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Abstract

Multimodal large language models (MLLMs) face an inherent trade-off between
faithfulness and creativity, as different tasks require varying degrees of associative
reasoning. However, existing methods lack the flexibility to modulate this reason-
ing strength, limiting MLLMSs’ adaptability across factual and creative scenarios.
To bridge this gap, we propose equipping MLLMs with mechanisms that enable
flexible control over associative reasoning. We begin by investigating the internal
mechanisms underlying associative behavior in MLLMs and find that: (1) middle
layers play a pivotal role in shaping model’s associative tendencies, (2) modifying
representations in these layers effectively regulates associative reasoning strength,
and (3) hallucinations can be exploited to derive steering vectors that guide this
modulation. Building on these findings, we introduce Flexible Association Control
(FlexAC), a lightweight and training-free framework for modulating associative
behavior in MLLMs. FlexAC first induces hallucination-guided intermediate rep-
resentations to encode associative directions. Then, it selects high-association
instances to construct effective associative steering vectors, whose strengths are
adaptively calibrated to balance creative guidance with output stability. Finally,
recognizing the multi-dimensional nature of associative reasoning, FlexAC incor-
porates task-specific associative vectors derived from a forward pass on a few
target-domain samples, enabling models to follow diverse associative directions
and better adapt to creative tasks. Notably, our method achieves up to a 5.8x
improvement in creativity on Creation-MMBench and a 29% reduction in hal-
lucination rate on CHAIR, surpassing existing baselines and demonstrating its
effectiveness in enabling flexible control over associative reasoning in MLLMs.
Our code is available at https://github.com/ylhz/FlexAC.

1 Introduction

In cognitive science, divergent and convergent thinking represent two distinct modes of human
associative behavior: convergent thinking relies on typical, fact-based associations to support faithful
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Figure 1: Different tasks require different levels of associative reasoning: factual tasks (e.g.,
image caption) benefit from lower association, while creative tasks (e.g., event planning) thrive on
higher association. Existing methods suppress hallucinations at the cost of creativity (e.g., -1.78 on
VDAT; "Others" from Ha-DPO). FlexAC enables MLLMs to adjust associative reasoning strength
accordingly.

reasoning, whereas divergent thinking engages atypical, context-dependent associations to foster
creativity [1]. Recent studies show that multimodal large language models (MLLMs) [2, 3, 4]
exhibit brain-like properties, such as structured embedding spaces [5], cross-modal integration [6],
and higher-order cognitive functions [7], indicating that they emulate human associative processes.
Consequently, like the human brain, MLLMs require the capacity to flexibly regulate associative
reasoning strength to support both faithful reasoning and creative generation.

However, existing methods lack the flexibility to modulate associative reasoning strength, limiting
MLLMSs’ adaptability across factual and creative scenarios. On one hand, current hallucination miti-
gation techniques, such as Contrastive Decoding [8, 9, 10] and Direct Preference Optimization [1 1],
focus on improving faithfulness but often suppress associative reasoning capabilities, thereby hin-
dering performance on tasks involving imaginative understanding and literary expression. On the
other hand, how to enhance MLLMs’ creativity in a controllable and task-specific manner remains
underexplored. For instance, as illustrated in Figure 1, existing hallucination mitigation techniques
improve faithfulness (14.0 | in CHAIR) but lack mechanisms for enhancing creativity, resulting in
reduced associative reasoning strength (1.78 | in VDAT) and poor performance on tasks such as event
planning. This gap highlights the need for equipping MLLMs with controllable mechanisms to
flexibly modulate associative reasoning strength based on task demands.

To enable controllable modulation of associative reasoning strength, we begin by examining how
associative behavior emerges within MLLMs. Drawing inspiration from prior works [12, 13], we
hypothesize that hallucination and creativity arise from shared associative mechanisms, whose
manifestations vary with task demands. To validate this, we collect input-response pairs containing
both grounded (low-association) and hallucinated (high-association) outputs, and analyze their
internal representations to uncover how associative behavior is reflected within the model. Our
analysis reveals three key findings (see Section 2.1 and Section 2.2): (1) Associative behaviors
are primarily encoded in the middle layers, where the representations of grounded and hallucinated
responses become distinctly separable; (2) Modifying internal representations at these layers can
effectively alter the strength and direction of associative reasoning; (3) Direction of hallucinated
representations can stimulate associative reasoning capability, offering a potential control signal for
this modulation. These findings indicate that associative tendencies are encoded in middle layers
and can be modulated through targeted interventions guided by hallucination.

Motivated by these findings, we propose Flexible Association Control (FlexAC), a lightweight
and training-free framework for modulating associative behavior in MLLMs. The core idea is
to first extract the associative vector from hallucinated responses (Phase I: Offline Control Vector
Construction), which exhibit strong associative tendencies, and then apply it at inference time to guide
model behavior (Phase II: Inference-Time Control). In the Offline Control Vector Construction
Phase, FlexAC performs three key steps: (1) Hallucination-Guided Intermediate States: We collect
grounded-hallucinated response pairs, and measuring the differences between their hidden states
within model’s middle layers, which encode the associative direction. (2) Instance Selection: To
reduce noise from individual samples, we select the top-K response pairs with the largest association
shifts and average their differences to obtain a reliable steering vector. (3) Directional Integration:
To further support tasks requiring multi-dimensional associations (e.g., storytelling or metaphor
generation), we augment the general associative vector with task-specific associative vectors derived



from GPT-40-generated, high-association samples. These vectors are incorporated at inference time
for fine-grained and controllable modulation. In the Inference-Time Control Phase, we apply the
combined steering vector during inference. However, uniformly applying this vector can lead to
over-steering, especially for inputs already exhibit strong associative behavior, causing irrelevant
outputs or stylistic drift. To mitigate this, we introduce Steering Intensity Calibration, which
adaptively scales the steering vector: amplifying it when associative behavior is weak, and attenuating
it when the desired level has been reached.

To evaluate the effectiveness of FlexAC in controlling associative behavior, we conduct experiments
across three fronts: hallucination mitigation (CHAIR [14] and POPE [15] for low-association tasks),
creativity enhancement (VDAT and Creation-MMBench [16] for high-association tasks), and general-
purpose evaluation (MME [17], MMMU [ 18], and MMStar [19]). Results show that FlexAC enables
flexible modulation of associative reasoning capability, achieving state-of-the-art performance on
both low- and high-association tasks while enhancing general capabilities.

In summary, our contributions are fourfold: (1)We present a unified perspective that links hallucination
and creativity to associative reasoning, identifying middle-layer representations as key control
points. (2)We propose FlexAC, a lightweight and training-free framework for flexible modulation of
associative strength, enabling task-aware switching between hallucination suppression and creativity
enhancement. (3)We introduce VDAT, a benchmark specifically designed to evaluate associative
reasoning strength. (4)We conduct comprehensive experiments demonstrating that Flex AC effectively
controls associative behavior across hallucination, creativity, and general-purpose benchmarks.

2 Analyzing and modulating associative behavior in MLLMs

2.1 Analyzing layer-wise localization of associative processes

Feature Distance Analysis: Quantifying layer-wise differences between associative and non-
associative representations. To identify where associative behavior emerges, we analyze layer-wise
representations in LLaVA-1.5-7b using 1000 images from COCO02024. For each image, we collect
two type of responses: a grounded (non-associative) response from the model’s default output, and a
hallucinated (associative) response induced via blurred inputs and specific prompts [8]. Here, we
use hallucinated responses to represent associative behavior, as they often include many imaginative
contents, objects that do not exist in the image but are semantically related to the scene, reflecting
the model’s associative tendencies. We then extract the associative features f(*) and non-associative
features f(") from all intermediate layers for both data types (visualized in Figure 4). The full data
construction and feature extraction process is detailed in Appendix B. Next, we compute the cosine
distance and Euclidean distance between f(*) and f(™ across all layers. The cosine distance Do is
used to evaluate the directional alignment between associative and non-associative features, while
Euclidean distance Dg,. measures the spatial distribution differences.
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Figure 2: (a) and (b) show the cosine and Euclidean distances between associative and non-associative
features across layers. (c) and (d) illustrate the impact of replacing associative features in different
layers on subsequent layers.“Last” and “Rest” denotes the final layer difference d;, and the average
layer difference d,,.r,, respectively. “Rest-ori” represents the original mean feature distance d,,.r,
without replacement.

As shown in Figures 2a and 2b, both cosine and Euclidean distances remain consistently low in the
shallow layers (layers 0-9), indicating shared low-level perception. However, for middle and deep
layers, we observe distinct patterns between cosine and Euclidean distance when comparing grounded
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Figure 3: Impact of Middle Layer Control Figure 4: Visualization of feature representations
on Hallucination-Driven Behavior. Adjusting in LLaVA-1.5-7b, reduced via PCA, shows red (as-
« increases both hallucination (CHAIR) and sociative) and blue (non-associative) points. The
creativity (VDAT), suggesting that associative feature distributions show increasing separation in
strength can be modulated through middle-layer deeper layers, illustrating how associative distinc-
control using hallucination representations. tions are formed. See Appendix F.1 for all layers.

and hallucinated responses across layers. Cosine distance peaks in the middle layers (layers 10-15),
indicating that this stage is where feature directions diverge most significantly—suggesting that
associative behavior is primarily introduced and shaped in this range. In contrast, Euclidean distance
increases steadily across both middle and deep layers (layers 10-31), implying that the overall
feature magnitudes continue to drift even in later stages. This discrepancy raises a key question:
Is associative behavior actively introduced in the deep layers, or are these differences merely the
propagated result of associative shifts originating in the middle layers?

Layer Intervention: Verifying the source of as-
sociative signals. To answer this, we conduct a
layer intervention experiment (Figure 5), in which
we replace the associative feature f,(,? ) with the
corresponding non-associative feature f,(,?) at dif-
ferent layers m, and observe the influence on
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where D(-) denotes either cosine or Euclidean distance.

Results in Figures 2c and 2d show that replacing features in shallow layers (layers 0-9) leads
to minimal changes in downstream representations, indicating limited influence on associative
processing. In contrast, replacing features in middle layers (layers 10-15) significantly reduces
divergence in later layers, suggesting that these layers are the primary source of associative behavior.
Replacements in deep layers (layers 16-31) again have limited impact, implying that these layers
mainly propagate rather than generate associative features. More visualization in Appendix F.2.

Finding 1: Middle layers are critical for shaping MLLM’s associative behavior.
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Figure 6: Overview of the proposed FlexAC framework. Phase I: Offline Control Vector
Construction extracts a general associative vector from hallucination-guided intermediate features
(Step I), by selecting Top-K instance pairs with maximal association shifts (Step II). It also constructs
task-specific associative vectors from a few target-domain examples (Step III), reflecting diverse
associative needs. Phase II: Inference-Time Control injects these vectors into middle-layer features.
A Steering Intensity Calibration (SIC) module adaptively adjusts the influence of each vector per
sample to achieve controllable associative reasoning strength.

2.2 Analyzing control strategies for associative behavior modulation

This analysis investigates whether associative behavior can be modulated by manipulating middle-
layer representations, and whether hallucinated responses reveal effective directions for such control.
Using the same grounded and hallucinated feature pairs from Section 2.1, we compute feature
differences layer by layer to derive the control direction:

w=f" =" @

We then apply this steering vector during inference to modulate the model’s output by adjusting the
middle-layer features with control coefficient o

[ = fita o ®)

To assess the impact of steering on associative behavior, we introduce VDAT (Visual-Divergent
Association Test), a benchmark that evaluates a model’s associative reasoning by prompting it
to generate unrelated nouns to the input image, thereby measuring its capacity for visual-driven
divergent thinking (details in Section 3.1). As shown in Figure 3, increasing « from -1.5 to 1.5 raises
CHAIR from approximately 38.8 to 53.6 and VDAT from around 83 to 87.9, indicating that higher
« values lead to both more hallucination and stronger associative ability. Conversely, decreasing «
reduces both scores. These results highlight that o provides a controllable mechanism for modulating
associative behavior in MLLMs. These results yield two key findings:

Finding 2: Modifying middle layers enables control over associative reasoning strength.
Finding 3: Hallucinations help derive steering vectors to guide associative reasoning.

2.3 Flexible association control

Based on our findings in Sections 2.1 and 2.2, we propose Flexible Association Control (FlexAC), a
lightweight, training-free framework for modulating associative behavior in MLLMs. As illustrated
in Figure 6, FlexAC operates in two phases: (I) Offline Control Vector Construction, which derives
general and task-specific associative directions, and (II) Inference-Time Control, which injects these
directions into middle-layer features for dynamic modulation.



Phase I: Offline Control Vector Construction. To capture a general associative direction, we first
induce hallucinated responses that exhibit high associative behavior (Finding 3). For each input, we
extract hidden features from the middle layer [, where associative distinctions are most prominent

(Finding 1), resulting in paired features fl(a) and fl("). We select the top-K pairs with the highest
cosine distances to construct a representative direction vector:

a n ]‘ a n
Z=Top-K (Dcos( l(,i)7 l(,i))) yu = ] Z ( l(,i) - l(,i)) (6)
ieT

To handle tasks requiring diverse associative patterns (e.g., metaphorical, contextual), we further
construct task-specific associative vectors from a few high-association, instruction-aligned examples.
As vanilla MLLMs struggle to produce such outputs, we leverage GPT-4o to generate high-quality
associative outputs.

Phase II: Inference-Time Control. During inference-time phase, we adjust the hidden state f;
at middle layer ! (Finding 2) by injecting a combination of general associative vector vf"" and

task-specific associative vector vj**:

. 1 ask
flcontro = fl + Qgen * Ulgen + Qugask v;db @)

where « is the tunable coefficient that controls the steering intensity. This formulation is grounded in
recent theoretical findings [20], which reveal that task-specific differences in model weights exhibit
linearly decomposable structures. This property supports our assumption that associative directions
can be independently extracted and combined within the hidden space.

However, directly applying a uniform steering vector across all inputs can lead to over-steering,
especially when the input already exhibits strong associative behavior, causing deviation from the
intended semantic space (see Step III of Figure 6). To mitigate it, we introduce steering intensity
calibration strategy, which adjusts the steering strength a based on:

. . fi-u
= d —— 0 8
o = sigmol <m”‘< 1l >) ®

This formulation increase steering strength when the current representations is misaligned with the
associate direction, and suppresses it when already aligned. We further normalize the modulated
feature to preserve its scale:

fi
f-lcomrol — flcontrol_ flcom|ml| (9)

This mechanism enables precise, interpretable modulation of associative behavior, allowing MLLMs
to shift smoothly between factual accuracy and creative generation (Figure 8).

3 Experiments

3.1 Experimental setup

Evaluation Metric: To evaluate the effectiveness of FlexAC, we conduct experiments on three
benchmark types: (1) hallucination, using CHAIR [14] and POPE [15] to assess object-level
factual consistency; (2) creativity, using our proposed VDAT for associative reasoning and Creation-
MMBench [21] for open-ended image-grounded generation; and (3) general-purpose capability,
using MME [17], MMMU [18] and MMStar [19] to ensure core perception and reasoning are
preserved. Metric details are in Appendix C.

VDAT: Visual Divergent Association Test. To measure a model’s associative reasoning and creative
potential more directly, we introduce VDAT, a diagnostic benchmark that complements Creation-
MMBench by focusing specifically on associative reasoning strength. Inspired by [22], VDAT
prompts the model to generate multiple nouns that are unrelated both to the input image, capturing
its capacity for visual-driven divergent thinking (Figure 7). The metric is computed using CLIP
ViT-L/14 embeddings.

Implementation Details. We evaluate the effectiveness of our FlexAC on LLaVA-1.5 [23], Qwen-
VL [3], and Deepseek-VL [4], comparing it with Ha-DPO [1 1], VCD [&], and VAF [24]. From the
COCO02014 [25] dataset, we randomly selected 2000 images and then applied Instance Selection
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FlexAC-P (faithfulness-enhanced) and FlexAC- . . o

C (creativity-enhanced), the control coefficient Figure 7: Visual Divergent Association Test
o is set to -1 and 1, respectively. All experi- (VDAT) evaluates a model’s associative reason-
ments were conducted on 8xRTX 4090 GPUs. ing by prompting it to generate unrelated nouns
The parameter analysis of the number of images ~from an image, and quantifies performance through
is provided in Appendix E.1. image-text measured using CLIP embeddings.

Table 1: Performance on hallucination benchmarks. FlexAC here denotes the version configured
to suppress associative behavior, aiming to improve factual accuracy (faithfulness).

Models Methods CHAIR POPE
CHAIRs | CHAIR; ] Recall Len Fl-score 1 Accuracy T Precision ! Recall

Regular 40.6 12.5 71.7 94.6 85.6 86.6 92.9 79.3
Qwen-VL VCD 42.0 11.2 71.7 91.2 86.3 87.2 92.4 81.0
VAF 38.0 11.7 722 914 86.5 87.2 914 82.0
FlexAC (Ours) 19.2 54 62.5 74.8 87.1 874 89.3 85.1
Regular 50.8 14.3 79.7 97.3 86.5 87.2 91.5 82.0
Ha-DPO 36.8 10.4 74.0 88.3 83.9 85.3 92.6 76.7
LLaVA-1.5 VCD 51.0 15.5 79.1 98.9 84.3 84.9 88.1 80.7
VAF 47.8 13.7 79.2 96.1 86.9 87.1 87.9 85.9
Flex AC (Ours) 36.6 10.4 75.0 95.1 87.9 87.8 87.1 88.8
Regular 32.6 9.2 67.0 121.0 88.5 88.4 88.1 88.8
Deepseek-VI2 VCD 36.6 11.3 67.2 1282 87.9 87.8 87.6 88.1
P VAF 32.0 9.2 66.2 119.0 88.5 88.4 87.6 89.4
FlexAC (Ours) 28.6 8.1 647 117.0 88.6 88.5 88.4 88.7

3.2 Main results

Results on Hallucination Benchmark. To evaluate FlexAC’s ability to improve factual accuracy
in faithfulness-focused tasks, we conduct experiments on CHAIR and POPE. To this end, we set « in
FlexAC to 1, selecting the precision-optimized variant. As shown in Table 1, FlexAC consistently
achieves the lowest hallucination scores on most models and metrics. For examples, on CHAIRg,
FlexAC reduces hallucination to 19.2 (121.4) on Qwen-VL, 36.6 (114.2 vs. Regular) on LLaVA-1.5,
and 28.6 (14.0) on Deepseek-VL2. On CHAIRy, it similarly achieves the best scores (5.4, 10.4, and
8.1 respectively). In terms of POPE accuracy, FlexAC achieves the highest F1-score on LLaVA-1.5
(87.9) and comparable or superior precision and recall across the board. These results highlight
FlexAC’s ability to flexibly suppress excessive associative behavior in factual tasks, leading to
improved accuracy across models.

Results on Creativity Benchmark. T,pjc 2. performance on VDAT. FlexAC here denotes the

To evaluate FlexAC’s ability to en- yergion optimized to enhance associative behavior for cre-
hance associative reasoning in cre- ive tasks (creativity).

ative tasks, we conduct experiments

on VDAT(Table 2) and Creation-  Methods Qwen-VL LLaVA-1.5 DeepSeek-VL2
MMBench(Table 3). Regular 84.85 86.89 84.54

As shown in Table 2, hallucination Ha-DPO - 85.11 -
mitigation methods like Ha-DPO re-  VCD 83.69 86.83 84.62
duce hallucinations but impair asso- _ VAF 84.95 86.79 84.61
ciative capacity, leading to lower cre-  FlexAC (Ours) 86.58 88.49 84.76

ativity (e.g., VDAT score of 85.11 vs.
86.89 for the regular model). In contrast, FlexAC improves remote associative reasoning, achieving a
higher VDAT score of 88.49. To further verify the validity of the VDAT metric, we conduct a user
study presented in Appendix D.I. Further, on Creation-MMBench Table 3, we report VFS (Visual
Fidelity Score), which evaluates image-text alignment, and Reward, which quantifies creativity



Creation MMBench | Q: Write a prose inspired by Van Gogh’s 1889 artwork, capturing its essence and depth.

Title: Wheatfield with Cypresses
The wheatfield, Vincent van Goghs masterpiece, is a testament to the power of nature and the human
< E spirit. The painting depicts a wheatfield in the midst of a storm, with cypress trees standing tall and
proud against the backdrop of a dramatic sky... ga X _
@ FlexAC-P (a = —1

Title: Wheatfield with Cypresses

4| .. The wheatfield, Vincent van Gogh's masterpiece, is a testament to the power of nature and the human

“\"experience. In this painting, the artist captures the essence of life and death, the cycle of growth and
decay, and the fleeting nature of existence... FlexAC-C (@ = 1)

VDAT Q: List 10 unrelated, tangible nouns that are not connected to the image or each other.

snowboarder, black, white, snow, mountain, glov%y Vhelmet, goggles, board, jump FlexAC-P (a = —1

“soap, train, piano, cake, guitar, apple, lamp, book, bed, chair

wn{é}ﬂuuzg

FlexAC-C (a = 1)

Figure 8: Visualization of FlexAC’s Control on Associative Reasoning. This figure illustrates
example outputs from Creation MMBench and VDAT, showing how FlexAC-P (faithfulness) and
FlexAC-C (creativity) adjust the level of associative strength in the generated responses.

improvements relative to the base model (Qwen-VL). FlexAC achieves the highest Reward (10.92),
outperforming methods like VCD (-3.86) and VAF (-1.63), while maintaining competitive VFS.

Qualitative examples in Figure 8 further support this: in Creation-MMBench, FlexAC-P focuses on
concrete visual elements (e.g., “cypress trees”), while FlexAC-C introduces abstract themes (e.g.,
“life and death”). In VDAT, Flex AC-P outputs image-relevant nouns (e.g., “snowboarder”), whereas
FlexAC-C generates semantically distant words (e.g., “guitar”, “apple”), demonstrating enhanced
divergent thinking. These examples confirm that FlexAC effectively modulates associative strength

to meet diverse creative demands. For additional examples, see Appendix F.3.

Table 3: Performance on Creation-MMBench. We report results on four subcategories: Literary
Writing (LW), Common Functional Writing (CFW), Professional Functional Writing (PFW), and
Creative Multimodal Understanding (CMU). FlexAC here denotes the version optimized to enhance
associative behavior for creative tasks (creativity).

M Overall \ LW \ CMU \ PFW \ CFW
ethods

VFS Reward VFS Reward VFS Reward VFS Reward VFS Reward
Regular 6.10 0.00 6.83 0.00 5.53 0.00 5.58 0.00 6.66 0.00
VCD 6.05 -3.86 6.68 -2.71 5.67 2.50 5.61 -3.77 6.46 -6.57
VAF 6.06 -1.63 6.39 -3.96 5.57 -4.17 5.61 -0.53 6.64 -0.93

FlexAC (Ours) 6.25 1092 7.20 15.63 5.3 6.11 5.43 5.96 7.00 15.65

Results on General-Purpose Benchmark. To evaluate the generalization capabilities of FlexAC
across a range of tasks, we conduct experiments on three standard multimodal benchmarks using
Qwen-VL: MME, MMMU, and MMStar. These benchmarks cover a wide range of capabilities
including fine-grained grounding, reasoning, and instruction following.

As shown in Figure 9, both FlexAC-P (faithfulness-enhanced) and FlexAC-C (creativity-enhanced)
maintain performance similar to the vanilla model across most categories, indicating no significant
compromise in general capabilities. Notably, Flex AC-C outperforms the baseline on the OCR task
in MME, likely due to its enhanced ability to associate text with related visual entities, improving
inference and disambiguation under challenging conditions.

3.3 Ablation study

Layer-wise Control Analysis. We investigate the impact of middle layers on associative reasoning
and identify the optimal control layers by testing interventions on shallow, middle, and deep layers,
evaluating their effects on both CHAIR and VDAT metrics.

The results in Figure 10 demonstrate that middle layers have the most significant impact on perfor-
mance: FlexAC-P achieves the best CHAIR results when suppressing associative behavior, while
Flex AC-C shows the highest VDAT scores when enhancing creativity. In contrast, controlling shallow
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Figure 9: Performance on general-purpose benchmarks. Comparison of Regular, FlexAC-P
(faithfulness-enhanced, o = —1), and FlexAC-C (creativity-enhanced, o = 1).

or deep layers has minimal effect. Based on these findings, we select layers 15, 16, and 17 as the
control layers for Qwen-VL; results for other models are provided in Appendix E.2.

Effectiveness of different Components. We conducted an ablation study to assess the impact of
components within FlexAC, including Instance Selection (IS), Steering Intensity Calibration (SIC),
and Directional Integration (DI), on faithfulness (CHAIR) and creativity (VDAT).
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Figure 10: Layer-wise analysis of control effectiveness in FlexAC. The x-axis represents the control
layers, while the y-axis shows the performance of the model on CHAIR and VDAT metrics.

As shown in Figure 11, for CHAIR, FlexAC(P)

achieves the lowest CHAIRg score (19.2), indicat- Faithfulness Creativity
ing effective hallucination reduction compared to 0] — = Regular 50| == Requier ‘
the regular model (40.6). When IS and SIC are £ FlexAC-IS-SIC T [ DI
removed from FlexAC (FlexAC-IS-SIC), perfor- g E::iig('; gg) T FlexacDl
mance slightly worsens (30.4), confirming their = flead@
role in enhancing faithfulness. Similarly, for 86

creativity, FlexAC-C scores the highest VDAT

(86.58). Removing IS and SIC in FlexAC-IS-SIC 1o 84

leads to a small decrease (85.05), while FlexAC-

DI results in a slight improvement, highlighting CHAIR(4) CHAIR((}) 82—

the importance of DI for creativity. In summary,
FlexAC enables flexible adjustment of associa-
tive strength to meet the needs of different tasks,
balancing hallucination reduction and creativity
enhancement effectively.

4 Related work

Multimodal Large Language Models. Recent advances in large language models (LLMs) [26,

, 28] have led to the emergence of multimodal LLMs (MLLMs) that incorporate visual inputs
for enhanced capabilities [29, 30]. LLaVA [2, 23] improves instruction-following via visual instruc-
tion tuning, while Qwen-VL [3] enhances spatial reasoning through visual grounding. DeepSeek-
dVL2 [4] adopts a Mixture-of-Experts architecture to improve multimodal comprehension.

Hallucination in MLLMs. MLLMs still face various safety risks [31, 32,
of the core challenges, where MLLMs generate content misaligned with visual input [

Figure 11: Ablation study on components,
showing the impact of Instance Selection (IS),
Steering Intensity Calibration (SIC), and Direc-
tional Integration (DI).

]. Hallucination is one
]. To address



this, VCD [8] employs contrastive decoding, and VAF [24] enhances visual signal processing during
fusion. HA-DPO [ 1] reduces hallucinations via preference optimization.

Creativity in Large Models. Creativity, involving divergent thinking and novel associations [35, 36],
has been explored in LLMs via cognitive theories like dual-pathway [37]. Olson et al. [38] and Chen
& Ding [39] promote remote associations; MacGyver [40] and CLOT [4 1] tackle functional fixedness
and divergent thinking, respectively. Creation-MMBench [21] provides a benchmark for evaluating
image-grounded creative generation.

5 Conclusion

In this work, we investigate the root of associative behavior in MLLMs, finding that middle-layer
representations govern associative reasoning strength and that hallucinated responses encode reli-
able steering directions. Based on these insights, we propose FlexAC, a lightweight, training-free
framework that combines hallucination-guided steering with adaptive calibration and in-context
augmentation. FlexAC enables controllable creativity and achieves state-of-the-art performance
across hallucination, creativity, and general-purpose benchmarks. Limitations: FlexAC requires
white-box access to hidden states and is not applicable to black-box models like ChatGPT.

6 Acknowledgements

This study is supported by grants from the National Natural Science Foundation of China (Grant
No. U23A20315, No. 62425208, No. U22A2097, No. 62122018, No. 62020106008), Shen-
zhen Science and Technology Program (No.JCYJ20240813114208012), Fundamental Research
Funds for the Central Universities, and Natural Science Foundation of Sichuan Province (Grant No.
2025ZNSFSC1463).

References

[1] Liane Gabora. The neural basis and evolution of divergent and convergent thought. The
Cambridge handbook of the neuroscience of creativity, pages 58-70, 2018. 2

[2] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.
2,9

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile
abilities. CoRR, 2023. 2, 6,9

[4] Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao,
Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng
Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu,
Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-v12: Mixture-of-experts
vision-language models for advanced multimodal understanding, 2024. 2, 6, 9

[5] Ariel Goldstein, Haocheng Wang, Leonard Niekerken, Mariano Schain, Zaid Zada, Bobbi
Aubrey, Tom Sheffer, Samuel A Nastase, Harshvardhan Gazula, Aditi Singh, et al. A unified
acoustic-to-speech-to-language embedding space captures the neural basis of natural language
processing in everyday conversations. Nature Human Behaviour, pages 1-15, 2025. 2

[6] Jerry Tang, Meng Du, Vy Vo, Vasudev Lal, and Alexander Huth. Brain encoding models
based on multimodal transformers can transfer across language and vision. Advances in neural
information processing systems, 36:29654-29666, 2023. 2

[7] Xuhui Jiang, Yuxing Tian, Fengrui Hua, Chengjin Xu, Yuanzhuo Wang, and Jian Guo. A
survey on large language model hallucination via a creativity perspective. arXiv preprint
arXiv:2402.06647,2024. 2

[8] Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong

Bing. Mitigating object hallucinations in large vision-language models through visual contrastive
decoding. In CVPR, pages 13872-13882, 2024. 2, 3, 6, 10, 22

10



[9] Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations
in large vision-language models with instruction contrastive decoding. In Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024. Association for Computational Linguistics, 2024. 2

[10] Xinyu Lyu, Beitao Chen, Lianli Gao, Hengtao Shen, and Jingkuan Song. Alleviating hallucina-
tions in large vision-language models through hallucination-induced optimization. In NeurIPS,
2024. 2

[11] Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiagi Wang, and Conghui He. Beyond
hallucinations: Enhancing lvims through hallucination-aware direct preference optimization,
2023. 2,6, 10

[12] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner.
Steering llama 2 via contrastive activation addition. In ACL, pages 15504-15522, 2024. 2, 22

[13] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He.
Dola: Decoding by contrasting layers improves factuality in large language models. In /CLR,
2024. 2

[14] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
hallucination in image captioning. In EMNLP, pages 4035-4045, 2018. 3, 6, 22

[15] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. In EMNLP, pages 292-305, 2023. 3, 6, 23

[16] Xinyu Fang, Zhijian Chen, Kai Lan, Lixin Ma, Shengyuan Ding, Yingji Liang, Xiangyu
Zhao, Farong Wen, Zicheng Zhang, Guofeng Zhang, Haodong Duan, Kai Chen, and Dahua
Lin. Creation-mmbench: Assessing context-aware creative intelligence in MLLM. CoRR,
abs/2503.14478, 2025. 3, 22

[17] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu,
Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. MME: A comprehensive
evaluation benchmark for multimodal large language models. CoRR, 2023. 3, 6, 23

[18] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. In CVPR, 2024. 3, 6, 23

[19] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
Jiaqi Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large
vision-language models? In NeurlPS, 2024. 3, 6, 23

[20] Hongkang Li, Yihua Zhang, Shuai Zhang, Meng Wang, Sijia Liu, and Pin-Yu Chen. When
is task vector provably effective for model editing? a generalization analysis of nonlinear
transformers. In ICLR, 2025. 6

[21] Xinyu Fang, Zhijian Chen, Kai Lan, Lixin Ma, Shengyuan Ding, Yingji Liang, Xiangyu
Zhao, Farong Wen, Zicheng Zhang, Guofeng Zhang, Haodong Duan, Kai Chen, and Dahua
Lin. Creation-mmbench: Assessing context-aware creative intelligence in MLLM. CoRR,
abs/2503.14478, 2025. 6, 10

[22] Honghua Chen and Nai Ding. Probing the “creativity” of large language models: Can models
produce divergent semantic association? In EMNLP, pages 12881-12888, 2023. 6

[23] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning. In CVPR, pages 2628626296, 2024. 6, 9

[24] Hao Yin, Guangzong Si, and Zilei Wang. Clearsight: Visual signal enhancement for object
hallucination mitigation in multimodal large language models. In CVPR, 2025. 6, 10

11



[25] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollér, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV,
pages 740-755, 2014. 6, 23

[26] Fabrizio Gilardi, Meysam Alizadeh, and Magl Kubli. Chatgpt outperforms crowd-workers for
text-annotation tasks. arXiv preprint arXiv:2303.15056, 2023. 9

[27] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 9

[28] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023. 9

[29] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. arXiv preprint arXiv:2306.04387,2023. 9

[30] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, pages 12888-12900. PMLR, 2022. 9

[31] Shengming Yuan, Qilong Zhang, Lianli Gao, Yaya Cheng, and Jingkuan Song. Natural color
fool: Towards boosting black-box unrestricted attacks. In NeurIPS, 2022. 9

[32] Youheng Sun, Shengming Yuan, Xuanhan Wang, Lianli Gao, and Jingkuan Song. Any target
can be offense: Adversarial example generation via generalized latent infection. In ECCV, 2024.
9

[33] Beitao Chen, Xinyu Lyu, Shengming Yuan, Jingkuan Song, Heng Tao Shen, and Lianli Gao.
SafePTR: Token-level jailbreak defense in multimodal LLMs via prune-then-restore mechanism.
In NeurIPS, 2025. 9

[34] Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. CoRR,
abs/2402.00253, 2024. 9

[35] J. P. GUILFORD. Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior,
pages 3—-14, 1967. 10

[36] Mark Runco and Garrett Jaeger. The standard definition of creativity. Creativity Research
Journal - CREATIVITY RES J, pages 92-96, 2012. 10

[37] Roger E. Beaty, Paul J. Silvia, Emily C. Nusbaum, Emanuel Jauk, and Mathias Benedek. The
roles of associative and executive processes in creative cognition. Memory & Cognition, pages
1186-1197, 2014. 10

[38] Jay A. Olson, Johnny Nahas, Denis Chmoulevitch, Simon J. Cropper, and Margaret E. Webb.
Naming unrelated words predicts creativity. Proceedings of the National Academy of Sciences,
page €2022340118, 2021. 10

[39] Honghua Chen and Nai Ding. Probing the “creativity” of large language models: Can models
produce divergent semantic association? In EMNLP, pages 12881-12888, 2023. 10

[40] Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng,
Yejin Choi, Thomas L Griffiths, and Faeze Brahman. Macgyver: Are large language models
creative problem solvers? In NAACL, pages 5303-5324, 2024. 10

[41] Shanshan Zhong, Zhongzhan Huang, Shanghua Gao, Wushao Wen, Liang Lin, Marinka Zitnik,
and Pan Zhou. Let’s think outside the box: Exploring leap-of-thought in large language models
with creative humor generation. In CVPR, pages 13246-13257, 2024. 10

[42] Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations
in large vision-language models with instruction contrastive decoding. In Findings of the
Association for Computational Linguistics ACL 2024, pages 15840-15853, 2024. 22

12



[43] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: evaluating large multimodal models for integrated capabilities. In
ICML, pages 57730-57754, 2024. 27

[44] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? In European conference on computer vision, pages 216-233. Springer, 2024. 27

[45] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-
bench: Benchmarking multimodal 1lms with generative comprehension. arXiv preprint
arXiv:2307.16125,2023. 27

[46] Hai-Long Sun, Da-Wei Zhou, Yang Li, Shiyin Lu, Chao Yi, Qing-Guo Chen, Zhao Xu, Weihua
Luo, Kaifu Zhang, De-Chuan Zhan, and Han-Jia Ye. Parrot: Multilingual visual instruction
tuning. In ICML, 2025. 27

[47] xAL Grok-1.5 vision preview. https://x.ai/news/grok-1.5v, April 2024. Accessed:
2025-10-14. 27

[48] Nannan Zhu, Yonghao Dong, Teng Wang, Xueqian Li, Shengjun Deng, Yijia Wang, Zheng Hong,
Tiantian Geng, Guo Niu, Hanyan Huang, et al. Cvbench: Evaluating cross-video synergies for
complex multimodal understanding and reasoning. arXiv preprint arXiv:2508.19542,2025. 27

[49] Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images, 2016. 27

[50] Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In CVPR, pages 8317-8326, 2019. 27

[51] Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A
benchmark for question answering about charts with visual and logical reasoning. In Findings
of the Association for Computational Linguistics: ACL 2022, pages 2263-2279, 2022. 27

[52] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvga: A dataset for vga on
document images. In WACV, pages 2200-2209, 2021. 27

[53] Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa:
Visual question answering by reading text in images. In ICDAR, 2019. 27

13


https://x.ai/news/grok-1.5v

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the con-
tributions of the paper, including introducing the FlexAC framework to control associative
reasoning in MLLMs and demonstrating its effectiveness in modulating creativity and factual
accuracy across various tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include formal theoretical proofs. It is empirical in nature,
with a focus on the practical application of the FlexAC framework.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 3, we provide comprehensive details of the experimental setup and
all results required to reproduce our main findings, accompanied by thorough analysis and
corresponding conclusions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The core code is included in the supplementary material for reproducibility,
and we plan to release the full codebase publicly upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides sufficient experimental details, including the datasets used,
model configurations, and the benchmarks in Section 3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 3 and the appendix include detailed analysis of hyperparameters
and consistent results across multiple datasets and models, demonstrating robustness even
without explicit error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3.1 provides details on the compute resources and settings used in our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform to the NeurIPS Code of Ethics. There is no indication
of any ethical concerns, and the work focuses on improving deep learning techniques with
no harmful implications.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader societal impacts of this work, including both the potential benefits
and risks, are discussed in Appendix 1.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that pose a high risk for
misuse. All experiments are conducted using existing publicly available MLLMs and
datasets, and no new potentially sensitive or high-risk assets are introduced.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including datasets (e.g., COC0O2014)
and pretrained models (e.g., LLaVA, Qwen-VL, DeepSeek-VL), are properly cited in the
references. Their usage complies with the respective licenses and terms of use as outlined
by the original creators.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new method (FlexAC) and provides its core implemen-
tation code in the supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper includes a user study in which internal volunteers rated model out-
puts. Participants were informed of the study’s purpose and procedure prior to participation.
Although they were internal to the organization, compensation was provided in accordance
with fair labor practices.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [Yes]

Justification: The paper includes a user study in which participants rated model outputs. Al-
though the task posed minimal risk, participants’ involvement was disclosed, and appropriate
ethical considerations were followed.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper discusses the use of multimodal large language models (MLLMs)
as part of the core methodology to demonstrate the effectiveness of the FlexAC framework,
including its application in hallucination reduction and creativity enhancement.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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