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Abstract

We propose Adaptive Compressed Gradient Descent (AdaCGD) – a novel optimization algorithm for
communication-efficient training of supervised machine learning models with adaptive compression
level. Our approach is inspired by the recently proposed three point compressor (3PC) framework
of Richtárik et al. (2022), which includes error feedback (EF21), lazily aggregated gradient (LAG),
and their combination as special cases, and offers the current state-of-the-art rates for these methods
under weak assumptions. While the above mechanisms offer a fixed compression level or adapt
between two extreme compression levels, we propose a much finer adaptation. In particular, we allow
users to choose between selected contractive compression mechanisms, such as Top-𝐾 sparsification
with a user-defined selection of sparsification levels 𝐾, or quantization with a user-defined selection
of quantization levels, or their combination. AdaCGD chooses the appropriate compressor and
compression level adaptively during the optimization process. Besides i) proposing a theoretically-
grounded multi-adaptive communication compression mechanism, we further ii) extend the 3PC
framework to bidirectional compression, i.e., allow the server to compress as well, and iii) provide
sharp convergence bounds in the strongly convex, convex, and nonconvex settings. The convex regime
results are new even for several key special cases of our general mechanism, including 3PC and EF21.
In all regimes, our rates are superior compared to all existing adaptive compression methods.

1 Introduction

Training machine learning models is computationally expensive and time-consuming. In recent years, researchers have
tended to use increasing datasets, often distributed over several devices, throughout the training process in order to
improve the effective generalization ability of contemporary machine learning frameworks(Vaswani et al., 2019). By
the word “device” or “node,” we refer to any gadget that can store data, compute loss values and gradients (or stochastic
gradients), and communicate with other different devices. For example, this distributed setting appears in federated
learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017; Lin et al., 2018). FL is a machine learning setting where a
substantial number of strongly heterogeneous clients attempt to cooperatively train a model using the varied data stored
on these devices without violating clients’ information privacy(Kairouz et al.). In this setting, distributed methods are
very efficient(Goyal et al., 2017; You et al., 2019), and therefore, federated frameworks have attracted tremendous
attention in recent years.
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Algorithm 1 DCGD method with master compression

1: Input: starting point 𝑥0 ∈ R𝑑; 𝑔0, 𝑔0
𝑖 ∈ R𝑑 for 𝑖 = 1, · · · , 𝑛 (known by nodes), 𝑔0 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔0

𝑖 (known by
master); learning rate 𝛾 > 0, worker compressor ℳW, master compressor ℳ𝑀 .

2: for 𝑡 = 0,1,2, · · · , 𝑇 − 1 do
3: Server broadcasts 𝑔𝑡 to all workers
4: for all devices 𝑖 = 1, . . . , 𝑛 in parallel do
5: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

6: 𝑔𝑡+1
𝑖 = ℳ𝑊,𝑡

𝑖 (∇𝑓𝑖(𝑥𝑡+1))
7: Communicate 𝑔𝑡+1

𝑖 to the server
8: end for
9: Server aggregates received gradient estimators 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔𝑡+1

𝑖

10: 𝑔𝑡+1 = ℳ𝑀,𝑡(𝑔𝑡+1)
11: end for

Dealing with the distributed environment, we consider the following optimization problem

min
𝑥∈R𝑑

{︂
𝑓(𝑥) := 1

𝑛

𝑛∑︀
𝑖=1

𝑓𝑖(𝑥)
}︂

, (1)

where 𝑥 ∈ R𝑑 is the parameter vector of a training model, 𝑑 is the dimensionality of the problem (number of trainable
features), 𝑛 is the number of workers/devices/nodes, and 𝑓𝑖(𝑥) is the loss incurred by model 𝑥 on data stored on worker
𝑖. The loss function 𝑓𝑖 : R𝑑 → R often has the form of expectation of some random function 𝑓𝑖(𝑥) := E𝜉∼𝒟𝑖

[𝑓𝜉(𝑥)]
with 𝒟𝑖 being the distribution of training data owned by worker 𝑖. In federated learning, these distributions can be
different (so-called heterogeneous case). This finite sum function form allows us to capture the distributed nature of the
problem in a very efficient way.

The most effective models are frequently over-parameterized, which means that they contain more parameters than
there are training data samples(Arora et al., 2018).

In this case, distributed methods may experience communication bottleneck: the communication cost for the workers
to transfer sensitive information in joint optimization can exceed by multiple orders of magnitude the cost of local
computation(Dutta et al., 2020). One of the practical methods to transfer information more efficiently is to apply a local
compression operator (Seide et al., 2014; Suresh et al., 2017; Konečnỳ & Richtárik, 2018; Zhang et al., 2017) to the
model’s parameters (gradients or tensors) communicated across different clients.
Definition 1. A (possibly randomized) mapping 𝒞 : R𝑑 → R𝑑 is called a compression operator if transmission of
compressed tensor 𝒞(𝑥) incurs less communication cost than the transfer of initial tensor 𝑥.

Although compression decreases the number of bits transferred during each communication cycle, it also introduces
extra compression errors. As a result, the number of rounds necessary to obtain a solution with the appropriate
accuracy typically increases. However, as the trade-off frequently appears to favor compression over no compression,
compression has been proven to be effective in practice.

Distributed Compressed Gradient Descent (DCGD) (Khirirat et al., 2018) provides the simplest and universal mechanism
for distributed communication-efficient training with compression. With the given learning rate 𝛾, DCGD implements
the following update rule

𝑥𝑡+1 = 𝑥𝑡 − 𝛾 1
𝑛

𝑛∑︀
𝑖=1

𝑔𝑡
𝑖 , 𝑔𝑡

𝑖 = ℳ𝑡
𝑖(∇𝑓𝑖(𝑥𝑡)). (2)

Here, 𝑔𝑡
𝑖 represents an estimated gradient, the result of the mapping of original dense and high-dimensional gradient

∇𝑓𝑖(𝑥𝑡) ∈ R𝑑 into a vector of same size that can be transferred efficiently with far fewer bits via ℳ𝑡
𝑖 compression

mechanism.

In some cases (Tang et al., 2020; Philippenko & Dieuleveut, 2020; Fatkhullin et al., 2021), it is desirable to add
compression on the server side to have efficient communication between the server and clients in both directions. One
could easily extend the general framework of DCGD to the case of bidirectional compression. If we define the general
master compression mechanism as ℳ𝑀,𝑡 and the worker compression mechanism as ℳ𝑊,𝑡

𝑖 , we could formally write
the general bidirectional DCGD algorithm as Algorithm 1.
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2 Motivation and Background

Our primary motivation in this work is to design a compression mechanism that can vary the level of gradient
compression depending on a local optimality condition. This section of the paper introduces several key concepts
essential for the proposed adaptive scheme. We describe constant contractive compressors, discuss what adaptive
compressors already exist in the literature, and rehash a lazy aggregation mechanism – the precursor for our adaptive
compression.

2.1 Constant contractive compressors

Most methods employing gradient compression mechanisms use a compressor with a constant compression level. In
this approach (Beznosikov et al., 2020; Khirirat et al., 2018), one sets

ℳ𝑡
𝑖(𝑥) ≡ 𝒞(𝑥), (3)

where 𝒞 : R𝑑 → R𝑑 is a compression operator. There are two large classes of compression operators (or compressors)
widely presented in the literature: i) unbiased compression operators and ii) biased or contractive compression operators.
Our focus in this paper is on biased operators, the definition of which we provide below.

Definition 2 (Biased or contractive compression operator). A mapping 𝒞 : R𝑑 → R𝑑 is called biased or contractive
compression operator if there exists 0 < 𝛼 ≤ 1 such that

E
[︀
‖𝒞(𝑥) − 𝑥‖2]︀ ≤ (1 − 𝛼) ‖𝑥‖2, ∀𝑥 ∈ R𝑑. (4)

Top-𝐾 (Alistarh et al., 2018) and adaptive random (Beznosikov et al., 2020) sparsification compressors are typical
examples of contractive compressors. Due to the biased nature of these compressors, until recently, there was a gap
between the experimental and theoretical development of gradient descent methods based on contractive compressors.
Thus, during the last years, algorithmic approaches have provided several methods of high practical importance, most
notable of which is the so-called error feedback mechanism (Seide et al., 2014), fixing a divergence issue that appeared in
practice and theory (Beznosikov et al., 2020). In contrast, in the theoretical development, until very recently, analytical
studies offered weak sublinear (Stich et al., 2018; Karimireddy et al., 2019; Horváth & Richtárik, 2021) convergence
rates under, in some cases, strong unrealistic assumptions. Recently, Richtárik et al. (2021) fixed this by providing
a novel algorithmic and theoretical development that recovers GD 𝒪(1/𝑇 ) rates, with the analysis using standard
assumptions only. Fatkhullin et al. (2021) subsequently extended the framework by including several algorithmic and
theoretical extensions, such as bidirectional compression and client stochasticity. Despite these advances, there are
still many challenges in the theoretical understanding of these methods. One such challenge is a lack of a thorough
theoretical study of error feedback methods in a convex setting.

2.2 Existing adaptive compressors

Using a static compression level of the compressor for all clients could limitate the optimization framework’s capability.
Conversely, adjusting the compression level for every client could help reduce overall training time, for example, in
hardware heterogeneous cases (Horváth et al., 2021; Abdelmoniem & Canini, 2021).Ideally, the optimizer should be
able to define the particular compression level for each client separately based on the local client’s data.

Despite the significant practical interest in developing such methods, there is currently little research and understanding
of adaptive mechanisms of this type. Only a few papers (Qu et al., 2021; Hönig et al., 2021; Mishchenko et al., 2022;
Alimohammadi et al., 2022) provide convergence guarantees with explicit rates, and most of them are designed for the
specific type of compressors only, mostly quantizers (Guo et al., 2020; Wen et al., 2017). So, in (Jhunjhunwala et al.,

2021), the authors design a mechanism for adaptive change of quantization level 𝑠𝑘 ∼
√︁

𝑓(𝑥0)
𝑓(𝑥𝑘) of a random dithering

operator (Alistarh et al., 2017). DAdaQuant (Hönig et al., 2021) and FedDQ (Qu et al., 2021) suggest ascending and
descending quantizations throughout the training. AQUILA (Zhao et al., 2022) and AGQ (Mao et al., 2021) build
an adaptive quantization on top of the Lazily Aggregated Quantized (LAQ) gradient algorithm (Sun et al., 2019).
Faghri et al. (2020) proposes ALQ, an adaptive method for quantizing gradients that minimizes the excess variance of
quantization given an estimate of the distribution of the gradients. It adapts individual quantization levels iteratively to
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Table 1 Summary of adaptive compressed methods. AdaCGD, proposed in this work, is superior to its counterparts in all
three settings.

Paper Any 𝒞? Theory? Strongly convex rate(5) Convex rate General nonconvex rate

Jhunjhunwala et al. (2021) 7 7 7 7 7
Abdelmoniem & Canini (2021) 7 7 7 7 7

Hönig et al. (2021) 7 3(1)
max{𝜅, 𝜅2

𝑛
, 𝑛

𝜇2 }

𝑇 2 7 𝒪(
𝐿Δ𝑓√

𝑇
+ 𝐶

𝑇 )

Qu et al. (2021) 7 3 7 7 𝒪(
𝐿Δ𝑓√

𝑇
)(2)

Zhao et al. (2022) 7 3 linear (3) 7 7

Mao et al. (2021) 7 3 linear (3) 7 7
Khirirat et al. (2021) 3 7 7 7 7

Alimohammadi et al. (2022) 7 3 7 7 𝒪
(︁

Δ𝑓√
𝑇 𝑛

+ 𝐿2𝑛
𝑇 + 𝐿3𝑛

3
2

𝑇
3
2

)︁
(6)

Zhong et al. (2021) 3 3 7 7 𝒪( 𝐶√
𝑇

)
Faghri et al. (2020) 7 3 7 7 𝒪( 𝐶√

𝑇
)

Mishchenko et al. (2022) 7 3(4) 7 𝒪( 𝐿Δ𝑥
𝑇 + 𝜎2

*+𝜀

𝐿𝑛 ) 𝒪(
𝐿Δ𝑓

𝑇 + 𝜀
𝐿𝑛 )

THIS WORK 3 3
(︀

1 − min
{︀

𝜇
𝑀2

, 𝐴min
}︀)︀𝑇

𝒪
(︀

𝑀1
𝑇

)︀
𝒪
(︁

2Δ𝑓 𝑀2+𝐶/𝐴min
𝑇

)︁
(1) Rates, as suggested in the original paper, are derived from (Reisizadeh et al., 2020) and calculated for non-local full gradient setup
(𝜎2 = 0, 𝜏 = 1).
(2) We show the rate for non-local full gradient setup, i.e. 𝜎2 = 0 and 𝜏 = 1.
(3) Their work does not present any explicit rate.
(4) 𝜀 > 0 is a parameter of IntSGD algorithm.
(5) This column incorporates rates for the Polyak-Łojasiewicz nonconvex setting for its similarity with the strongly convex setting.
Notation: 𝜅 = 𝐿

𝜇 , {𝐶𝑖}3
𝑖=1 are scalar constants, Δ𝑥 = ‖𝑥0 − 𝑥*‖2, Δ𝑓 = 𝑓(𝑥0) − 𝑓*, 𝑀1 = max{𝐿− +

𝐿+
√︀

2𝐵max
𝐴min

, 1
𝐴min

}, 𝑀2 = 𝐿− + 𝐿+
√︀

𝐵max
𝐴min

(see Lemma 2 for details).
(6) These rates were obtained for nonstandard compressor types ‖𝐶(𝑥) − 𝑥‖2 ≤ 𝐵, where B is a constant value.

minimize the expected normalized variance. L-GRECO (Alimohammadi et al., 2022) dynamically adapts the degree of
compression across the model’s different layers during training using dynamic programming. IntSGD (Mishchenko
et al., 2022) adaptively sets the scaling parameter 𝛼𝑘 of a vector plugged in a randomized integer rounding operator.
CLAN (Zhong et al., 2021) deals with constant contractive compressors and combines adaptive stepsize rule similar
to ADAM(Kingma & Ba, 2017) with error-feedback applied on both server and client sides. The work of (Agarwal
et al., 2021) presents Accordion, an adaptive compression algorithm that avoids over-compressing gradients in critical
learning regimes, which can have a negative impact on model performance. The critical regime is detected by the rate of
change in gradient norms. CAT S+Q (Khirirat et al., 2021) proposes an adaptive way to choose 𝑘: the top-𝑘 elements of
the gradient at iteration 𝑖, only signs of which clients send to the server along with the gradient norm. Table 1 provides
a detailed comparison of these works.

2.3 Adaptive compression via selective (lazy) aggregation

We revisit the LAG mechanism, proposed by Chen et al. (2018), and consider it an alternative way to embed adaptivity
into the framework by introducing communication skipping. According to the lazy aggregation communication scheme,
each worker 𝑖 only shares its local gradient if it is significantly different from the last gradient shared previously.
Otherwise, the worker decides to skip the communication round. One can consider LAG as an adaptive mechanism that
chooses between two extremes: sending a full gradient or skipping the communication round.

Richtárik et al. (2022) recently extended this idea by introducing the CLAG algorithm that dispatches a compressed
update when an old gradient estimate differs too much from the gradient at a new iteration or skips the communication
at all. At each iteration of the algorithm, worker 𝑖 updates its gradient estimate 𝑔𝑡+1

𝑖 by the following rule:

𝑔𝑡+1
𝑖 =

{︃
𝑔𝑡

𝑖 + 𝒞(∇𝑓𝑖(𝑥𝑡+1) − 𝑔𝑡
𝑖) if ‖∇𝑓𝑖(𝑥𝑡+1) − 𝑔𝑡

𝑖‖2 > 𝜁‖∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)‖2,

𝑔𝑡
𝑖 otherwise,

(5)

where 𝜁 > 0 is a trigger parameter, 𝑔𝑡
𝑖 is a gradient estimate at previous iteration, and 𝒞 is a biased compression operator.

When the condition in the first line, called a trigger condition, fires, worker 𝑖 sends an update 𝒞(∇𝑓𝑖(𝑥𝑡+1) − 𝑔𝑡
𝑖) to

the server that smartly aggregates updates from workers and gets new full gradient estimate 𝑔𝑡+1 = (1/𝑛)
∑︀𝑛

𝑖=1 𝑔𝑡+1
𝑖 .

When the trigger condition does not fire, worker 𝑖 skips communication, which means 𝑔𝑡+1
𝑖 = 𝑔𝑡

𝑖 . Trigger parameter
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Table 2 Comparison of convergence guarantees results of methods employing lazy aggregation.

Method Adaptive
compression?

Bidirectional
case

Str cvx
case Cvx case PŁ

noncvx case
General
noncvx case

LAQ (Sun et al., 2019) 7 7 3 7 7 7
LENA (Ghadikolaei et al., 2021) 7 7 3 3 3 3
LAG (Richtárik et al., 2022) 7 7 3 7 3 3
CLAG (Richtárik et al., 2022) 7 7 3 7 3 3
AdaCGD (NEW, 2022) 3 3 3 3 3 3

𝜁 controls how frequently the trigger condition will fire, i.e., how often clients skip communication. The update rule
in Equation (5) also could be seen as an adaptive compression switching between two extremes: compressing at a
pre-defined compression level or compressing at the maximum possible level, in other words, not sending anything at
all.

Although both LAG and CLAG perform well in practice, their fixed and limited compression levels could restrict their
performance and make these methods sub-optimal. It is of particular practical interest to create a more general method
with evolving fine-tuned compression levels.

3 Summary of Contributions

We highlight our main contributions as follows:

∙ New class of adaptive compressors. In (Richtárik et al., 2022), the authors propose the different classes of
compressors unified through a single theory. Despite the large variability of the compression mechanisms, including
the algorithms with lazy aggregation rule, the compression level in all of the considered algorithms is pre-defined
and constant during the training. In this work, we take a step further and formulate an extended class of adaptive
3PC compressors (Ada3PC) with tunable compression levels defined by some general trigger rules. As original 3PC
compressors, this class of compressors is very general and includes several specific compressors such as AdaCGD, which
includes EF21 and CLAG as special cases. We build Ada3PC compressors upon a large class of biased compressors, such
as Top-𝐾 and adaptive random sparsification.

∙ Convergence guarantees with strong rates unified by a single 3PC theory. We provide a strong convergence
bound for strongly convex, convex, and nonconvex settings. Compared with the adaptive methods outside the 3PC
context, we provide a more elaborate theory with better convergence rates. For AdaCGD, we recover 𝒪(1/𝑇 ) rate of GD
up to a certain constant in general nonconvex case. It is superior in comparison with 𝒪(1/

√
𝑇 ) rate (Hönig et al., 2021;

Qu et al., 2021) for SOTA in adaptive compression outside 3PC context. The convergence theory in a convex set is of
particular interest due to its novelty even in the case of 3PC for some key cases of AdaCGD, such as EF21 and CLAG. In
other words, it is a new SOTA result for the error-feedback method in the convex setting.

∙ Extension of 3PC theory with bidirectional compression. We extend 3PC methods with bidirectional compression,
i.e., we allow the server to compress as well.

Table 2 compares AdaCGD with other described in the literature lazy algorithms.

4 Ada3PC: A Compression-Adaptive 3PC Method

4.1 3PC compressor

Richtárik et al. (2022) introduces the general concept of three point compressors. Here we provide its formal definition
for consistency:

Definition 3. We say that a (possibly randomized) map 𝒞ℎ,𝑦(𝑥) : R𝑑⏟ ⏞ 
ℎ∈

× R𝑑⏟ ⏞ 
𝑦∈

× R𝑑⏟ ⏞ 
𝑥∈

→ R𝑑 is a three point compressor

(3PC) if there exist constants 0 < 𝐴 ≤ 1 and 𝐵 ≥ 0 such that the following relation holds for all 𝑥, 𝑦, ℎ ∈ R𝑑

E
[︀
‖𝒞ℎ,𝑦(𝑥) − 𝑥‖2]︀ ≤ (1 − 𝐴)‖ℎ − 𝑦‖2 + 𝐵‖𝑥 − 𝑦‖2. (6)
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Authors show that EF21 compression mechanism satisfies Definition 3. Let 𝒞 : R𝑑 → R𝑑 be a contractive compressor
with contraction parameter 𝛼, and define

𝒞EF
ℎ,𝑦(𝑥) := ℎ + 𝒞(𝑥 − ℎ). (7)

If we use this mapping to define a compression mechanism ℳ𝑡
𝑖 via (2) within DCGD, we obtain the EF21 method.

Another variant of 3PC compressors introduced in (Richtárik et al., 2022) is CLAG compressor. Let 𝒞 : R𝑑 → R𝑑 be a
contractive compressor with contraction parameter 𝛼. Choosing a trigger 𝜁 > 0, authors define the CLAG rule

𝒞CL
ℎ,𝑦(𝑥) :=

{︃
ℎ + 𝒞(𝑥 − ℎ), if ‖𝑥 − ℎ‖2 > 𝜁‖𝑥 − 𝑦‖2,

ℎ, otherwise,
(8)

If we employ this mapping into DCGD method (2) as communication mechanism ℳ𝑡
𝑖, we obtain CLAG. It includes LAG

compressor 𝒞L as a special case when compressor 𝒞 is identity.

4.2 Adaptive 3PC compressor

We are ready to introduce the Adaptive Three Point (Ada3PC) Compressor.

Definition 4 (Ada3PC compressor). Let 𝒞1, 𝒞2, . . . , 𝒞𝑚 be 3PC compressors: 𝒞𝑖 : R3𝑑 → R𝑑 for all 𝑖. Let
𝑃1, 𝑃2, . . . , 𝑃𝑚−1 be conditions depending on ℎ, 𝑦, 𝑥, i.e. 𝑃𝑗 : R𝑑⏟ ⏞ 

ℎ∈

× R𝑑⏟ ⏞ 
𝑦∈

× R𝑑⏟ ⏞ 
𝑥∈

→ {0, 1} for all 𝑗. Then, the

adaptive 3PC compressor, associated with the above 3PC compressors and conditions, is defined as follows:

𝒞ad
ℎ,𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝒞1
ℎ,𝑦(𝑥) if 𝑃1(ℎ, 𝑦, 𝑥),

𝒞2
ℎ,𝑦(𝑥) else if 𝑃2(ℎ, 𝑦, 𝑥),

. . . ,

𝒞𝑚−1
ℎ,𝑦 (𝑥) else if 𝑃𝑚−1(ℎ, 𝑦, 𝑥),

𝒞𝑚
ℎ,𝑦(𝑥) otherwise.

(9)

Ada3PC compressor first finds the smallest index 𝑗 for which 𝑃𝑗(ℎ, 𝑦, 𝑥) = 1 (if such index does not exist, we set
𝑗 = 𝑚). Then, Ada3PC applies 𝒞𝑗 compressor on vector 𝑥.

4.3 Adaptive Compressed Gradient Descent

There are many ways to define meaningful and practical compressors in the context of the adaptive 3PC framework.
Here we provide one particular, perhaps the simplest scheme, which we define as AdaCGD. In this scheme, we have
a set of 𝑚 EF21 compressors {𝒞EF ,𝑗

ℎ,𝑦 (𝑥)}𝑗∈1...𝑚 sorted in order from the highest compression level to the lowest, i.e.
𝛼1 ≤ 𝛼2 . . . ≤ 𝛼𝑚, where 𝛼𝑗 is a corresponding contractive parameter of the 𝑗-th compressor. For example, if we use
Top-𝐾 in 𝒞EF

ℎ,𝑦 compressors, the first and last indices correspond to the compressors with the smallest and the largest 𝐾,
respectively. We choose the first compressor, i.e. with the strongest compression, which satisfies a trigger rule. We
design the 𝑗-th trigger rule following an intuition of lazy aggregation rule:

𝑃𝑗 := ‖𝑥 − 𝒞EF ,𝑗
ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥 − 𝑦‖2. (10)

As in the original LAG rule, the left side of (10) presents the difference between the actual gradient and its estimate,
while the right side compares gradient differences on neighboring iterations. The key difference of (10) trigger from
LAG and CLAG rule (5) is that the left side of this trigger condition depends explicitly on the level of compression.
This feature is essential as it enables the desired rule-based compressor selection. Altogether, we can define AdaCGD
compressor formally.
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Definition 5 (AdaCGD compressor). Given the set of 𝑚 EF21 compressors {𝒞EF ,𝑗
ℎ,𝑦 (𝑥)}𝑗∈1...𝑚, sorted in descending

order of compression level and 𝜁 ≥ 0, adaptive AdaCGD compressor is defined with a switch condition as follows:

𝒞AC
ℎ,𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ℎ if ‖𝑥 − ℎ‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

𝒞EF ,1
ℎ,𝑦 (𝑥) else if ‖𝑥 − 𝒞EF ,1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

. . . ,

𝒞EF ,𝑚−1
ℎ,𝑦 (𝑥) else if ‖𝑥 − 𝒞EF ,𝑚−1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

𝒞EF ,𝑚
ℎ,𝑦 (𝑥) otherwise.

(11)

If 𝒞EF ,𝑚
ℎ,𝑦 uses Top-𝑑 compression, i.e., identity operator, AdaCGD is an adaptive compressor composed of the whole

spectrum of compressors from full compression, i.e., communication "skip", to zero compression, i.e., sending full
gradient. Since the standalone "skip" connection is not 3PC operator, it may not be evident that AdaCGD is a special case
of Ada3PC. For this reason, here we provide the following lemma:
Lemma 1. AdaCGD is a special case of Ada3PC compressor.

It is easy to see that if 𝜁 = 0 AdaCGD reduces to EF21. Similarly, CLAG is a special case of AdaCGD when 𝑚 = 1.

5 Theory

In this section, we present theoretical convergence guarantees for Algorithm 1 with Ada3PC compressors in two new
cases presented in Table 2. The results for general and PŁ nonconvex cases can be found in the appendix.

5.1 Assumptions

We rely on standard assumptions to get convergence rates of Algorithm 1.
Assumption 1. The functions 𝑓1, . . . , 𝑓𝑛 : R𝑑 → R are convex, i.e.

𝑓𝑖(𝑥) − 𝑓𝑖(𝑦) − ⟨∇𝑓𝑖(𝑦), 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ R𝑑, ∀𝑖. (12)

Assumption 2. The function 𝑓 : R𝑑 → R is 𝐿−-smooth, i.e.

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿−‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ R𝑑. (13)

Assumption 3. There exists 𝐿+ > 0 such that 1
𝑛

∑︀𝑛
𝑖=1 ‖∇ 𝑓𝑖(𝑥) − ∇𝑓𝑖(𝑦)‖2 ≤ 𝐿2

+‖𝑥 − 𝑦‖2 for all 𝑥, 𝑦 ∈ R𝑑. Let
𝐿+ be the smallest such number.

We borrow {𝐿−, 𝐿+} notation from (Szlendak et al., 2022). Assumption 3 avoids a stronger assumption on Lipschitz
smoothness of individual functions 𝑓𝑖. Moreover, one can easily prove that 𝐿− ≤ 𝐿+.

The next assumption is standard for analysis of practical methods (Ahn et al., 2020), Rajput et al. (2020). However,
compared to previous works, we require a more general version.
Assumption 4. We assume that there exists a constant Ω > 0 such that E[‖𝑥𝑡 − 𝑥*‖2] ≤ Ω2, where 𝑥𝑡 is any iterate
generated by Algorithm 1.
Assumption 5. The functions 𝑓1, . . . , 𝑓𝑛 are differentiable. Moreover, 𝑓 is bounded from below by an infimum 𝑓 inf ∈ R,
i.e. 𝑓(𝑥) ≥ 𝑓 inf for all 𝑥 ∈ R𝑑.

5.2 Adaptive 3PC is a 3PC compressor

While this may not be obvious at first glance, Adaptive 3PC compressors belong to the class of 3PC compressors. We
formalize this statement in the following lemma.
Lemma 2. Let 𝒞ad be an adaptive 3PC compressor. Let {𝒞𝑖}𝑚

𝑖=1 be 3PC compressors associated with 𝒞ad, i.e. for all 𝑖
there exists constants 0 < 𝐴𝑖 ≤ 1 and 𝐵𝑖 ≥ 0, such that for all ℎ, 𝑦, 𝑥 ∈ R𝑑

E‖𝐶𝑖
ℎ,𝑦(𝑥) − 𝑥‖2 ≤ (1 − 𝐴𝑖)‖ℎ − 𝑦‖2 + 𝐵𝑖‖𝑥 − 𝑦‖2.

Then, 𝒞ad is a 3PC compressor with constants 𝐴min := min{𝐴1, . . . , 𝐴𝑚} and 𝐵max := max{𝐵1, . . . , 𝐵𝑚}.
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Proof. Let us fix ℎ, 𝑦, 𝑥 ∈ R𝑑 and let 𝑗 be the index, such that 𝑃𝑖(ℎ, 𝑦, 𝑥) = 0 for all 𝑖 < 𝑗 and, if 𝑗 < 𝑚,
𝑃𝑗(ℎ, 𝑦, 𝑥) = 1. Then,

E‖𝒞ad
ℎ,𝑦(𝑥) − 𝑥‖2 = E‖𝒞𝑗

ℎ,𝑦(𝑥) − 𝑥‖2 (6)
≤ (1 − 𝐴𝑗)‖ℎ − 𝑦‖2 + 𝐵𝑗‖𝑥 − 𝑦‖2

≤ (1 − 𝐴min)‖ℎ − 𝑦‖2 + 𝐵max‖𝑥 − 𝑦‖2.

In the definition of Ada3PC compressor, we never specify what conditions 𝑃𝑖s are. They are completely arbitrary! The
latter enables us to build infinitely many new compressors out of a few notable examples, presented in (Richtárik et al.,
2022).

5.3 Convergence

In this subsection, we show how assumptions we make about minimized functions and compressors affect the conver-
gence rate of Algorithm 1.

Convergence for convex functions. The first result assumes that ℳW in Algorithm 1 is a 3PC compressor, ℳM is
an identity compressor: ℳM(𝑥) = 𝑥 ∀𝑥 ∈ R𝑑.

Theorem 6. Let Assumptions 1, 2, 3 and 4 hold. In Algorithm 1, assume ℳW is a 3PC compressor, ℳM is an identity

compressor, and the stepsize 𝛾 satisfies 0 < 𝛾 ≤ 1/𝑀 , where 𝑀 = 𝐿− + 𝐿+

√︁
2𝐵
𝐴 . Then, for any 𝑇 ≥ 1 we have

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥⋆) ≤ max

{︁
1
𝛾 , 1

𝐴

}︁
2(Ω2+Φ0)

𝑇 ,

where Φ𝑡 := 𝑓(𝑥𝑡) − 𝑓(𝑥⋆) + 𝛾
𝐴

1
𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥𝑡) − 𝑔𝑡

𝑖‖
2 for any 𝑡 ≥ 0.

The theorem combined with Lemma 2 implies the following fact.

Corollary 1. Let the assumptions of Theorem 6 hold, assume ℳW is an Ada3PC compressor, ℳM is an identity
compressor, and choose the stepsize 𝛾 = 1

𝐿−+𝐿+
√︀

2𝐵max
𝐴min

. Then, for any 𝑇 ≥ 1 we have

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥*) ≤ max

{︁
𝐿− + 𝐿+

√︁
2𝐵max
𝐴min

, 1
𝐴min

}︁
2(Ω2+Φ0)

𝑇 .

Thus, to achieve E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥*) ≤ 𝜀 for some 𝜀 > 0, the Ada3PC method requires

𝑇 = 𝒪
(︁

max
{︁

𝐿− + 𝐿+

√︁
2𝐵max
𝐴min

, 1
𝐴min

}︁
2(Ω2+Φ2

0)
𝜀

)︁
iterations.

Convergence for bidirectional method. Here, we analyze the case when meaningful compressors are applied on
both communication directions, i.e., both ℳM and ℳW are 3PC compressors.

Theorem 7. Let Assumptions 3 and 5 hold. Let ℳM and ℳW be 3PC compressors and the stepsize in Algorithm 1 be
set as

0 < 𝛾 ≤ 1

𝐿− + 𝐿+

√︂
6𝐵M(𝐵W+1)

𝐴M + 2𝐵W

𝐴M

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁ . (14)

Fix 𝑇 and let �̂�𝑇 be chosen uniformly from {𝑥0,𝑥1, · · · ,𝑥𝑇 −1} uniformly at random. Then

E
[︁⃦⃦

∇𝑓(�̂�𝑇 )
⃦⃦2
]︁

≤ 2Ψ0

𝛾𝑇 . (15)

where Ψ𝑡 = 𝑓(𝑥𝑡) − 𝑓 inf + 𝛾
𝐴M ‖𝑔𝑡 − 𝑔𝑡‖2 + 𝛾

𝐴W

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔𝑡

𝑖 − ∇𝑓𝑖(𝑥𝑡)‖2 for any 𝑡 ≥ 0.
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In the theorem, superscripts “M” and “W” denote master and worker compressor parameters, respectively. Theorem 7
implies the following corollary.

Corollary 2. Let the assumptions of Theorem 7 hold, assume ℳM and ℳW are Ada3PC compressors and the stepsize

𝛾 = 1

𝐿−+𝐿+

√︂
6𝐵M

max(𝐵W
max+1)

𝐴M
min

+ 2𝐵W
max

𝐴M
min

(︁
1+

3𝐵M
max(2−𝐴W

min)

𝐴M
min

)︁ .

Fix 𝑇 and let �̂�𝑇 be chosen uniformly from {𝑥0,𝑥1, · · · ,𝑥𝑇 −1} uniformly at random. Then, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇 )
⃦⃦2
]︁

≤
2Ψ0

(︂
𝐿−+𝐿+

√︂
6𝐵M

max(𝐵W
max+1)

𝐴M
min

+ 2𝐵W
max

𝐴M
min

(︁
1+

3𝐵M
max(2−𝐴W

min)

𝐴M
min

)︁)︂
𝑇 .

Thus, to achieve E
[︀
‖∇𝑓(�̂�𝑇 )

]︀
‖2 ≤ 𝜀2 for some 𝜀 > 0, Algorithm 1 requires

𝑇 = 𝒪

⎛⎜⎜⎝ 2Ψ0

(︂
𝐿−+𝐿+

√︂
6𝐵M

max(𝐵W
max+1)

𝐴M
min

+ 2𝐵W
max

𝐴M
min

(︁
1+

3𝐵M
max(2−𝐴W

min)

𝐴M
min

)︁)︂
𝑇

⎞⎟⎟⎠
iterations.

6 Experiments

In this work, we use the similar setup described in (Richtárik et al., 2022). Namely, we aim to solve the logistic
regression problem with a nonconvex regularizer:

min
𝑥∈R𝑑

[︃
𝑓(𝑥) := 1

𝑁

𝑁∑︀
𝑖=1

log(1 + 𝑒−𝑦𝑖𝑎⊤
𝑖 𝑥) + 𝜆

𝑑∑︀
𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

]︃
,

where 𝑎𝑖 ∈ R𝑑, 𝑦𝑖 ∈ {−1, 1} are the training samples and labels with regularization hyperparameter 𝜆 > 0 are chosen
at 𝜆 = 0.1 level. In training we use LIBSVM Chang & Lin (2011) datasets phishing, a1a, a9a. Each dataset has been
split into 𝑛 = 20 equal parts, each representing a different client.

Figure 1: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on phishing dataset. 1×, 2×, 4× (and so on) indicates
the multiplication factor we use for the optimal stepsizes predicted by theory. For example, GD-x1 means gradient
decent (GD) with theoretical stepsize multiplied by 1.

Figure 1 compares the performance of our proposed algorithm, AdaCGD, with other popular 3PC methods. In order
to make a fair comparison, we fine-tuned the stepsize of each considered algorithm with a set of multiples of the
corresponding theoretical stepsize, ranging from 20 to 28. We implemented all simulations in Python 3.8, and ran them
on a cluster of 48 nodes with Intel(R) Xeon(R) Gold 6230R CPUs. To evaluate the effectiveness of the contractive
compressor used in each algorithm, we chose the Top-𝑘 operator as our compressor of choice. For EF21 and CLAG,
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we used the top-1 compressor, which has been shown to be the best in practice for these methods. For AdaCGD, we
chose an array of compressors that varied from full compression (skip communication) to zero compression (sending
the full gradient), with a step of 5. We used the communication cost of the algorithm as the stopping criterion for all
experiments.

Our findings indicate that AdaCGD achieves comparable performance to CLAG, and in certain cases (notably the phishing
dataset), it outperforms CLAG. Additionally, AdaCGD consistently outperforms LAG in all experimental settings. However,
it is worth noting that on datasets such as a1a and a9a, where higher compression is more advantageous, CLAG exhibits
slightly better convergence rates. These results highlight the valuable role of AdaCGD as a complement to existing
3PC methods, with the potential to enhance the convergence rate of distributed optimization algorithms. For further
experimental details and results, please refer to the appendix.

Figure 2: Distribution of compressors utilized during the training process on the phishing dataset for different 𝜁 values,
shown as multiple pie charts. The setting is the same as for Figure 1.

Figure 2 provides insights into how adaptivity in compression is utilized during the training process. The plot displays
the distribution of compressors that were selected during training by all clients. The intuition behind the use of adaptivity
is that when there is a smaller gap between neighboring time step gradients, it leads to smaller updates, allowing AdaCGD
to apply larger compression without losing information. Conversely, when there is a larger gap between gradients, it
means more informative updates that are more susceptible to higher compression, hence requiring AdaCGD to compress
less. As expected, when 𝜁 = 0, AdaCGD is equivalent to EF21, which tends to choose the maximum compression level
across different compressors. Conversely, with a larger 𝜁 value, the AdaCGD behaves more like LAG/CLAG and has an
increased number of skip connections. However, there is a range of 𝜁 values (0.16, 0.54, 1.85, and 6.35) where the
algorithm benefits from adaptivity and utilizes the full spectrum of compressors.

7 Discussion and Limitations

The main limitations of the work are assumptions we make upon functions 𝑓𝑖 of the problem 1. However, on the other
hand, these assumptions govern the convergence rates we report: for example, we cannot show linear rates for convex
functions due to the fundamental lower bound (Nesterov et al., 2018).

Another limitation comes from the analysis of the Bidirectional 3PC algorithm (Theorem 7). We show the analysis only
for general nonconvex functions.
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APPENDIX
In Appendix A,we state the basic facts needed for detailed proofs of the propositions. In Appendix B, we provide the
proofs missing in the main part of the paper. Appendix C contains experimental details and extra experiments. We
briefly discuss the main limitations of the paper in Appendix D.

A Basic facts

We start the appendix with common math facts. Lemmas 3 and 4 present classic Cauchy-Schwartz inequality for vectors
in metric space and random variables in probabilistic space, respectively. Lemma 5 shows a classic upper bound on
quadratics. Lemma 6 provides a sufficient condition that ensures a quadratic inequality appearing in our convergence
proofs holds.

Lemma 3 (Cauchy-Schwartz inequality for arbitrary vectors). Let 𝑥, 𝑦 ∈ R𝑑 be arbitrary vectors. Then, the following
inequality holds

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖, (16)

where ⟨·, ·⟩ and ‖ · ‖ denote the inner product and the induced norm, respectively.

Lemma 4 (Cauchy-Schwartz inequality for random variables; section 6.2.4 of (Pishro-Nik, 2014)). For any two random
variables 𝑋 and 𝑌 , we have

|E[𝑋𝑌 ]| ≤
√︀
E[𝑋2]E[𝑌 2], (17)

where equality holds if and only if 𝑋 = 𝛼𝑌 , for some constant 𝛼 ∈ R.

Lemma 5. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ R𝑑 be arbitrary vectors. Then, the following inequalities hold

‖𝑎 − 𝑏‖2 ≤ 2(‖𝑎 − 𝑐‖2 + ‖𝑐 − 𝑏‖2), (18)

‖𝑎 − 𝑏‖2 ≤ 3(‖𝑎 − 𝑐‖2 + ‖𝑐 − 𝑑‖2 + ‖𝑑 − 𝑏‖2). (19)

Lemma 6 (Lemma 5 of (Richtárik et al., 2021)). If 0 < 𝛾 ≤ 1√
𝑎+𝑏

, then 𝑎𝛾2 + 𝑏𝛾 ≤ 1. Moreover, the bound is tight
up to the factor of 2 since 1√

𝑎+𝑏
≤ min{ 1√

𝑎
, 1

𝑏 } ≤ 2√
𝑎+𝑏

.
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B Proofs for Sections 4 and 5

B.1 Lemma 1

At first glance, AdaCGD does not seem to be an Ada3PC compressor. However, we can construct an Ada3PC compressor,
which is equivalent to AdaCGD.
Lemma 1. AdaCGD is a special case of Ada3PC compressor.

Proof. Let us consider the following Ada3PC compressor constructed from one LAG compressor and 𝑚 EF21 compressors.

𝒞ℎ,𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝒞LAG
ℎ,𝑦 =

{︃
ℎ if ‖𝑥 − ℎ‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

𝑥 otherwise.
if ‖𝑥 − ℎ‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

𝒞EF ,1
ℎ,𝑦 (𝑥) else if ‖𝑥 − 𝒞EF ,1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

. . . ,

𝒞EF ,𝑚−1
ℎ,𝑦 (𝑥) else if ‖𝑥 − 𝒞EF ,𝑚−1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥 − 𝑦‖2,

𝒞EF ,𝑚
ℎ,𝑦 (𝑥) otherwise.

If ‖𝑥 − ℎ‖2 ≤ 𝜁‖𝑥 − 𝑦‖2, then 𝒞ℎ,𝑦 applies the LAG compressor to 𝑥. This LAG compressor in turn outputs ℎ, as it does
𝒞AC

ℎ,𝑦 for the same condition. If the opposite is true, i.e., ‖𝑥 − ℎ‖2 > 𝜁‖𝑥 − 𝑦‖2, 𝒞ℎ,𝑦 checks the same conditions and
chooses the same compressor as 𝒞AC

ℎ,𝑦 . Thus, 𝒞AC
ℎ,𝑦 is equivalent to Ada3PC compressor 𝒞ℎ,𝑦 .

B.2 Theorem 6

The proof of Theorem 6 requires several auxiliary results. Lemma 7 states the descent lemma typical for the analysis
of biased compressors. Lemma 8 shows how individual 3PC compressors, applied at clients, affect the aggregated
divergence of gradient estimates from gradients. Lemma 9 presents a technical upper bound on Lyapunov function Ψ𝑡.
Lemma 7 (Lemma 2 of (Li et al., 2021)). Suppose the function 𝑓 is 𝐿−-smooth and 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡, where 𝑔𝑡 ∈ R𝑑

is any vector, and 𝛾 > 0 is any scalar. Then we have

𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡) ≤ −𝛾

2 ‖∇𝑓(𝑥𝑡)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 + 𝛾

2 ‖𝑔𝑡 − ∇𝑓(𝑥𝑡)‖2. (20)

Lemma 8 (Lemma B.3 of (Richtárik et al., 2022)). Let Assumption 3 hold. Consider Algorithm 1 with 3PC compressor
ℳW and identity compressor ℳM. Then for all 𝑡 ≥ 0 the sequence

𝐺𝑡 = 1
𝑛

𝑛∑︁
𝑖=1

‖∇𝑓𝑖(𝑥𝑡) − 𝑔𝑡
𝑖‖2 (21)

satisfies
E
[︀
𝐺𝑡+1]︀ ≤ (1 − 𝐴)E

[︀
𝐺𝑡
]︀

+ 𝐵𝐿2
+E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2]︀ , (22)

where 𝐴 and 𝐵 are parameters of ℳW.
Lemma 9. Let Assumption 1 hold. Let Lyapunov function Ψ𝑡 := 𝑓(𝑥𝑡) − 𝑓* + 𝛾

𝐴 𝐺𝑡. Then, for any 𝑡 ≥ 0, the following
inequality holds

EΨ𝑡 ≤
√︂(︁

E [‖∇𝑓(𝑥𝑡)‖2] + 𝛾

𝐴
E𝐺𝑡

)︁(︁
E [‖𝑥𝑡 − 𝑥⋆‖2] + 𝛾

𝐴
E [𝐺𝑡]

)︁
, (23)

where 𝑥* is any point belonging to Argmin 𝑓(𝑥).

Proof. By definition of convexity we get

EΨ𝑡 = E𝑓(𝑥𝑡) − 𝑓* + 𝛾

𝐴
E𝐺𝑡

(12)
≤ E⟨∇𝑓(𝑥𝑡),𝑥𝑡 − 𝑥⋆⟩ + 𝛾

𝐴
E𝐺𝑡

= E
⟨[︂

∇𝑓(𝑥𝑡),
√︂

𝛾

𝐴
E𝐺𝑡

]︂
,

[︂
𝑥𝑡 − 𝑥*,

√︂
𝛾

𝐴
E𝐺𝑡

]︂⟩
.
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By applying Cauchy-Schwartz inequality on vectors and random variables we finish the proof

E
⟨[︂

∇𝑓(𝑥𝑡),
√︂

𝛾

𝐴
E𝐺𝑡

]︂
,

[︂
𝑥𝑡 − 𝑥*,

√︂
𝛾

𝐴
E𝐺𝑡

]︂⟩
(16)
≤ E

[︂√︂
‖∇𝑓(𝑥𝑡)‖2 + 𝛾

𝐴
E𝐺𝑡

√︂
‖𝑥𝑡 − 𝑥⋆‖2 + 𝛾

𝐴
E𝐺𝑡

]︂
(17)
≤
√︂(︁

E [‖∇𝑓(𝑥𝑡)‖2] + 𝛾

𝐴
E𝐺𝑡

)︁(︁
E [‖𝑥𝑡 − 𝑥⋆‖2] + 𝛾

𝐴
E [𝐺𝑡]

)︁
.

Now we are ready to prove the main theorem.

Theorem 6. Let Assumptions 1, 2, 3 and 4 hold. Assume the stepsize 𝛾 of algorithm satisfies 0 < 𝛾 ≤ 1/𝑀 , where

𝑀 = 𝐿− + 𝐿+

√︁
2𝐵
𝐴 . Then, for any 𝑇 ≥ 0 we have

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥⋆) ≤ max

{︂
1
𝛾

,
1
𝐴

}︂
2(Ω2 + Ψ0)

𝑇
.

Proof. Combining Lemma 7, Jensen’s inequality , we get

𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡) ≤ −𝛾

2 ‖∇𝑓(𝑥𝑡)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 + 𝛾

2

⃦⃦⃦⃦
⃦ 1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡
𝑖 − 1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖(𝑥𝑡)

⃦⃦⃦⃦
⃦

2

≤ −𝛾

2 ‖∇𝑓(𝑥𝑡)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 + 𝛾

2
1
𝑛

𝑛∑︁
𝑖=1

‖𝑔𝑡
𝑖 − ∇𝑓𝑖(𝑥𝑡)‖2

= −𝛾

2 ‖∇𝑓(𝑥𝑡)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 + 𝛾

2 𝐺𝑡.

(24)

Now applying Equation (24) and Lemma 8 on the difference of Lyapunov functions, we obtain

E
[︀
Ψ𝑡+1]︀− E

[︀
Ψ𝑡
]︀

= E
[︀
𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡)

]︀
+ 𝛾

𝐴
E
[︀
𝐺𝑡+1]︀− 𝛾

𝐴
E
[︀
𝐺𝑡
]︀

(24)
≤ −𝛾

2E
[︀
‖∇𝑓(𝑥𝑡)‖2]︀−

(︂
1

2𝛾
− 𝐿−

2

)︂
E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2]︀+ 𝛾

2E
[︀
𝐺𝑡
]︀

+ 𝛾

𝐴
E
[︀
𝐺𝑡+1]︀− 𝛾

𝐴
E
[︀
𝐺𝑡
]︀

(22)
≤ −𝛾

2E
[︀
‖∇𝑓(𝑥𝑡)‖2]︀−

(︂
1

2𝛾
− 𝐿−

2

)︂
E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2]︀

+ 𝛾

𝐴

[︀
(1 − 𝐴)E[𝐺𝑡] + 𝐵𝐿2

+E‖𝑥𝑡+1 − 𝑥𝑡‖2 − E[𝐺𝑡]
]︀

.

Rearranging the term, we get

E
[︀
Ψ𝑡+1]︀− E

[︀
Ψ𝑡
]︀

≤ −𝛾

2
[︀
‖∇𝑓(𝑥𝑡)‖2]︀−

(︂
1

2𝛾
− 𝐿−

2 −
𝛾𝐵𝐿2

+
𝐴

)︂
E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2]︀− 𝐴

2
𝛾

𝐴
E
[︀
𝐺𝑡
]︀

.

We further note that

1
2𝛾

− 𝐿−

2 −
𝛾𝐵𝐿2

+
𝐴

≥ 0 ⇔ 𝐿2
+

2𝐵

𝐴
𝛾2 + 𝐿−𝛾 ≤ 1 𝐿𝑒𝑚𝑚𝑎 6⇐ 𝛾 ≤ 1

𝐿− + 𝐿+

√︁
2𝐵
𝐴

.

Appropriately chosen stepsize gives

E
[︀
Ψ𝑡+1]︀− E

[︀
Ψ𝑡
]︀

≤ − min
{︂

𝛾

2 ,
𝐴

2

}︂(︁
E
[︀
‖∇𝑓(𝑥𝑡)‖2]︀+ 𝛾

𝐴
E
[︀
𝐺𝑡
]︀)︁

.
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Rearranging the terms, we have

E
[︀
‖∇𝑓(𝑥𝑡)‖2]︀+ 𝛾

𝐴
E
[︀
𝐺𝑡
]︀

≤
E [Ψ𝑡] − E

[︀
Ψ𝑡+1]︀

min
{︀

𝛾
2 , 𝐴

2
}︀ . (25)

from what we deduce that E
[︀
Ψ𝑡+1]︀ ≤ E [Ψ𝑡].

Using Lemma 9 and (25), we have

EΨ𝑡+1EΨ𝑡 ≤
(︀
EΨ𝑡

)︀2 ≤
(︁
E
[︀
‖∇𝑓(𝑥𝑡)‖2]︀+ 𝛾

𝐴
E𝐺𝑡

)︁(︁
E
[︀
‖𝑥𝑡 − 𝑥⋆‖2]︀+ 𝛾

𝐴
E
[︀
𝐺𝑡
]︀)︁

≤
E
[︀
‖𝑥𝑡 − 𝑥⋆‖2]︀+ 𝛾

𝐴E [𝐺𝑡]
min

{︀
𝛾
2 , 𝐴

2
}︀ (︀

E
[︀
Ψ𝑡
]︀

− E
[︀
Ψ𝑡+1]︀)︀ .

Using that 𝛾
𝐴E [𝐺𝑡] ≤ EΨ𝑡 ≤ Ψ0 and E

[︀
‖𝑥𝑡 − 𝑥⋆‖2]︀ ≤ Ω2, we obtain

EΨ𝑡+1EΨ𝑡 ≤ Ω2 + Ψ0

min
{︀

𝛾
2 , 𝐴

2
}︀ (︀E [︀Ψ𝑡

]︀
− E

[︀
Ψ𝑡+1]︀)︀ .

Rearranging again, we get

min
{︀

𝛾
2 , 𝐴

2
}︀

Ω2 + Ψ0 ≤
(︂

1
E [Ψ𝑡+1] − 1

E [Ψ𝑡]

)︂
.

Summing up from 𝑡 = 0 to 𝑡 = 𝑇 − 1, we finish the proof

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥⋆) ≤ E

[︀
Ψ𝑇
]︀

≤ max
{︂

2
𝛾

,
2
𝐴

}︂
Ω2 + Ψ0

𝑇
. (26)

B.3 Theorem 7

Algorithm 2 3PC-BD (Bidirectional 3PC algorithm)

1: Input: starting point 𝑥0 ∈ R𝑑; 𝑔0, 𝑔0
𝑖 ∈ R𝑑 for 𝑖 = 1, · · · , 𝑛 (known by nodes), 𝑔0 = 1

𝑛

𝑛∑︀
𝑖=1

𝑔0
𝑖 (known by master);

learning rate 𝛾 > 0.
2: for 𝑡 = 0,1,2, · · · , 𝑇 − 1 do
3: Broadcast 𝑔𝑡 to all workers
4: for for all devices 𝑖 = 1, . . . , 𝑛 in parallel do
5: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

6: 𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1))

7: Communicate 𝑔𝑡+1
𝑖 to the server

8: end for
9: 𝑔𝑡+1 = 1

𝑛

𝑛∑︀
𝑖=1

𝑔𝑡+1
𝑖

10: 𝑔𝑡+1 = 𝒞𝑀
𝑔𝑡,𝑔𝑡(𝑔𝑡+1)

11: end for
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For Theorem 7, we assume that both compressors ℳW and ℳM in Algorithm 1 are 3PC compressors. The main steps
of the algorithm are:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1))

𝑔𝑡+1 = 1
𝑛

𝑛∑︁
𝑖=1

𝑔𝑡+1
𝑖

𝑔𝑡+1 = 𝒞𝑀
𝑔𝑡,𝑔𝑡(𝑔𝑡+1)

Unlike in the previous subsection, we use additional notations: 𝑃 𝑡
𝑖 := ‖𝑔𝑡

𝑖 − ∇𝑓𝑖(𝑥𝑡)‖2
, 𝑃 𝑡 := 1

𝑛

𝑛∑︀
𝑖=1

𝑃 𝑡
𝑖 and

𝑅𝑡 :=
⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
.

Lemma 10 is an analogue of Lemma 8 (in bidirectional case we need slightly different arguments at some steps).
Lemma 11 is another technical lemma that upper bounds E [‖𝑔𝑡 − 𝑔𝑡] ‖2.

Lemma 10. Let Assumption 3 hold, 𝒞𝑤 be a 3PC compressor, and 𝑔𝑡+1
𝑖 be an 3PC-BD estimator of ∇𝑓𝑖(𝑥𝑡+1), 𝑖.𝑒.

𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)) (27)

for arbitrary 𝑔0
𝑖 for all 𝑖 ∈ [𝑛], 𝑡 ≥ 0. Then

E
[︀
𝑃 𝑡+1]︀ ≤ (1 − 𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀

. (28)

Proof. Define 𝑊 𝑡 := {𝑔𝑡
1, · · · , 𝑔𝑡

𝑛, 𝑥𝑡,𝑥𝑡+1}, then

E
[︀
𝑃 𝑡+1

𝑖

]︀
= E

[︀
E
[︀
𝑃 𝑡+1

𝑖 | 𝑊 𝑡
]︀]︀

= E
[︁
E
[︁⃦⃦

𝑔𝑡+1
𝑖 − ∇𝑓𝑖(𝑥𝑡+1)

⃦⃦2 | 𝑊 𝑡
]︁]︁

= E
[︂
E
[︂⃦⃦⃦

𝒞𝑤
𝑔𝑡

𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)) − ∇𝑓𝑖(𝑥𝑡+1)

⃦⃦⃦2
| 𝑊 𝑡

]︂]︂
(6)
≤ (1 − 𝐴W)E

[︁⃦⃦
𝑔𝑡

𝑖 − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

+ 𝐵WE
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

.

(29)

Averaging the above inequalities over 𝑖 ∈ [𝑛], we obtain (28). Indeed,

E
[︀
𝑃 𝑡+1]︀ = E

[︃
1
𝑛

𝑛∑︁
𝑖=1

𝑃 𝑡+1
𝑖

]︃
= 1

𝑛

𝑛∑︁
𝑖=1

E
[︀
𝑃 𝑡+1

𝑖

]︀
(29)
≤ 1

𝑛

𝑛∑︁
𝑖=1

(1 − 𝐴W)E
[︁⃦⃦

𝑔𝑡
𝑖 − ∇𝑓𝑖(𝑥𝑡)

⃦⃦2
]︁

+ 1
𝑛

𝑛∑︁
𝑖=1

𝐵WE
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

= (1 − 𝐴W)E
[︀
𝑃 𝑡
]︀

+ 𝐵W 1
𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 3
≤ (1 − 𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E‖𝑥𝑡+1 − 𝑥𝑡‖2

= (1 − 𝐴W)E
[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀

.

Lemma 11. Let Assumptions 3 and 5 hold, 𝒞𝑀 , 𝒞𝑤 be 3PC compressors. Let 𝑔𝑡+1
𝑖 be an 3PC-BD estimator of

∇𝑓𝑖(𝑥𝑡+1), i.e.
𝑔𝑡+1

𝑖 = 𝒞𝑤
𝑔𝑡

𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)) (30)
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and let 𝑔𝑡+1 be an 3PC-BD estimator of 𝑔𝑡+1 = 1
𝑛

𝑛∑︀
𝑖=1

𝑔𝑡+1
𝑖 , i.e.

𝑔𝑡+1
𝑖 = 𝒞𝑀

𝑔𝑡,𝑔𝑡(𝑔𝑡+1) (31)

for arbitrary 𝑔0, 𝑔0
𝑖 for all 𝑖 ∈ [𝑛], 𝑡 ≥ 0. Then

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1⃦⃦2
]︁

≤ (1 − 𝐴M)E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

+ 3𝐵M(2 − 𝐴W)E
[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀

, (32)

where 𝑔𝑡 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔𝑡

𝑖 , 𝑔𝑡 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔𝑡

𝑖 .

Proof. Similarly to the proof of Lemma 10, we define 𝑊 𝑡 := {𝑔𝑡
1, · · · , 𝑔𝑡

𝑛, 𝑥𝑡,𝑥𝑡+1} and bound E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2
]︁
:

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1⃦⃦2
]︁

= E
[︁
E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1⃦⃦2 | 𝑊 𝑡
]︁]︁

= E
[︁
E
[︁⃦⃦

𝒞𝑀
𝑔𝑡,𝑔𝑡(𝑔𝑡+1) − 𝑔𝑡+1⃦⃦2 | 𝑊 𝑡

]︁]︁
(6)
≤ (1 − 𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2
]︁

+ 𝐵ME
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡
⃦⃦2
]︁

, (33)

Further, we bound the last term in (33). Recall that

𝑔𝑡+1 = 1
𝑛

𝑛∑︁
𝑖=1

𝑔𝑡+1
𝑖 = 1

𝑛

𝑛∑︁
𝑖=1

𝒞𝑤
𝑔𝑡

𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)). (34)

Then,

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡
⃦⃦2
]︁

= E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑛

𝑛∑︁
𝑖=1

𝒞𝑤
𝑔𝑡

𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)) − 𝑔𝑡

𝑖

⃦⃦⃦⃦
⃦

2
⎤⎦

≤ 1
𝑛

𝑛∑︁
𝑖=1

E
[︂⃦⃦⃦

𝒞𝑤
𝑔𝑡

𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)) − 𝑔𝑡

𝑖

⃦⃦⃦2
]︂

(19)
≤ 3

𝑛

𝑛∑︁
𝑖=1

E
[︂⃦⃦⃦

𝒞𝑤
𝑔𝑡

𝑖
,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥𝑡+1)) − ∇𝑓𝑖(𝑥𝑡+1)

⃦⃦⃦2
]︂

+ 3
𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

+ 3
𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡) − 𝑔𝑡
𝑖

⃦⃦2
]︁

(6)
≤ 3(1 − 𝐴W) 1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡) − 𝑔𝑡
𝑖

⃦⃦2
]︁

+ 3𝐵W 1
𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

+ 3
𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡+1) − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2
]︁

+ 3
𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥𝑡) − 𝑔𝑡
𝑖

⃦⃦2
]︁

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 3
≤ 3(2 − 𝐴W)E

[︀
𝑃 𝑡
]︀

+ 3(𝐵W + 1)𝐿2
+E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2
]︁

= 3(2 − 𝐴W)E
[︀
𝑃 𝑡
]︀

+ 3(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀

, (35)

where the first inequality follows from Young’s inequality. Plugging (35) into (33) we finish the proof:

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1⃦⃦2
]︁

≤ (1 − 𝐴M)E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

+ 3𝐵M(2 − 𝐴W)E
[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀

.
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Having proved the previous lemmas, we can now show the convergence of bidirectional 3PC algorithm.

Theorem 7. Let Assumptions 3 and 5 hold, and let the stepsize in Algorithm 2 be set as

0 ≤ 𝛾 <

(︃
𝐿− + 𝐿+

√︃
6𝐵M(𝐵W + 1)

𝐴M + 2𝐵W

𝐴M

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂)︃−1

. (36)

Fix 𝑇 and let �̂�𝑇 be chosen uniformly from {𝑥0,𝑥1, · · · ,𝑥𝑇 −1} uniformly at random. Then

E
[︁⃦⃦

∇𝑓(�̂�𝑇 )
⃦⃦2]︁ ≤ 2Ψ0

𝛾𝑇
. (37)

where Ψ𝑇 = 𝑓(𝑥𝑡) − 𝑓 inf + 𝛾
𝐴M ‖𝑔𝑡 − 𝑔𝑡‖2 + 𝛾

𝐴W

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔𝑡

𝑖 − ∇𝑓𝑖(𝑥𝑡)‖2.

Proof. We apply Lemma 7 and split the error ‖𝑔𝑡 − ∇𝑓(𝑥𝑡)‖2 into two parts

𝑓(𝑥𝑡+1)
(20)
≤ 𝑓(𝑥𝑡) − 𝛾

2 ‖∇𝑓(𝑥)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
𝑅𝑡 + 𝛾

2
⃦⃦
𝑔𝑡 − ∇𝑓(𝑥𝑡)

⃦⃦2

(18)
≤ 𝑓(𝑥𝑡) − 𝛾

2 ‖∇𝑓(𝑥)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
𝑅𝑡 + 𝛾

⃦⃦
𝑔𝑡 − ∇𝑓(𝑥𝑡)

⃦⃦2 + 𝛾
⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2

≤ 𝑓(𝑥𝑡) − 𝛾

2 ‖∇𝑓(𝑥)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
𝑅𝑡 + 𝛾

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡

𝑖 − ∇𝑓𝑖(𝑥𝑡)
⃦⃦2 + 𝛾

⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2

= 𝑓(𝑥𝑡) − 𝛾

2 ‖∇𝑓(𝑥)‖2 −
(︂

1
2𝛾

− 𝐿−

2

)︂
𝑅𝑡 + 𝛾𝑃 𝑡 + 𝛾

⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2
, (38)

where in the last inequality we applied Young’s inequality. Subtracting 𝑓 inf from both sides of the above inequality,
taking expectation and using the notation 𝛿𝑡 = 𝑓(𝑥𝑡) − 𝑓 inf , we get

E
[︀
𝛿𝑡+1]︀ ≤ E

[︀
𝛿𝑡
]︀

− 𝛾

2E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

−
(︂

1
2𝛾

− 𝐿−

2

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾E
[︀
𝑃 𝑡
]︀

+ 𝛾E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

. (39)

Further, Lemmas 10 and 11 provide the recursive bounds for the last two terms of (39)

E
[︀
𝑃 𝑡+1]︀ ≤ (1 − 𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀

, (40)

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1⃦⃦2
]︁

≤ (1 − 𝐴M)E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

+ 3𝐵M(2 − 𝐴W)E
[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀

. (41)

Summing up (39) with a 𝛾
𝐴M multiple of (41) we obtain

E
[︀
𝛿𝑡+1]︀+ 𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

≤ E
[︀
𝛿𝑡
]︀

− 𝛾

2E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

−
(︂

1
2𝛾

− 𝐿−

2

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾E
[︀
𝑃 𝑡
]︀

+ 𝛾E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

+ 𝛾

𝐴M

(︁
(1 − 𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2
]︁)︁

+ 𝛾

𝐴M

(︀
3𝐵M(2 − 𝐴W)E

[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀)︀

≤ E
[︀
𝛿𝑡
]︀

− 𝛾

2E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

+ 𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

−
(︂

1
2𝛾

− 𝐿−

2 −
3𝛾𝐵M(𝐵W + 1)𝐿2

+
𝐴M

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡
]︀

.
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Then adding the above inequality with a 𝛾
𝐴W

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁
multiple of (40), we get

E
[︀
Ψ𝑡+1]︀ = E

[︀
𝛿𝑡+1]︀+ 𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

+ 𝛾

𝐴W

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡+1]︀

≤ E
[︀
𝛿𝑡
]︀

− 𝛾

2E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

+ 𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

−
(︂

1
2𝛾

− 𝐿−

2 −
3𝛾𝐵M(𝐵W + 1)𝐿2

+
𝐴M

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡
]︀

+ 𝛾

𝐴W

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂(︀
(1 − 𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀)︀

≤ E
[︀
𝛿𝑡
]︀

+ 𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2
]︁

+ 𝛾

𝐴W

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡
]︀

− 𝛾

2E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

−
(︂

1
2𝛾

− 𝐿−

2 −
3𝛾𝐵M(𝐵W + 1)𝐿2

+
𝐴M −

𝛾𝐵W𝐿2
+

𝐴W

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂)︂
E
[︀
𝑅𝑡
]︀

. (42)

Thus by Lemma 6 and the choice of the stepsize

0 ≤ 𝛾 <

(︃
𝐿 + 𝐿+

√︃
6𝐵M(𝐵W + 1)

𝐴M + 2𝐵W

𝐴M

(︂
1 + 3𝐵M(2 − 𝐴W)

𝐴M

)︂)︃−1

, (43)

the last term in (42) is not positive. By summing up inequalities for 𝑡 = 0, 1, · · · , 𝑇 − 1, we get

0 ≤ E
[︀
Ψ𝑇
]︀

≤ Ψ0 − 𝛾

2

𝑇 −1∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

.

Multiplying both sides by 2
𝛾𝑇 and rearranging we get

1
𝑇

𝑇 −1∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2
]︁

≤ 2Ψ0

𝛾𝑇
.

B.4 Convergence for general nonconvex functions

The results in two subsequent subsections set ℳW as a 3PC compressor and ℳM as an indentity one. According
to Lemma 2, Adaptive 3PC is a 3PC compressor. Thus, convergence results from (Richtárik et al., 2022) are valid for
Adaptive 3PC compressor. It leads us to the following corollary.

Corollary 3 (Corollary 5.6 of (Richtárik et al., 2022)). Let Assumptions 2, 3 and 5 hold. Let ℳW and ℳM in Algorithm 1
be Ada3PC and identity compressors, respectively, and choose the stepsize 𝛾 = 1

𝐿−+𝐿+
√︀

𝐵max
𝐴min

. Then, for any 𝑇 ≥ 1

we have

E
[︀
‖∇𝑓(�̂�𝑇 )‖2]︀ ≤

2(𝑓(𝑥0) − 𝑓(𝑥inf))
(︁

𝐿− + 𝐿+

√︁
𝐵max
𝐴min

)︁
𝑇

+
E
[︀ 1

𝑛

∑︀𝑛
𝑖=1 ‖𝑔0

𝑖 − ∇𝑓𝑖(𝑥0)‖2]︀
𝐴min𝑇

.

That is, to achieve E
[︀
‖∇𝑓(�̂�𝑇 )‖2]︀ ≤ 𝜀2 for some 𝜀 > 0, Algorithm 1 requires

𝑇 = 𝒪

⎛⎝2(𝑓(𝑥0) − 𝑓(𝑥inf))
(︁

𝐿− + 𝐿+

√︁
𝐵max
𝐴min

)︁
𝜀2 +

E
[︀ 1

𝑛

∑︀𝑛
𝑖=1 ‖𝑔0

𝑖 − ∇𝑓𝑖(𝑥0)‖2]︀
𝐴min𝜀2

⎞⎠
iterations.
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B.5 Convergence for PŁnonconvex functions

The setup here is the same as in the previous subsection, except we add the following assumption.

Assumption 6 (PŁ condition). Function 𝑓 : R𝑑 → R satisfies the Polyak-Łojasiewicz (PŁ) condition with parameter
𝜇 > 0, i.e.,

‖∇𝑓(𝑥)‖2 ≥ 2𝜇(𝑓(𝑥) − 𝑓*) ∀𝑥 ∈ R𝑑,

where 𝑥* := arg min
𝑥∈R𝑑

𝑓(𝑥) and 𝑓* := 𝑓(𝑥*).

Corollary 4 (Corollary 5.9 of (Richtárik et al., 2022)). Let Assumptions 2, 3, 5 and 6 hold. Let ℳW and ℳM

in Algorithm 1 be Ada3PC and identity compressors, respectively, and choose the stepsize

𝛾 = min

⎧⎨⎩ 1

𝐿− + 𝐿+

√︁
2𝐵max
𝐴min

,
𝐴min

2𝜇

⎫⎬⎭ .

Then, to achieve E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓* ≤ 𝜀 for some 𝜀 > 0 the method requires

𝒪

⎛⎝max

⎧⎨⎩𝐿− + 𝐿+

√︁
𝐵max
𝐴min

𝜇
, 𝐴min

⎫⎬⎭ log
𝑓(𝑥0) − 𝑓(𝑥inf) + E

[︀ 1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔0

𝑖 − ∇𝑓𝑖(𝑥0)‖2𝛾/𝐴min
]︀

𝜀

⎞⎠
iterations.
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C Experimental details and extra experiments

All simulations are implemented in Python 3.8 and run on Intel(R) Xeon(R) Gold 6230R CPU cluster with 48 nodes.
We fine-tune the stepsize of each considered algorithm with (20, 21, . . . , 28) multiples of the corresponding theoretical
stepsize. As contractive compressor we use Top-𝑘 operator. For EF21 and CLAG we use top-1 compressor, which
usually the best in practice for these methods. For AdaCGD we choose compressors varying from full compression
(skip communication) to zero compression of features (sending full gradient). In order to provide fair comparisons,
we choose master compressor ℳ𝑀 as identity operator in these experiments. For the stopping criterion we choose
communication cost of the algorithm.

We use the setup described in Richtárik et al. (2022), namely logistic regression with nonconvex regularizer:

min
𝑥∈R𝑑

[︃
𝑓(𝑥) := 1

𝑁

𝑁∑︀
𝑖=1

log(1 + 𝑒−𝑦𝑖𝑎⊤
𝑖 𝑥) + 𝜆

𝑑∑︀
𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

]︃
,

where 𝑎𝑖 ∈ R𝑑, 𝑦𝑖 ∈ {−1, 1} are the training samples and labels with regularization hyperparameter 𝜆 > 0 chosen at
𝜆 = 0.1 level. We solve this problem using LIBSVM Chang & Lin (2011) datasets phishing, a1a, a9a. Each dataset
has been evenly split into 𝑛 = 20 equal parts where each part represents a separate client. Figures 3-6 compare AdaCGD
with LAG, EF21 and their generalization CLAG. Figure 4 provides the comparison in convex regime, i.e. 𝜆 = 0, for
phishing dataset. In the experiments, AdaCGD is shown to be comparable and in some cases superior to CLAG and always
superior to LAG. In other words, AdaCGD efficiently complements CLAG and other 3PC methods.

Figure 3: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on phishing dataset.

Figure 4: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on phishing dataset in the convex regime i.e. 𝜆 = 0.
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Figure 5: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on a1a dataset.

Figure 6: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on a9a dataset.
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D Limitations

The main limitations of the work are assumptions we make upon functions 𝑓𝑖 of the problem 1. But, on the other hand,
these assumptions govern the convergence rates we report: for example, we cannot show linear rate for convex functions
due to the fundamental lower bound (Nesterov et al., 2018).

Another limitation comes from the analysis of Bidirectional 3PC algorithm (Theorem 7). We show the analysis only for
general nonconvex functions.
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