm was introduced by McMahan et al. (2017), and Stich
(2018) was among the first to consider its convergence rate in the homogeneous data setting. Here, we
investigate whether one can jointly eliminate two of the main scalability bottlenecks of this algorithm,
the synchrony between the server and client iterations, as well as the necessity of full-precision
communication, with heterogeneous data distributions. Due to space constraints, we focus on prior
work which seeks to mitigate these two constraints in the context of FL.
There is significant research into communication-compression for FedAvg (Philippenko & Dieuleveut,
2020; Reisizadeh et al., 2020; Jin et al., 2020; Haddadpour et al., 2021). However, virtually all of
this work considers synchronous iterations. Reisizadeh et al. (2020) introduced FedPAQ, a variant of
FedAvg which supports quantized communication via standard compressors, and provides strong
convergence bounds, under the strong assumption of i.i.d. client data. Jin et al. (2020) examines the
viability of a variant of the signSGD quantizer (Seide et al., 2014; Karimireddy et al., 2019) in the
context of FedAvg, providing convergence guarantees; however, the rate guarantees have a polynomial
dependence in the model dimension d, rendering them less practically meaningful. Haddadpour
et al. (2021) proposed FedCOM, a family of federated optimization algorithms with communication-
compression and convergence rates; yet, we note that, in order to prove convergence in the challenging
heterogeneous-data setting, this reference requires non-trivial technical assumptions on the quantized
gradients (Haddadpour et al., 2021, Assumption 5). Chen et al. (2021) also considered update
compression, but under convex losses, coupled with a rather strong second-moment bound assumption
on the gradients. Finally, Jhunjhunwala et al. (2021) examine adapting the degree of compression
during the execution, proving convergence bounds for their scheme, under the non-standard i.i.d. data
sampling assumption.

2

We observe that each of these references requires at least one non-standard assumption for the
convergence of FedAvg with compression. By contrast, our analysis works for general (non-convex)
losses, under a standard non-i.i.d. data distribution, without relying on second-moment bounds on the
gradients.
A complementary approach to reducing communication cost in FL has been to investigate optimizers
with faster convergence, e.g. (Mishchenko et al., 2019; Karimireddy et al., 2020), or adaptive
optimizers (Reddi et al., 2020; Tong et al., 2020). Tecent work has shown that these approaches can
be compatible with communication-compression (Gorbunov et al., 2021; Li & Richtárik, 2021; Wang
et al., 2022). Specifically, for non-convex losses, MARINA Gorbunov et al. (2021) offers theoretical
guarantees both in terms of convergence and bits transmitted. However, MARINA is structured
in synchronous rounds; moreover, it periodically (with some probability) has clients compute full
gradients and transmit uncompressed model updates, and requires complex synchronization and
variance-reduction to compensate for the extra noise due to quantization. Tyurin & Richtárik (2022)
proposed a family of theoretical methods called DASHA, which combines the general structure
of MARINA with Momentum Variance Reduction (MVR) methods (Cutkosky & Orabona, 2019),
partially relaxing the coupling between the server and the workers and allowing compressed updates.
In contrast to these works, we focus on obtaining a practical algorithm with good convergence bounds:
we always transmit compressed, low-precision messages, and consider a notion of asynchronous
communication which allows the server and nodes to make progress independently, in non-blocking
fashion. We focus on the classic, practical FedAvg algorithm, although our general algorithmic and
analytic approach should generalize to more complex notions of local optimization.
Our approach extends ideas from the analysis of decentralized variants of SGD (Lian et al., 2017;
Tang et al., 2018; Nadiradze et al., 2021; Koloskova et al., 2019; Lu & De Sa, 2020), bringing them
into the context of federated optimization. Significant differences exist: notably, we introduce a
novel potential argument, adapted to FL, and cannot rely on stronger assumptions available in the
decentralized setting, e.g. a gradient second-moment bound (Lu & De Sa, 2020).
The concurrent work of Koloskova et al. (2022) provided sharper convergence bounds for asyn-
chronous SGD in a model that is related to ours. Specifically, this reference considers a setting with
worst-case and average delay bounds on asynchrony, and proves convergence rates that are similar to
ours in the case of a single sampled client at a time s. By contrast, our work considers a different
probabilistic model on the delays, related to that of Cannelli et al. (2020) in which the worst-case
delay may be unbounded. In addition, we allow the clients to be interrupted by the server during
their local computation, which may lead to practical improvements in terms of waiting times and
load-balancing. At the technical level, the two analysis techniques are different: in particular, their
technique does not require a lower bound on the number of SGD steps w.r.t. the number of nodes n.

3 THE ALGORITHM

3.1 SYSTEM OVERVIEW

System Model. We assume a distributed system with one coordinator and n workers, jointly
minimizing a d-dimensional, differentiable function f : Rd → R. We consider the empirical risk
minimization (ERM) setting, in which data samples are located at the n nodes. Each agent i has a
local function fi associated to its own local fraction of the data, i.e ∀x ∈ Rd: f(x) =

∑n
i=1 fi(x)/n.

The goal is to converge on a model x∗ which minimizes the empirical loss. Clients run a distributed
variant of SGD, coordinated by the central node. We will assume that each client i is able to
obtain unbiased stochastic gradients g̃i of its own local function fi, i.e. E[g̃i(x)] = ∇fi(x). These
stochastic gradients can be computed by each agent by sampling i.i.d. from its own local distribution.
Our analysis will consider the case where each client distribution is distinct, but there is a bound on
the maximum gradient discrepancy.
We model client asynchrony as follows: between two consecutive interactions with the server, each
client should perform a number of gradient steps on its local model. We treat the number of local
steps at client i as a random variable Hi, taking values in {0, 1, 2, . . . ,K}, where K is a bound on
how many steps a client can take in isolation. We emphasize the fact that Hi can take the value
0, meaning that the client may take no steps since last contacted. Our only assumption regarding
asynchrony is that the expected value of H, denoted by H , exists and is > 0. That is, we assume that,
on average, each client makes non-zero progress, and clients progress at similar rates, although the
individual step distributions Hi can be completely different.

3

3.2 ALGORITHM DESCRIPTION

Overview. Our algorithm starts from the standard pattern used by federated averaging (FedAvg):
computation and communication are organized in logical “rounds,” where in each round the server
transmits its current version of the model to either all, or a subset of clients. The clients should then
take some number of local optimization steps on the received model, which is at most K ≥ 1, and
transmit the result to the server, which integrates these updates. Our algorithm will relax this pattern
in two orthogonal ways, allowing for both quantized and asynchronous communication.
Quantized Communication. The first relaxation is to only allow for compressed communication
of the server model and of the client updates, via quantization. For this, we employ a carefully-
parametrized version of the lattice-based quantization technique of Davies et al. (2021), whose
analytical properties we describe in the analysis section. For practical purposes, this quantization
technique presents an encoding function Enc(A), which encodes an arbitrary input A to its quantized
representation. (We always communicate vectors via their quantized representations.) To “read” an
encoded message Enc(A), a node must call the symmetric Dec(B,Enc(A)) function, which allows
for the “decoding” of the input Enc(A) with respect to a reference point B, returning a quantized
output Q(A). We formally specify the properties of the compression process in Section 4.

Algorithm 1 Pseudocode for QuAFL Algorithm.
% Initial models X0 = X1 = X2 = ... = Xn = 0d, number of local steps K
% Encoding (Enc(A)) and decoding (Dec(B,Enc(A))) functions, with common parametrization.
% At the Server:

1: for t = 0 to T − 1 do
2: Server chooses s clients uniformly at random, let S be the resulting set.
3: for all clients i ∈ S do
4: Server sends Enc(Xt) to the client i.
5: Server receives Enc(Y i) from client i
6: % Y i = Xi − ηh̃i is the client’s progress since last contacted
7: Q(Y i)← Dec(Xt, Enc(Y i)) % Decodes client messages relative to Xt

8: end for
9: Xt+1 = 1

s+1
Xt +

1
s+1

∑
i∈S Q(Y i)

10: end for
% At Client i:
% Upon (asynchronous) contact from the server run INTERACTWITHSERVER
% Local variables:
% Xi stores the base client model, following the last server interaction. Initially 0d.
% h̃i accumulates local gradient steps since last server interaction, initially 0d.

1: function INTERACTWITHSERVER
2: MSGi ← Enc(Xi − ηh̃i) % Client i compresses its local progress since last contacted.
3: Client sends MSGi to the server.
4: Client receives Enc(Xt) from the server, where t is the current server time.
5: Q(Xt)← Dec(Xi, Enc(Xt)) % Client decodes the message using its old model as reference point.
6: % The client then updates its local model
7: Xi = 1

s+1
Q(Xt) +

s
s+1

(Xi − ηh̃i)

8: %Finally, it performs K new local steps on the updated Xi, unless interrupted again.
9: LOCALUPDATES(Xi,K)

10: WAIT()
11: end function

1: function LOCALUPDATES(Xi, K)
2: h̃i = 0 % local gradient accumulator
3: for q = 0 to K − 1 do
4: h̃q

i = g̃i(X
i − η

∑q−1
ℓ=0 h̃ℓ

i) % compute the qth local gradient
5: h̃i = h̃i + h̃q

i % add it to the accumulator
6: end for
7: end function

Asynchronous Communication. A key practical limitation of the FedAvg pattern is that the server
and its workers have to communicate in synchronous, lock-step fashion: thus, the server must wait for
the results of computation at a round before it can move to the next round. In particular, this means
that the server has to wait for the slowest client to complete its local steps before it can proceed.

4

QuAFL relaxes this requirement by essentially allowing any contacted node i to immediately return
(a quantized version of) its current version of the model to the server upon being contacted, even
though the client might still not have completed all its K local optimization steps for the round. More
precisely, the client always records its “base” model at the end of the last interaction with the server
into parameter Xi, and sums up its gradient updates since the last interaction into the buffer h̃i. Upon
being contacted, the client simply sends its current progress Y i = Xi − ηh̃i to the server (excluding
the local step for which computation was not finished due to interruption from the server) , where η is
the learning rate, in quantized form. It is possible that this progress is zero. The client then decodes
the quantized server model Xt, using its old local model Xi as the decoding key. Finally, the client
updates Xi to include the server’s new information via weighted averaging. It is then ready to restart
its local update loop, upon this new model.
It is important to notice that the server interaction occurs asynchronously, and that it might occur
either while the client is still performing local steps, or after the client has completed its K local steps,
and is idle, waiting for server contact. In the former case, upon being contacted, immediately calls the
server interaction function, without performing additional steps. (In particular, we allow the number
of completed local steps to be 0.) Globally, the server contacts s random agents in each logical round,
sends them a quantized version of the global model Xt, then receives quantized versions of their
progress, and then incorporates this into the global model which will be sent at the next round.
Discussion. The practical advantage of QuAFL is that the server does not have to wait for each
of the contacted clients to complete their local optimization on the global model Xt. In addition,
an important departure from FedAvg is the averaging between the server and client models. Our
formulation is important for fast convergence: as we show in Figure 4, other forms, such as just
adopting the client average, lead to worse convergence.

4 CONVERGENCE ANALYSIS

4.1 ANALYTICAL ASSUMPTIONS

We begin by stating the assumptions we make in the theoretical analysis of our algorithm. Specifically,
we assume the following for the global loss function f , the individual client losses fi, and the
stochastic gradients g̃i:

1. Uniform Lower Bound: There exists f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.
2. Smooth Gradients: For any client i, the gradient ∇fi(x) is L-Lipschitz continuous for

some L > 0, i.e. for all x, y ∈ Rd:
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (1)

3. Bounded Variance: For any client i, the variance of the stochastic gradients is bounded by
some σ2 > 0, i.e. for all x ∈ Rd:

E
∥∥∥g̃i (x)−∇fi (x)

∥∥∥2 ≤ σ2. (2)

4. Bounded Dissimilarity: There exist constants G2 ≥ 0 and B2 ≥ 1, s.t. ∀x ∈ Rd:

n∑
i=1

∥∥∥∇fi (x)
∥∥∥2

n
≤ G2 +B2

∥∥∥∇f (x)
∥∥∥2. (3)

The first three conditions are universal in distributed non-convex stochastic optimization, whereas the
fourth encodes the fact that there must be a bound on the amount of divergence between the local
distributions at the nodes in order to allow for joint optimization (Karimireddy et al., 2020; Jin et al.,
2020; Gorbunov et al., 2021).
In addition, we make the following assumption on the local progress performed by each node:

5. Probabilistic Progress: The expected number of local steps taken by a client when contacted
by the server is H > 0.

Quantization Procedure. Please recall the semantics of our quantization procedure from Section 3.2.
In this context, the quantizer has the following guarantees (Davies et al., 2021) (Lemma 23):
Lemma 4.1. (Lattice Quantization) Fix parameters R and γ > 0. There exists a quantization
procedure defined by an encoding function EncR,γ : Rd → {0, 1}∗ and a decoding function
DecR,γ = Rd×{0, 1}∗ → Rd such that, for any vector x ∈ Rd which we are trying to quantize, and

5

any vector y which is used by decoding, which we call the decoding key, if ∥x−y∥ ≤ RRd

γ then with
probability at least 1− log log(∥x−y∥

γ)O(R−d), the function QR,γ(x) = DecR,γ(y,EncR,γ(x)) has
the following properties:

1. (Unbiased decoding) E[QR,γ(x)] = E[DecR,γ(y,EncR,γ(x))] = x;

2. (Error bound) ∥QR,γ(x)− x∥ ≤ (R2 + 7)γ;

3. (Communication bound) O
(
d log(Rγ ∥x− y∥

)
) bits are needed to send EncR,γ(x).

4.2 MAIN RESULTS

Roughly, our aim is to show that in our algorithm, local models of the clients stay close to the local
model of the server, so that models are consistent, and we can successfully apply the quantizer. Let
µt = (Xt +

∑n
i=1 X

i)/(n+ 1) be the mean over all the node models in the system at a given t. Our
main result shows the following:
Theorem 4.2. Assume the total number of server steps T ≥ Ω(n3), the learning rate η = n+1

sH
√
T

, and

quantization parameters R = 2 + T
3
d and γ2 = η2

(R2+7)2

(
σ2 + 2KG2 + f(µ0)−f∗

L

)
. Let H > 0 be

the expected number of local steps already performed by a client when interacting with the server.
Then, with probability at least 1−O(1

T) we have that Algorithm 1 converges at the following rate

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 5(f(µ0)− f∗)√
T

+
8KL(σ2 + 2KG2)

H2
√
T

+O

(
n3KL2(σ2 + 2KG2)

sH3T

)
and uses O (sT (d log n+ log T)) expected communication bits in total.

Discussion. The result provides a trade-off between the convergence speed of the algorithm, the
variance of the local distributions (given by σ and G), the sampling set size s, and the average number
of local steps H performed by a node when contacted by the server.
For constant s, H and K, this bound appears to be asymptotically-optimal. Specifically, the third
term contains similar “nuisance factors” as the second term, with the addition of the n3 factor, and
also bounds the extra variance. Crucially, this larger term is divided by T , as opposed to

√
T ; since T

is our asymptotic parameter, it is common to assume that this extra term becomes negligible as T is
large, e.g. (Lu & De Sa, 2020).
However, for super-constant s = ω(n), there is no tangible benefit due to sampling over s clients.
Intuitively, this is because of asynchrony: each client gets sampled on average every n/s steps, and
therefore will work on a “stale” copy of the model that is n/s rounds old, which affects convergence
speed. While this is a limitation of the analysis, from the practical perspective, this can be addressed
by observing that, due to asynchrony, in terms of wall-clock time, we can think of the s interaction
steps between the server and the clients as happening in parallel. Thus, again, in terms of wall-clock-
time, it is reasonable to perform the substitution T → sT in the above rate calculation, which indeed
suggests that our algorithm is able to obtain speedup with respect to the number of sampled clients s.
In practice, it should be reasonable to assume that H = Θ(K), that is, that on average each client
i will have completed its local steps on the old version of the model Xi when being contacted:
otherwise, the sampling frequency of the server is too high, and prevents clients from making
progress on their local optimization, and the server should simply decrease it.
Convergence at the Server. Finally, we show that not only convergence at the server, as opposed to
the convergence of the mean of the local models as in Theorem 4.2. We get that:
Corollary 4.3. Assume the total number of steps T ≥ Ω(n4), the learning rate η = n+1

sH
√
T

, and

quantization parameters R = 2 + T
3
d and γ2 = η2

(R2+7)2

(
σ2 + 2KG2 + f(µ0)−f∗

L

)
. Let H > 0 be

the expected number of local steps already performed by a client when interacting with the server.
Then, with probability at least 1−O(1

T) we have that Algorithm 1 converges at the following rate

1

T

T−1∑
t=0

E∥∇f(Xt)∥2 ≤ 5(f(µ0)− f∗)√
T

+
8KL(σ2 + 2KG2)

H2
√
T

+O

(
n4KL2(σ2 + 2KG2)

sH2T

)
.

This corollary yields a very similar bound to our main result, except for the larger dependency between
T and n, which is intuitively required due to the additional time required for the server to converge

6

to a similar bound to the mean µt. The third term may be significant for large number of nodes n;
however, since it is divided by T (as opposed to

√
T) it can be seen as negligible for moderate n

and large T . The fact that QuAFL can match some of the best known rates for FedAvg under some
parameter settings may seem surprising, since our algorithm is asynchronous (in particular, nodes take
steps on local, delayed versions of the server model) and also supports communication-compression.

4.3 OVERVIEW OF THE ANALYSIS

The complete analysis is fairly complex, and is provided in full in the Appendix. Due to space
constraints, we only provide an overview of the proofs, outlining the main intermediate results. The
first step in the proof is bounding the deviation between the local models and their mean. For this, we
introduce the potential function Φt = ∥Xt − µt∥2 +

∑n
i=1 ∥Xi − µt∥2, and we use a load-balancing

approach to show that this potential has the following supermartingale-type property:

Lemma 4.4. For any time step t we have:

E[Φt+1] ≤
(
1− 1

4n

)
E[Φt] + 8sη2

n∑
i=1

E∥h̃i∥2 + 16n(R2 + 7)2γ2.

The intuition behind this result is that potential Φt will stay well-concentrated around its mean, except
for influences from the variance due to local steps (second term) or quantization (third term). With
this in place, the next lemma allows us to track the evolution of the average of the local models, with
respect to local step and quantization variance:

Lemma 4.5. For any step t

E∥µt+1 − µt∥2 ≤ 2s2η2

n(n+ 1)2

∑
i

E
∥∥∥h̃i

∥∥∥2 + 2

(n+ 1)2
(R2 + 7)2γ2.

In both cases, the upper bound depends on the second moment of the nodes’ local progress
∑

i E
∥∥∥h̃i

∥∥∥2.
(This is due to the fact that the server contacts s clients, which are chosen uniformly at random.) Then,

our main technical lemma uses properties (1), (2) and (3), to concentrate
∑

i E
∥∥∥h̃i(X

i
t)
∥∥∥2 around the

true gradient E∥∇f(µt)∥2, where the expectation is taken over the algorithm’s randomness.

Lemma 4.6. For any step t, we have that
n∑

i=1

E∥h̃i∥2 ≤ 2nK(σ2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2.

We can then combine Lemmas 4.4 and 4.6 to get an upper bound on the potential with respect to
E∥∇f(µt)∥2. Summing over steps, we obtain the following:

Lemma 4.7.
T∑

t=0

E[Φt] ≤ 80Tn2(R2+7)2γ2+80Tn2sKη2(σ2+2KG2)+160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2.

Next, using the L-smoothness of the function f , implied by (1), we can show that

E[f(µt+1)] ≤ E[f(µt)] + E⟨∇f(µt), µt+1 − µt⟩+
L

2
E∥µt+1 − µt∥2. (4)

Final argument. Using the above inequality, and given that E[µt+1 − µt] = − η
n+1

∑
i∈S h̃i(X

i
t),

we observe that the sum
∑n

i=1 E⟨∇f(µt), µt+1 − µt⟩ can be concentrated around E∥∇f(µt)∥2, in
similar fashion as in Lemma 4.6. Together with Lemma 4.5, this results in the following bound:

E[f(µt+1)]− E[f(µt)] ≤
5ηsKL2E[Φt]

n(n+ 1)
+
(4sL2η3K3

n+ 1
+

2s2Kη2L

(n+ 1)2
)
(σ2 + 2KG2)

+
(R2 + 7)2γ2L

(n+ 1)2
+
(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

4B2s2K2Lη2

(n+ 1)2
)
E∥∇f(µt)∥2.

7

0 25 50 75 100 125 150 175
Server steps

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

QuAFL (100,10,10,lattice: 14)
QuAFL (100,20,10,lattice: 14)
QuAFL (100,30,10,lattice: 14)
QuAFL (100,40,10,lattice: 14)

Figure 1: Peers s ∈ {10, 20, 30, 40} on
convergence, for n = 100 clients, 14-bit
quantization, on CelebA.

200 400 600 800 1000
time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

lo
ss

QuAFL step (20,5,10,lattice: 8)
QuAFL step (20,5,10,lattice: 10)
QuAFL step (20,5,10,lattice: 12)
QuAFL step (20,5,10,lattice: 32)

Figure 2: Impact of the number of bits
b ∈ {8, 10, 12, 32} on convergence, for
n = 40 clients, s = 5 peers on MNIST.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice: 14) sit: 1.312 swt: 5
Baseline

Figure 3: Convergence comparison rela-
tive to simulated time between QuAFL and
FedAvg, for ResNet20/CIFAR10.

0 50 100 150 200 250 300
Server steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Server averaging: 0, Client averaging: 0
Server averaging: 0, Client averaging: 1
Server averaging: 1, Client averaging: 0
Server averaging: 1, Client averaging: 1

Figure 4: Impact of averaging variants on
validation accuracy on CelebA, vs. rounds.

7000 7500 8000 8500 9000 9500 10000
Time

0.312

0.314

0.316

0.318

0.320

Lo
ss

QuAFL (20,5,5,qsgd: 14) swt: 5 sit: 1.312
QuAFL (20,5,5,lattice: 14, 8e-05) swt: 5 sit: 1.312

Figure 5: Using QSGD vs Lattice quanti-
zation in QuAFL, on MNIST.

0 1000 2000 3000 4000 5000 6000 7000
Local (Gradient) Steps

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

Lo
ss

FedBuff (100,10,10) sit: 3
QuAFL (100,10,10,identity) swt: 1 sit: 3.0

Figure 6: Convergence of QuAFL vs.
SOTA asynchronous FL algorithm FedBuff.

For η = (n + 1)/
√
T , as stated in the Theorem, we can use Lemma 4.7 to cancel out the terms

containing the potential Φt (after summing up the inequality over T steps). Replacing these terms,
and modulo some additional term wrangling, we obtain the claimed convergence bound.
Quantization Impact. Finally, we address the correctness of the quantization technique. We show
that the quantization fails with negligible probability:

Lemma 4.8. Let T ≥ Ω(n3), then for quantization parameters R = 2+T
3
d and γ2 = η2

(R2+7)2 (σ
2+

2KG2 + f(µ0)−f∗
L) we have that the probability of quantization never failing during the entire run of

the Algorithm 1 is at least 1−O
(
1
T

)
.

Per Lemma 4.1, in order for the communication to fail with negligible probability, we need to
show that whenever the server communicates with a client, the two norm of their local models is
at most RRd

γ. Hence, we need to use bound E[Φ(t)]. The only similar use of this technique was
in Nadiradze et al. (2021); however, the authors of this reference could benefit from assuming that
the second-moment of the gradients was bounded. Since we make no such assumption here, we need
to find a way to bound

∑T−1
t=0 E∥∇f(µt)∥2. Fortunately, our main result shows that the gradients are

vanishing, so we can take the advantage of the convergence rate and plug it back into Lemma 4.7.
Similarly, due to the Property 3, Lemma 4.1, the number of the bits used by our algorithm, in one
communication between the server and a client, depends on the two norm of the distance between
their local models. Thus, we can use the bound on

∑T−1
t=0 E∥∇f(µt)∥2 to show the following.

Lemma 4.9. Let T ≥ Ω(n3), then for quantization parameters R = 2+T
3
d and γ2 = η2

(R2+7)2 (σ
2+

2KG2 + f(µ0)−f∗
L) we have that the expected number of bits used by Algorithm 1 in total is

O(sT (d log(n) + log(T)).

We note that the communication cost per step is also asymptotically optimal, modulo the multiplicative
log n and additive log T terms, required to ensure error probability 1−O(1/T).

5 EXPERIMENTAL RESULTS

Experimental Setup and Goals. We implemented our algorithm in Pytorch in order to train
neural networks for image classification tasks, specifically residual CNNs (He et al., 2016) on the
MNIST (LeCun & Cortes, 2010), Fashion MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky &
Hinton, 2009) and CelebA (Liu et al., 2015) datasets, in the rigorous FL setup of LEAF (Caldas et al.,
2018). Details are presented in the Appendix. We aim to validate our analysis relative to the impact
of various parameters. We omit error bars, as we observed that the variance is very low.
Specifically, the parameters we examine are n, s, and K, which have the same meaning as in our
theoretical analysis. Our experiments are described by (n, s,K, b), where b is the number of bits
for quantization. In addition, we define swt as the server waiting time between two consecutive

8

calls, and the server interaction time, sit, as the amount of time that server needs to send and receive
necessary data. We assume a server and n clients. The training dataset is distributed among clients so
that each has access to a fixed 1/n partition of the training data. We track the accuracy of the server’s
model on an unseen validation dataset. We measure loss and accuracy of the model with respect to
simulation time and total gradient steps performed by clients. In each round, the server chooses s
clients uniformly at random. It then sends its model to those clients and receives their current local
models. Each client will have taken a maximum of K local steps by the time it is contacted by the
server. We update the both client and server models following QuAFL, and then increase the server
time by sit. The server then waits for another interval of server waiting time (swt) to make its next
call. Unless otherwise stated, communication is compressed.
We differentiate between two types of timing experiments: uniform timing experiments assume all
clients take the same amount of time for a gradient step; non-uniform timing experiments differentiate
clients to be fast or slow. Specifically, the length of each client step is taken to be a random variable
X ∼ exp(λ), where λ is 1/2 for fast clients and 1/8 for slow clients; the expected runtime E(X)
would be 2 and 8, respectively. In each experiment, we assumed 30% of clients to be slow.
Figure 1 examines the impact of the number of sampled peers s when training ResNet18 on the
CelebA dataset, where 30% of clients are slow. We first observe that convergence speed clearly
follows the ordering of the number of peers s, confirming our analysis. Interestingly, timings in
this experiment are set up so that there is a 27% probability that a slow client will not have taken
any steps when interacting with the server. (This probability decreases as s increases.). Thus, this
experiment also shows that QuAFL is indeed robust to such slow clients, although their proportion
can impact convergence. Figure 2 examines the impact of the number of quantization bits b, showing
that increasing b from 8 to 10 improves convergence; however, there is clear staturation after 10 bits.
In Figure 3 we examine the loss convergence of FedAvg and QuAFL versus simulated execution time,
in a system with 20 clients, out of which 25% are slow. (The Baseline is a single slow node that
performs an optimization step per round.) Here, it is evident that QuAFL asynchrony allows it to
provide a faster convergence in terms of wall-clock time, than its synchronous counterparts.
In Figure 4, we examine the impact of different types of averaging on the convergence of the basic
QuAFL pattern, on the CelebA dataset, with n = 100 clients. All variants execute in the same
setup, with individually-tuned hyper-parameters. We clearly observe that the variant where averaging
is applied both at the server and at the client performs the best, which validates our choices. In
Figure 5, we compare the convergence of QuAFL with the lattice quantizer, relative to QuAFL using
the standard QSGD quantizer (Alistarh et al., 2017a). We note that using QSGD is not theoretically-
justified, and in fact we had to perform careful tuning in order to obtain stable convergence for this
variant. It is interesting that QuAFL appears to support this, albeit at the cost of slower convergence.
Finally, in Figure 6, we compare QuAFL convergence relative to FedBuff, a state-of-the-art asyn-
chronous FL protocol (Nguyen et al., 2022a), which performs buffering of client messages at the
server, updating the server model as soon as s messages, with K local updates each, are in the server
buffer. Since the timing model of FedBuff is different, we compare convergence in terms of total
number of gradient steps taken by clients, without quantization. We observe that QuAFL converges
faster: our analysis suggests that this is because QuAFL takes into account partial progress by slow
clients, whereas in FedBuff slow clients constantly contribute less significantly to the server updates.
We present additional experimental results in the Appendix, specifically on higher node counts (up to
300), full-convergence experiments, as well as across all other tasks.

6 CONCLUSIONS AND LIMITATIONS

We have provided the first variant of FedAvg which incorporates both asynchronous and compressed
communication, and have shown that this algorithm can still provide good convergence guarantees.
Our analysis should be extensible to more complex federated optimizers, such as gradient tracking,
e.g. (Haddadpour et al., 2021), controlled averaging (Karimireddy et al., 2020), or variance-reduced
variants (Gorbunov et al., 2021). Our work has the following limitations. First, our algorithm has
an optimal convergence rate when H = Θ(K), which we believe is natural due to asynchrony.
Second, this version of the analysis requires the expected number of local steps H to be the same
across all devices. We believe that this can be addressed either by modifying the objective, or
by de-biasing via sampling, and plan to investigate it in future work, together with validation on
real-world deployments.

9

7 REPRODUCIBILITY STATEMENT

All the code required to reproduce our experimental setup and our experiments is available at
https://anonymous.4open.science/r/QuAFL-Anonymous.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Randomized
quantization for communication-efficient stochastic gradient descent. In Proceedings of NIPS
2017, 2017a.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient sgd via gradient quantization and encoding. In NIPS, pp. 1709–1720, 2017b.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of Machine Learning and Systems, 1:
374–388, 2019.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scutari. Asynchronous
parallel algorithms for nonconvex optimization. Mathematical Programming, 184(1):121–154,
2020.

Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang Cui. Communication-
efficient federated learning. Proceedings of the National Academy of Sciences, 118(17), 2021.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019.

Peter Davies, Vijaykrishna Gurunanthan, Niusha Moshrefi, Saleh Ashkboos, and Dan Alistarh. New
bounds for distributed mean estimation and variance reduction. In International Conference on
Learning Representations, 2021.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pp. 3788–3798. PMLR, 2021.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Federated
learning with compression: Unified analysis and sharp guarantees. In International Conference on
Artificial Intelligence and Statistics, pp. 2350–2358. PMLR, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar. Adaptive quantization
of model updates for communication-efficient federated learning. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3110–3114.
IEEE, 2021.

Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-sign SGD for
federated learning with theoretical guarantees. arXiv preprint arXiv:2002.10940, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

10

https://anonymous.4open.science/r/QuAFL-Anonymous

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signSGD and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and
gossip algorithms with compressed communication. In International Conference on Machine
Learning, pp. 3478–3487. PMLR, 2019.

Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous sgd for distributed and federated learning. arXiv preprint arXiv:2206.08307, 2022.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Zhize Li and Peter Richtárik. CANITA: Faster rates for distributed convex optimization with
communication compression. Advances in Neural Information Processing Systems, 34, 2021.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jio Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. arXiv preprint arXiv:1705.09056, 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Yucheng Lu and Christopher De Sa. Moniqua: Modulo quantized communication in decentralized
sgd. In International Conference on Machine Learning, pp. 6415–6425. PMLR, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alistarh. Asynchronous
decentralized sgd with quantized and local updates. Advances in Neural Information Processing
Systems, 34, 2021.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pp. 3581–3607. PMLR, 2022a.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Gustau Camps-Valls,
Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pp.
3581–3607. PMLR, 28–30 Mar 2022b. URL https://proceedings.mlr.press/v151/
nguyen22b.html.

Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous settings
for distributed or federated learning with partial participation: tight convergence guarantees. arXiv
preprint arXiv:2006.14591, 2020.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://proceedings.mlr.press/v151/nguyen22b.html
https://proceedings.mlr.press/v151/nguyen22b.html

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-
zation. In International Conference on Artificial Intelligence and Statistics, pp. 2021–2031. PMLR,
2020.

F. Seide, H. Fu, L. G. Jasha, and D. Yu. 1-bit stochastic gradient descent and application to data-
parallel distributed training of speech dnns. Interspeech, 2014.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Sebastian U Stich. Local SGD converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Hanlin Tang, Ce Zhang, Shaoduo Gan, Tong Zhang, and Ji Liu. Decentralization meets quantization.
CoRR, abs/1803.06443, 2018.

Qianqian Tong, Guannan Liang, and Jinbo Bi. Effective federated adaptive gradient methods with
non-iid decentralized data. arXiv preprint arXiv:2009.06557, 2020.

Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with commu-
nication compression, optimal oracle complexity, and no client synchronization. arXiv preprint
arXiv:2202.01268, 2022.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. arXiv
preprint arXiv:2205.02719, 2022.

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis. Safa: a semi-
asynchronous protocol for fast federated learning with low overhead. IEEE Transactions on
Computers, 70(5):655–668, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12

CONTENTS

1 Introduction 1

2 Related Work 2

3 The Algorithm 3
3.1 System Overview . 3
3.2 Algorithm Description . 4

4 Convergence Analysis 5
4.1 Analytical Assumptions . 5
4.2 Main Results . 6
4.3 Overview of the Analysis . 7

5 Experimental Results 8

6 Conclusions and Limitations 9

7 Reproducibility Statement 10

A Experimental setup 14
A.1 Hyper-parameters . 14
A.2 Simulation . 14
A.3 Datasets and Models . 15
A.4 Results on Fashion MNIST (FMNIST) . 15
A.5 Results on CIFAR-10 . 17

B The Complete Analysis 18
B.1 Overview and Notation . 18
B.2 Properties of Local Steps . 18
B.3 Upper Bounding Potential Functions . 20
B.4 Convergence . 25

13

A EXPERIMENTAL SETUP

In this section, we describe our experimental setup in detail. We begin by defining the hyper-
parameters which control the behavior of QuAFL and FedAvg. Then, we proceed by carefully
describing the way in which we simulated each of the algorithms. Finally, we detail the datasets,
tasks, and models used for our experiments.

A.1 HYPER-PARAMETERS

We first define our hyper-parameters; in the later sections, we will examine their impact on algorithm
behavior through ablation studies.

n: Number of the clients.
s: Number of clients interacting with the server at each step.
K: In QuAFL, this is the maximum number of allowed local steps by each client between two server

calls. In FedAvg, this is the number of local steps performed by each client upon each server
call.

b: Number of bits used to send a coordinate after quantization.
swt: Server waiting time, i.e. the amount of time that server waits between two consecutive calls.
sit: Server interaction time, i.e. the amount of time that server needs to send and receive necessary

data (excluding computation time).

A.2 SIMULATION

We attempt to simulate a realistic FL deployment scenario, as follows. We assume a server and
n clients, each of which initially has a model copy. The training dataset is distributed among the
clients so that each of them has access to 1/n of the training data. We track the performance of each
algorithm by evaluating the server’s model, on an unseen validation dataset. We measure loss and
accuracy of the model with respect to simulation time, server steps, and total local steps performed
by clients. These setups so far were common between QuAFL and FedAvg. In the following, we are
going to describe their specifications and differences.

QuAFL: Upon each server call, the server chooses s clients uniformly at random. It then sends its
model to those clients and asks for their current local models. (Recall that clients send their
model immediately to the server.) Each of the clients will have taken a maximum of K local
steps by the time it is contacted by the server. The server then replaces its model with a
carefully-computed average over the received models and its current model. This process
increases time on the server by the server interaction time (sit). The server then waits for
another interval of server waiting time (swt) to make its next call. The s receiving clients
replace their model with the weighted average between their current model and the received
server’s model. Since each client performs local steps from its last interaction time until the
current server time, nodes are effectively executing asynchronously. Moreover, note that
communication is compressed, as all the models get encoded in their source and decoded in
their destination.
Quantization: To have a lightweight but efficient communication between clients and the

server, we use the well-known lattice quantization (Davies et al., 2021). Using this
method, we send b instead of 32 bits for each scalar dimension. Informally, each 32-bit
number maps to one of the 2b quantized levels and can be sent using b bits only. The
encoded number can then be decoded to a sufficiently close number at the destination,
following the quantization protocol.

FedAvg: In the beginning of each round, server chooses s clients randomly, and sends its current
model to them. Each of those clients receives the model, uncompressed, and performs
exactly K local steps using this model as the starting point, and then sends back the resulting
model to the server. The server then computes the average of the received models and adopts
it as its model. By this synchronous structure, in each round, the server must wait for the
slowest client to complete its local steps plus an extra sit for the communication time. After
completing each round, the server starts the next call immediately, that means swt = 0 in
FedAvg.

Timing Experiments. We differentiate between two types of timing experiments. Uniform timing
experiments, presented in the paper body, assume all clients take the same amount of time for a

14

0 10 20 30 40 50 60 70 80
Server steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

QuAFL (40,10,5,lattice: 12) swt: 10
QuAFL (40,10,10,lattice: 12) swt: 10
QuAFL (40,10,20,lattice: 12) swt: 10

Figure 7: Impact of the maximum number of local steps K ∈
{5, 10, 20} on the QuAFL algorithm / Fashion MNIST.

0 20 40 60 80 100 120
Server steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

QuAFL (40,4,10,lattice: 12) swt: 10
QuAFL (40,8,10,lattice: 12) swt: 10
QuAFL (40,16,10,lattice: 12) swt: 10

Figure 8: Impact of the number of interacting peers s ∈
{4, 8, 16} on the convergence of the algorithm.

0 25 50 75 100 125 150 175 200
Server steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

QuAFL (40,10,10,lattice: 12) swt: 1
QuAFL (40,10,10,lattice: 12) swt: 5
QuAFL (40,10,10,lattice: 12) swt: 10
QuAFL (40,10,10,lattice: 12) swt: 20

Figure 9: Impact of the server contact frequency (controlled
via server timeout swt) on the convergence of the algorithm.

0 200 400 600 800
Server steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Fed-Avg (40,10,10) sit: 3
QuAFL (40,10,10,lattice: 12) swt: 1 sit: 1.125
Baseline

Figure 10: Convergence comparison relative to total number
of rounds, between QuAFL, FedAvg, and the sequential base-
line.

gradient step. However, in real-world setups, different devices may require different amounts of
time to perform a single local step. This is one of the main disadvantages of synchronous federated
optimization algorithms. To demonstrate how this fact affects the experiments, in our Non-uniform
timing experiments we differentiate clients to be either fast or slow. The length of each local step can
be characterized as a memoryless time event. Therefore, the length of each local step can be defined
by a random variable X ∼ exponential(λ). The parameter λ is 1/2 for fast clients and 1/8 for slow
clients; the expected runtime E(X) would be 2 and 8, respectively. In each timing experiment, we
assumed only one fourth of clients to be slow.

A.3 DATASETS AND MODELS

We used Pytorch to manage the training process in our algorithm. We have trained neural networks for
image classification tasks on three well-known datasets, MNIST, Fashion MNIST, and CIFAR-10.
For all the datasets, we used the default train/test split of the dataset for our training/validation dataset.
In the following, we describe the model architecture and the training hyper-parameters used to train
on each of these datasets.

MNIST: We used SGD optimizer with constant lr = 0.5 in all the training process. We used a
two-layer MLP architecture with (784,32,10) nodes in its layers respectively. We used batch
size 128 in each client’s SGD step.

Fashion MNIST: Although this dataset has the same sample size and number of classes as MNIST,
obtaining competitive performance on it requires a more complicated architecture. Therefore,
we used a CNN model to train on this model and demonstrated the performance of our
algorithm in a non-convex task. To optimize the models, we used Adam optimizer with
constant lr = 0.001 and batch size 100.

CIFAR-10: To load this dataset, we used data augmentation and normalization. For this task, we
trained ResNet20 models. Moreover, the SGD optimizer with constant lr = 0.03 is used to
in the training process. The batch size 64/200 is used for training/validation.

A.4 RESULTS ON FASHION MNIST (FMNIST)

We begin by validating our earlier results, presented in the paper body, for the slightly more complex
FMNIST dataset, and on a convolutional model.
In Figures 7 and 8 we examine the impact of the parameters K and s, respectively, on the total
number of interaction rounds at the server, to reach a certain training loss. As expected, we notice

15

0 500 1000 1500 2000
Time

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Fed-Avg (40,10,10) sit: 3
QuAFL (40,10,10,lattice: 12) swt: 1 sit: 1.125
Baseline

Figure 11: Time vs. accuracy for various algorithm variants,
on Fashion MNIST.

0 500 1000 1500 2000
Time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Fed-Avg (40,10,10) sit: 3
QuAFL (40,10,10,lattice: 12) swt: 1 sit: 1.125
Baseline

Figure 12: Timing vs. loss for various algorithm variants, on
Fashion MNIST.

0 200 400 600 800 1000 1200
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Fed-Avg (300,30,10) sit: 3
QuAFL (300,30,10,lattice: 14)

Figure 13: Time vs. accuracy for n=300 clients, s=30 peers
on Fashion MNIST.

0 200 400 600 800 1000 1200
Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Fed-Avg (300,30,10) sit: 3
QuAFL (300,30,10,lattice: 14)

Figure 14: Timing vs. loss for n=300 clients, s=30 peers on
Fashion MNIST.

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

Ac
cu

ra
cy

Baseline
Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice: 14) swt: 3 sit: 1.312

Figure 15: Full convergence result for n = 20 clients and
s = 5 on F-MNIST. All methods eventually reach the sequen-
tial ∼ 91% top-1 accuracy on this task, but QuAFL is the
fastest to do so in terms of wall-clock time.

0 200 400 600 800 1000 1200 1400
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

FedBuff (20,5,5,qsgd: 14) sit: 4.375
QuAFL (20,5,5,lattice: 14) swt: 5.625 sit: 4.375

Figure 16: Validation accuracy for QuAFL with Lattice vs
FedBuff with QSGD quantization, at the same bit width.
QuAFL shows significantly better convergence.

that higher K and s improve the convergence behavior of the algorithm. In Figures 9 we examine
the impact of the server waiting time on the convergence of the algorithm relative to the number of
server rounds. Again, we notice that a higher server waiting time improves convergence, as it allows
the server to take advantage of additional local steps performed at the clients, as predicted by our
analysis. (Higher swt means higher average number of steps completed H .)
Next, we examine the convergence, again in terms of number of optimization “rounds” at the server,
between the sequential Baseline, FedAvg, and QuAFL. As expected, the Baseline is faster to converge
than FedAvg, which in turn is faster than QuAFL in this measure. Specifically, the difference between
QuAFL and the other algorithms comes because of the fact that, in our algorithm, nodes operate
on old variants of the model at every step, which slows down convergence. Next, we examine
convergence in terms of actual time, in the heterogeneous setting in which 25% of the clients are
slow.
In Figure 11, we observe the validation accuracy ensured by various algorithms relative to the
simulated execution time, whereas in Figure 12 we observe the training loss versus the same metric.
(We assume that, in Baseline, a single node acts as both the client and the server, and that this node is
slow, i.e. has higher per-step times.) To further support the robustness of our algorithm in regimes
with large number of clients, we conducted an experiment with n = 300 clients and s = 30 peers
interacting with the server at each step. The validation accuracy and loss versus time regarding the
mentioned experiment plotted in Figure 13 and Figure 14 respectively. We observe that, importantly,
if time is taken into account rather than the number of server rounds, QuAFL can provide notable

16

200 400 600 800 1000 1200 1400
Server steps

1.2

1.4

1.6

1.8

2.0

Lo
ss

QuAFL (20,5,3,lattice: 14) swt: 5
QuAFL (20,5,9,lattice: 14) swt: 5
QuAFL (20,5,15,lattice: 14) swt: 5

Figure 17: Impact of maximum local steps K ∈ {3, 9, 15}
on the QuAFL algorithm, on ResNet20/CIFAR-10.

200 400 600 800 1000 1200 1400 1600
Server steps

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Lo
ss

QuAFL (20,3,10,lattice: 12) swt: 5 sit: 1
QuAFL (20,6,10,lattice: 12) swt: 5 sit: 1
QuAFL (20,10,10,lattice: 12) swt: 5 sit: 1

Figure 18: Impact of the number of interacting peers s ∈
{3, 6, 10} on the convergence of the algorithm.

500 1000 1500 2000 2500 3000
Server steps

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Lo
ss

QuAFL (20,5,10,lattice: 12) swt: 5 sit: 1
QuAFL (20,5,10,lattice: 16) swt: 5 sit: 1
QuAFL (20,5,10,no quantization: 32) swt: 5

Figure 19: Impact of the number of bits for quantization
b ∈ {12, 16, 32} on the convergence of the algorithm.

200 400 600 800 1000
Server steps

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Lo
ss

QuAFL (20,5,10,lattice: 14) swt: 4 sit: 1
QuAFL (20,5,10,lattice: 14) swt: 8 sit: 1
QuAFL (20,5,10,lattice: 14) swt: 12 sit: 1
QuAFL (20,5,10,lattice: 14) swt: 16 sit: 1

Figure 20: Impact of the server contact frequency (controlled
via server timeout swt) on the convergence of the algorithm.

speedups in these metrics. This is specifically because of its asynchronous communication patters,
which allow it to complete rounds faster, without having to always wait for the slow nodes to complete
their local computation. While this behaviour is simulated, we believe that this reflects the algorithm’s
practical potential. Finally, Figure 15 shows that all methods can reach the maximum accuracy for
this dataset/model combination (for the SGD baseline, this occurs later), although QuAFL is the
fastest to do so in terms of wall-clock time.
Our last experiment in Figure 16 examines whether naive QSGD quantization of the transmitted
updates in FedBuff (Nguyen et al., 2022a) can converge at a good rate, relative to QuAFL at the same
quantization ratio. We find that this is not the case: first, we remark that, with careful tuning of the
learning rate, FedBuff can indeed converge. We believe that this is because of the specific application:
the norm of the model and updates in DNNs tends to be small, and therefore the quantization error
induced by direct QSGD stochastic quantization is also manageable. However, we observe a clear
loss of convergence for the FedBuff + QSGD algorithm in this case, relative to QuAFL, which we
ascribe to the fact that we are essentially running a heuristic.

A.5 RESULTS ON CIFAR-10

We now present results for a standard image classification task on the CIFAR-10 dataset, using a
ResNet20 model (He et al., 2016).
Figures 17 and 18 show the decrease in training loss versus the number of server steps (or rounds)
for different values of K and s respectively. As our theory suggests, increasing K and s leads to an
improvement in the convergence rate of the system. Figure 19 demonstrates the impact of the number
of quantization bits b, on the convergence behaviour of the algorithm. According to the definition
of b, increasing the number of quantization bits improves the communication accuracy. Thus, as it
can be seen in the graph, higher values of b enhance the convergence relative to the number of server
steps. Finally, Figure 20 shows the impact of the server interaction frequency, again controlled via
the timeout parameter swt, on the algorithm’s convergence. It is apparent that a very high interaction
frequency can slow the algorithm down, by not allowing it to take advantage of the clients’ local
steps.
In Figures 21 and 22, we examine the validation accuracy and loss, respectively, ensured by various
algorithms versus the simulated execution time. (As in the F-MNIST experiments, we assumed
the Baseline to be a single slow node that performs an optimization step per round.) Again, the
asynchronous nature of QuAFL provides a faster convergence rate than its synchronous counterparts;
which can be clearly seen in the mentioned figures.

17

0 2500 5000 7500 10000 12500 15000 17500 20000
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice: 14) sit: 1.312 swt: 5
Baseline

Figure 21: Time vs. validation accuracy for various algorithm
variants.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice: 14) sit: 1.312 swt: 5
Baseline

Figure 22: Timing versus validation loss for various algorithm
variants.

B THE COMPLETE ANALYSIS

B.1 OVERVIEW AND NOTATION

Recall that Xt denotes the model of the server at step t, and Xi is the local model of client i after its
last interaction with the server. Also, h̃i is the sum of local gradient steps for model Xi since its last
interaction with the server.
For the convergence analysis, local steps of the clients that are not selected by the server don’t have
any effect on the server or other clients. Therefore we do not need to assume that clients are doing
their local steps asynchronous, and we can assume that all clients run their local gradient steps after
the server contacts them. The only thing that we should consider is the randomness of the server
selecting the clients, and the fact that the server can contact nodes before they have finished their K
steps. For this purpose, we assume that their number of steps is a random number Hi

t with mean H .
To show the analysis in this setting, we introduce new notations that consider the server round. To
this end, we use Xi

t as the value of Xi when the server is running its tth iteration, And h̃i,t for the
sum of local steps at this time. We show each local step q with a superscript. Formally, we have

h̃0
i,t = 0.

and for 1 ≤ q ≤ Hi
t let:

h̃q
i,t = g̃i(X

i
t −

q−1∑
s=0

ηh̃s
i,t),

and

h̃i,t =

Hi
t∑

q=0

h̃q
i,t

Further , for 1 ≤ q ≤ Hi
t , let

hq
i,t = E[g̃i(Xi

t −
q−1∑
s=0

ηh̃s
i,t)] = ∇f(Xi

t −
q−1∑
s=0

ηh̃s
i,t)

be the expected value of h̃q
i,t taken over the randomness of the stochastic gradient g̃i. Also, we have:

hi,t =

Hi
t∑

q=0

hq
i,t

B.2 PROPERTIES OF LOCAL STEPS

Lemma B.1. For any agent i and step t

E∥hq
i,t∥

2 ≤ σ2

K2
+ 8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2.

Proof.

E∥hq
i,t∥

2≤E

∥∥∥∥∥(∇fi(X
i
t −

q−1∑
s=0

ηh̃s
i,t)−∇fi(µt)

)
+∇fi(µt)

∥∥∥∥∥
2

18

≤2E

∥∥∥∥∥∇fi(X
i
t −

q−1∑
s=0

ηh̃s
i,t)−∇fi(µt)

∥∥∥∥∥
2

+ 2E∥∇fi(µt)∥2

≤4L2E∥Xi
t − µt∥2 + 4η2L2q

q−1∑
s=0

E∥h̃s
i,t∥2 + 2E∥∇fi(µt)∥2

≤4L2E∥Xi
t − µt∥2 + 4η2L2q

q−1∑
s=0

(E∥hs
i,t∥2 + σ2) + 2E∥∇fi(µt)∥2

the rest of the proof is done by induction, and assuming η < 1
4LK2 .

Lemma 4.6. For any step t, we have that
n∑

i=1

E∥h̃i,t∥2 ≤ 2nK(σ2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2.

Proof. Using lemma B.1
n∑

i=1

E∥h̃i,t∥2 =

n∑
i=1

K∑
h=0

Pr[Hi
t = h]E∥

h∑
q=1

h̃q
i,t∥

2

≤
n∑

i=1

K∑
h=1

Pr[Hi
t = h]h

h∑
q=1

E∥h̃q
i,t∥

2

≤ nKσ2 +

n∑
i=1

K∑
h=1

Pr[Hi
t = h]h

h∑
q=1

E∥hq
i,t∥

2

≤ nKσ2 +

n∑
i=1

K2

(
σ2

K2
+ 8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2
)

≤ 2nKσ2 +

n∑
i=1

K2

(
8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2
)

≤ 2nKσ2 + 8L2K2E[Φt] + 4nK2G2 + 4nK2B2E∥∇f(µt)∥2.

Lemma B.2. For any local step 1 ≤ q, and agent 1 ≤ i ≤ n and step t

E∥∇fi(µt)− hq
i,t∥

2 ≤ 4L2η2q2σ2 + 4L2E∥Xi
t − µt∥2 + 8L2η2q2E∥∇fi(µt)∥2.

Proof.

E∥∇fi(µt)− hq
i,t∥

2 = E∥∇fi(µt)−∇fi(X
i
t −

q−1∑
s=0

ηh̃s
i,t)∥2

≤L2E∥µt −Xi
t +

q−1∑
s=0

ηh̃s
i,t∥2

≤2L2E∥Xi
t − µt∥2 + 2L2η2E∥

q−1∑
s=0

h̃s
i,t∥2

≤2L2E∥Xi
t − µt∥2 + 2L2η2q

q−1∑
s=0

E∥h̃s
i,t∥2

Lemma (B.1)
≤ 2L2E∥Xi

t − µt∥2 + 2L2η2q2
(
2σ2 + 8L2E∥Xi

t − µt∥2

+ 4E∥∇fi(µt)∥2
)

19

= 4L2η2q2σ2 + (2L2 + 16L4η2q2)E∥Xi
t − µt∥2

+ 8L2η2q2E∥∇fi(µt)∥2

≤ 4L2η2q2σ2 + 4L2E∥Xi
t − µt∥2 + 8L2η2q2E∥∇fi(µt)∥2

and the last inequality comes from η < 1
4LK .

Lemma B.3. For any time step t
n∑

i=1

E⟨∇f(µt),−hi,t⟩ ≤ 4KL2E[Φt] + (−3Hn

4
+ 8B2L2η2K3n)E∥∇f(µt)∥2

+ 4nL2η2K3(σ2 + 2G2).

Proof.
n∑

i=1

E⟨∇f(µt),−hi,t⟩ =
n∑

i=1

K∑
h=1

Pr[Hi
t = h]E⟨∇f(µt),−

h∑
q=1

hq
i,t⟩+

n∑
i=1

Pr[Hi
t = 0]E⟨∇f(µt), 0⟩

=

n∑
i=1

K∑
h=1

Pr[Hi
t = h]

h∑
q=1

(
E⟨∇f(µt),∇fi(µt)− hq

i,t⟩ − E⟨∇f(µt),∇fi(µt)⟩
)

Using Young’s inequality we can upper bound E⟨∇f(µt),∇fi(µt)− hq
i,t⟩ by

E∥∇f(µt)∥2

4
+ E

∥∥∥∇fi(µt)− hq
i,t

∥∥∥2.
Plugging this in the above inequality we get:

n∑
i=1

E⟨∇f(µt),−hi,t⟩

≤
n∑

i=1

K∑
h=1

Pr[Hi
t = h]

h∑
q=1

(
E∥∇f(µt)− hq

i,t∥
2 +

E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
Lemma B.2

≤
n∑

i=1

K∑
h=1

Pr[Hi
t = h]

h∑
q=1

(
4L2η2q2σ2 + 4L2E∥Xi

t − µt∥2 + 8L2η2q2E∥∇fi(µt)∥2

+
E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
≤

n∑
i=1

K∑
h=1

Pr[Hi
t = h]h

(
4L2η2h2σ2 + 4L2E∥Xi

t − µt∥2 + 8L2η2h2E∥∇fi(µt)∥2

+
E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
≤ 4KL2E[Φt] + 4nL2η2K3(σ2 + 2G2) + (8B2nL2η2K3 +

Hn

4
−Hn)E∥∇f(µt)∥2

)
Where in the last step we used that E[Hi

t] = H , and
∑n

i=1
fi(x)
n = f(x), for any vector x.

B.3 UPPER BOUNDING POTENTIAL FUNCTIONS

We proceed by proving the lemma 4.4 which upper bounds the expected change in potential:

Lemma 4.4. For any time step t we have:

E[Φt+1] ≤
(
1− 1

4n

)
E[Φt] + 8sη2

n∑
i=1

E∥h̃i,t∥2 + 16n(R2 + 7)2γ2.

Proof. First we bound change in potential ∆t = Φt+1 − Φt for some fixed time step t > 0.
20

For this, let ∆S
t be the change in potential when set S of agents wake up. for i ∈ S define Si

t and St

as follows:

Si
t = − s

s+ 1
ηh̃i,t +

Q(Xt)−Xt

s+ 1

St = − 1

s+ 1
η
∑
i∈S

h̃i,t +
1

s+ 1

∑
i∈S

(Q(Xi
t − ηh̃i,t)− (Xi

t − ηh̃i,t))

We have that:

Xi
t+1 =

sXi
t +Xt

s+ 1
+ Si

t

Xt+1 =

∑
i∈S Xi

t +Xt

s+ 1
+ St

µt+1 = µt +

∑
j∈S Sj

t + St

n+ 1

This gives us that for i ∈ S:

Xi
t+1 − µt+1 =

sXi
t +Xt

s+ 1
+ Si

t −
∑

j∈S Sj
t + St

n+ 1
− µt

Xt+1 − µt+1 =

∑
i∈S Xi

t +Xt

s+ 1
+ St −

∑
j∈S Sj

t + St

n+ 1
− µt

For k ̸∈ S we get that

Xk
t+1 − µt+1 = Xk

t −
∑

j∈S Sj
t + St

n+ 1
− µt.

Hence:

∆S
t =

∑
i∈S

(∥∥∥sXi
t +Xt

s+ 1
+ Si

t −
∑

j∈S Sj
t + St

n+ 1
− µt

∥∥∥2 − ∥∥∥Xi
t − µt

∥∥∥2)
+
∥∥∥∑i∈S Xi

t +Xt

s+ 1
+ St −

∑
j∈S Sj

t + St

n+ 1
− µt

∥∥∥2 − ∥∥∥Xt − µt

∥∥∥2
+
∑
k ̸∈S

(∥∥∥Xk
t −

∑
j∈S Sj

t + St

n+ 1
− µt

∥∥∥2 − ∥∥∥Xk
t − µt

∥∥∥2)

=
∑
i∈S

(∥∥∥sXi
t +Xt

s+ 1
− µt

∥∥∥2 + ∥∥∥Si
t +

∑
j∈S Sj

t + St

n+ 1

∥∥∥2
+ 2
〈sXi

t +Xt

s+ 1
− µt, S

i
t −

∑
j∈S Sj

t + St

n+ 1

〉
−
∥∥∥Xi

t − µt

∥∥∥2)
+
(∥∥∥∑i∈S Xi

t +Xt

s+ 1
− µt

∥∥∥2 + ∥∥∥St −
∑

j∈S Sj
t + St

n+ 1

∥∥∥2
+ 2
〈∑

i∈S Xi
t +Xt

s+ 1
− µt, St −

∑
j∈S Sj

t + St

n+ 1

〉
−
∥∥∥Xt − µt

∥∥∥2)
+
∑
k ̸∈S

2
〈
Xk

t − µt,−
∑

j∈S Sj
t + St

n+ 1

〉
+
∑
k ̸∈S

∥∥∥∑j∈S Sj
t + St

n+ 1

∥∥∥2
Observe that:

n∑
k=0

〈
Xk

t − µt,−
∑

j∈S Sj
t + St

n+ 1

〉
= 0.

21

After combining the above two equations, we get that:

∆S
t =

∑
i∈S

(∥∥∥s(Xi
t − µt) + (Xt − µt)

s+ 1

∥∥∥2 − s

s+ 1

∥∥∥Xi
t − µt

∥∥∥2 − 1

s+ 1

∥∥∥Xt − µt

∥∥∥2)
+
(∥∥∥∑i∈S(X

i
t − µt) + (Xt − µt)

s+ 1

∥∥∥2 −∑
i∈S

1

s+ 1

∥∥∥Xi
t − µt

∥∥∥2 − 1

s+ 1

∥∥∥Xt − µt

∥∥∥2)
+
∑
i∈S

(∥∥∥Si
t −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2
〈sXi

t +Xt

s+ 1
− µt, S

i
t

〉)
+
∥∥∥St −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2
〈∑

i∈S Xi
t +Xt

s+ 1
− µt, St

〉
+
∑
k ̸∈S

∥∥∥∑j∈S Sj
t + St

n+ 1

∥∥∥2
By simplifying the above, we get:

∆S
t =

−s

(s+ 1)2

∑
i∈S

∥Xi
t −Xt∥2 −

1

(s+ 1)2

∑
i∈S

∥Xi
t −Xt∥2 −

1

(s+ 1)2

∑
i,j∈S

∥Xi
t −Xj

t ∥2)

+
∑
i∈S

∥∥∥Si
t −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2s

s+ 1

∑
i∈S

〈
Xi

t − µt, S
i
t

〉
+

2

s+ 1

∑
i∈S

〈
Xt − µt, S

i
t

〉
+
∥∥∥St −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2

s+ 1

∑
i∈S

〈
Xi

t − µt, St

〉
+

2

s+ 1

〈
Xt − µt, St

〉
+
∑
k ̸∈S

∥∥∥∑j∈S Sj
t + St

n+ 1

∥∥∥2
Let α be a parameter we will fix later:

〈
Xi

t − µt, S
i
t

〉 Young
≤ α

∥∥∥Xi
t − µt

∥∥∥2 +
∥∥∥Si

t

∥∥∥2
4α

Finally, we get that

∆S
t ≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 + 2

∑
i∈S

∥∥∥Si
t

∥∥∥2 + 2s(s+ 1)

(n+ 1)2

∑
j∈S

∥∥∥Sj
t

∥∥∥2 + 2s(s+ 1)

(n+ 1)2

∥∥∥St

∥∥∥2

+
∑
i∈S

2sα

s+ 1

∥∥∥Xi
t − µt

∥∥∥2 +∑
i∈S

s
∥∥∥Si

t

∥∥∥2
2α(s+ 1)

+
∑
i∈S

2α

s+ 1

∥∥∥Xt − µt∥2 +
∑
i∈S

∥∥∥Si
t

∥∥∥2
2α(s+ 1)

+ 2
∥∥∥St

∥∥∥2 + 2(s+ 1)

(n+ 1)2

∑
j∈S

∥∥∥Sj
t

∥∥∥2 + 2(s+ 1)

(n+ 1)2

∥∥∥St

∥∥∥2 +∑
i∈S

2α

s+ 1

∥∥∥Xi
t − µt∥2 +

∑
i∈S

∥∥∥St

∥∥∥2
2α(s+ 1)

+
2α

s+ 1

∥∥∥Xt − µt∥2 +

∥∥∥St

∥∥∥2
2α(s+ 1)

+
∑
j∈S

(n− s)(s+ 1)

(n+ 1)2

∥∥∥Sj
t

∥∥∥2 + (n− s)(s+ 1)

(n+ 1)2

∥∥∥St

∥∥∥2
=

−1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 + (2 +

2(s+ 1)2

(n+ 1)2
+

1

2α
+

(n− s)(s+ 1)

(n+ 1)2
)
∑
j∈S

∥∥∥Sj
t

∥∥∥2+
(2 +

2(s+ 1)2

(n+ 1)2
+

1

2α
+

(n− s)(s+ 1)

(n+ 1)2
)
∥∥∥St

∥∥∥2 +∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
22

≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 + (4 +

1

2α
)
∑
i∈S

∥∥∥Si
t

∥∥∥2+
(4 +

1

2α
)
∥∥∥St

∥∥∥2 +∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2

Using definitions of Si
t and St, Cauchy-Schwarz inequality and properties of quantization we get that

∥Si
t∥2 ≤ 2s2

(s+ 1)2
η2∥h̃i,t∥2 +

2(R2 + 7)2γ2

(s+ 1)2
.

∥St∥2 ≤ 2s

(s+ 1)2
η2
∑
i∈S

∥h̃i,t∥2 +
2s2(R2 + 7)2γ2

(s+ 1)2

Next, we plug this in the previous inequality:

∆S
t ≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 +

∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)
2s2 + 2s

(s+ 1)2
η2∥h̃i,t∥2 +

(2s2 + 2s)(R2 + 7)2γ2

(s+ 1)2

≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 +

∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)(η2

∑
i∈S

∥h̃i,t∥2 + 2(R2 + 7)2γ2)

Next, we calculate probability of choosing the set S and upper bound ∆t in expectation, for this we
define Et as expectation conditioned on the entire history up to and including step t

Et[∆t] =
∑
S

1(
n
s

)Et[∆
S
t]

≤
∑
S

1(
n
s

)(−1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 +

∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)(η2

∑
i∈S

∥h̃i,t∥2 + 2(R2 + 7)2γ2)

)

=
−
(
n−1
s−1

)
(s+ 1)

(
n
s

) ∑
i

∥Xi
t −Xt∥2 +

∑
i

2α
(
n−1
s−1

)(
n
s

) ∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)(η2

(
n−1
s−1

)(
n
s

) ∑
i

∥h̃i,t∥2 + 2(R2 + 7)2γ2)

≤ −
∑
i

s∥Xi
t − µt∥2

(s+ 1)n
+
∑
i

2
sα

n

∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (8 +

1

α
)(R2 + 7)2γ2 +

∑
i

s

n
(4 +

1

2α
)η2Et∥h̃i,t∥2

≤ (
−s

(s+ 1)n
+ 2α)Φt + (8 +

1

α
)(R2 + 7)2γ2 +

∑
i

s

n
(4 +

1

2α
)η2Et∥h̃i,t∥2

By setting α = 3s−1
n(8s+8) ≥

1
8n , we get that:

Et[∆t] ≤ − 1

4n
Φt + 16n(R2 + 7)2γ2 +

∑
i

8sη2Et∥h̃i,t∥2.

23

Next we remove the conditioning , and use the definitions of ∆i and Si
t (for Si

t we also use upper
bound which come from the properties of quantization).

E[Et[Φt+1]] = E[∆t +Φt] ≤ (1− 1

4n
)E[Φt] + 16n(R2 + 7)2γ2 + 8sη2

∑
i

E∥h̃i,t∥2

Lemma B.4. For any time step t we have:

E[Φt+1] ≤ (1− 1

5n
)E[Φt]+16n(R2+7)2γ2+16nsKη2(σ2+2KG2)+32B2nsK2η2E∥∇f(µt)∥2

Proof. By combining Lemma 4.4 and 4.6 we have:

E[Φt+1] ≤ (1− 1

4n
)E[Φt] + 16n(R2 + 7)2γ2+

8sη2
(
2nK(σ2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2

)
= (1− 1

4n
+ 64sL2K2η2)E[Φt] + 16n(R2 + 7)2γ2+

16nsKη2(σ2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2

≤ (1− 1

5n
)E[Φt] + 16n(R2 + 7)2γ2+

16nsKη2(σ2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2

Lemma B.5. For the sum of potential functions in all T steps we have:
T∑

t=0

E[Φt] ≤ 80Tn2(R2+7)2γ2+80Tn2sKη2(σ2+2KG2)+160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2

Proof.
T−1∑
t=0

E[Φt+1] ≤
T−1∑
t=0

(
(1− 1

5n
)E[Φt] + 16n(R2 + 7)2γ2+

16nsKη2(σ2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2
)

≤ (1− 1

5n
)

T−1∑
t=0

E[Φt] + 16Tn(R2 + 7)2γ2 + 16TnsKη2(σ2 + 2KG2)

+ 32B2nsK2η2
T−1∑
t=0

E∥∇f(µt)∥2

T∑
t=0

E[Φt] ≤ 5n
(
16Tn(R2 + 7)2γ2 + 16TnsKη2(σ2 + 2KG2)

+ 32B2nsK2η2
T−1∑
t=0

E∥∇f(µt)∥2
)

= 80Tn2(R2 + 7)2γ2 + 80Tn2sKη2(σ2 + 2KG2)

+ 160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2

Lemma 4.5. For any step t

E∥µt+1 − µt∥2 ≤ 2s2η2

n(n+ 1)2

∑
i

E
∥∥∥h̃i,t

∥∥∥2 + 2

(n+ 1)2
(R2 + 7)2γ2.

24

Proof.

E∥µt+1 − µt∥2 ≤
∑
S

1(
n
s

)
(n+ 1)2

(
E
∥∥∥− η

∑
i∈S

h̃i,t +
Q(Xt)−Xt

s+ 1

+
1

s+ 1

∑
i∈S

(Q(Xi
t − ηh̃i,t)− (Xi

t − ηh̃i,t))
∥∥∥2)

≤
∑
S

1(
n
s

)
(n+ 1)2

(
2sη2

∑
i∈S

E
∥∥∥h̃i,t

∥∥∥2 + 2

s+ 1
E
∥∥∥Q(Xt)−Xt

∥∥∥2
+

2

s+ 1

∑
i∈S

E
∥∥∥(Q(Xi

t − ηh̃i,t)− (Xi
t − ηh̃i,t))

∥∥∥2)

≤
∑
S

1(
n
s

)
(n+ 1)2

(
2sη2

∑
i∈S

E
∥∥∥h̃i,t

∥∥∥2 + 2(R2 + 7)2γ2

)

=
∑
i

2sη2
(
n−1
s−1

)(
n
s

)
(n+ 1)2

E
∥∥∥h̃i,t

∥∥∥2 + 2

(n+ 1)2
(R2 + 7)2γ2

=
∑
i

2s2η2

n(n+ 1)2
E
∥∥∥h̃i,t

∥∥∥2 + 2

(n+ 1)2
(R2 + 7)2γ2

By plugging Lemma 4.6 in the above upper bound we get that:
Lemma B.6. For any step t

E∥µt+1 − µt∥2 ≤ 4s2Kη2(σ2 + 2KG2)

(n+ 1)2
+

16s2L2K2η2E[Φt]

n(n+ 1)2

+
8B2s2K2η2E∥∇f(µt)∥2

(n+ 1)2
+

2(R2 + 7)2γ2

(n+ 1)2
.

Proof.

E∥µt+1 − µt∥2 ≤
∑
i

2s2η2

n(n+ 1)2
E
∥∥∥h̃i,t

∥∥∥2 + 2

(n+ 1)2
(R2 + 7)2γ2

≤
∑
i

2s2η2

n(n+ 1)2

(
2nK(σ2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2

)

+
2(R2 + 7)2γ2

(n+ 1)2

=
4s2Kη2

(n+ 1)2
(σ2 + 2KG2) +

16s2L2K2η2

n(n+ 1)2
E[Φt]

+
8B2s2K2η2

(n+ 1)2
E∥∇f(µt)∥2 +

2(R2 + 7)2γ2

(n+ 1)2

B.4 CONVERGENCE

Theorem B.7. For learning rate η = n+1
sH

√
T

, Algorithm 1 converges at rate:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(f(µ0)− f∗)√
T

+
800nKL2(R2 + 7)2γ2

H
+

6KL(σ2 + 2KG2)

H2
√
T

+
808n(n+ 1)2K2L2

sH3T
(σ2 + 2KG2) +

2(R2 + 7)2γ2L
√
T

(n+ 1)2sH
25

Proof. Let Et denote expectation conditioned on the entire history up to and including step t. By
L-smoothness we have that

Et[f(µt+1)] ≤ f(µt) + Et⟨∇f(µt), µt+1 − µt⟩+
L

2
Et∥µt+1 − µt∥2. (5)

First we look at Et⟨∇f(µt), µt+1 − µt⟩ = ⟨∇f(µt),Et[µt+1 − µt]⟩. If set S is chosen at step t+ 1,
We have that

µt+1 − µt =
1

n+ 1
(−η

∑
i∈S

h̃i,t +
Q(Xt)−Xt

s+ 1
+

1

s+ 1

∑
i∈S

(Q(Xi
t − ηh̃i,t)−Xi

t − ηh̃i,t)))

Thus, in this case:

Et[µt+1 − µt] = − η

n+ 1

∑
i∈S

hi,t.

Where we used unbiasedness of quantization and stochastic gradients. We would like to note that even
though we do condition on the entire history up to and including step t and this includes conditioning
on Xi

t , the algorithm has not yet used h̃i,t (it does not count towards computation of µt), thus we can
safely use all properties of stochastic gradients. Hence, we can proceed by taking into the account
that each set of agents S is chosen as initiator with probability 1

(ns)
:

Et[µt+1 − µt] =
∑
S

1(
n
s

) ∑
i∈S

− η

n+ 1

∑
i∈S

hi,t = − sη

n(n+ 1)

n∑
i=1

hi,t.

and subsequently

Et⟨∇f(µt), µt+1 − µt⟩ =
n∑

i=1

sη

n(n+ 1)
Et⟨∇f(µt),−hi,t⟩.

Hence, we can rewrite (5) as:

Et[f(µt+1)] ≤ f(µt) +

n∑
i=1

sη

n(n+ 1)
Et⟨∇f(µt),−hi,t⟩+

L

2
Et∥µt+1 − µt∥2.

Next, we remove the conditioning

E[(µt+1)] = E[Et[f(µt+1)]] ≤ E[f(µt)] +

n∑
i=1

sη

n(n+ 1)
E⟨∇f(µt),−hi,t⟩

+
L

2
E∥µt+1 − µt∥2.

This allows us to use Lemmas B.6 and B.3:

E[f(µt+1)]− E[f(µt)] ≤
sη

n(n+ 1)

(
4KL2E[Φt] + (−3Hn

4
+ 8B2L2η2K3n)E∥∇f(µt)∥2

+ 4nL2η2K3(σ2 + 2G2)

)
+

L

2

(
4s2Kη2(σ2 + 2KG2)

(n+ 1)2
+

16s2L2K2η2E[Φt]

n(n+ 1)2

+
8B2s2K2η2E∥∇f(µt)∥2

(n+ 1)2
+

2(R2 + 7)2γ2

(n+ 1)2

)
=
(4ηsKL2

n(n+ 1)
+

8s2K2L3η2

n(n+ 1)2
)
E[Φt]

+
(4sL2η3K3

n+ 1
+

2s2Kη2L

(n+ 1)2
)
(σ2 + 2KG2) +

(R2 + 7)2γ2L

(n+ 1)2

+
(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

4B2s2K2Lη2

(n+ 1)2
)
E∥∇f(µt)∥2

26

By simplifying the above inequality we get:

E[f(µt+1)]− E[f(µt)] ≤
5ηsKL2E[Φt]

n(n+ 1)
+
(4sL2η3K3

n+ 1
+

2s2Kη2L

(n+ 1)2
)
(σ2 + 2KG2)

+
(R2 + 7)2γ2L

(n+ 1)2
+
(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1

+
4B2s2K2Lη2

(n+ 1)2
)
E∥∇f(µt)∥2

by summing the above inequality for t = 0 to t = T − 1, we get that

E[f(µT)]− f(µ0) ≤
5ηsKL2

n(n+ 1)

T−1∑
t=0

E[Φt] +
(4sL2η3K3

n+ 1
+

2s2Kη2L

(n+ 1)2
)
(σ2 + 2KG2)

+
(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

4B2s2K2Lη2

(n+ 1)2
) T−1∑

t=0

E∥∇f(µt)∥2

+
(R2 + 7)2γ2LT

(n+ 1)2

Further, we use Lemma B.5:

E[f(µT)]− f(µ0) ≤
5ηsKL2

n(n+ 1)

(
80Tn2(R2 + 7)2γ2 + 80Tn2sKη2(σ2 + 2KG2)

+ 160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2
)

+
(4sL2η3K3

n+ 1
+

2s2Kη2L

(n+ 1)2
)
(σ2 + 2KG2) +

(R2 + 7)2γ2LT

(n+ 1)2
+

(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

4B2s2K2Lη2

(n+ 1)2
) T−1∑

t=0

E∥∇f(µt)∥2

≤ 400ηsnKL2T (R2 + 7)2γ2

n+ 1
+

404Tns2K2L2η3(σ2 + 2KG2)

n+ 1

+
3s2Kη2LT (σ2 + 2KG2)

(n+ 1)2
+

(R2 + 7)2γ2LT

(n+ 1)2

+
(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1

+
4B2s2K2Lη2

(n+ 1)2
+

800B2ns2K3η3L2

n+ 1

) T−1∑
t=0

E∥∇f(µt)∥2

by assuming η < 1
100B

√
nsk2L

we get:

E[f(µT)]− f(µ0) ≤
400ηsnKL2T (R2 + 7)2γ2

n+ 1
+

+ (
3s2Kη2LT

(n+ 1)2
+

404Tns2K2L2η3

n+ 1
)(σ2 + 2KG2) +

(R2 + 7)2γ2LT

(n+ 1)2

+
−ηsH

2(n+ 1)

T−1∑
t=0

E∥∇f(µt)∥2

Next, we regroup terms, multiply both sides by 2(n+1)
ηsHT and use the fact that f(µT) ≥ f∗:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(n+ 1)(f(µ0)− f∗)

sHηT
+

800nKL2(R2 + 7)2γ2

H
+

27

+ (
6sKηL

H(n+ 1)
+

808nsK2L2η2

H
)(σ2 + 2KG2) +

2(R2 + 7)2γ2L

(n+ 1)sHη

Finally, we set η = n+1
sH

√
T

:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(f(µ0)− f∗)√
T

+
800nKL2(R2 + 7)2γ2

H
+

6KL(σ2 + 2KG2)

H2
√
T

(6)

+
808n(n+ 1)2K2L2

sH3T
(σ2 + 2KG2) +

2(R2 + 7)2γ2L
√
T

(n+ 1)2sH
(7)

Lemma B.8. For quantization parameters (R2 + 7)2γ2 = (n+1)2

s2H2T (σ2 + 2KG2 + f(µ0)−f∗
L) we

have:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 5(f(µ0)− f∗)√
T

+
8KL(σ2 + 2KG2)

H2
√
T

+
1608n(n+ 1)2K2L2(σ2 + 2KG2)

sH3T
+

800n(n+ 1)2KL(f(µ0)− f∗)

s2H3T

Proof.

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(f(µ0)− f∗)√
T

+
800nKL2(R2 + 7)2γ2

H
+

6KL(σ2 + 2KG2)

H2
√
T

+
808n(n+ 1)2K2L2

sH3T
(σ2 + 2KG2) +

2(R2 + 7)2γ2L
√
T

(n+ 1)2sH

=
2(f(µ0)− f∗)√

T
+

800nKL2(n+ 1)2

s2H3T
(σ2 + 2KG2 +

f(µ0)− f∗
L

)

+
6KL(σ2 + 2KG2)

H2
√
T

+
808n(n+ 1)2K2L2

sH3T
(σ2 + 2KG2)

+
2L

s2H2
√
T
(σ2 + 2KG2 +

f(µ0)− f∗
L

)

≤ 5(f(µ0)− f∗)√
T

+
8KL(σ2 + 2KG2)

H2
√
T

+
1608n(n+ 1)2K2L2(σ2 + 2KG2)

sH3T

+
800n(n+ 1)2KL(f(µ0)− f∗)

s2H3T

Lemma B.9. We have:

5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

∑
i

E∥h̃i,t∥2 ≤ 1000Tn3s(R2 + 7)2γ2

+ 10000B2n3s2K2LT (R2 + 7)2γ2

Proof.

5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

∑
i

E∥h̃i,t∥2

≤ 5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

(
2nK(σ2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2

)
28

≤ 5s

T−1∑
t=0

E[Φt] + 6nTη2K(σ2 + 2KG2) + 24η2L2K2
T−1∑
t=0

E[Φt]

+ 12nB2η2K2
T−1∑
t=0

E∥∇f(µt)∥2

≤ 6s

T−1∑
t=0

E[Φt] + 6nTη2K(σ2 + 2KG2) + 12B2nη2K2
T−1∑
t=0

E∥∇f(µt)∥2

≤ 6s
(
80Tn2(R2 + 7)2γ2 + 80Tn2sKη2(σ2 + 2KG2)

+ 160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2
)

+ 6nTη2K(σ2 + 2KG2) + 12B2nη2K2
T−1∑
t=0

E∥∇f(µt)∥2

≤ 480Tn2s(R2 + 7)2γ2 + (480Tn2s2Kη2 + 6nTη2K)(σ2 + 2KG2)

+ (960n2s2K2B2η2 + 12B2nη2K2)

T−1∑
t=0

E∥∇f(µt)∥2

≤ 480Tn2s(R2 + 7)2γ2 + 486Tn2s2Kη2(σ2 + 2KG2)

+ 1000B2n2s2K2η2
T−1∑
t=0

E∥∇f(µt)∥2

≤ 480Tn2s(R2 + 7)2γ2 + 486Tn2s2Kη2(σ2 + 2KG2)

+ 1000B2n2s2K2η2
(2(n+ 1)(f(µ0)− f∗)

sHη
+

800TnKL2(R2 + 7)2γ2

H
+

+ (
6TsKηL

H(n+ 1)
+

808TnsK2L2η2

H
)(σ2 + 2KG2) +

2T (R2 + 7)2γ2L

(n+ 1)sHη

)
≤ 480Tn2s(R2 + 7)2γ2 + 486Tn2s2Kη2(σ2 + 2KG2)

+
2000B2n2(n+ 1)sK2η(f(µ0)− f∗)

H
+

800000TB2n3s2K3η2L2(R2 + 7)2γ2

H
+

+ (
6000TB2n2s3K3η3L

H(n+ 1)
+

808000TB2n3s3K4η4L2

H
)(σ2 + 2KG2)

+
4000TB2nsK2ηL(R2 + 7)2γ2

H

≤ 1000Tn3s(R2 + 7)2γ2 +
4000B2n3sK2(n+ 1)√

T
(f(µ0)− f∗)

+
10000Tn3(n+ 1)2s2K

T
(σ2 + 2KG2)

≤ 1000Tn3s(R2 + 7)2γ2 + 10000B2n3s2K2LT (R2 + 7)2γ2

Lemma 4.8. Let T ≥ O(n3), then for quantization parameters R = 2 + T
3
d and γ2 =

(n+1)2(σ2+2KG2+f(µ0)−f∗)
s2H2T (R2+7)2 we have that the probability of quantization never failing during the

entire run of the Algorithm 1 is at least 1−O
(
1
T

)
.

Proof. Let Lt be the event that quantization does not fail during step t. Our goal is to show that
Pr[∪T

t=1Lt] ≥ 1 − O
(
1
T

)
. In order to do this, we first prove that Pr[¬Lt+1|L1,L2, ...,Lt] ≤

O
(

1
T 2

)
(O is with respect to T here).

29

We need need to lower bound probability that :

∀i ∈ S :∥Xt −Xi
t∥2 ≤ (RRd

γ)2 (8)

∥Xt − (Xi
t − ηh̃i,t)∥2 ≤ (RRd

γ)2 (9)

∥Xt −Xi
t∥2 = O

(
γ2(poly(T))2

R2

)
(10)

∥Xt − (Xi
t − ηh̃i,t)∥2 = O

(
γ2(poly(T))2

R2

)
(11)

We would like to point out that these conditions are necessary for decoding to succeed, we ignore
encoding since it will be counted when someone will try to decode it. Since, R = 2+ T

3
d this means

that (RRd
)2 ≥ 22T

3 ≥ T 30, for large enough T . Hence, it is suffices to upper bound the probability
that

∑
i∈S ∥Xt −Xi

t∥2 +
∑

i∈S ∥Xt − (Xi
t − ηh̃i,t)∥2 ≥ T 30γ2. To prove this, we have:

∑
i∈S

∥Xt −Xi
t∥2 +

∑
i∈S

∥Xt − (Xi
t − ηh̃i,t)∥2 ≤

∑
i∈S

(5∥Xt − µt∥2

+ 5∥µt −Xi
t∥2 + 3η2∥h̃i,t∥2) ≤ 5sΦt + 3η2

∑
i

∥h̃i,t∥2

Now, we use Markov’s inequality, and Lemma B.9:

Pr[5sΦt + 3η2∥h̃i,t∥2 ≥ T 30γ2|L1,L2, ...,Lt] ≤
E[5sΦt + 3η2

∑
i ∥h̃i,t∥2|L1,L2, ...,Lt]

T 30γ2

≤ 1000Tn3s(R2 + 7)2γ2 + 10000B2n3s2K2LT (R2 + 7)2γ2

T 30γ2
≤ O(

1

T 2
)

Thus, the failure probability due to the models not being close enough for quantization to be applied
is at most O

(
1
T 2

)
. Conditioned on the event that ∥Xt −Xi

t∥ and ∥Xt − (Xi
t − ηh̃i,t)∥ are upper

bounded by T 15γ (This is what we actually lower bounded the probability for using Markov), we get
that the probability of quantization algorithm failing is at most∑

i∈S

log log(
1

γ
∥Xt −Xi

t∥) ·O(R−d)

+
∑
i∈S

log log(
1

γ
∥Xt − (Xi

t − ηh̃i,t)∥) ·O(R−d)

≤ O

(
s log log T

T 3

)
≤ O

(
1

T 2

)
.

By the law of total probability (to remove conditioning) and the union bound we get that the total
probability of failure, either due to not being able to apply quantization or by failure of quantization
algorithm itself is at most O

(
1
T 2

)
. Finally we use chain rule to get that

Pr[∪T
t=1Lt] =

T∏
t=1

Pr[Lt| ∪t−1
s=0 Ls] =

T∏
t=1

(
1− Pr[¬Lt| ∪t−1

s=0 Ls]
)

≥ 1−
T∑

t=1

Pr[¬Lt| ∪t−1
s=0 Ls] ≥ 1−O

(
1

T

)
.

Lemma 4.9. Let T ≥ O(n3), then for quantization parameters R = 2+T
3
d and γ2 = η2

(R2+7)2 (σ
2+

2KG2+ f(µ0)−f∗
L) we have that the expected number of bits used by Algorithm 1 per communication

is O(d log(n) + log(T)).
30

Proof. At step t+ 1, by Corollary 4.3, we know that the total number of bits used is at most∑
i∈S

O
(
d log(

R

γ
∥Xi

t −Xt∥)
)
+O

(
d log(

R

γ
∥Xt − (Xi

t − ηh̃i,t)∥
)

By taking the randomness of agent interaction at step t+ 1 into the account, we get that the expected
number of bits used is at most:∑

S

1(
n
s

) ∑
i∈S

(
O
(
d log(

R

γ
∥Xi

t −Xt∥)
)
+O

(
d log(

R

γ
∥Xt − (Xi

t − ηh̃i,t)∥
))

=
∑
i

s

n

(
O
(
d log(

R

γ
∥Xi

t −Xt∥)
)
+O

(
d log(

R

γ
∥Xt − (Xi

t − ηh̃i,t)∥
))

=≤
∑
i

s

n

(
O
(
d log(

R2

γ2
∥Xi

t −Xt∥2)
)
+O

(
d log(

R2

γ2
∥Xt − (Xi

t − ηh̃i,t)∥2
))

Jensen
≤ s

(
O
(
d log(

R2

γ2

∑
i

1

n
(∥Xi

t −Xt∥2 + ∥Xt − (Xi
t − ηh̃i,t)∥2)

))

≤s

(
O
(
d log(

R2

γ2

∑
i

1

n
(∥Xt − µt∥2 + ∥Xi

t − µt∥2 + η2∥h̃i,t∥2)
))

≤ s

(
O
(
d log(

R2

γ2
(Φt +

η2

n

∑
i

∥h̃i,t∥2)
))

So the expected number of bits per communication in all rounds is at most:

1

sT

T−1∑
t=0

s

(
O
(
d log(

R2

γ2
(Φt +

η2

n

∑
i

∥h̃i,t∥2)
))

≤

(
O
(
d log(

R2

γ2
(
1

T

T−1∑
t=0

Φt +
1

T

T−1∑
t=0

η2

n

∑
i

∥h̃i,t∥2)
))

Next, By Jensen inequality and Lemma B.9, We get that the expected number of bits used is at most,

O
(
dE
[
log(

R2

γ2
(
1

T

T−1∑
t=0

Φt +
1

T

T−1∑
t=0

η2

n

∑
i

∥h̃i,t∥2)
])

Jensen
≤ O

(
d log(

R2

γ2
(
1

T

T−1∑
t=0

E[Φt] +
1

T

T−1∑
t=0

η2

n

∑
i

E∥h̃i,t∥2)
)

≤ O
(
d log(

R2

γ2
(
1

T
(1000Tn3s(R2 + 7)2γ2 + 10000B2n3s2K2LT (R2 + 7)2γ2)))

)
≤ O

(
d log(R2(1000n3s(R2 + 7)2 + 10000B2n3s2K2L(R2 + 7)2))

)
= O(d log(n) + log(T))

Theorem 4.2. Assume the total number of steps T ≥ Ω(n3), the learning rate η = n+1
sH

√
T

, and

quantization parameters R = 2 + T
3
d and γ2 = η2

(R2+7)2

(
σ2 + 2KG2 + f(µ0)−f∗

L

)
. Let H > 0 be

the expected number of local steps already performed by a client when interacting with the server.
Then, with probability at least 1−O(1

T) we have that Algorithm 1 converges at the following rate

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 5(f(µ0)− f∗)√
T

+
8KL(σ2 + 2KG2)

H2
√
T

+O

(
n3KL2(σ2 + 2KG2)

sH3T

)
and uses O (sT (d log n+ log T)) expected communication bits in total.

Proof. The proof simply follows from combining Lemmas B.8, 4.8 and 4.9
31

Lemma B.10. For the convergence of the server, we have:

1

T

T−1∑
t=0

E∥∇f(Xt)∥2 ≤ 15(f(µ0)− f∗)√
T

+
24KL(σ2 + 2KG2)

H2
√
T

+ (
4824n(n+ 1)2K2L2

sH3T
+

320n2(n+ 1)2KL2

sH2T
)(σ2 + 2KG2)

+ (
2400n(n+ 1)2KL

s2H3T
+

160n2(n+ 1)2L2

s2H2T
)(f(µ0)− f∗)

Proof.

1

T

T−1∑
t=0

E∥∇f(Xt)∥2 ≤ 1

T

T−1∑
t=0

E∥∇f(Xt)−∇f(µt) +∇f(µt)∥2

≤ 2

T

T−1∑
t=0

E∥∇f(Xt)−∇f(µt)∥2 +
2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 2L2

T

T−1∑
t=0

E∥Xt − µt∥2 +
2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 2L2

T

T−1∑
t=0

E[Φt] +
2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 2L2
(
80n2(R2 + 7)2γ2 + 80n2sKη2(σ2 + 2KG2)

+ 160B2n2sK2η2
1

T

T−1∑
t=0

E∥∇f(µt)∥2
)
+

2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 160n2L2(R2 + 7)2γ2 + 160n2sKL2η2(σ2 + 2KG2) +
3

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 160n2L2(R2 + 7)2γ2 + 160n2sKL2η2(σ2 + 2KG2) +
15(f(µ0)− f∗)√

T
+

24KL(σ2 + 2KG2)

H2
√
T

+
4824n(n+ 1)2K2L2(σ2 + 2KG2)

sH3T
+

2400n(n+ 1)2KL(f(µ0)− f∗)

s2H3T

≤ 160n2L2η2(σ2 + 2KG2 +
f(µ0)− f∗

L
) + 160n2sKL2η2(σ2 + 2KG2) +

15(f(µ0)− f∗)√
T

+
24KL(σ2 + 2KG2)

H2
√
T

+
4824n(n+ 1)2K2L2(σ2 + 2KG2)

sH3T

+
2400n(n+ 1)2KL(f(µ0)− f∗)

s2H3T

≤ 15(f(µ0)− f∗)√
T

+
24KL(σ2 + 2KG2)

H2
√
T

+ (
4824n(n+ 1)2K2L2

sH3T
+

320n2(n+ 1)2KL2

sH2T
)(σ2 + 2KG2)

+ (
2400n(n+ 1)2KL

s2H3T
+

160n2(n+ 1)2L2

s2H2T
)(f(µ0)− f∗)

Finally, the proof of Corollary 4.3 follows from combining Lemmas B.10, 4.8 and 4.9

32

	Introduction
	Related Work
	The Algorithm
	System Overview
	Algorithm Description

	Convergence Analysis
	Analytical Assumptions
	Main Results
	Overview of the Analysis

	Experimental Results
	Conclusions and Limitations
	Reproducibility Statement
	Experimental setup
	Hyper-parameters
	Simulation
	Datasets and Models
	Results on Fashion MNIST (FMNIST)
	Results on CIFAR-10

	The Complete Analysis
	Overview and Notation
	Properties of Local Steps
	Upper Bounding Potential Functions
	Convergence

