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Abstract— Manipulating unseen objects is challenging with-
out a 3D representation, as objects generally have occluded
surfaces. This requires physical interaction with objects to build
their internal representations. This paper presents an approach
that enables a robot to rapidly learn the complete 3D model of a
given object for manipulation in unfamiliar orientations. We use
an ensemble of partially constructed NeRF models to quantify
model uncertainty to determine the next action (a visual
or re-orientation action) by optimizing informativeness and
feasibility. Further, our approach determines when and how to
grasp and re-orient an object given its partial NeRF model and
re-estimates the object pose to rectify misalignments introduced
during the interaction. Experiments with a simulated Franka
Emika Robot Manipulator operating in a tabletop environment
with benchmark objects demonstrate an improvement of (i)
14% in visual reconstruction quality (PSNR), (ii) 20% in
the geometric/depth reconstruction of the object surface (F-
score) and (iii) 71% in the task success rate of manipulating
objects a-priori unseen orientations/stable configurations in the
scene; over current methods. Additional details appear at:
https://actnerf.github.io/.

I. INTRODUCTION

We consider the problem of acquiring a 3D visual and
geometric representation of an object for sequential robot
manipulation tasks. In recent years, Neural Radiance Fields
(NeRF) has emerged as a useful implicit representation
that allows synthesis of novel views aiding in downstream
planning, manipulation, and pose estimation tasks. Such
a representation is acquired by collecting a set of views
from known poses in the environment. The process for
collecting such views is either in (i) batch mode [1]–[3] by
exhaustively collecting observations covering a region or (ii)
actively by determining a set of informative views [4]–[7].
Although effective in rapidly constructing an object model,
such approaches can only reconstruct the visible regions of
the object, failing to model obscured parts such as the base,
internal contents, and other occluded regions. The inability
to accurately model the object owing to occlusions in the
scene translates to poor manipulation ability for subsequent
manipulation tasks.

This work considers the possibility of directly interacting
via grasping, re-orientation, and stably releasing the object to
expose previously unexposed regions for subsequent model
building. Fig. 1 presents an overview of our model acquisi-
tion technique. Introducing physical interaction during model
acquisition poses two key challenges. First, finding stable
grasping points using a partially built model is challenging
due to depth uncertainty in unobserved or poorly observed
regions. Second, re-orientation introduces uncertainty in the
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Fig. 1: Overview. We present an active learning approach for building
a NeRF model of an object that allows the robot to re-orient the object
while collecting visual observations. Our approach is guided by a measure
of model uncertainty in the partially constructed model, which is used to
determine the most informative feasible action, aiding model construction.

object’s pose, affecting the incremental fusion of the radiance
field arising from new observations. Further, as opposed to
scene-based representations, we seek the ability to acquire
object-centric radiance fields to support semantic tasks that
may require sequential manipulation actions (e.g., clearing
objects from a region). Overall, this paper makes the
following contributions:

• Leveraging vision foundation models to isolate the
object of interest to disentangle its uncertainty from that
of other background objects in the scene.

• A search procedure that estimates the next most infor-
mative action (visual or re-orientation). The procedure
relies on a coarse-to-fine optimization of the continuous
viewing space incorporating (i) model uncertainty in the
partially-built model (adapting [5]), (ii) motion costs,
and (iii) kinematic constraints.

• An approach for grasping while accounting for the
uncertainty in the partially constructed model and re-
estimating the pose of the object after interaction for
fusing the incrementally acquired model.

In essence, this work takes a step in the direction of acquiring
a rich NeRF model of an object to support future robot ma-
nipulation tasks and hope that this work will invite discussion
and feedback at the proposed RoboNeRF workshop.

https://actnerf.github.io/
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Fig. 2: Overview. We show the RGB images and uncertainty maps rendered from trained models during our active learning process. The GT images are
shown for reference. Before flipping, the bottom surface of the object has high uncertainty, which only diminishes once we perform the flip and acquire
information about the bottom surface. The acquired object model enables future manipulation action of the object in any orientation.

II. PROBLEM FORMULATION

Our problem concerns a robot manipulator in a tabletop
environment and an object placed near the table’s center. The
robot’s task is to obtain a 3D representation of the object
for manipulation in unseen orientations. Actions available to
the robot A include Move(pi): moving its arm to pose pi,
Flip(): flipping the object, and Capture(): capturing
an image with its attached camera. Further, let Γ(a) denote
the cost of an action a ∈ A. The robot must execute a
sequence of actions A∗ = (a1, a2, . . . , an), where each ai
represents a combination of actions from A. After executing
each action ai, the robot applies a Capture() action to obtain
an image. The collected images are then used to train a NeRF
model Fθ. Given a partially trained model FΘk−1

, based on
images i1, i2, . . . , ik−1, the goal is to identify the next action
ak to capture an image from a viewpoint with the highest
uncertainty, while also minimizing the action cost Γ(ak):

ak = argmax
a

[
U(FΘk−1

, p)− λΓ(a)
]
, (1)

where, p represents the pose achieved by the robotic arm
upon executing action a, and U(FΘk−1

, p) quantifies the
uncertainty in the model from pose p. This formulation is
equivalent to minimizing the loss function L(a), defined as:

L(a) = λΓ(a)− U(FΘk−1
, p) (2)

Next, we turn our attention to estimating the actions mini-
mizing this object using an estimate of model uncertaintly
in an active learning setup.

III. TECHNICAL APPROACH

A. Estimating Model Uncertainty

Following [5], we train M NeRF models using the same
set of images but randomly initialized weights. By rendering
images from these M models for any camera pose, we
render an uncertainty heat map (see Fig. 3) where uncertainty
associated with a pixel corresponding to ray r and estimated

Captured Image Uncertainty w/o 
Segmentation

Uncertainty with 
Segmentation

Fig. 3: Effect of background on uncertainty estimation. Uncertainty heat
maps of NeRF models trained on segmented v/s original images. Segmen-
tation of the object removes artefacts arising from modeling background
visual appearance.

colors Ĉi(r) as:

σ2(r) =
1

M

M∑
k=1

∥µ(r)− Ĉk(r)∥2,where (3)

µ(r) =
1

M

M∑
k=1

Ĉk(r), (4)

and µ(r) and Ĉi(r) are vectors representing the RGB color
channels. Using the expression for the uncertainty of a ray,
σ2(r), the uncertainty for a pose p can be quantified as the
sum of the uncertainties for all rays emanating from p.

In a 3D scene representation, this approach yields un-
certainty estimates covering both the object and its sur-
roundings. A next-best-view (NBV) strategy based on such
uncertainty tends to minimize background uncertainty, di-
verging from our main goal, especially in cluttered scenes. To
focus solely on the object’s uncertainty, we adopt Grounded-
SAM [8], which leverages textual prompts to generate object
masks by integrating Grounding DINO [9] and SAM [10].
This method enables training NeRF models on segmented
images, offering a more precise evaluation of uncertainty
centered on the object of interest (see Fig. 3).

B. Uncertainty-guided Next Action Selection

We now tackle the challenge of identifying the next best
action within the context of our active learning framework.



TABLE I: Comparison of our method with ActiveNeRF and other baselines. All the baselines include Flip() action as detailed in the
appendix (VI-B) and are trained with segmented images. F-score* represents the F-score values multiplied by 10. As evident from the
tables, our approach outperforms other methods by a significant margin.

Method
Basket Cheezit Box Mug Rubik’s Cube Spam Can Total

PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑
Model quality after 20 iterations without grasping

Ours 17.2 ± 0.1 4.2 ± 0.5 21.8 ± 0.2 4.3 ± 0.2 26.3 ± 0.1 6.5 ± 0.2 30.3 ± 0.3 3.8 ± 0.1 23.9 ± 0.6 4.1 ± 0.3 23.9 ± 0.1 4.6 ± 0.1
Random 17.0 ± 0.2 4.0 ± 0.6 21.4 ± 0.4 4.0 ± 0.4 26.5 ± 0.2 6.6 ± 0.1 29.5 ± 0.2 4.1 ± 0.3 24.7 ± 0.2 4.4 ± 0.0 23.8 ± 0.1 4.6 ± 0.2
Furthest 17.1 ± 0.1 3.0 ± 0.2 21.2 ± 0.1 4.2 ± 0.2 26.5 ± 0.3 5.8 ± 0.2 28.6 ± 0.5 3.6 ± 0.2 23.9 ± 0.3 4.0 ± 0.2 23.5 ± 0.1 4.1 ± 0.1
Active [7] 15.5 ± 0.5 2.6 ± 0.2 19.0 ± 0.1 2.9 ± 0.3 24.8 ± 0.9 4.4 ± 0.1 27.0 ± 0.6 3.4 ± 0.3 19.7 ± 1.3 3.1 ± 0.1 21.2 ± 0.4 3.3 ± 0.1

Model quality after 20 iterations with grasping

Ours 16.9 ± 0.1 3.4 ± 0.3 21.3 ± 0.3 4.0 ± 0.2 26.9 ± 0.2 5.9 ± 0.1 31.6 ± 0.5 4.0 ± 0.3 23.4 ± 0.5 3.8 ± 0.1 24.0 ± 0.2 4.2 ± 0.1
Random 16.0 ± 0.6 3.5 ± 0.8 20.9 ± 1.0 3.9 ± 0.4 22.2 ± 0.8 4.6 ± 0.2 29.1 ± 0.9 3.5 ± 0.5 22.8 ± 1.8 3.4 ± 0.4 22.2 ± 0.5 3.8 ± 0.2
Furthest 16.5 ± 0.2 3.1 ± 0.2 19.8 ± 0.7 3.7 ± 0.4 24.1 ± 0.3 4.8 ± 0.7 27.8 ± 0.9 3.8 ± 0.4 21.1 ± 1.5 3.3 ± 0.3 21.9 ± 0.4 3.7 ± 0.2
Active [7] 16.1 ± 0.2 2.6 ± 0.2 19.2 ± 0.2 2.5 ± 0.9 23.6 ± 3.2 5.5 ± 0.3 27.6 ± 0.8 3.9 ± 0.6 22.1 ± 0.2 3.2 ± 0.1 21.7 ± 0.7 3.5 ± 0.2

Model quality attained given a cost budget of 2 without grasping

Ours 17.1 ± 0.1 3.9 ± 0.3 21.4 ± 0.2 4.3 ± 0.1 26.0 ± 0.3 5.8 ± 0.5 29.8 ± 0.7 4.5 ± 0.2 23.7 ± 0.4 4.1 ± 0.2 23.6 ± 0.2 4.5 ± 0.1
Random 17.0 ± 0.2 3.8 ± 0.4 19.3 ± 1.1 3.7 ± 0.4 25.2 ± 0.9 5.7 ± 0.7 28.6 ± 0.6 3.8 ± 0.1 23.3 ± 1.4 3.6 ± 0.3 22.7 ± 0.4 4.1 ± 0.2
Furthest 16.4 ± 0.4 2.6 ± 0.1 19.2 ± 0.2 3.5 ± 0.1 24.7 ± 1.1 4.4 ± 0.1 26.6 ± 1.2 4.1 ± 0.1 22.6 ± 0.4 3.9 ± 0.1 21.9 ± 0.3 3.7 ± 0.0
Active [7] 15.4 ± 0.4 3.1 ± 0.1 18.4 ± 0.2 3.1 ± 0.1 24.1 ± 0.4 4.1 ± 0.2 26.3 ± 0.6 3.4 ± 0.3 19.5 ± 1.7 3.6 ± 0.1 20.7 ± 0.4 3.5 ± 0.1

Model quality attained given a cost budget of 2 with grasping

Ours 16.9 ± 0.1 3.3 ± 0.4 21.2 ± 0.2 3.9 ± 0.2 26.8 ± 0.4 5.8 ± 0.3 30.9 ± 0.7 4.0 ± 0.3 23.7 ± 0.6 3.8 ± 0.2 23.9 ± 0.2 4.2 ± 0.1
Random 16.0 ± 0.3 3.0 ± 0.3 20.9 ± 1.0 3.8 ± 0.2 22.3 ± 0.8 4.4 ± 0.2 28.5 ± 1.3 3.6 ± 0.3 22.8 ± 1.9 3.4 ± 0.4 22.1 ± 0.5 3.6 ± 0.1
Furthest 16.5 ± 0.2 1.5 ± 0.8 19.9 ± 0.2 3.6 ± 0.2 23.5 ± 0.4 4.3 ± 0.3 27.7 ± 0.9 3.5 ± 0.4 22.1 ± 1.7 3.3 ± 0.3 21.9 ± 0.4 3.2 ± 0.2
Active [7] 15.8 ± 0.2 3.3 ± 0.2 19.2 ± 0.3 3.2 ± 0.1 21.9 ± 2.0 5.1 ± 0.2 26.4 ± 0.8 2.7 ± 1.0 21.6 ± 0.5 3.3 ± 0.2 21.0 ± 0.8 3.5 ± 0.2

First, we consider the scenario where only Move() action
is allowed. In this case, the minimization variable a in (2) is
substituted with p ∈ SE(3), representing the 6-DoF pose of
the camera affixed to the robot’s end-effector. The designated
action for a pose p corresponds to maneuvering the end-
effector to position the camera at p. To circumvent the
limitations of naive gradient descent approaches, which falter
due to the presence of numerous local minima within the ob-
jective function, we propose a bi-level optimization strategy.
First, we select a sparse and diverse subset of k candidate
poses from n randomly sampled poses, all oriented towards
the work space’s center. Second, we execute a gradient
descent search from each candidate pose. The final solution is
selected from the second level that yields the lowest objective
function value. Next, in scenarios where Flip() actions are
also considered, the problem is decomposed into two sub
problems: 1) Identifying the optimal action without allowing
flips, and 2) Adjusting the coordinate axes to simulate a
flip and determining the optimal subsequent action. The cost
associated with Flip() is accounted for exclusively in the
second sub problem. The final optimal action is chosen based
on the lower L(a) value from these sub problems. Finally,
let Γ(a) denote the action cost (2) defined as the the cost
for Move() as a weighted sum of translation distance and
angular distance between initial and final poses. For the
Flip() action we assume constant cost.

C. Object Re-orientation during Model Acquisition

This section details the approach for grasping and re-
orientation. From the RGB and depth images rendered by
our partial model, we compute the lateral grasp poses using
AnyGrasp [11], which generates grasp pose-confidence pairs.
Note that during learning the object model may be partially-

known often containing spurious geometric features which
lead to poor grasp pose estimates. Hence, we prune grasp
poses based on distance from center of the point cloud and
average opacity of the grasp patch. We then score each grasp
pose, to select the most suitable grasp. Our grasp score is
defined as Gs = (1 − θ)/Ud, where θ is the angle between
the grasp pose and surface normal and Ud is the variance of
rendered depths summed over the rays of the grasp patch.
In essence, the grasp estimates are weighed according to the
depth uncertainty, increasing the score of those grasps where
the NeRF model is certain about the object’s surface.

Upon grasping the object is rotated using a pre-defined
skill and placed on the supporting surface. Note that such
actions may lead to uncertainty in the final resting pose of
the object. This leads to errors if the NeRF models pre and
post interaction are directly blended. To ameliorate the error,
we estimate the pose of the object by leveraging the ac-
quired NeRF model using the iNeRF methodology [12]. We
optimize the camera pose to minimize the Sum of Squared
Differences (SSD) between the captured and NeRF’s pre-
dicted image. We observe that directly applying the original
iNeRF optimization framework for pose estimation does not
have a wide basin for convergence. Alternatively, we first use
multiple images for pose estimation and further combine the
best solution of three non-gradient based methods: Nelder-
Mead [13], COBYLA [14], [15], and Powell [16]. Our
experiments show better solution quality with this approach.

IV. EVALUATION AND RESULTS

A. Evaluation Setup

We perform experiments with two Franka Emika Robots
in Isaac Sim simulator. Object models are selected from the
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Fig. 4: Effect of Flip on Model Quality.We demonstrate the impact of
flipping objects on model quality (PSNR) for Exposed and Unexposed
subsets of the validation set, representing camera poses above and below the
object center, respectively. Unexposed PSNR shows a significant increase,
leading to an overall improvement in total PSNR. PSNR values are min-
max normalized in each plot. The complete figure including all the objects
is in the appendix (Fig. 8).
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Fig. 5: Grasping Performance Analysis. Analysis of grasp task success
rate and failure scenarios. Active denotes vanilla ActiveNeRF trained on
captured images without segmentation and with no Flip() action. S
denotes object segmentation, F denotes possibility of Flip() action.

YCB dataset [17], focusing on objects suitable for lateral
grasping and flipping. We compare the following baselines:
(i) Random View, where views are randomly selected, (ii)
Next Furthest View, which maximizes distance from existing
training views, and (iii) ActiveNeRF [7], implemented using
the Kaolin-Wisp framework [18]. Evaluation metrics include
PSNR (Peak Signal-to-Noise Ratio) for visual fidelity, using
64 images per object for validation sets, and F-score [19]
for geometric accuracy, derived from NeRF models through
Marching Cubes [20].

B. Evaluation of Model Quality

We evaluate the quality of the model acquired using the
proposed approach in relation to the baseline models under
two settings (i) when Flip() actions are prohibited and the
robot can only collected visual observations, and (ii) when
Flip() actions permitted along with visual observations.
Further, we analyse the resultant model quality by first
imposing a bound on the total number of training iterations.
This fixed iteration count was set at 20 to afford ample
iterations for all methods to converge to reasonable NeRF
models for manipulation. Results were consistent for other
values as well. Next, we analyse the model quality for a
total cost budget for actions taken by the robot. The budget
is empirically set to a value which is lower than the total
cost to allow quality saturation. Here, the cost budget is set
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Fig. 6: Model Quality Comparison under Pipeline Modifications. Com-
parison of learned model quality with ground truth meshes. The different
models are obtained after removing certain components from our pipeline.
S denotes object segmentation, F denotes flip, and P denotes pose re-
acquisition after the flip has been executed.

to 3 for experiments allowing the Flip() action and to 2
for those that do not, with the difference directly correlating
to the cost associated with a flip action. Table I shows the
results. The proposed method consistently performs better
than baselines. In particular, it improves PSNR (by 14%)
and F-Score (by 20%) over the ActiveNeRF baseline.

C. Benefit of Object Re-orientation in Model Learning

Figure 4 shows that the model quality improves signifi-
cantly after flipping and exposing previously unseen surfaces.
We also show images rendered from models (trained for 20
iterations each) without Flip() and compare it against our
best model (Fig. 6). Further, we perform task-level evaluation
by constructing a dataset with objects placed in random
positions and orientations in the robot’s workspace. The
robot is tasked to construct a NeRF model and then perform
picking/placing from a randomly sampled poses. Figure 5
reports the Grasp Success Rate (GSR) and failure modes
for all methods. Results indicate that the proposed model
outperforms alternate approaches.

V. CONCLUSIONS

This paper introduces an active learning approach to
acquire a NeRF model using both visual observation and re-
orientation actions. This facilitates modeling of previously
occluded surfaces allowing future pick/place interactions
when the object may be positioned aribitrarily in any stable
mode. Our approach estimates model uncertainty using an
ensemble of models and using such uncertainty to estimate
the next action (visual or re-orientation) to improve the
model. Future work will explore improving the timing effi-
ciency of ensembling and incorporate multi-step interactions
and experiments on real platforms.
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modified iNeRF is employed to re-acquire the object’s pose in its new orientation. We show the quality of the object models before and after the flip. The
post-flip model is obtained by capturing images in a re-oriented position and adding them to the training dataset.

VI. APPENDIX

A. Grasping Methodology Details
As mentioned in Section III-C, after obtaining grasp poses

from AnyGrasp, we first prune them on the basis of distance
from distance from center of the point cloud and the average
opacity of the grasp patch, that is average predicted opacity
averaged over the rays of the grasp patch. The predicted
opacity Ô(r) corresponding to ray r is calculated as follows:

Ô(r) =

N∑
i=1

αi, (5)

αi = exp

−
i−1∑
j=1

σjδj

 (1− exp(−σiδi)) , (6)

where σi and ci respectively denote the density and color
predicted by the NeRF model at a sampled point ri = o+tid
along ray r having origin o and direction d, and δi = ti+1−ti
represents the distance between adjacent sampled points.

Next, we assign a grasp score to each of the filtered grasp
pose to select the best grasp among them. Our grasp score
is defined as follows

Gs =
1− θ

Ud
(7)

where θ is the angle between the grasp pose and surface
normal. θ should be minimized as grasping from a non-
lateral grasp increases the probability of the object toppling
during or after the flip. Ud is the variance of rendered depths
summed over the rays of the grasp patch. We minimize Ud

to be certain about the location of the object surface in 3D
space near the grasp pose. Its computation is similar to that
of (3) with predicted depth D̂(r) being used instead of color.
D̂(r) corresponding to ray r is calculated as follows:

D̂(r) =

N∑
i=1

αiti, (8)

where αi, ti are defined as in (5) and (6).
This approach ensures that the grasp poses chosen are not

only theoretically viable according to AnyGrasp’s criteria but
also practically applicable within the constraints and current
state of our partial object models. Fig. 7 shows our whole
re-orientation pipeline.

B. Implementation Details

For our experiments, we define Γ(a) for a Move() action,
which transitions the end-effector from (r1, q1) to (r2, q2)
(with r indicating position and q representing rotation in
quaternion form), as follows:

Γ(a) = α1(1− d(q1, q2)) + α2d(r1, r2), (9)

whereas, for a Flip() action, we set Γ(a) = α3. The
cumulative cost Γ for a sequence of actions is the sum of the
costs for individual actions. The cost function parameters,
including λ and αi, play a pivotal role (see 2 and 9).
For our purposes, λ is fixed at 1, and the α values are
determined based on the relative average durations of their
corresponding actions executed by the robot, reflecting a
practical consideration of action cost in terms of time.
However, the observations in Section IV and VII translate
to other values of hyper-parameters as well.

Our methodology is implemented on the Kaolin-Wisp
framework [18], utilizing the InstantNGP model [22]. We
train an ensemble of five models on a single NVIDIA
A40 GPU. For a given pose, we consider the prediction
of the ensemble as the mean of the predictions of indi-
vidual models. On average, training a single NeRF model
takes approximately 36 seconds, while determining the next
best action requires about 3 minutes. These processes are
amenable to parallelization, potentially reducing computation
times significantly. The models are trained with images of
800 × 800 resolution, and PSNR evaluations are conducted
using images at their full resolutions.

To align the baselines (see IV-A) with our framework
where Flip() actions are permissible, We integrated a
Flip() action. Specifically, for Random and Furthest, a
Flip() is executed at the first iteration that meets a prede-
fined grasp score threshold (7). This approach is infeasible
for ActiveNeRF due to its generation of partial models
lacking precise surfaces, which complicates grasp pose de-
termination. Consequently, in the case of ActiveNeRF, we
resort to a predetermined flip via an external manipulator at
a specific iteration, assuming accurate post-flip object pose
knowledge to ensure that the generated models are of the
highest quality.
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Fig. 8: Effect of Flip on Model Quality.We demonstrate the impact of flipping objects on model quality (PSNR). The dashed line indicates the iteration
at which the object is flipped. The PSNR is shown for the Exposed and Unexposed subsets of the validation set, representing camera poses above and
below the object center, respectively. In most cases, the Exposed PSNR remains almost constant, while the Unexposed PSNR shows a significant increase,
leading to an overall improvement in total PSNR. PSNR values are min-max normalized in each plot.

TABLE II: Ablation results for uncertainty estimation technique. Epi, Total stands for epistemic and overall uncertainty as proposed by
[21] (with modifications stated in section VII). F-score* represents the F-score values multiplied by 10

Uncertainty
Basket Cheezit Box Mug Rubik’s Cube Spam Can Total

PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑ PSNR↑ F-score*↑
Model quality after 20 iterations without grasping

Ours 17.2 ± 0.1 4.2 ± 0.5 21.8 ± 0.2 4.3 ± 0.2 26.3 ± 0.1 6.5 ± 0.2 30.3 ± 0.3 3.8 ± 0.1 23.9 ± 0.6 4.1 ± 0.3 23.9 ± 0.1 4.6 ± 0.1
Entropy [4] 14.2 ± 0.3 3.0 ± 0.2 19.8 ± 0.2 3.4 ± 0.1 25.0 ± 0.6 5.6 ± 0.2 27.7 ± 0.6 4.0 ± 0.4 20.3 ± 0.3 4.0 ± 0.2 21.4 ± 0.2 4.0 ± 0.1
Epi [21] 15.5 ± 0.6 3.2 ± 0.3 20.4 ± 0.3 3.7 ± 0.1 25.8 ± 0.3 6.0 ± 0.4 29.0 ± 0.1 4.5 ± 0.7 21.0 ± 0.4 3.8 ± 0.1 22.3 ± 0.2 4.2 ± 0.2
Total [21] 16.6 ± 0.4 3.5 ± 0.2 19.7 ± 0.6 3.8 ± 0.3 21.2 ± 2.2 4.1 ± 0.7 25.6 ± 0.5 3.0 ± 0.2 22.1 ± 1.0 3.9 ± 0.1 21.0 ± 0.5 3.7 ± 0.2

Model quality attained given a cost budget of 2 without grasping

Ours 17.1 ± 0.1 3.9 ± 0.3 21.4 ± 0.2 4.3 ± 0.1 26.0 ± 0.3 5.8 ± 0.5 29.8 ± 0.7 4.5 ± 0.2 23.7 ± 0.4 4.1 ± 0.2 23.6 ± 0.2 4.5 ± 0.1
Entropy [4] 14.8 ± 1.0 3.0 ± 0.2 19.3 ± 0.5 3.6 ± 0.1 24.9 ± 0.5 5.5 ± 0.1 27.7 ± 0.6 4.0 ± 0.4 20.3 ± 0.3 4.0 ± 0.2 21.4 ± 0.3 4.0 ± 0.1
Epi [21] 15.2 ± 0.2 3.1 ± 0.2 19.3 ± 0.2 3.4 ± 0.1 25.2 ± 0.3 5.3 ± 0.3 28.4 ± 0.7 4.5 ± 0.4 20.7 ± 0.2 4.0 ± 0.0 21.8 ± 0.2 4.1 ± 0.1
Total [21] 16.6 ± 0.4 3.5 ± 0.1 19.7 ± 0.6 3.8 ± 0.3 21.2 ± 2.2 4.1 ± 0.7 25.6 ± 0.5 3.0 ± 0.2 22.1 ± 1.0 3.9 ± 0.1 21.0 ± 0.5 3.7 ± 0.2

TABLE III: Fraction of Correct Pose Estimation Instances within Bounds
Tight Bound := (Rotation Error < 2° AND Translation Error < 0.5 cm)
Loose Bound:= (Rotation Error < 5° AND Translation Error < 1.0 cm)
Loss- Single: SSD of a single image, Multi: summed SSD of 4 images

Optimization Method
Tight Bound (in %) Loose Bound (in %)

Single Multi Single Multi

Nelder-Mead [13] 17.9 33.3 30.8 59.0
COBYLA [14] [15] 5.1 23.1 7.7 51.3
Powell [16] 51.3 61.5 56.4 64.1
Ours (Combined) 51.3 69.2 61.5 82.1

VII. ABLATIONS

First, to show the necessity of each component of our
pipeline, we remove them step-by-step and run for 20 itera-
tions each. The qualitative results are shown in Fig. 6. Next,
we delve into the effectiveness of different optimization tech-
niques for pose re-acquisition, including Nelder-Mead [13],
COBYLA [15], and Powell’s method [16], alongside our
approach of selecting the minimum loss among these. The
comparative analysis extends to single versus multi-image
optimization strategies, as elucidated in Section III-C, with
outcomes presented in Table III. Notably, Fig. 6 demonstrates
the crucial role of pose re-acquisition, highlighting that
its absence results in significantly degraded NeRF models,
rendering them impractical for robotic applications.

Finally, we conduct ablation studies on various uncer-
tainty estimation methodologies. We assess the entropy-
based uncertainty metric introduced by Lee et al. [4] and the
epistemic and total uncertainties delineated by Sünderhauf

et al. [21]. They propose quantifying epistemic uncertainty
via the aggregation of termination probabilities for points
sampled along each ray, noting that uncertainty peaks when
rays fail to intersect with the scene. However, this method
is not applicable to our scenario, as our focus lies on
quantifying object-specific uncertainty rather than that of
the entire scene. Their epistemic uncertainty takes on the
maximum possible value of 1 for the pixels lying outside the
segmented image of the object. Since these pixels should not
contribute to object uncertainty, we assign them a value of
0 and run experiments on these modified epistemic and total
uncertainties. The results are shown in Table II.
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