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Abstract
Noting the importance of factorizing (or disen-
tangling) the latent space, we propose a novel,
non-probabilistic disentangling framework for au-
toencoders, based on the principles of symmetry
transformations that are independent of one an-
other. To the best of our knowledge, this is the first
deterministic model that is aiming to achieve dis-
entanglement based on autoencoders using only
a reconstruction loss without pairs of images or
labels, by explicitly introducing inductive biases
into a model architecture through Euler encod-
ing. The proposed model is then compared with a
number of state-of-the-art models, relevant to dis-
entanglement, including symmetry-based models
and generative models. Our evaluation using six
different disentanglement metrics, including the
unsupervised disentanglement metric we propose
here in this paper, shows that the proposed model
can offer better disentanglement, especially when
variances of the features are different, where other
methods may struggle. We believe that this model
opens several opportunities for linear disentangled
representation learning based on deterministic au-
toencoders.

1. Introduction
Learning generalizable representations of data is one of the
fundamental aspects of modern machine learning (Rudin
et al., 2022). In fact, better representations are more than a
luxury now, and is a key to achieving generalization, inter-
pretability, and robustness of machine learning models (Ben-
gio et al., 2013; Brakel & Bengio, 2017; Spurek et al., 2020).
One of the primary and desired characteristics of the learned
representation is factorizability or disentanglement, so that

1Scientific Computing, Rutherford Appleton Laboratory,
Science and Technology Facilities Council, United Kingdom. Cor-
respondence to: Jaehoon Cha <jaehoon.cha@stfc.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

latent representation can be composed of multiple, indepen-
dent generative factors of variations. The disentanglement
process renders the latent space features to become inde-
pendent of one another, providing a basis for a set of novel
applications, including scene rendering, interpretability, and
unsupervised deep learning (Eslami et al., 2018; Iten et al.,
2020; Higgins et al., 2021).

Deep generative models, particularly that build on varia-
tional autoencoders (VAEs) (Kingma & Welling, 2013; Ku-
mar et al., 2017; Higgins et al., 2017; Tolstikhin et al., 2018;
Burgess et al., 2018; Chen et al., 2018; Burgess et al., 2018;
Kim & Mnih, 2018; Zhao et al., 2019), have shown to be ef-
fective in learning factored representations. Although these
approaches have advanced the disentangled representation
learning by regularizing the latent spaces, there are a number
of issues that limit their full potential: (a) VAE-based mod-
els consist of two loss components, and balancing these loss
components is a well known issue (Asperti & Trentin, 2020)
(b) it is almost impossible to honor the idealized notion
of having a known prior distribution for VAEs in practical
settings (Takahashi et al., 2019; Asperti & Trentin, 2020;
Zhang et al., 2020; Aneja et al., 2021) and, (c) factorizing
the aggregated posterior in the latent space does not guaran-
tee corresponding uncorrelated representations (Locatello
et al., 2019). An alternative approach for achieving disen-
tangled representations is through seeking irreducible repre-
sentations of the symmetry groups (Cohen & Welling, 2014;
Higgins et al., 2018; Painter et al., 2020; Wang et al., 2021;
Tonnaer et al., 2022), where the aim is to find latent space
transformations that are independent of one another, un-
derpinned by well-defined mathematical frameworks based
on group theory. As this group of methods exploits the
notion of transitions between samples, they require pairs
of images representing the transitions (Cohen & Welling,
2014; Worrall et al., 2017; Painter et al., 2020) or equivalent
labels (Tonnaer et al., 2022). Finally, there are attempts to
use Generative Adversarial Networks (GANs) to learn fac-
tored representations by maximizing the mutual information
between a subset of latent variables and the observations.
Regardless of the approach, as shown in Locatello et al.
(2019), it is fundamentally impossible to learn disentangled
representations without having inductive biases on either the
model or the dataset, and both VAE- and symmetry-based
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Figure 1. Latent spaces learned by different models. Ideal latent space should cover a two-dimensional grid (Higgins et al., 2018). The first,
second and third rows show the latent spaces learned from three datasets, namely, XY , 2D Arrow, and 3D Airplane datasets, respectively.
Columns correspond to models at the bottom. It can be seen that the proposed model, DAE, achieves the best disentanglement.

approaches exemplify implicitly embedding inductive bias.

Despite the advances, we note a number of issues in the
existing approaches about how they address disentangle-
ment. Firstly, the majority of the VAE-based approaches are
probabilistic, and as such, the quality of the disentanglement
depends on ideal or near-ideal priors, and on the process of
learning the correct posteriors for a given data. Secondly, the
majority of symmetry-based disentangling approaches need
pairs of images or labels, even in the unsupervised setting,
owing to the requirements around inductive bias. Thirdly,
none of these models conform to the formal definition of a
linear disentangled representation proposed by Higgins et al.
(2018). Finally, and most importantly, none of the existing
approaches have the unsupervised approach for introducing
inductive biases (required for disentanglement) both on the
models and on the datasets, essentially demanding labels or
image pairs. Motivated by these shortcomings, in this paper,
we propose a novel approach for deriving disentangled rep-
resentation learning, with the following key contributions:
We,

• propose a totally unsupervised approach for introduc-
ing inductive bias into the model and data, without
requiring pairs of images or labels,

• propose a non-probabilistic approach that does not
involve any priors or learning posteriors,

• as a consequence, train the proposed model by mini-
mizing only a reconstruction loss between the inputs
and the outputs of the model,

• introduce orthogonality in the latent space to enable
the changes of output from changes of different latent
dimensions to be orthogonal, and

• propose a new unsupervised metric, namely, Grid Fit-
ting Score (GF-Score), to quantify the disentanglement,

echoing the aspiration of an ideal disentanglement mea-
sure outlined in Higgins et al. (2018).

As such, the proposed approach, which we name Disen-
tangling Auto-Encoder (DAE), offers a theoretically sound
framework for learning independent multi-dimensional vec-
tor subspaces, and hence towards learning disentangled rep-
resentations. To the best of our knowledge, this is the first
attempt to actually implement a disentanglement approach
using deterministic autoencoders by using only a recon-
struction loss, especially without pairs of images or labels,
and hence in a truly unsupervised manner. We provide a
glimpse into the capability of the proposed model for disen-
tanglement using three datasets compared against ten other
models, which are either autoencoder-based probabilistic
models or symmetry-based disentangled models, that do not
require any labels or pairs of inputs in Figure 1.

The rest of this paper is organized as follows. In Section 2
we review the related work, focusing on VAE-based and
symmetry-based approaches. This is then followed by a
derivation of AE-based non-probabilistic approach for deriv-
ing disentangled representations in Section 3. In Section 4,
we perform a detailed evaluation to decide the overall perfor-
mance of the proposed model, using twelve baseline models,
eight datasets, and six disentanglement metrics, and discuss
our findings. We then conclude the paper in Section 5 with
directions for further research. Given the space constraints,
we highlight the prominent results in the main part of the pa-
per, while providing the remaining set of results and relevant
material as part of the Appendix.

2. Related Work
2.1. Disentanglement

Disentangled representation learning focuses on learning
a set of independent factors containing useful but minimal
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information for a given task, such that their variations are
orthogonal to each other while accounting for the entire
dataset (Bengio et al., 2013; Higgins et al., 2018). This es-
sentially entails a method or a set of methods for decoupling
correlations between latent variables. A large body of work
around disentanglement, and the ideal properties of a dis-
entangled representation can be found in Ridgeway (2016);
Eastwood & Williams (2018); Ridgeway & Mozer (2018);
Zaidi et al. (2020). Among a number of desirable properties
of a disentangled representation, modularity, compactness
and explicitness are three critically important properties. A
number of metrics have been proposed in the literature to
quantify these properties (Higgins et al., 2017; Kim & Mnih,
2018; Eastwood & Williams, 2018; Chen et al., 2018; Do &
Tran, 2019; Sepliarskaia et al., 2019). In our work, we use
the notions outlined in Zaidi et al. (2020), where the metrics
are divided into three classes, namely, Intervention-based,
Predictor-based, and Information-based metrics. These met-
rics are all used in a supervised manner and can be of in-
dicators for the robustness of the representation to noise,
and for the non-linearity of the relationships between learnt
representations and ground truth factors, in addition to the
three properties outlined above.

2.2. Autoencoder-based Probabilistic Models

AE-based probabilistic generative models are realized by
replacing the conventional encoder Eϕ and decoder Dθ

with probabilistic counterparts. The probabilistic encoder,
denoted by qϕ(z|x), is used to approximate the intractable
true posterior, and the probabilistic decoder, denoted by
pθ(x|z), is used to reconstruct the x from z (Kingma &
Welling, 2013). The majority of the previous work on dis-
entangled representation learning are based on probabilistic
models, particularly building on VAE. They enforce reg-
ularization in the latent space that either regularizes the
approximate posterior qϕ(z|x) or the aggregate posterior
q(z) = 1

N

∑N
i=1 qϕ(z|x(i)), as summarized in Tschannen

et al. (2018). The overall objective of the majority of the
VAE-based methods can be expressed as:

Lrecon(ϕ,θ) + Lreg(ϕ) (1)

where Lreg(ϕ) is a regularizer of the concerned genera-
tive model. A carefully designed regularizer should enable
the model to achieve better disentanglement, either by con-
trolling the capacity of the latent space, or by measuring
the total correlation between latent variables. However, it
is worth noting that factorizing aggregated posterior using
regularizers does not guarantee linear disentangled repre-
sentations (Locatello et al., 2019). Recently, a deterministic
approach is proposed in Berman et al. (2023) based on Koop-
man operators with structured spectra using an additional
spectral loss function. Although the motivation in that paper
is different from the other probabilistic models in that the

proposed model in Berman et al. (2023) is a determinis-
tic model, the model still requires an additional regularizer
to achieve disentanglement. We summarize the regular-
ization terms of nine state-of-the-art generative models in
Appendix A (See Columns 2 and 3 of Table 3).

2.3. Symmetry-Based Disentangling Model

While Higgins et al. (2018) proposed a formal definition of
linear disentangled representations, it was generic, so that
no specific architecture, model or technique were defined.
As such, it does not provide an actual mechanism for learn-
ing such disentangled representations, albeit providing a
formal definition, which is essential for this purpose. From
the definitions in Higgins et al. (2018), a symmetry group
can be decomposed as a product of multiple subgroups, if
suitable subgroups can be identified. This can provide an
intuitive method for disentangling the latent space, if sub-
groups that independently act on subspaces of a latent space
can be found. If actions applied on each of the subgroups
affect only the corresponding subspace, these actions are
called disentangled group actions. In other words, disentan-
gled group actions only change a specific property of the
state of an object, and leaves the other properties invariant.
If there is a transformation in a vector space of represen-
tations, corresponding to a disentangled group action, the
representation is called a disentangled representation.

The concept and implementation of symmetry-based disen-
tangled representations were proposed using pairs of images
in Cohen & Welling (2014). However, owing to the lim-
itation around commutative Lie groups, upon which this
model is built upon, the real world applicability of the tech-
nique from Cohen & Welling (2014), especially across a
range of diverse datasets, are limited. Following a formal
definition for linear disentangled representations in Higgins
et al. (2018), there has been a considerable amount of ef-
fort to learn the transitions between images (Caselles-Dupré
et al., 2019; Quessard et al., 2020; Painter et al., 2020). The
transitions between images are learned by treating each tran-
sition as a sequence of transitions until the base transition
relies on pairs of images and by using additional networks.
An alternative approach is to rely on labels, for example,
as in Tonnaer et al. (2022), where they propose two Diffu-
sion VAE-based methods (Rey et al., 2019), namely semi-
supervised and unsupervised, along with a new metric called
LSBD (Linear Symmetry-Based Disentanglement metric).
The former model relies on labels, while the latter does not.
As such, the latter model is directly relevant to our work,
and, we use this as one of the baselines for our evaluation
(See Section 4).
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3. Framework for DAE
The deterministic, and hence, non-probabilistic, approach
we propose here, builds on the autoencoder architecture
(rather than variational autoencoders). We provide the
relevant background on the disentangled representations
from Higgins et al. (2018) in the Appendix A.2. In this
section, we define a necessary mathematical framework and
a corresponding neural network architecture implementing
the proposed disentangling autoencoder.

3.1. Association between the Disentangled
Representation and Autoencoder

The definition of disentangled group actions from Higgins
et al. (2018) assumes that a group G can be decomposes
a direct product G = G1 × · · · × Gn. Here we formalize
disentangled group action by a relation to relax the condi-
tion, and connect the group action to a generative process.
Let us consider a group G, which is generated by a set
S = {s1, s2, ..., sn} subject to a set R of relations among
elements in S.

Definition 3.1. Let W be a set of world-states and sup-
pose we have a group action · : G × W → W . Then,
we say that the action is disentangled by the relation R if
there is a decomposition W = W1 × · · · ×Wn and actions
·i :< si > ×Wi → Wi, i ∈ {1, ..., n} such that:

1. (sϵ11 , ..., sϵnn ) · (w1, ..., wn) = (sϵ11 · w1, ..., s
ϵn
n · wn)

and,

2. if any elements g ∈ G can be uniquely expressed in
the form of g = sϵ11 · · · sϵnn for some ϵi ∈ Z by the
relation R.

With the definition of an equivariant map in place ( A.2), dis-
entangling a latent space relies on finding a corresponding
group action · : G× Z → Z so that the symmetry structure
of W is reflected in an agent’s representations, Z. This can
be achieved if the following condition is satisfied:

g · f(w) = f(g ·w) ∀g ∈ G,w ∈ W. (2)

where f : W → Z is a mapping from world-states to an
agent’s representations. However, in general, one cannot
control the nature of the generative process b : W → O
leading from world-states to observations, O. In addition,
without loss of generality, we can easily assume that the
generative process b is an equivariant map.

Theorem 3.2. Suppose a generative process b is an equivari-
ant map satisfying , g · b(w) = b(g ·w) ∀g ∈ G,w ∈ W .
Then, there exists a function f that satisfies (2) if an infer-
ence process h : O → Z is an equivariant map satisfying,

g · h(o) = h(g · o) ∀g ∈ G,o ∈ O. (3)

Proof. Proof in the Appendix A.3.

Following the Theorem 3.2, this assumption leads to the
fact that the goal of disentangling is the same as finding an
inference process h : O → Z satisfying,

g · h(o) = h(g · o) ∀g ∈ G,o ∈ O. (4)

Although there is no guarantee that one can find a compat-
ible action · : G × Z → Z satisfying (4), if h is bijective
then (4) can be expressed as follows,

h−1 · g · h(o) = g · h−1 · h(o) (5)

However, if h is a bijective function, simple neural network-
based models cannot learn the overall equivariant map. Yet,
the equivariant map, such as one outlined in equation 5 can
be learned by autoencoders with inductive biases both on
the model and the datasets, which is the central contribution
of this paper. To show this mapping, let h and h−1 be an
encoder, Eϕ, and a decoder, Dθ, of an autoencoder. Then,
the group action · : G× Z → Z can be defined as follows:

G× Z Z

G×O O

·Z

idG ×Dθ Dθ

·O

where Eϕ : O → Z, and ·Z and ·O are group actions on Z
and O, respectively. This shows that the equivariant map
can, indeed, be learned by an autoencoder. However, this
is not without a number of challenges, which we discuss in
Section 3.2 below.

3.2. Introducing Disentangled Representations into
AutoEncoders

To connect the Definition 3.1 to disentangled representation
in the latent space, it is worth noting that n-th root of unity
is a cyclic group, and a vector addition in the latent space en-
ables natural transition between latent variables. We achieve
a disentangled group action using a set of relations R in the
latent space, that maps (sϵ11 , ..., sϵnn ) to (eiα1ϵ1 , ..., eiαnϵn),
where eix = cosx+ isinx. However complex numbers are
undesirable in machine learning. We overcome this issue by
introducing the Euler encoding, E, which is defined as,

E(z) = (cos(2πz1), sin(2πz1), ..., cos(2πzn), sin(2πzn))
(6)

where n is the the number of dimensions of the latent space.
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Theorem 3.3. Let E be a Euler encoding and A : R2n →
Rm be an injective linear transformation where m > 2n.
For α ∈ (0, 1) and i ∈ {1, ..., n}, let Tα

i : Rn → Rn by
Tα
i (x) = (x1, ..., xi + α, ..., xn). Then A · E(Tα

i (z)) =

A · E(T β
j (z)) if and only if i = j and α = β.

Proof. For z ∈ Rn, let A ·E(Tα
i (z))−A ·E(T β

j (z)) = 0
and define

Sα
i =


I2(i−1)

cos(2πα) −sin(2πα)
sin(2πα) cos(2πα)

I2(n−i)


Since E(Tα

i (z)) = Sα
i · E(z), A · (Sα

i − Sβ
j ) · E(z) = 0.

(a) If i ̸= j, then A is a zero transformation, which is a
contradiction.

(b) If i = j, then α = β ± k, where k ∈ Z, hence, α = β.

Since E(Tα
i (z)) = Sα

i ·E(z) and Sα
i is an orthogonal trans-

formation, the Euler encoding after translation on Z can be
considered as an orthogonal transformation of E(z). As A
can be seen as a linear layer to the decoder in Figure 2, the
Euler encoding enables the changes of output from changes
of different latent dimensions to be orthogonal. In other
words, if Dθ(E(Tα

i (Eϕ(O)))) ̸= Dθ(E(Tα
j (Eϕ(O)))),

then i ̸= j. Nevertheless, there are still a number of prac-
tical challenges to overcome. These are: (a) Number of
Elements in a Subgroup: The number of possible ele-
ments in the subgroups Nj (j = 1, . . . , n), or at least the
relative ratio of the number of elements between the sub-
groups are not known a priori. This has a crucial role in
introducing inductive biases on datasets, (b) Spatial Distri-
bution of Features: An ideal factorized latent space must
have the features spatially distributed in an equally likely
manner. However, the equivariant map we discussed above
alone may not be sufficient to address this issue, and (c)
Robustness to Small Perturbations: Because the proposed
approach for disentanglement is deterministic, the model
is not resilient to small perturbations (e.g., noise) (Camuto
et al., 2021), which is essential for the model to behave in a
robust manner when presented with unseen examples. Al-
though it is possible to address some of these concerns from
a theoretical stand point, nearly all of these are addressable
by carefully designing an architecture that exploits both
the AE and the equivariant map principle discussed above,
achieving the best possible disentanglement. We discuss
these details in Section 3.3 below.

3.3. Architecture of the DAE

In mapping our theory to an architecture, we build on the
AE model, which constitutes an encoder, that maps the
observation space O to a latent space Z, followed by the
disentangling process that factorizes/disentangles the latent
space Z to a factorized latent space Z ′, and finally the
decoding layer, that maps the factorized latent Z ′ to the
regenerated observation space O through the Euler encoding.
Each of the concerns that were discussed in Section 3.2
(a) through (c) are handled by a network of layers in our
architecture. We show this model in Figure 2 and describe
how this model addresses the relevant concerns next.

(a) Number of Elements in a Subgroup: Although the
number of elements in a subgroup is not known a priori,
the number or the relative ratio of the possible number of
elements across subgroups can be estimated using tech-
niques that can extract the variance information from com-
pressed information, such as principal component analysis
(PCA) (Jolliffe, 2002), independent component analysis
(ICA) (Hyvärinen & Oja, 2000), or even through neural
networks (Kingma & Welling, 2013; Burgess et al., 2018;
Mondal et al., 2021). In this paper, for the reasons of sim-
plification, we will be using the PCA technique. Since
the singular values from PCA are proportional to the vari-
ances of the principal components of compressed data, these
values are used to obtain a relative ratio of the number of
possible element in the subgroups (Wall et al., 2003). Then,
all singular values are divided by the maximum values, and
rounded to one decimal places, and then values smaller than
1 are replaced with hyperparameter α. The relevant algo-
rithm is shown in Algorithm 1 in the Appendix. Let Λ be
the relative ratio of the possible number of elements across
subgroups obtained from Algorithm 1.

(b) Uniform Spatial Distribution of Features: To en-
sure that each feature is equally/likely distributed across
the latent space and falls within the (0, 1) (which lets
A · E(Tα

i (z)) = A · E(T β
j (z)) if and only if i = j and

α = β in Theorem 3.3), we introduce a normalization layer,
where we apply batch min-max normalization to the outputs
of the encoder. As minimum and maximum values vary
from batch (mini-batch) to batch (mini-batch), we update
the moving minimum and maximum values during the train-
ing process, and use them during the test phase, akin to a
batch normalization layer (Ioffe & Szegedy, 2015). The
minimum and maximum values are also initialized close to
the middle point of [0, 1) to facilitate learning. This is then
followed by scaling by Λ to account for different number of
possible elements for different features.

(c) Robustness to Small Perturbations: Robustness is
achieved by introducing an Interpolation layer that performs
Gaussian interpolation on the output of the normalized la-
tent space, following Vincent et al. (2010); Berthelot et al.
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Figure 2. Illustration of the DAE architecture. The model includes the Euler encoding, and the outputs from the interpolation layer are
mapped to cosine and sine values. Here Λ is one dimensional vector that constraints each latent dimension with respect to the relative ratio
of the possible number of elements across latent space and × is column-wise product, i.e., A×B = [a1 ·B:,1, a2 ·B:,2, · · · , an ·B:,n]
where A = [a1, a2, · · · , an], B = [B:,1, B:,2, · · · , B:,n] and · is scalar multiplication.

(2018). Gaussian interpolation is used to map unseen ex-
amples to known examples, and to make the latent space
locally smooth. Since the proposed model is determinis-
tic, it is important to map a number of unseen examples to
the learned representations. This is achieved by adding a
weight-sensitive Gaussian noise to the outputs of the previ-
ous layer during training, which is obtained based on the
closest proximal distance of each dimension of the represen-
tations. The relevant algorithm is shown in Algorithm 2 in
the Appendix. It is worth noting that this layer will not be
used during the inference phase.

3.4. A Novel Metric for Quantifying Disentanglement:
GF-Score

Nearly all of the existing set of metrics outlined in the litera-
ture for quantifying linear symmetry-based disentanglement
require ground truth labels. Here, we propose a new met-
ric, namely, Grid Fitting Score (GF-Score), to achieve the
same purpose without the need for labels. Our hypothesis is
that performing independent disentangled actions on a sym-
metry group causes the corresponding subspace to form a
grid-shape latent space. This can be exploited by generating
a square grid to include latent variables, and by measuring
the mean of the minimum distances from the square grid
to latent variables to signify the quality of disentanglement.
If the latent variables fit perfectly into the square grid, it
would imply that the model achieves perfect linear disen-
tanglement, and we can mark this as zero score. Therefore,
the lower the GF-Score is, the better the disentanglement is.
The relevant algorithm is shown in Appendix A 3.

4. Evaluation and Results
4.1. Evaluation Method

Our evaluation involves comparing the performance of the
proposed approach against twelve baseline models across
eight datasets using six disentanglement metrics. We outline

these details below.1

Datasets: One of the critical challenges around evaluating
disentanglement is identifying suitable datasets. It is diffi-
cult to identify common datasets to study this problem. In
the literature, different datasets have been used for differ-
ent purposes. For example, dSprite (Matthey et al., 2017),
3D Chair (Burgess & Kim, 2018) and CelebA (Liu et al.,
2015) datasets have been used in β-VAE, β-TCVAE, and
FVAE. Although these datasets are useful to understand
the traversal order of the latent space, they lack a clear
underlying group structure. As such, here, we utilize the
datasets that have been first utilized in Higgins et al. (2018),
with relevant enhancements, which we describe in the Ap-
pendix (See A.10). In addition to this dataset, we use six
more datasets containing clear underlying group structure,
namely, 2D Arrow (Tonnaer et al., 2022), 3D Airplane (Ton-
naer et al., 2022), 3D Teapots (Eastwood & Williams, 2018),
3D Shape (Burgess & Kim, 2018), 3D Face Model (Paysan
et al., 2009) and Sprites (Reed et al., 2015) datasets. Finally,
to demonstrate the performance on complex datasets, we use
the Blood Cell dataset (Acevedo et al., 2020), which does
not have the ground truth factors but is useful to show the
reconstructions of latent traversals with respect to size and
shape of blood cells (See the results in the Appendix A.11).

Baseline Models: We considered ten different baselines
models for our evaluation, namely, plain AE, vanilla VAE,
β-VAE, β-TCVAE, CCI-VAE, FVAE, InfoVAE, DIPVAE,
WAE, LSBDVAE, InfoGAN and IB-GAN. For DIPVAE, we
only test DIPVAE-I, owing to the reasons of that DIPVAE-II
model works better only for cases where the dimension of
the latent space is larger than the ground truth factors, which
is not the case for us. To render a fair evaluation mechanism,
we used the same encoder and decoder architectures, and
same latent space dimensions (for each baseline model),
which are used in Higgins et al. (2017); Kim & Mnih (2018);
Quessard et al. (2020); Tonnaer et al. (2022) throughout the
evaluation. Please see the Appendix (See A.8) for additional

1Code available at https://github.com/stfc-sciml/dae
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Figure 3. Reconstructions of latent traversals across each latent dimension obtained by the DAE for the (a) 2D Arrow (color and shape),
(b) 3D Airplane (color and shape), (c) XY CS (x position, y position, color and shape), (d) Sprites (hair color, top color, body color,
bottom color and actions), (e) 3D Shape (floor hue, wall hue, object hue, scale, shape and orientation), (f) 3D Teapots (azimuth, elevation,
red, green, blue and extra) and (g) 3D Face Model datasets (face id, azimuth, elevation and lighting).

details.

Performance Metrics: As discussed in Section 2.1, a large
number of metrics can be used to study the performance
of disentanglement, depending on the nature of the dataset,
access to ground truth, availability of latent factors, and the
number of dimensions in the latent space. We use two types
of metrics: (a) Visualization of the latent space, and (b)
Numerical disentanglement score. The former permits
one to visualize the orthogonality between features, and can
be used to demonstrate how the latent traversal is achieved
by the model and grid structures in the latent space. The
second approach provides a quantifiable method for assess-
ing the disentanglement. Collectively, we have used six
metrics, including five supervised metrics accounting for
each of the disentanglement metric classes (see Section 2.1),
namely, z-diff and z-min from the intervention-based, dci-
rf from the predictor-based, and jemmig and dcimig from
the information-based metric classes in order to measure
disentanglement, completeness and informativeness, along
with GF-Score (See 3.4). In Locatello et al. (2019), it was
shown that variances of all metrics are large with random
seeds and it disturbs the comparison between different mod-
els. Hence, we run all the models on each data set for 20
different random seeds and select the random seed with the
highest total score over these metrics.

4.2. Results and Discussions

Our evaluation has produced a considerable volume of re-
sults, and for the reasons of brevity, we present two sets

of results here, namely, (i) we show the reconstructions of
latent traversals for the 2D Arrow, 3D Airplane, XY CS,
3D shape, 3D Teapots, 3D Face Model and Sprites datasets
in Figure 3, and (ii) we present the percentage of changes in
disentanglement scores when color and shape features are
added to XY dataset in Table 1, along with the disentangle-
ment scores of top two performing models across all datasets
for all metrics in Tables 2. We provide the remaining set
of results (reconstructions of latent traversals and disentan-
glement scores of all models), and other relevant details
(such as hyper-parameters, and network architectures A.7
and A.8) as part of the Appendix.

4.2.1. LATENT SPACE VISUALIZATION

We show the disentangled the latent spaces for the XY ,
2D Arrow and 3D Airplane datasets, which have two under-
lying factors, in Figure 1 (also see Table 17 in Appendix A
for details of relevant hyperparameters). As can be seen in
Figure 1, the proposed model, in general, provides the ideal
grid-shape outlined in Higgins et al. (2018). The plain AE,
vanilla VAE, Info-VAE and WAE models offer the worst
performance. Other models, such as β-VAE, β-TCVAE,
CCI-VAE, and DIPVAE models also come closer to the
ideal pattern in the three datasets, and thus most models
are able to disentangle x and y positions in XY datasets,
and rotation and color factors in 2D Arrow and 3D Airplane
datasets. However, the Table 1 shows that when color or
shape feature is added to the XY dataset (i.e., for XY C,
XY S and XY CS datasets), the disentanglement can be-
come a significant challenge, other than for the proposed
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Table 1. Differences in scores between XY/XY CS datasets. Absolute and percentage of change from XY to XY CS are shown.
Percentage changes closer to the zero are desirable.

Disentanglement scores

Models z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑
DAE 1.00/1.00 (0.0%) 1.00/1.00 (0.0%) 0.99/0.94 (-5.0%) 0.81/0.67 (-17.2%) 0.80/0.75 (-6.2%)

AE 1.00/0.95 (-5.0%) 1.00/0.55 (-45.0%) 0.79/0.24 (-69.6%) 0.55/0.22 (-60.0%) 0.50/0.13 (-74.0%)

VAE 1.00/0.82 (-18.0%) 1.00/0.30 (-70.0%) 0.84/0.09 (-89.2%) 0.58/0.21 (-63.7%) 0.54/0.08 (-85.1%)

β-VAE 1.00/0.79 (-21.0%) 1.00/0.46 (-54.0%) 0.91/0.08 (-91.2%) 0.65/0.18 (-72.3%) 0.63/0.13 (-79.3%)

β-TCVAE 1.00/0.72 (-28.0%) 1.00/0.41 (-59.0%) 0.93/0.15 (-83.8%) 0.70/0.24 (-65.7%) 0.69/0.14 (-79.7%)

CCI-VAE 1.00/1.00 (0.0%) 1.00/1.00 (0.0%) 0.98/0.63 (-35.0%) 0.78/0.47 (-39.7%) 0.76/0.46 (-39.4%)

FVAE 1.00/1.00 (0.0%) 1.00/0.91 (-9.0%) 0.96/0.18 (-80.8%) 0.73/0.21 (-69.5%) 0.70/0.13 (-80.5%)

InfoVAE 1.00/0.92 (-8.0%) 1.00/0.54 (-46.0%) 0.90/0.21 (-76.6%) 0.64/0.27 (-57.8%) 0.67/0.13 (-76.6%)

DIPVAE 1.00/1.00 (0.0%) 1.00/0.44 (-56.0%) 0.98/0.32 (-67.3%) 0.78/0.28 (-64.1%) 0.78/0.11 (-85.8%)

WAE 1.00/0.93 (-7.0%) 1.00/0.38 (-62.0%) 0.44/0.06 (-86.3%) 0.35/0.15 (-57.1%) 0.27/0.2 (-92.5%)

LSBDVAE 1.00/1.00 (0.0%) 1.00/0.76 (-24.0%) 0.96/0.38 (-60.4%) 0.72/0.30 (-58.3%) 0.70/0.28 (-60.0%)

InfoGAN 1.00/0.79 (-21.0%) 1.00/0.41 (-59.0%) 0.85/0.23 (-72.9%) 0.54/0.15 (-72.2%) 0.51/0.17 (-66.6%)

IB-GAN 1.00/0.82 (-18.0%) 1.00/0.60 (-40.0%) 0.53/0.20 (-40.0%) 0.35/0.22 (-37.1%) 0.31/0.20 (-35.4%)

Table 2. Disentanglement scores for the 2D Arrow, 3D Airplane, 3D Teapots, 3D Shape, 3D Face Model and Sprites datasets
Datasets 2D Arrow 3D Airplane 3D Teapots 3D Shape 3D Face Model Sprites

Metrics/Models DAE DIPVAE DAE DIPVAE IB-GAN DAE FVAE DAE InfoGAN DAE DAE β-VAE

z-diff ↑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
z-var ↑ 0.85 0.96 1.00 0.96 1.00 1.00 1.00 0.93 0.95 1.00 0.90 0.77
dci-rf ↑ 0.88 0.85 0.80 0.54 0.92 0.89 0.99 0.99 0.62 0.65 0.70 0.54
jemmig ↑ 0.80 0.75 0.79 0.51 0.60 0.54 0.86 0.87 0.53 0.48 0.59 0.51
dcimig ↑ 0.79 0.72 0.75 0.43 0.60 0.53 0.88 0.90 0.54 0.47 0.55 0.43
GF (× 1

100 ) ↓ 0.30 2.55 0.19 7.66 0.10 0.002 0.20 0.0009 0.16 0.02 0.005 0.08

model (See Figure 4 in Appendix). Furthermore, the pro-
posed model is the only model that can successfully disen-
tangle the 3D Teapots dataset as shown in Figure 7. In the
Sprites dataset, only the proposed model and β-VAE learn
hair, top, body and bottom colors while the other models fail
to disentangle the features as shown in Figure 10. In addi-
tion to these, reconstructions of latent traversals (across each
latent dimension) of seven datasets for the DAE are shown
in Figure 3 (Also the Appendix A.11 for more results).

4.2.2. DISENTANGLEMENT SCORES

We present the supervised disentanglement scores and their
percentage changes when color and shape features are added
to the XY dataset in Table 1, with the changes measured
relative to the XY dataset, and it is worth noting that the
added features have smaller variances than x and y positions.
As can be seen, in general, nearly, all models suffer from
the performance drop except a few. The CCI-VAE is the
only model that performs as good as the proposed model for
the z-diff and z-min metrics. The proposed model shows
the smallest drop across three remaining metrics, namely,
dci-rf, jemmig and dcimig. While the largest drop in the
proposed model is 17.2%, the scores fall by between 39.7%
and 92.5% for the other models.

The disentanglement scores for the top two performing mod-
els for all datasets (except the 2D Toy dataset) are shown
in Tables 2, with the best performing model highlighted

in boldface. From these results (including those in the
Appendix A.6), the following observations can be drawn:
Firstly, the proposed model outperforms all models across
all metrics for the 2D Toy, 3D Airplane and Sprites datasets.
Secondly, DAE is the only model placed in the top two
performing models across all datasets. DAE offers the best
score for 2D Arrow and the second best performance for the
3D Teapots, 3D Shape and 3D Face Model dataset. Thirdly,
except for the two datasets (3D Teapots and 3D Face Model
datasets), DAE shows superior performance compared to
the other datasets for the two GAN-based models while the
largest drop of DAE compared to two GAN-based models
in 3D Teapots and 3D Face Model datasets is 12.9%. Fur-
thermore, training GAN-based models for achieving better
or acceptable level of disentanglement was considerably
difficult owing to the reason of their instability. The GAN-
based models required different learning rates, and different
number of epoch for achieving stable and better disentangle
per dataset. However, autoencoder-based models did not
require such adjustments. Fourthly, for the 2D Toy dataset,
the proposed model maintains the reconstruction loss as
small as possible whilst offering improved disentanglement
scores (See Figures 12-15). On the other hand, the recon-
struction losses for the β-VAE, β-TCVAE and CCI-VAE
models increase along with their disentanglement scores.
Fifthly, the results in Table 14 show that the disentangle-
ment scores drop significantly without the Euler encoding
or the normalization layer. Finally, GF-Score shows that
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the proposed model perfectly fits the latent space into a grid
structure across all datasets and baseline models. Based on
the GF-Score from Table 4 to 12, a model without regular-
izer, such as AE, fails to form a grid structure in the latent
space.

5. Conclusions
In the context of representation learning, being able to factor-
ize or disentangle the latent space dimensions is crucial for
obtaining latent representations that are composed of mul-
tiple, independent factors of variations. Literature around
disentanglement methods are either predominantly super-
vised or semi-supervised, and as such, either labels or pairs
of images are required or achieved via factorizing the aggre-
gated posterior in the latent space.

In this paper, we presented a non-probabilistic, deterministic
model, namely, disentangling autoencoder or DAE, address-
ing a number of issues found in the literature. Our approach
exploits the Euler encoding and the normalization layer
that make the subspaces of the latent space independent of
one another. Along with the architectural details, we also
presented a novel metric for quantifying disentanglement,
namely, GF-Score. Our detailed evaluations, performed
against a large number of AE-based models, using consid-
erably a large number of metrics show that our model can
easily offer superior disentanglement performance when
compared against a number of existing methods across a
number of datasets.

Although the results are encouraging, a number of aspects
remain to investigated, including, evaluation of the proposed
model on datasets that lack underlying group structure, un-
derstanding the effect of the choice of the latent dimen-
sion on the outcomes, and to evaluate different latent space
smoothing algorithms, to mention a few.
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A. Appendix
A.1. A review of group theory

More details of definitions and theorems can be found in Dummit & Foote (2004).

Definition A.1. A group is an ordered pair (G, ⋆) where G is a set and ⋆ is a binary operation on G satisfying the following
axioms:

1. Associativity: (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c), for all a, b, c ∈ G,

2. Identity: there exists an element e in G, called an identity of G, such that for all a ∈ G, a ⋆ e = e ⋆ a,

3. Inverses: for each a ∈ G there is an element a−1 of G, called an inverse of a, such that a ⋆ a−1 = a−1 ⋆ a = e.

We shall write the operation a ⋆ b as ab.

Definition A.2. A group action of a group G on a set A is a map · : G×A → A by ·(g, a) = g · a satisfying the following
properties:

1. g1 · (g2 · a) = (g1g2) · a, for all g1, g2 ∈ G, a ∈ A, and

2. e · a = a, for all a ∈ A.

Definition A.3. Let G be a group. The subset H of G is a subgroup of G if H is nonempty and x, y ∈ H implies x−1 ∈ H
and xy ∈ H .

Definition A.4. A group H is cylic if H can be generated by a single element, i.e., there is some element x ∈ H such that
H = {xn|n ∈ Z}, and will be denoted by < x >.

Definition A.5. Assume that G is a group generated by a subset S and there is some collection of relations, say
R1, R2, · · · , Rm. Here Ri is an equation in the elements from S ∪ {e} such that any relation among the elements
of S can be deduced from these. Then, we say G has presentation < S|R > and the elements of S are called the generators
of < S|R > and the elements of R are called the relators.

A.2. Disentangled representation

The notion of a disentangled representation is mathematically defined using the concept of symmetry in Higgins et al. (2018).
For example, horizontal and vertical translations are symmetry transformations in two-dimensional grid, and, hence, such
transformations change the location of an object in this two-dimensional grid. From the definitions of a symmetry group
in Higgins et al. (2018), a symmetry group can be decomposed as a product of multiple subgroups, if suitable subgroups can
be identified. This can render an intuitive method to disentangle the latent space, if subgroups that independently act on
subspaces of a latent space, can be found. If actions by transformations of each subgroup only affect the corresponding
subspace, the actions are called disentangled group actions. In other words, disentangled group actions only change a specific
property of the state of an object, and leaves the other properties invariant. If there is a transformation in a vector space of
representations, corresponding to a disentangled group action, the representation is called a disentangled representation. We
reproduce the formal definitions of disentangled group action and disentangled representation from Higgins et al. (2018), as
Definitions A.6 and A.7, respectively.

Definition A.6. Suppose that we have a group action · : G×X → X , and the group G decomposes as a direct product
G = G1×· · ·×Gn. Let the action of the full group, and the actions of each subgroups be referred to as · and ·i, respectively.
Then, the action is disentangled if there is a decomposition X = X1 × · · · × Xn, and actions ·i : Gi × Xi → Xi,
i ∈ {1, · · · , n} such that:

(g1, · · · , gn) · (x1, · · · ,xn) = (g1 · x1, · · · , gn · xn) (7)

for all gi ∈ Gi and xi ∈ Xi.

Now, to derive the definition of a disentangled representation from the definition of disentangled group action, consider
a set of world-states, denoted by W . Furthermore, assume that: (a) there is a generative process b : W → O leading
from world-states to observations, O, (b) and an inference process h : O → Z leading from observations to an agent’s
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representations, Z. With these, consider the composition f : W → Z, f = h ◦ b. In terms of transformation, assume that
these transformations are represented by a group G of symmetries acting on W via an action · : G×W → W .

The overarching goal of disentangling the latent space now relies on finding a corresponding action · : G× Z → Z so that
the symmetry structure of W is reflected in Z. In other words, an action on Z corresponding to the action on W is desirable.
This can be achieved if the following condition is satisfied:

g · f(w) = f(g ·w) ∀g ∈ G,w ∈ W. (8)

In other words, the action, ·, should commute with f , which adheres to the definition of the equivariant map, and thus, f is
an equivariant map, as shown below.

G×W W

G× Z Z

·W

idG × f f

·Z

From Higgins et al. (2018), a disentangled representation can be defined as follows:

Definition A.7. The representation Z is disentangled with respect to G = G1 × · · · ×Gn if

1. There is an action · : G× Z → Z,

2. The map f : W → Z is equivariant between the actions on W and Z, and

3. There is a decomposition Z = Z1 × · · · × Zn or Z = Z1 ⊕ · · · ⊕ Zn such that each Zi is fixed by the action of all Gj ,
j ̸= i and affected only by Gi.

A.3. Proof

Proof of Theorem 3.1

Proof. Suppose that there b is an equivariant map defined in Theorem 3.2 and h is an equivariant map. Then

g · f(w) = g · h(b(w)) (9)
= h(g · b(w)) (10)
= h(b(g ·w)) (11)
= f(g ·w)) (12)

(13)

∀g ∈ G,w ∈ W .
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A.4. Comparison of different VAE-based models

In our evaluation, we compare the proposed model against nine other VAE-based derivatives, namely, vanilla VAE, β-VAE,
β-TCVAE, CCI-VAE, FVAE, InfoVAE DIPVAE, LSBDVAE and WAE. All these models vary based on the underlying
regularizer Lreg(ϕ). For example, the β-VAE model constraints on the latent space using β to limit the capacity of the
latent space, which encourages the model to learn the most efficient representation of the data. The regularization term of
these different models (Column 2) are summarized in Table 3 along with relevant notes (Column 3).

Table 3. Comparison of different VAE-based models w.r.t the regularizers they employ.
Model Lreg(ϕ) Notes

VAE DKL(qϕ(z|x)∥p(z)) −
β-VAE βDKL(qϕ(z|x)∥p(z)) Usually, β is greater than 1
β-TCVAE I(z,x) + βDKL(q(z)∥

∏
j q(zj)) +

∑
j DKL(q(zj)∥p(zj)) I(·, ·) is a mutual information

CCI-VAE β|DKL(qϕ(z|x)∥p(z)) − C| C is a capacity
FVAE DKL(qϕ(z|x)∥p(z)) + γDKL(q(z)∥

∏
j q(zj))) -

InfoVAE DKL(qϕ(z|x)∥p(z)) + λMMD(qϕ(z|x), p(z)) MMD(·, ·) is Maximum Mean Discrepancy

DIPVAE DKL(qϕ(z|x)∥p(z)) + λod

∑
i̸=j [Covp(x)[µϕ(x)]]2i,j Cov is a covariance and µϕ(x) is the output of an encoder.

+λd

∑
i([Covp(x)[µϕ(x)]]i,i − 1)2 We set λd = 10λod as suggested in Kumar et al. (2017)

WAE λMMD(qϕ(z|x), p(z)) λ is a regularization coefficient
LSBDVAE ∆DKL(qϕ(z|x)∥p(z)) + λDLSBD ∆DKL is a KL divergence used in Diffusion VAE
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A.5. Algorithms

Algorithm 1 Obtaining Λ using PCA
Input: X: the entire dataset and α: hyperparameter less than 1
Output: Λ = [w1, w2, · · · , wn] or [1, α]
if n > 2 then

S = [s1, s2, · · · , sn]: singular values from PCA(X)
S̄ = [s̄1, s̄2, · · · , s̄n] = S/max(S)
Λ = [w1, w2, · · · , wn]: round to one decimal place of S̄ (S̄ of each dataset is shown in Table 15.)
if there exists i such that wi < 1 then

wi = α
end if

end if

Algorithm 2 Interpolation layer
Input: A mini-batch: B = {x1, ...,xm} where xi ∈ Rn

Output: {y1, ...,ym}
Let xi = (xk

i )k=1,··· ,n
for i = 1 to m do

for k = 1 to n do
wk

i = minj∈{1,i−1,...,i+1,m}d(x
k
i , x

k
j )

yki = xk
i + wk

i ∗ ε where ε ∼ N (0, 1)
end for

end for

Algorithm 3 Grid fitting score method
Input: Z = [Z:,1, ...,Z:,n]: a matrix consisting of all latent variables obtained by a model
Output: S
for i = 1 to n− 1 do

for j = i to n do
Zi,j = [Z:,i,Z:,j ]
Gi,j : a set of variables from a square grid that fits Zi,j

Let di,j = 0
for k = 1 to len(Gi,j) do
di,j+ = distance(Gi,j

k,:,Z
i,j
k,: )

Si,j = di,j/k
S: the average of Si,j

end for
end for

end for
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A.6. Disentanglement scores

Table 4. Disentanglement scores for the XY dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.99 0.81 0.80 0.21 0.006
AE 1.00 1.00 0.79 0.55 0.50 8.67 0.003
VAE 1.00 1.00 0.84 0.58 0.54 8.52 0.002
β-VAE 1.00 1.00 0.91 0.65 0.63 3.82 0.003
β-TCVAE 1.00 1.00 0.93 0.70 0.69 4.81 0.004
CCI-VAE 1.00 1.00 0.98 0.78 0.76 3.25 0.009
FVAE 1.00 1.00 0.96 0.73 0.70 5.58 0.003
InfoVAE 1.00 1.00 0.90 0.64 0.60 8.06 0.002
DIPVAE 1.00 1.00 0.98 0.78 0.78 2.64 0.003
WAE 1.00 1.00 0.44 0.35 0.27 5.82 0.003
LSBDVAE 1.00 1.00 0.96 0.72 0.70 5.47 0.003
InfoGAN 1.00 1.00 0.85 0.54 0.51 2.01 −
IB-GAN 1.00 1.00 0.53 0.35 0.31 5.46 −

Table 5. Disentanglement scores for the XY C dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.99 0.91 0.91 0.01 0.001
AE 1.00 0.82 0.28 0.38 0.22 2.53 0.001
VAE 1.00 0.68 0.24 0.29 0.21 1.37 0.001
β-VAE 1.00 1.00 0.90 0.72 0.70 0.64 0.001
β-TCVAE 1.00 1.00 0.95 0.81 0.81 0.82 0.003
CCI-VAE 1.00 1.00 0.95 0.67 0.64 1.04 0.002
FVAE 1.00 0.80 0.36 0.35 0.31 0.20 0.001
InfoVAE 1.00 0.78 0.31 0.33 0.25 0.97 0.001
DIPVAE 1.00 0.92 0.37 0.36 0.30 0.54 0.001
WAE 1.00 0.69 0.30 0.32 0.18 0.93 0.002
LSBDVAE 1.00 0.64 0.30 0.33 0.25 1.09 0.001
InfoGAN 1.00 0.53 0.36 0.27 0.27 0.37 −
IB-GAN 1.00 0.78 0.18 0.18 0.11 0.71 −

Table 6. Disentanglement scores for the XY S dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.99 0.86 0.87 0.007 0.005
AE 1.00 0.95 0.47 0.43 0.34 2.92 0.001
VAE 1.00 0.80 0.34 0.39 0.30 2.51 0.002
β-VAE 1.00 1.00 0.97 0.75 0.73 1.14 0.005
β-TCVAE 1.00 1.00 0.99 0.84 0.82 0.77 0.007
CCI-VAE 1.00 1.00 0.97 0.71 0.69 0.71 0.009
FVAE 1.00 0.83 0.42 0.41 0.37 2.02 0.001
InfoVAE 1.00 0.94 0.38 0.40 0.34 1.38 0.001
DIPVAE 1.00 0.82 0.35 0.37 0.30 0.92 0.001
WAE 1.00 0.80 0.31 0.34 0.23 1.26 0.008
LSBDVAE 1.00 0.71 0.34 0.41 0.35 1.96 0.002
InfoGAN 1.00 0.48 0.50 0.33 0.33 0.38 −
IB-GAN 0.99 0.19 0.05 0.19 0.06 0.87 −
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Table 7. Disentanglement scores for the XY CS dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.94 0.67 0.75 0.01 0.002
AE 0.95 0.55 0.24 0.22 0.13 18.37 0.001
VAE 0.82 0.30 0.09 0.21 0.08 0.58 0.001
β-VAE 0.79 0.46 0.08 0.18 0.13 0.44 0.001
β-TCVAE 0.72 0.41 0.15 0.24 0.14 0.61 0.002
CCI-VAE 1.00 1.00 0.63 0.47 0.46 0.25 0.002
FVAE 1.00 0.91 0.18 0.21 0.13 0.10 0.004
InfoVAE 0.92 0.54 0.21 0.27 0.14 0.44 0.001
DIPVAE 1.00 0.44 0.32 0.28 0.11 0.26 0.001
WAE 0.93 0.38 0.06 0.15 0.05 0.42 0.003
LSBDVAE 1.00 0.76 0.38 0.30 0.28 0.54 0.001
InfoGAN 0.79 0.41 0.23 0.15 0.17 0.17 −
IB-GAN 0.82 0.60 0.20 0.22 0.20 0.37 −

Table 8. Disentanglement scores for the 2D Arrow dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 0.85 0.88 0.80 0.79 0.30 0.014
AE 1.00 0.30 0.00 0.29 0.17 4480.97 0.012
VAE 0.99 0.85 0.01 0.19 0.05 16.36 0.059
β-VAE 1.00 0.88 0.34 0.62 0.55 7.71 0.034
β-TCVAE 1.00 0.87 0.83 0.77 0.73 5.48 0.011
CCI-VAE 1.00 0.84 0.79 0.75 0.70 3.07 0.017
FVAE 1.00 0.90 0.46 0.58 0.52 17.09 0.022
InfoVAE 1.00 0.90 0.05 0.33 0.22 16.75 0.029
DIPVAE 1.00 0.96 0.85 0.75 0.72 2.55 0.010
WAE 1.00 0.62 0.07 0.24 0.10 1510.34 0.006
LSBDVAE 1.00 0.83 0.83 0.80 0.76 4.07 0.008
InfoGAN 1.00 1.00 0.04 0.40 0.35 2.39 −
IB-GAN 1.00 1.00 0.17 0.23 0.11 5.74 −

Table 9. Disentanglement scores for the 3D Airplane dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.80 0.79 0.75 0.28 0.011
AE 1.00 0.38 0.00 0.22 0.14 2505.92 0.003
VAE 1.00 1.00 0.01 0.36 0.28 14.96 0.013
β-VAE 1.00 1.00 0.09 0.44 0.35 7.92 0.015
β-TCVAE 1.00 0.96 0.28 0.52 0.44 15.11 0.009
CCI-VAE 1.00 0.95 0.13 0.49 0.41 5.60 0.013
FVAE 1.00 1.00 0.01 0.39 0.29 14.06 0.011
InfoVAE 1.00 0.98 0.17 0.48 0.37 11.86 0.014
DIPVAE 1.00 0.96 0.54 0.51 0.43 7.66 0.004
WAE 1.00 0.82 0.06 0.32 0.17 1392.81 0.002
LSBDVAE 1.00 0.94 0.18 0.49 0.41 11.90 0.002
InfoGAN 1.00 1.00 0.16 0.46 0.40 2.19 −
IB-GAN 1.00 0.89 0.21 0.35 0.24 7.28 −
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Table 10. Disentanglement scores for the 3D Teapots dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.89 0.54 0.53 0.0031 0.002
AE 0.89 0.45 0.16 0.16 0.05 23.22 0.001
VAE 1.00 0.77 0.43 0.29 0.20 0.24 0.001
β-VAE 0.93 0.80 0.47 0.29 0.20 0.14 0.001
β-TCVAE 1.00 0.83 0.67 0.35 0.30 0.16 0.001
CCI-VAE 0.91 0.65 0.42 0.35 0.16 0.02 0.003
FVAE 1.00 0.79 0.50 0.32 0.25 0.17 0.001
InfoVAE 1.00 0.73 0.47 0.31 0.23 0.15 0.001
DIPVAE 1.00 1.00 0.84 0.52 0.50 0.13 0.001
WAE 0.78 0.52 0.15 0.15 0.04 0.20 0.001
LSBDVAE 1.00 0.68 0.51 0.33 0.25 0.15 0.001
InfoGAN 1.00 1.00 0.74 0.50 0.51 0.07 −
IB-GAN 1.00 1.00 0.92 0.60 0.60 0.10 −

Table 11. Disentanglement scores for the 3D Shape dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 0.93 0.99 0.87 0.90 0.0013 0.0008
AE 0.95 0.70 0.26 0.19 0.13 0.33 0.0006
VAE 0.96 0.81 0.31 0.27 0.22 0.14 0.0008
β-VAE 1.00 0.94 0.93 0.80 0.82 0.04 0.0022
β-TCVAE 0.89 0.75 0.79 0.77 0.74 0.02 0.0012
CCI-VAE 0.96 0.94 0.72 0.56 0.59 0.08 0.0008
FVAE 1.00 1.00 0.99 0.86 0.88 0.04 0.0007
InfoVAE 0.90 0.80 0.35 0.22 0.16 0.20 0.0007
DIPVAE 0.93 0.79 0.68 0.49 0.52 0.20 0.0007
WAE 0.74 0.45 0.09 0.17 0.08 0.14 0.0017
LSBDVAE 1.00 0.92 0.51 0.42 0.40 0.15 0.0006
InfoGAN 1.00 0.80 0.80 0.59 0.66 0.12 −
IB-GAN 0.62 0.32 0.02 0.18 0.03 0.04 −
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Table 12. Disentanglement scores for the 3D Face Model dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 1.00 0.65 0.48 0.47 0.02 0.004
AE 0.69 0.47 0.10 0.19 0.05 100.60 0.003
VAE 1.00 0.69 0.47 0.34 0.20 0.47 0.002
β-VAE 1.00 0.92 0.60 0.52 0.44 0.34 0.005
β-TCVAE 1.00 0.92 0.59 0.53 0.47 0.37 0.005
CCI-VAE 1.00 0.90 0.61 0.53 0.44 0.31 0.002
FVAE 1.00 0.64 0.49 0.35 0.22 0.39 0.003
InfoVAE 1.00 0.90 0.57 0.50 0.38 0.44 0.002
DIPVAE 1.00 0.69 0.54 0.36 0.29 0.37 0.003
WAE 1.00 0.78 0.20 0.20 0.13 0.39 0.006
LSBDVAE 1.00 0.88 0.61 0.54 0.43 0.46 0.002
InfoGAN 1.00 0.95 0.62 0.53 0.54 0.16 −
IB-GAN 1.00 0.82 0.52 0.41 0.35 0.31 −

Table 13. Disentanglement scores for the Sprites dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (× 1
100

) ↓ MSE ↓
DAE 1.00 0.90 0.70 0.59 0.55 0.005 0.010
AE 0.86 0.57 0.11 0.15 0.10 30.98 0.008
VAE 0.79 0.47 0.18 0.20 0.13 0.18 0.008
β-VAE 0.99 0.77 0.54 0.51 0.43 0.08 0.011
β-TCVAE 0.98 0.75 0.53 0.56 0.42 0.02 0.013
CCI-VAE 0.95 0.71 0.35 0.33 0.28 1.09 0.012
FVAE 0.93 0.64 0.48 0.40 0.37 0.05 0.008
InfoVAE 0.85 0.55 0.34 0.27 0.25 0.20 0.008
DIPVAE 0.81 0.53 0.46 0.35 0.33 0.19 0.007
WAE 0.68 0.35 0.08 0.11 0.04 0.17 0.007
LSBDVAE 0.85 0.57 0.36 0.31 0.31 0.22 0.007
InfoGAN 0.73 0.33 0.07 0.17 0.07 0.11 −
IB-GAN 0.67 0.38 0.09 0.13 0.07 0.11 −
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Table 14. Performance effects when removing the Euler encoding (E) or the normalization layer (N)
Datasets XY XY C XY S XY CS

Metrics/Models DAE w/o E w/o N DAE w/o E w/o N DAE w/o E w/o N DAE w/o E w/o N

z-diff ↑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82
z-var ↑ 1.00 1.00 1.00 1.00 0.68 0.58 1.00 0.80 0.36 1.00 0.82 0.17
dci-rf ↑ 0.99 0.59 0.95 0.99 0.44 0.26 0.99 0.54 0.11 0.96 0.57 0.07
jemmig ↑ 0.81 0.38 0.71 0.91 0.50 0.27 0.86 0.48 0.20 0.81 0.47 0.15
dcimig ↑ 0.80 0.33 0.70 0.91 0.63 0.27 0.87 0.61 0.19 0.83 0.59 0.06
GF (× 1

100
) ↓ 0.21 1.00 0.86 0.01 0.07 0.48 0.07 0.21 2.07 0.01 0.21 0.59

Datasets 2D Arrow 3D Airplnae 3D Teapots

Metrics/Models DAE w/o E w/o N DAE w/o E w/o N DAE w/o E w/o N

z-diff ↑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
z-var ↑ 0.85 0.65 0.57 1.00 1.00 0.40 1.00 0.81 0.92
dci-rf ↑ 0.88 0.04 0.00 0.80 0.00 0.00 0.89 0.43 0.62
jemmig ↑ 0.80 0.19 0.25 0.79 0.35 0.13 0.54 0.22 0.40
dcimig ↑ 0.79 0.53 0.19 0.75 0.27 0.12 0.53 0.16 0.31
GF (× 1

100
) ↓ 0.30 6.73 1213204.08 0.28 1.97 143594.36 0.0031 0.16 0.32

Datasets 3D Shape 3D Face Model Sprites

Metrics/Models DAE w/o E w/o N DAE w/o E w/o N DAE w/o E w/o N

z-diff ↑ 1.00 0.99 1.00 1.00 0.87 0.90 1.00 0.92 0.85
z-var ↑ 0.93 0.81 0.92 1.00 0.70 0.74 0.90 0.56 0.57
dci-rf ↑ 0.99 0.43 0.62 0.65 0.65 0.62 0.70 0.22 0.46
jemmig ↑ 0.87 0.22 0.40 0.48 0.53 0.50 0.59 0.25 0.41
dcimig ↑ 0.90 0.16 0.31 0.47 0.61 0.47 0.55 0.14 0.29
GF (× 1

100
) ↓ 0.0013 0.16 0.32 0.02 0.47 0.44 0.005 0.01 0.12
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A.7. Hyperparameters

Table 15. S̄ values for different datasets
Dataset S̄

XY [1.0, 1.0]
XY C [1.0, 1.0, 0.8]
XY S [1.0, 1.0, 0.8]
XY CS [1.0, 1.0, 0.8, 0.8]
2D Arrow [1.0, 1.0]
3D Airplane [1.0, 1.0]
3D Teapots [1.0, 0.8, 0.8, 0.4, 0.3, 0.3]
3D Shape [1.0, 1.0, 1.0, 1.0, 0.5, 0.5]
3D Face Model [1.0, 0.4, 0.4, 0.3]
Sprites [1.0, 0.8, 0.7, 0.7, 0.7, 0.6]
Blood Cell [1.0, 0.6, 0.4]

Table 16. All hyperparameters for models.
Model Values for XY CS dataset Extra values for the other datasets

DAE (α) [1.0, 0.5, 0.1, 0.05, 0.01] −
β-VAE (β) [2, 4, 8, 16, 32, 64, 128] −
β-TCVAE (β) [2, 4, 8, 16, 32, 64, 128] −
CCI-VAE (C) [100, 500, 1000] [50.0]
FVAE (γ) [1, 5, 10, 20, 30, 40, 50] −
InfoVAE (λ) [[100, 500, 1000] [50.0, 2000.0]
DIPVAE (λ) [1, 2, 5, 10, 20, 50, 100] −
WAE (λ) [1, 5, 10, 20, 30, 40, 50] −
LSBD (λ) [1, 10, 100] −

Table 17. Best hyperparameters for models for the 2D datasets.
Model / Dataset XY XY C XY S XY CS 2D Arrow Sprites Blood Cell

DAE (α) 1.0 0.001 0.001 0.01 0.5 0.05 0.005
β-VAE (β) 16 32 64 16 16 16 2
β-TCVAE (β) 32 128 128 32 8 16 16
CCI-VAE (C) 500 100 100 100 50 50 20
FVAE (γ) 1 40 1 500 40 10 5
InfoVAE (λ) 100 20 1 500 50 500 50
DIPVAE (λ) 50 100 2 100 20 5 2
WAE (λ) 1 20 40 50 10 20 1
LSBD (λ) 100 1 1 1 10 1 10

Table 18. Best hyperparameters for models for the 3D datasets.
Model / Dataset 3D Airplane 3D Teapots 3D Shape 3D Face Model

DAE (α) 0.05 0.01 0.01 0.05
β-VAE (β) 16 6 64 16
β-TCVAE (β) 16 6 32 32
CCI-VAE (C) 500 50 100 100
FVAE (γ) 20 1 5 1
InfoVAE (λ) 50 50 100 2000
DIPVAE (λ) 100 20 1 2
WAE (λ) 5 10 50 50
LSBD (λ) 10 100 10 10
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A.8. Encoder and Decoder architectures

Table 19. Architecture for the 2D Toy Dataset
Encoder Decoder

Input 84×84×1 image 3×3 1 Conv ↓, Sigmoid
10×10 8 Conv ↓, BN, LReLU 10×10 1 Conv ↑, BN, LReLU
10×10 16 Conv ↓, BN, LReLU 10×10 8 Conv ↑, BN, LReLU
FC 64 FC 256, LReLU
FC The number of features FC 64, LReLU

Table 20. Architecture for the 2D Arrow and 3D Airplane Datasets
Encoder Decoder

Input 64×64×3 image 3×3 1 Conv ↓
4×4 32 Conv ↓, BN, LReLU 4×4 1 Conv ↑, BN, LReLU
4×4 32 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 64 Conv ↑, BN, LReLU
FC 256 FC 1024, LReLU
FC 2 FC 256, LReLU

Table 21. Architecture for the 3D Teapots and Sprites Dataset
Encoder Decoder

Input 64×64×3 image 3×3 1 Conv ↓
4×4 32 Conv ↓, BN, ReLU 4×4 3 Conv ↑, BN, ReLU
4×4 32 Conv ↓, BN, ReLU 4×4 32 Conv ↑, BN, ReLU
4×4 64 Conv ↓, BN, ReLU 4×4 32 Conv ↑, BN, ReLU
4×4 64 Conv ↓, BN, ReLU 4×4 64 Conv ↑, BN, ReLU
FC 128 FC 1024, LReLU
FC 6 FC 128, LReLU

Table 22. Architecture for the 3D Shape Dataset
Encoder Decoder

Input 64×64×3 image 3×3 1 Conv ↓, Sigmoid
4×4 32 Conv ↓, BN, LReLU 4×4 3 Conv ↑, BN, LReLU
4×4 32 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 64 Conv ↑, BN, LReLU
FC 256 FC 1024, LReLU
FC 6 FC 256, LReLU

Table 23. Architecture for the 3D Face Model Dataset
Encoder Decoder

Input 64×64×1 image 3×3 1 Conv ↓, Sigmoid
4×4 32 Conv ↓, BN, LReLU 4×4 1 Conv ↑, BN, LReLU
4×4 32 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 64 Conv ↑, BN, LReLU
FC 128 FC 1024, LReLU
FC 4 FC 128, LReLU
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A.9. System and Model Configurations

All of our experiments were run on a single hardware consisting two DGX2 nodes, collectively consisting of 32-V100 GPUs,
1.5GB GPU RAM, and 3TB System RAM. Encoder and decoder architecture are the same in all experiments. Encoder has
two convolutional layers followed by Batch Normalization layer and LeakyReLU activation. After convolutional layers,
there is one fully-connected layer with 64 nodes and another layer which maps to the latent space. The decode part is
symmetric to the encoder part. C for CCI-VAE is set as 25 for 2D Toy dataset and as 50 for all other datasets.

A.10. Dataset

1. 2D Toy Dataset: This dataset has objects with three shapes (S) (a circles, a rectangles and a diamonds), and variations
to their x and y positions and color information (more specifically, the brightness). This is a rather small, but very
effective, dataset. There are 53 unique x positions (X), 53 unique y positions (Y ) and 5 colors (C). We create XY ,
XY C, XY S and XY CS sub-datasets to show the differences of the latent space when the combination of categorical
and continuous factors are presented.

2. 2D Arrow Dataset (Tonnaer et al., 2022): This dataset has 4096, three-channel RGB, 64 × 64 × 3 images of a 2D
object (arrow) with ground truth factors of 64 colors and 64 fixed in-plane rotations.

3. 3D Airplane Dataset (Tonnaer et al., 2022): This dataset also has 4096, three-channel RGB, 64× 64× 3 images of a
3D object (airplane within the ModelNet40 dataset (Wu et al., 2015)) with ground truth factors of 64 colors and 64
rotations with respect to a vertical axis.

4. 3D Teapots Dataset (Eastwood & Williams, 2018): This dataset has 200, 000, three-channel RGB, 64 × 64 × 3
images of a 3D object (teapot) with ground truth factors of independently sampled from its respective distribution:
azimuth ∼ U [0, 2π], elevation ∼ U [0, π/2], and three colors, namely, red (R), green (G) and blue (B), sampled with
R ∼ U [0, 1], G ∼ U [0, 1], and B ∼ U [0, 1]. This dataset is very effective to evaluate model when all factors are
independently from the uniform distributions.

5. 3D Shape Dataset (Burgess & Kim, 2018): This dataset has 480, 000, three-channel RGB, 64× 64× 3 images of 3D
objects with ground truth factors of four shapes, eight scales, 15 orientations, 10 floor color, 10 wall colors, and 10
object colors.

6. 3D Face Model Dataset (Paysan et al., 2009): This dataset has 127, 050, gray-scale, 64× 64 images of 3D faces with
ground truth factors of 50 different face ids, 21 azimuth, 11 elevation and 11 lighting conditions.

7. Sprites Dataset (Reed et al., 2015): This dataset has 93, 312, 64× 64× 3 images from 1296 unique characters with
ground truth factors of the colors of hair, tops, body, bottom, directions and actions.

8. Blood Cell Dataset (Acevedo et al., 2020): This dataset has 17, 092, 360× 364× 3 images of eight types of normal
peripheral blood cells. We used the 28× 28× 3 resized dataset followed by Yang et al. (2021).
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A.11. Reconstructions of latent traversals across each latent dimension
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Figure 4. Reconstructions of latent traversals across each latent dimension in the XY CS dataset.
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Figure 5. Reconstructions of latent traversals across each latent dimension in the 2D Arrow dataset.
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Figure 6. Reconstructions of latent traversals across each latent dimension in the 3D Airplane dataset.
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Figure 7. Reconstructions of latent traversals across each latent dimension in the 3D Teapots dataset. Due to the space limit, we omit the
result from AE, VAE, CCI-VAE, InfoVAE and WAE, which have low scores in 3D Teapots dataset.
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Figure 8. Reconstructions of latent traversals across each latent dimension in the 3D Shape dataset. Due to the space limit, we omit the
result from AE, VAE, InfoVAE, LSBDVAE and WAE, which have low scores in 3D Shape dataset.
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Figure 9. Reconstructions of latent traversals across each latent dimension in the 3D Face Model dataset. Due to the space limit, we omit
the result from AE, which have low scores in 3D Shape dataset.
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Figure 10. Reconstructions of latent traversals across each latent dimension in the Sprites dataset. Due to the space limit, we omit the
result from AE, VAE, InfoVAE, LSBDVAE and WAE. The ground truth factors are the color of hair, tops, body, bottom and actions.
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Figure 11. Reconstructions of latent traversals across each latent dimension in the Blood Cell dataset. Some of the models independently
learn size and shape of blood cells. For example, for DAE, the first dimension in the latent space corresponds to the size of cells and the
second and the third dimensions correspond to changes in shape in different directions.
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Figure 12. Disentanglement scores with the XY dataset with respect to hyperparameters. For DAE, w1 and w2 obtained by Algorithm 1
are the same in this dataset. Hence, the desirable value for both w1 and w2 is 1. The result shows that when α, lower than 0.05, is
assigned to the second dimension, the disentanglement scores also become lower.
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Figure 13. Disentanglement scores with the XY C dataset with respect to hyperparameters.

34



Orthogonality-Enforced Latent Space in Autoencoders: An Approach to Learning Disentangled Representations

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of DAE

2.0 4.0 8.0 16.0 32.0 64.0 128.0

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of VAE

2.0 4.0 8.0 16.0 32.0 64.0 128.0

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of TCVAE

50.0 100.0 500.0 1000.0
0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of CCI VAE

1.0 5.0 10.0 20.0 30.0 40.0 50.0
0.2

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
di-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of FVAE

1.0 5.0 10.0 20.0 30.0 40.0 50.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of InfoVAE

1.0 2.0 5.0 10.0 20.0 50.0 100.0

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of DIPVAE

1.0 5.0 10.0 20.0 30.0 40.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of WAE

1.0 10.0 100.0

0.4

0.6

0.8

1.0

Sc
or

e

z-diff
z-min-var
dci-rf
jemmig
dcimig

0.000

0.005

0.010

0.015

0.020

M
SE

 lo
ss

Disentanglement scores for XYS dataset of LSBDVAE

Figure 14. Disentanglement scores with the XY S dataset with respect to hyperparameters.
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Figure 15. Disentanglement scores with the XY CS dataset with respect to hyperparameters.
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