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ABSTRACT

Recent advances in reinforcement learning (RL) have delivered strong reasoning
capabilities in natural image domains, yet their potential for Earth Observation
(EO) remains largely unexplored. EO tasks introduce unique challenges, spanning
referred object detection, image/region captioning, change detection, grounding,
and temporal analysis, that demand task-aware reasoning. We propose a novel
post-training framework that incorporates task-aware rewards to enable effective
adaptation of reasoning-based RL models to diverse EO tasks. This training strat-
egy enhances reasoning capabilities for remote-sensing images, stabilizes opti-
mization, and improves robustness. Extensive experiments across multiple EO
benchmarks show consistent performance gains over state-of-the-art generic and
specialized vision–language models. Code and models will be released publicly.

1 INTRODUCTION

Recent advances in remote sensing vision–language models (RS-VLMs) show strong performance
on high-resolution Earth Observation (EO) imagery (Hu et al., 2023; Soni et al., 2025; Irvin et al.,
2024; Zhan et al., 2024). However, these gains come with shallow reasoning: models rely heav-
ily on text priors (Bleeker et al., 2024) and supervised finetuning (SFT) without chain-of-thought
reasoning, leading to poor generalization. Early attempts with Reinforcement Learning (RL) as
a post-training mechanism, such as UAV-VL-R1 (Guan et al., 2025), remain confined to visual
question-answering (VQA) tasks only and perform poorly on broader EO tasks like detection, cap-
tioning, grounding, or disaster assessment (Soni et al., 2025). While RL offers the promise of
reward-driven reasoning, existing approaches in EO receive weak and task-agnostic reward signals,
making them vulnerable to reward hacking (Fu et al., 2025) and unable to capture the structured,
multi-step reasoning demanded by complex EO scenarios (Li et al., 2025). A key challenge is thus
building EO-VLMs that can reason robustly across complex and diverse tasks.
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Figure 1: Comparison of recent generic and spe-
cialized VLMs over diverse EO tasks. GeoVLM-
R1 shows favorable improvements across classifi-
cation, detection, and captioning tasks.

To address these challenges, we introduce
GeoVLM-R1, a RL framework that enhances
geospatial VLM reasoning while remaining
flexible, scalable, and easy to extend across
diverse EO tasks. To this end, our approach
builds on group relative policy optimization
(GRPO) (Shao et al., 2024) rather than standard
proximal policy optimization (PPO) (Schul-
man et al., 2017) or direct preference optimiza-
tion (DPO) (Rafailov et al., 2023), leveraging
group-wise relative advantages to reduce train-
ing variance and improve structured reasoning.
Central to GeoVLM-R1 is a dual-objective re-
ward design: (i) accuracy compliance, ensur-
ing semantic correctness, and (ii) format com-
pliance, enforcing interpretable, structured out-
puts. Specifically, we introduce a task-aware
accuracy reward mechanism that is designed to
select a specific reward for each downstream
EO task. For instance, in grounding-description
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tasks that require both object detection and textual explanation, simple similarity matching is insuf-
ficient; instead, we integrate bounding-box IoU with semantic alignment to jointly reward based
on detection and description quality. Analogous task-specific rewards are defined for classification,
change detection, captioning, and disaster assessment, ensuring targeted skill acquisition without
degrading existing competencies for the EO tasks.

Our experimental results demonstrate the effectiveness of GeoVLM-R1 on multiple challenging EO
tasks, as shown in Fig. 1. In particular, our method obtains a consistent improvement, highlighting
the benefits of task-specific rewards, indicating robustness across EO tasks. The key contributions
are summarized below:

• We develop GeoVLM-R1, a post-training RL framework tailored for reasoning capabilities
in diverse EO tasks.

• We propose a novel dual-objective reward mechanism within GRPO, that introduces both
format and correctness compliances, enhancing stable RL learning while producing accu-
rate, structured, and interpretable reasoning paths.

• Experimental results on 28 downstream benchmarks show that our method performs well
compared to existing VLMs and achieves better performance.

2 RELATED WORK

Remote Sensing VLMs: Recent advances in aligning visual and language data for remote sensing
(RS) have led to the emergence of powerful Earth Observation (EO) vision–language models. RS-
GPT (Hu et al., 2023) was the first to introduce an EO image–text paired dataset, enabling tasks
such as image captioning and visual question answering (VQA). RemoteCLIP (Liu et al., 2024b)
demonstrated strong zero-shot performance on classification and image–text retrieval. Models such
as GeoChat (Kuckreja et al., 2024), SkyEyeGPT (Zhan et al., 2024), LHRS-Bot (Muhtar et al.,
2024), and SkysenseGPT (Luo et al., 2024) extended these capabilities to region-level visual ground-
ing through instruction-tuned, region-centric datasets and enhancing language understanding with
LLMs. GeoPixel (Shabbir et al., 2025) further pushes the boundary to enable pixel-level ground-
ing for the EO imagery. Beyond optical data, multimodal systems like EarthGPT (Zhang et al.,
2024), EarthDial (Soni et al., 2025), and EarthMind (Shu et al., 2025) incorporated heterogeneous
EO modalities for more comprehensive understanding. Despite these advances, current EO VLMs
remain heavily reliant on supervised fine-tuning (SFT) and contrastive learning objectives (Khosla
et al., 2020; Mall et al., 2023), which limits their robustness and restricts their reasoning capability.

VLM Post-training: Explicit post-training alignment techniques have been used to enhance
general-purpose multimodal capabilities of VLMs, including prompt tuning (Liu et al., 2023; Zhu
et al., 2023; Sheng et al., 2025) and reinforcement learning (RL) strategies (Huang et al., 2025; Shen
et al., 2025; Guo et al., 2025). Among these, DPO (Rafailov et al., 2023) and PPO (Schulman et al.,
2017) are widely adopted (Achiam et al., 2023; Chen et al., 2025; Tan et al., 2025; Deng et al.,
2025b), where reward design plays a central role in guiding models toward producing coherent and
structured outputs. However, traditional RL methods often suffer from high variance and unstable
policy updates, particularly in complex structured reasoning tasks. To mitigate these challenges,
group relative policy optimization (GRPO) (Shao et al., 2024), introduced in DeepSeek-R1 (Guo
et al., 2025), leverages intra-group reward differences to stabilize training and improve structured
reasoning (Peng et al., 2025; Tan et al., 2025; Deng et al., 2025a; Shen et al., 2025). However, the
current reasoning models mainly focus on mathematical, coding, and general computer vision tasks,
overlooking the potential of RL strategies in remote sensing tasks. An exception is UAV-VL-R1
(Guan et al., 2025), which applies RL to unmanned aerial vehicle imagery but is restricted to visual
question answering (VQA). In contrast, the EO data encompasses a far broader spectrum of complex
tasks in multi-sensory inputs (e.g., detection, captioning, grounding, change detection, and temporal
analysis) that require more sophisticated post-training strategies capable of producing effective and
interpretable reasoning paths.
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GRPO OptimizationEarth Observation Task

Identify the 2 white 
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Update

Policy 
Model

<think>...</think>
<answer>...</answer>  

<think>...</think>
<answer>...</answer>  

<think>...</think>
<answer>...</answer>  

Aggregate Reward

Warm Up

Policy Model

Object Detection

QuestionQuestionQuestion

Image Captioning

Grounding 
Description

Image Captioning

Visual Question 
Answering

Change Detection Region Captioning

GeoVLM-R1 Model
RL Model Output: <think>First we need to focus on the key visual cues in satellite 
imagery. Usually, Passenger-ships are large, elongated, and bright (white) objects, often 
have smooth linear structures contrasting the darker surrounding water. By looking two 
close elongated bright objects in center region seems like the ships, these could be 
identified as 2 passenger-ships. </think>

<answer>[177,235,241,253,22],[238,258,300,276,22]</answer>

Figure 2: Illustration of the overall proposed training paradigm for GeoVLM-R1. The model is
first initialized via supervised fine-tuning using diverse earth observation tasks. It is then succes-
sively optimized using GRPO-based reinforcement learning (RL) for each task. The GeoVLM-R1
processes queries and outputs a structured format that comprises an interpretable reasoning trace
(<think>...</think>) and a final prediction (<answer>...</answer>).

3 METHOD

We propose GeoVLM-R1, a RL framework designed to enhance structured reasoning for complex
EO tasks. Our method adopts a two-stage training paradigm (Fig. 2), combining supervised fine-
tuning (SFT) with R1-style post-training based on GRPO (Shao et al., 2024). In the first stage, SFT
equips the model with core EO knowledge and baseline reasoning ability by training across diverse
tasks such as referred object detection, grounding, region captioning, classification, and temporal
change detection. However, SFT alone yields shallow reasoning, often failing under complex multi-
step EO queries. To address this limitation, we introduce a task-aware RL stage, where GRPO
stabilizes optimization by exploiting relative advantages among candidate responses, while a dual-
objective reward mechanism that enforces both semantic accuracy and structured interpretability
that guides the model toward generating explicit reasoning traces before final predictions. This
joint design allows GeoVLM-R1 to produce robust and interpretable reasoning paths that generalize
effectively across diverse EO scenarios. We explain these training stages below.

3.1 SFT-BASED REASONING ACTIVATION

Given an EO multimodal sample Qi = {i, qi} consisting of a satellite image i and corresponding
text prompt qi, the SFT training objective is to maximize the conditional likelihood of generating
the target sequence yi, which contains both reasoning steps and the final answer:

LSFT(πθ) = −E(i,qi,yi)∼D

[
T∑

t=1

log πθ(yi,t | i, qi, yi,<t)

]
, (1)

where D represents the training dataset, πθ denotes the model with parameters θ, and yi,<t repre-
sents the sequence of tokens generated before position t for sample i. The resulting fine-tuned model
πsft serves as a foundation for the subsequent reinforcement learning stage, ensuring the model has
acquired fundamental EO domain knowledge and reasoning capabilities.

3.2 RL-BASED REASONING ENHANCEMENT

After SFT, we focus on enhancing the model’s structured reasoning capabilities by leveraging anal-
ogous task-specific reward mechanisms through reinforcement learning. In contrast to traditional
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RL-Based Reasoning Enhancement

Policy 
Update

Reference 
Model   

KL Divergence

Policy Gradient Update

Candidate Response

GRPO

Reward Mechanism
Format Reward

Reward Mechanism

Task-Aware 
Accuracy 
Reward

Format Reward

Prompt: You are an expert in Earth Observation 
reasoning. Analyze the problem carefully and 
provide step-by-step reasoning and the final 
response. Ensure your reasoning process and 
response are within tags such as 
<think>...</think> and <answer>...</answer>, 
respectively. Keep your explanation clear, logical, 
and concise.

<> { Reasoning Process Here } <> 
 <> { Final Answer Here }<answer> 

Task-Aware Accuracy Reward

Grounding 
Description

Change 
Detection

Visual Question 
Answering

Region 
Captioning

Object 
Detection

Scene 
Classification

Object Detection
Question: Give me the location of two plans on the left in the 
remote sensing image.

Standard Reward:  <answer> [120, 109, 187, 
262, 15] </answer> 

Temporal Change Detection
Question:  Are there any semantic change detected in the 
provided images?

Standard Reward:  <answer> The two 
images are identical. </answer> 

Reasoning: :  <think>  By looking at the 
two images, it can be seen that there are 
roads and bareland in first image, 
whereas in the second image two 
rectangular buildings appear along with 
roads. These traces indicate construction 
activity. So once can conclude them as 
new buildings are constructed in the 
second image. </think> 

𝑻𝟎

𝑻𝟏

Visual Question Answering
Question: Are there more residential buildings than roads 
in the remote sensing image?

Jaccard Reward:  <answer> Yes </answer> 

Reasoning: :  <think>  While 
observing the urban scene in the 
image, there exist a dense cluster of 
rectangular structures representing 
residential buildings. It is visible that 
there are less the road network 
visible. Since the building structure 
appearance exceeds the number of 
distinct road regions, the answer is 
yes. </think> 

Disaster Object Detection
Question:  Are there any semantic change detected in the 
provided images?

Reasoning: :  <think>  It is noticeable 
from the pre- and post-event images that 
fire event happened. Once can observe 
from fire event traces that most 
buildings remain intact except for one at 
the bottom in the post-disaster image, 
which indicate signs of fire damage and 
structural loss. The localized building at 
bottom corresponds to this destroyed 
building. </think> 

𝑷𝒓𝒆

𝑷𝒐𝒔𝒕

<think> { Reasoning Process Here }</think> 
<answer> { Final Answer Here  }</answer> 

Detection Reward:  <answer> [116, 309, 179, 
363, 58], [161, 381, 197, 417, 59] </answer> 

Standard Reward:  <answer> No </answer> 

HSLR Reward:  <answer> Two buildings 
surrounded by roads show up on the bareland. 
</answer> 

Detection Reward:  <answer> [242, 336, 260, 
345 ,0] </answer> 

Standard Reward:  <answer> [145, 236, 135, 
160, 0] </answer> 

Reasoning: :  <think>  Analyzing the 
image, we notice that there are few 
road and buildings structures 
occupying most of the image, forming 
an urban environment. In the bottom-
left, there two small bright shapes 
objects with symmetric extensions 
like wings, and different from the 
urban structures. These objects can 
be identified as airplanes. </think> 

Figure 3: Overall pipeline of GeoVLM-R1 policy update mechanism (left). During fine-tuning, the
GRPO module generates multiple candidate responses. These responses are evaluated, and each is
assigned a distinct reward equipped with our reward mechanism. In particular, our reward mecha-
nism comprises (i) a format reward to enforce structural compliance and (ii) a task-aware accuracy
reward to ensure accuracy compliance. We present a few examples showcasing GeoVLM-R1 using
a unique task-aware accuracy reward function, resulting in better performance (right).

PPO, which requires an additional critic model to estimate policy performance and incurs high com-
putational cost, we employ GRPO that mitigates the need for a separate critic by directly utilizing
relative rewards among candidate responses, making it particularly effective for structure-aware and
constraint-driven visual reasoning tasks.

Given a multimodal sample Qi, GRPO generates a group of K candidate responses SQi
=

{s1, s2, . . . , sK} from the old policy model πθold . The current policy model πθ is then optimized
using the following objective:

JGRPO(θ) = E{si}Ki=1∼πθold
(Qi)

[
1

K

K∑
i=1

min
[
ρi Ai, clip(ρi, 1− ϵ, 1 + ϵ)Ai

]
− β DKL[πθ∥πref]

]
(2)

ρi =
πθ(si|Qi)

πθold(si|Qi)
, DKL[πθ∥πref] = Es∼πθ

[
log

πθ(s|Qi)

πref(s|Qi)

]
(3)

where the policy ratio ρi controls the update step size, ϵ denotes the clipping threshold, and β
controls the strength of the KL penalty (Schulman et al., 2015; 2017) that prevents πθ from de-
viating excessively from the reference model πref. For each candidate response si, an analogous
task-specific reward function ri = R(Qi, si) quantifies the quality of the candidate response in the
context of the given sample. GRPO computes the relative advantage Ai for candidate response si
compared to other responses as:

Ai =
ri − r̄

σr
(4)

where r̄ = 1
K

∑K
j=1 rj is the mean reward and σr =

√
1
K

∑K
j=1(rj − r̄)2 is the standard deviation

across all candidate responses. This normalization process reduces reward variance across samples,
thereby stabilizing training and enhancing the robustness of policy gradient estimation.

3.3 TASK-AWARE REWARD DESIGN FOR VISUAL REASONING

Inspired by recent progress in applying RL to enhance reasoning capabilities (Shao et al., 2024; Shen
et al., 2025), we adopt an RL-based post-training strategy to enhance the reasoning capabilities of
the policy model. In contrast to mathematics and coding tasks where ground-truth is well-defined,
the EO data samples pose unique challenges in reward design for various tasks. Therefore, as can
be seen in Fig. 3, we have a sophisticated reward mechanism, enabling effective RL in EO rea-
soning contexts. To generate structurally coherent and semantically accurate reasoning outputs, we
introduce format and task-aware accuracy rewards to better guide reasoning optimization.
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Table 1: Summary of QA instruction pairs and reward functions used in GRPO optimization across
diverse Earth Observation tasks.

Dataset Temporal Task # QA Pairs Task-Aware Accuracy Rewards
BigEarthNet (Sumbul et al., 2019) Single Classification 30,000 Recall
RSCIS (Lu et al., 2017) Single Image Captioning 43,670 Levenshtein Similarity Ratio
RSVQA-LRBEN (Lobry et al., 2020) Single Visual Question Answering 57,223 Jaccard
GeoChat-Instruct (Kuckreja et al., 2024) Single Region Captioning 69,269 SBERT
GeoChat-Instruct (Kuckreja et al., 2024) Single Referred Object Detection 73,000 Detection
GeoChat-Instruct (Kuckreja et al., 2024) Single Grounding 69,269 Lexical-Metric-based Grounding Reward
xBD (Gupta et al., 2019) Bi-Temporal Referred Object Detection 4,202 Detection
xBD (Gupta et al., 2019) Bi-Temporal Object Detection 2,283 Detection
LEVIR-MCI (Liu et al., 2024a), DUBAI-CC1, MUDS (Yang et al., 2024) Bi-/Multi-Temporal Change Detection Caption 352,825 Hybrid SBERT and Lexical-Metric
FMoW (Irvin et al., 2024) Multi-Temporal Classification 83,412 Accuracy

Format Reward: The objective of format reward (Rformat) is to make sure that the model’s output
adheres to a predefined structured format. It comprises (i) think reward, intending to think deeply
before answering and constrain the model to have <think>t</think> tags, where t is the language
reasoning, and (ii) an answer reward to generate the final answer a having <answer>a</answer>
tags. If both reward tags are included in the response, the reward is 1; otherwise, it is 0.

Task-aware Accuracy Reward: The goal of this reward (Rtask acc) is to quantify the semantic cor-
rectness of the content (a) within the <answer></answer>, matches with the ground-truth answer
gi. Hence, the total reward is defined as: R(a) = Rformat +Rtask acc, where Rtask acc ∈ [0, 1]. Table 1
presents datasets, tasks, the number of question-answer pairs for each task, and the reward functions
used for each task during RL process. Now, we present the details of task-aware accuracy reward
functions.

Recall Reward: We employ recall as a reward function in RL fine-tuning of a vision-language
model for the classification task. It is important to detect rare but critical instances, particularly
in disaster assessment scenarios. To encourage the sensitivity to correct positive predictions for
classification tasks, we define a recall reward as: RRecall =

TP
TP+FN , where TP is the number of true

positives and FN is the number of false negatives.

Sentence-BERT (SBERT) Reward: The region-captioning task describes the complex visual con-
tent, demanding the model to output key semantic elements (category, color, relative size, relative
location, position) even if phrased differently. To capture the semantic fidelity between the candidate
response and ground truth strings, we employ a Sentence-BERT (SBERT)-based reward function
(Reimers & Gurevych, 2019). We encode each string into a fixed-dimensional embedding such that
semantically similar strings exhibit high cosine similarity. Let esi and egi represent the embed-
dings of the candidate response and ground truth string, respectively. The SBERT reward is defined
as: RSBERT = max (0, cos(esi , egi)) = max

(
0,

esi
·egi

∥esi
∥ ∥egi

∥

)
, where cos(·, ·) represents the cosine

similarity function. Since cosine similarity ranges from −1 to 1, we apply a rectified linear trans-
formation to ensure RSBERT ∈ [0, 1], which prevents negative rewards and maintains compatibility
with our RL objectives.

Detection Reward: To evaluate the precise spatial accuracy for the object detection task,
where the model outputs a rotated bounding box, we formulate the reward function based on
the Intersection-over-Union (IoU) between the candidate response and the ground-truth rotated
bounding box. We compute the final reward by computing a matching reward by pairing each
ground truth bounding box with the best-overlapping predicted bounding box as: RDetection =
1
N

∑N
n=1 maxm IoU(si

m, gi
n), where N is the total number of ground truth. This reward encour-

ages the RL model to generate bounding boxes that closely match the ground truth bounding boxes.

Lexical-Metric-based Grounding Reward (LMGR): The grounding description task comprises
both object detection and text description, which requires a hybrid reward function to force the RL
model to learn both object detection as well as textual description, aligning semantically. Using
detection reward alone ignores the quality of text description and vice versa, leading to performance
degradation. For spatial accuracy, we use RDetection. For semantic correction, to evaluate the lexical
accuracy and informativeness of the string, we employ an average of Rouge-1 (R1), Rouge-L (RL),
and Meteor (MT) metrics. The reward is defined as: RLM = αR1+β RL+γ RMT

3 where α, β, and γ are
set to 1. Finally, we combine RDetection and RLM to encode the spatial grounding and lexical fidelity,
and it can be expressed as RLMGR = RLM+RDetection

2 .

Levenshtein Similarity Ratio (LR) Reward: The image caption task requires the model to pro-
vide a sequence-level similarity, which is structured and worded to human references. Therefore,

5
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Model AID (ZS) UCMerced (ZS) WHU-19 (ZS) BigEarthNet xBD Set 1 (Temporal) FMoW (Temporal)

GPT-4o 74.73 88.76 91.14 49.00 67.95 21.43
InternVL-8B Chen et al. (2024) 60.40 58.23 79.30 19.73 51.44 21.04
Qwen2.5-VL-3B Bai et al. (2025) 58.27 60.86 78.21 24.75 51.44 34.36
GeoChat Kuckreja et al. (2024) 72.03 84.43 80.09 20.35 53.32 59.2
EarthDial Soni et al. (2025) 88.76 92.42 96.21 73.03 96.37 70.03

GeoVLM-R1 88.46 97.81 97.91 80.91 98.93 76.93

Table 2: GeoVLM-R1 illustrates a consistent improvement among zero-shot (ZS), multi-label
BigEarthNet, and temporal classification datasets compared to other existing VLMs.

we employ Levenshtein similarity ratio (Po, 2020), where we quantify the similarity between the
candidate response si and ground truth gi, going beyond binary correctness and supporting partial
credit for near matches. The reward function is defined as: RLR = |si|+|gi|−D(si,gi)

|si|+|gi| , where |si| and
|gi| denote the length of strings and D(si, gi) is the Levenshtein distance. The RLR ∈ [0, 1] with a
value of 0 indicates totally dissimilar image captions, and a value of 1 means that two captions are
identical.

Jaccard Similarity Reward: The visual question answering (VQA) task outputs short phrases;
therefore, giving partial credit for answers is important, rather than requiring exact matches. We
employ a Jaccard similarity reward function, which measures the ratio of the intersection to the union
between candidate response and ground truth tokens. It is defined as: RJaccard(si, gi) =

|si∩gi|
|si∪gi| .

Hybrid SBERT and Lexical-Metric Reward (HSLR): Change detection task involves the textual
description between the pre-change and post-change events in the scene. The textual description
indicates the semantic changes that occurred, such as the construction or demolition of roads, build-
ings, or any man-made infrastructure. The RL goal is to align visual observations with their corre-
sponding language expressions. To leverage both semantic fidelity and lexical accuracy, we define a
hybrid reward combining RSBERT and RLM. This hybrid reward is defined as: RHSLR = RSBERT+RLM

2 .

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We select Qwen2.5VL-3B-Instruct (Bai et al., 2025) as our base model due to its promising perfor-
mance on visual-language understanding. We adopt the EarthDial-Instruct (Soni et al., 2025) and
resized the images to 448 × 448 before passing to the model and normalized the rotated bounding
boxes between 0-448 to ensure consistency across the multi-resolution images.
For SFT, we fine-tune the model using 8 A100 GPUs for 2 epochs, setting the batch size to 2 per
device, the learning rate to 1e − 5, weight decay to 0.1, and a warmup ratio of 0.03 under a cosine
learning rate scheduler. For GRPO, we use 4 A100 GPUS and fine-tune for 2 epochs with batch
size = 1, gradient accumulation = 2, bfloat16 precision, temperature to 0.9, KL divergence ratio (i.e.,
β) to 0.04, and learning rate of 1e − 6. Following (Soni et al., 2025), we discuss the results of our
method in a diverse set of applications for RS optical imagery, such as scene classification, region
captioning, refer object detection, grounding descriptions, VQA, image captioning, and temporal
change detection captioning.

4.2 STATE OF THE ART COMPARISONS

Scene Classification: Table 2 compares our method with existing VLMs over diverse scene classi-
fication datasets. We notice that our method shows an improvement over the zero-shot evaluation.
In addition, our method achieves 7.88% improvement compared to recent EarthDial over the large-
scale multi-label BigEarthNet dataset. Moreover, our method shows promising results over temporal
datasets. For instance, our method gains an absolute advantage of 2.56% and 6.9% over xBD test-
set-1 and FMoW datasets, respectively.

Referred Object Detection, Region Captioning, and Grounding Descriptions: In Table 3, we
compare GeoVLM-R1 over three tasks (including referred object detection, region captioning, and
grounding description). For the referred object detection task, our method consistently shows bet-
ter results by a large margin. For example, for multiple object detection, we obtain 21.63% gain
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Referred Object Detection Task Region-Captioning Task Grounding Task
GeoChat-Instruct NWPU VHR-10 (Zero-Shot) GeoChat-Instruct NWPU VHR-10 (Zero-Shot) NWPU VHR-10 (Zero-Shot)

Small Med. Large Single Mult. Small Med. Large Single Mult. Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor @0.5 @0.25 Rouge1 Rouge-L Meteor
GPT-4o - - - - - - - - - - 9.41 7.6 8.02 17.68 11.81 9.63 0.7 6.1 14.72 10.82 9.41
InternVL2-4B 6.3 24.37 37.38 24.96 11.72 7.1 12.68 25.48 22.96 8.1 - - - - - - 10.6 29.87 30.67 29.09 21.92
InternVL2-8B 7.20 23.76 31.99 25.77 9.30 4.26 11.85 20.72 21.66 5.86 10.58 9.06 8.5 11.88 9.63 7.7 - - - - -
GeoChat 2.9 13.6 21.7 16 4.3 2.5 3.2 14.7 13.23 1.9 72.77 72.74 61.9 62.02 62.02 53.31 2.2 15.27 21.46 20.74 21.38
EarthDial 11.43 31.76 39.07 34.29 13.41 11.66 14.21 23.12 25.37 8.9 73.38 73.34 62.72 72.14 72.14 60.01 17.07 41.00 27.05 26.35 23.12

GeoVLM-R1 36.02 54.72 55.03 57.1 35.04 34.44 48.76 64.91 55.97 41.45 75.92 75.9 66.43 72.10 72.10 55.49 38.74 61.45 31.34 30.08 26.10

Table 3: GeoVLM-R1 illustrating a consistent performance gain, indicating better capabilities to
locate objects, across referred object detection, region-captioning, and grounding description tasks.

Model CD Dubai-CC CD LEVIR-MCI CD MUDS CD SYSU (ZS) IC NWPU-Captions IC RSCID-Captions IC RSITMD-Captions (ZS)

Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor Rouge1 Rouge-L Meteor
GPT-4o 8.81 7.45 18.68 10.33 8.4 22.05 14.18 11.02 20.92 16.48 12.32 17.49 19.43 14.86 28.16 20.53 15.59 26.03 18.31 14.22 24.83
InternVL2-4B Chen et al. (2024) 7.31 6.38 21.12 8.88 7.43 22.14 10.25 7.90 17.73 13.27 9.98 14.36 0 0 0 0 0 0 0 0 0
InternVL2-8B Chen et al. (2024) - - - - - - - - - - - - 20.69 15.64 30.18 21.59 16.13 28.17 18.91 14.65 26.02
Qwen2.5-VL-3B Bai et al. (2025) 14.41 13.62 27.59 12.27 10.11 26.11 12.13 9.30 18.22 13.61 10.34 16.06 18.82 14.72 26.79 21.37 16.42 26.53 18.79 15.02 25.05
GeoChat Kuckreja et al. (2024) 14.21 14.19 28.91 17.15 35.42 12.35 12.28 12.23 15.98 13.45 12.02 13.96 14.86 12.54 15.21 13.48 11.59 12.39 13.41 11.50 12.33
EarthDial 31.94 30.66 55.83 33.78 30.47 74.8 28.16 24.03 33.56 18.03 17.42 14.98 45.84 39.96 80.61 33.77 27.61 56.18 26.74 21.72 34.06

GeoVLM-R1 36.60 34.15 61.22 37.85 34.02 73.56 34.07 27.65 45.94 19.64 18.46 15.45 46.94 40.96 82.00 34.64 28.63 56.54 30.62 25.39 39.07

Table 4: Comparison of GeoVLM-R1 over change detection (CD) and image captioning (IC)
datasets. Results indicate better capabilities of our method to generate captions compared to ex-
isting VLMs for both temporal CD and image-captioning datasets. ZS means zero-shot evaluation.

Model Image Captioning Region Classification Image Classification Object Detection Referred Object Detection
Rouge1 Rouge-L Meteor Test Set-1 Test Set-2 Test Set-1 Test Set-2 Test Set-3 mAP@0.5 mAP@0.25 mAP@0.5 mAP@0.25

GPT-4o 14.21 10.35 19.52 51.68 71.62 67.95 75.45 70.41 0.2 2.15 0 0
InternVL2-8B 13.89 10.37 14.92 14.39 58.33 51.44 61.52 51.12 0.6 1.07 0 0.7
Qwen2.5-VL-3B 11.98 8.12 19.94 71.19 59.69 51.44 56.16 41.26 - - - -
GeoChat 14.18 10.67 12.20 25.30 57.65 53.32 52.19 49.51 1.15 7.2 0.2 3.09
EarthDial 87.26 87.26 88.53 53.70 83.09 96.37 82.85 54.01 7.6 21.11 5.1 13.09

GeoVLM-R1 92.26 92.26 93.37 81.36 83.55 98.93 86.39 68.60 38.15 48.13 24.52 34.52

Table 5: We compare GeoVLM-R1 for various tasks on the xBD dataset (temporal). Our method
exhibits substantial progress across the tasks. In particular, our approach shows a notable perfor-
mance gain over object detection and referred object detection tasks, compared to other VLMs.

compared to EarthDial. Our method demonstrates a consistent improvement across the tasks over
GeoChat-Instruct and NWPU VHR-10 datasets. In the case of the region captioning task, our
method obtains better performance compared to other methods over GeoChat-Instruct and compa-
rable performance over the NWPU-VHR-10 dataset. Furthermore, our method presents a promising
performance in the grounding description task, particularly in object detection, where other VLMs
struggle to localize the objects. In short, we notice that our approach shows favorable performance
in these tasks, demonstrating its merits.

Model Presence Comp R/U Avg. Model Presence Comp Avg.
MiniGPTv2 55.16 55.22 39.00 54.96 MiniGPTv2 40.79 50.91 46.46
Qwen2-VL 38.57 67.59 61.00 55.35 Qwen2-VL 66.44 60.41 63.06
InternVL2-8B 58.54 72.28 71.00 66.51 InternVL2-8B 67.35 76.91 72.70
Qwen2.5-VL-3B 59.59 75.04 63.00 68.40 Qwen2.5-VL-3B 59.89 72.26 66.81
GeoChat 91.09 90.33 94.00 90.70 GeoChat 58.45 83.19 72.30
LHRS-Bot 88.51 90.00 89.07 89.19 EarthGPT 62.77 79.53 72.06
TeoChat 91.70 92.70 94.00 92.29 TeoChat 67.50 81.10 75.04
EarthDial 92.58 92.75 94.00 92.70 EarthDial 58.89 83.11 72.45

GeoVLM-R1 91.81 93.20 96 92.66 GeoVLM-R1 66.38 82.26 75.27

Table 6: Our method performs better compared to
existing VLMs for Comp and R/U categories over
RSVQA-LRBEN (left) and obtains a better av-
erage score for RSVQA-HRBEN (right). Comp:
Comparison, R/U: Rural/Urban.

Image Captioning, and Change Detection
Captioning: Our GeoVLM-R1 shows consis-
tent performance gain across the image cap-
tioning datasets as shown in Table 4. Simi-
larly, it consistently performs favorably against
the existing generic and specialized VLMs over
change detection captioning datasets.

Temporal Disaster Assessment : We also val-
idate the performance of our GeoVLM-R1 over
the temporal building damage assessment xBD
dataset (Gupta et al., 2019) in the Table 5. This
dataset covers eight diverse tasks, such as tem-
poral image captioning, region classification, image classification, object detection, and referred
object detection. Our method is compared with recent EarthDial and other generic and special-
ized VLMs. Overall, our method demonstrates better performance across tasks. In addition, our
method achieves significant performance gain over object detection and referred object detection
tasks, where recent EarthDial as well as existing VLMs struggle alot. For example, in the case
of object detection, our approach obtains an absolute gain of 30.55% using the mAP@0.5 metric,
which demonstrates the effectiveness of our method.

Visual Question Answering (VQA): We demonstrate the performance of our method on the VQA
task in Table 6. Following (Soni et al., 2025), we compare our method over RSVQA-LRBEN and
RSVAQ-HRBEN. Our method demonstrates advantages for comparison and the rural/urban category
over RSVQA-LRBEN. Moreover, in the RSVQA-HRBEN dataset, our method achieves a better
weighted average score of 75.27% using zero-shot evaluation.
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Figure 4: Ablation over change detection MUDS dataset shows that GeoVLM-R1 with HSLR per-
forms better. Whereas for image captioning task, GeoVLM-R1 with LR reward performs favorably.

4.3 ABLATION STUDY

To validate the effectiveness of our GeoVLM-R1 using task-aware accuracy reward-based during
GRPO optimization, we perform extensive ablation experiments across various tasks as discussed
below. To do so, we first fine-tune our base model (Qwen2.-VL-3B) using EarthDial-Instruct to ob-
tain GeoVLM-SFT and then apply the proposed R1-style optimization across tasks. To validate our
RL-based approach, we employ different reward functions (e.g., Levenshtein Ratio (LR), Lexical-
Metric (LM), Jaccard, Detection Reward, Recall, Sentence-BERT (SBERT), Hybrid SBERT and
Lexical-Metric Reward (HSLR), Hybrid Jaccard and Lexical-Metric Reward (HJLR), SBERT-based
Grounding Reward (SGR), and Lexical-Metric-based Grounding Reward (LMGR)).
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Figure 5: Ablation using various reward
functions for the classification task. Our
method with the recall reward is more
effective than other models.

Ablation on Classification Tasks: During RL process,
we introduce a range of reward functions, such as Jaccard,
Levenshtein Ratio (LR), CLIPScore, SBERT, accuracy,
and recall reward functions for the classification task. As
in Fig. 5, GeoVLM-SFT achieves 73.03. Using the recall
reward function, our GeoVLM-R1 achieves higher results
than all other methods with an 80.91% score.

Image Captioning and Change Detection: Fig. 4 in-
dicates that GeoVLM-R1 utilizing LR reward function
performs better compared to other reward functions us-
ing zero-shot evaluation over RSITMD-Captions dataset.
Similarly, in case of the change detection captioning task,
the proposed HSLR reward shows better score across
metrics (e.g., Rouge-1, Rouge-L, and Meteor) over MUDS zero-shot evaluation.
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Figure 6: Ablation on xBD shows
GeoVLM-R1 improves building local-
ization.

Ablation on Referred Object Detection, Region-
Captioning, and Grounding Description Tasks: The
baseline does not provide the rotated bounding boxes
(RBB). For fair comparison, we fine-tune our baseline
using RBB and then apply accuracy-aware reward pol-
icy optimization. For the referred object detection task,
we apply a detection reward, where the output responses
and ground truth are first converted to polygons and com-
pared based on their IoU score. In addition, we also ap-
ply the detection reward using horizontal bounding boxes
(HBB), where the boxes are first converted to horizon-
tally aligned boxes and set the angle zero. We observe
that small-angle prediction errors can reduce IoU during
RL. Therefore, during GRPO optimization, HBB predictions with higher intragroup advantage guide
the policy toward more stable and reward-maximizing outputs. For the region captioning task, we
notice that SBERT reward performs better. In case of the grounding description task, it is crucial
to correctly locate the objects and provide their description. We notice that our RL approach using
LMGR shows significant improvement using zero-shot evaluation, as shown in Fig. 7.
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Figure 7: Ablation over referred object detection shows that horizontally aligned boxes during RL
result in better object detection. GeoVLM-R1 with SBERT and LMGR reward functions performs
better for region-captioning and grounding description tasks, respectively.
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VQA and xBD Object Detection: In Fig. 6, we show that our method GeoVLM-R1 performs better
and obtains a significant gain compared to GeoVLM-SFT, indicating the effectiveness of GRPO
optimization using detection reward on the xBD dataset. Moreover, for the VQA task, the Jaccard
similarity reward function performs better over the presence category and obtains a better average
score compared to other methods in Fig. 8 over RSVQA-HRBEN using zero-shot evaluation, which
reflects the merits of GeoVLM-R1.

Experiments on FMoW: We also demonstrate our method’s performance on the temporal FMoW
dataset using TeoChat-Instruct (Irvin et al., 2024) as shown in Fig. 9. Experimental results reveal
that our GeoVLM-R1 using an accuracy-based reward function obtains a favorable score over both
FMoW-High-Res and FMoW-Low-Res datasets.

5 CONCLUSION

In this work, we present GeoVLM-R1, an effective post-training framework tailored for task-
oriented structured reasoning in remote sensing imagery. To mitigate the poor reasoning capabilities
of domain-specific VLMs, we propose supervised finetuning and subsequently task-oriented-based
GRPO reinforcement learning, where a task-aware accuracy reward function is combined with for-
mat reward to minimize the policy variance and improve the stable, structured, and semantically
consistent reasoning path. Extensive experiments demonstrate that our reinforcement learning ap-
proach is effective and obtains state-of-the-art performance across EO tasks.
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