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ABSTRACT

Recent advances in reinforcement learning (RL) have delivered strong reasoning
capabilities in natural image domains, yet their potential for Earth Observation
(EO) remains largely unexplored. EO tasks introduce unique challenges, spanning
referred object detection, image/region captioning, change detection, grounding,
and temporal analysis, that demand task-aware reasoning. We propose a novel
post-training framework that incorporates task-aware rewards to enable effective
adaptation of reasoning-based RL models to diverse EO tasks. This training strat-
egy enhances reasoning capabilities for remote-sensing images, stabilizes opti-
mization, and improves robustness. Extensive experiments across multiple EO
benchmarks show consistent performance gains over state-of-the-art generic and
specialized vision—language models. Code and models will be released publicly.

1 INTRODUCTION

Recent advances in remote sensing vision—language models (RS-VLMs) show strong performance
on high-resolution Earth Observation (EO) imagery (Hu et al., |2023}; |Soni et al., [2025} Irvin et al.,
2024; |Zhan et al.l 2024). However, these gains come with shallow reasoning: models rely heav-
ily on text priors (Bleeker et al.l 2024) and supervised finetuning (SFT) without chain-of-thought
reasoning, leading to poor generalization. Early attempts with Reinforcement Learning (RL) as
a post-training mechanism, such as UAV-VL-R1 (Guan et al., [2025)), remain confined to visual
question-answering (VQA) tasks only and perform poorly on broader EO tasks like detection, cap-
tioning, grounding, or disaster assessment (Soni et al., [2025). While RL offers the promise of
reward-driven reasoning, existing approaches in EO receive weak and task-agnostic reward signals,
making them vulnerable to reward hacking (Fu et al., |2025)) and unable to capture the structured,
multi-step reasoning demanded by complex EO scenarios (Li et al.,|2025). A key challenge is thus
building EO-VLMs that can reason robustly across complex and diverse tasks.

To address these challenges, we introduce
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Figure 1: Comparison of recent generic and spe-
cialized VLMs over diverse EO tasks. GeoVLM-
R1 shows favorable improvements across classifi-
cation, detection, and captioning tasks.
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tasks that require both object detection and textual explanation, simple similarity matching is insuf-
ficient; instead, we integrate bounding-box IoU with semantic alignment to jointly reward based
on detection and description quality. Analogous task-specific rewards are defined for classification,
change detection, captioning, and disaster assessment, ensuring targeted skill acquisition without
degrading existing competencies for the EO tasks.

Our experimental results demonstrate the effectiveness of GeoVLM-R1 on multiple challenging EO
tasks, as shown in Fig. [T} In particular, our method obtains a consistent improvement, highlighting
the benefits of task-specific rewards, indicating robustness across EO tasks. The key contributions
are summarized below:

* We develop GeoVLM-R1, a post-training RL framework tailored for reasoning capabilities
in diverse EO tasks.

* We propose a novel dual-objective reward mechanism within GRPO, that introduces both
format and correctness compliances, enhancing stable RL learning while producing accu-
rate, structured, and interpretable reasoning paths.

» Experimental results on 28 downstream benchmarks show that our method performs well
compared to existing VLMs and achieves better performance.

2 RELATED WORK

Remote Sensing VLMs: Recent advances in aligning visual and language data for remote sensing
(RS) have led to the emergence of powerful Earth Observation (EO) vision—language models. RS-
GPT (Hu et al., [2023) was the first to introduce an EO image—text paired dataset, enabling tasks
such as image captioning and visual question answering (VQA). RemoteCLIP (Liu et al.l |2024b)
demonstrated strong zero-shot performance on classification and image—text retrieval. Models such
as GeoChat (Kuckreja et al.l |2024), SkyEyeGPT (Zhan et al.| [2024)), LHRS-Bot (Muhtar et al.,
2024), and SkysenseGPT (Luo et al.,[2024) extended these capabilities to region-level visual ground-
ing through instruction-tuned, region-centric datasets and enhancing language understanding with
LLMs. GeoPixel (Shabbir et al., 2025) further pushes the boundary to enable pixel-level ground-
ing for the EO imagery. Beyond optical data, multimodal systems like EarthGPT (Zhang et al.,
2024]), EarthDial (Soni et al., 2025), and EarthMind (Shu et al., [2025) incorporated heterogeneous
EO modalities for more comprehensive understanding. Despite these advances, current EO VLMs
remain heavily reliant on supervised fine-tuning (SFT) and contrastive learning objectives (Khosla
et al.,[2020; Mall et al., 2023, which limits their robustness and restricts their reasoning capability.

VLM Post-training: Explicit post-training alignment techniques have been used to enhance
general-purpose multimodal capabilities of VLMs, including prompt tuning (Liu et al.| 2023 Zhu
et al.,|2023; Sheng et al.} 2025) and reinforcement learning (RL) strategies (Huang et al.,|2025};Shen
et al.,2025; Guo et al., |2025). Among these, DPO (Rafailov et al.,|2023)) and PPO (Schulman et al.,
2017) are widely adopted (Achiam et al., [2023; |Chen et al.| [2025; [Tan et al.| 2025} |Deng et al.,
2025b), where reward design plays a central role in guiding models toward producing coherent and
structured outputs. However, traditional RL methods often suffer from high variance and unstable
policy updates, particularly in complex structured reasoning tasks. To mitigate these challenges,
group relative policy optimization (GRPO) (Shao et al.l 2024)), introduced in DeepSeek-R1 (Guo
et al., |2025)), leverages intra-group reward differences to stabilize training and improve structured
reasoning (Peng et al., 2025} Tan et al.| 2025} |Deng et al.l |2025a}; |Shen et al., 2025). However, the
current reasoning models mainly focus on mathematical, coding, and general computer vision tasks,
overlooking the potential of RL strategies in remote sensing tasks. An exception is UAV-VL-R1
(Guan et al.,|2025)), which applies RL to unmanned aerial vehicle imagery but is restricted to visual
question answering (VQA). In contrast, the EO data encompasses a far broader spectrum of complex
tasks in multi-sensory inputs (e.g., detection, captioning, grounding, change detection, and temporal
analysis) that require more sophisticated post-training strategies capable of producing effective and
interpretable reasoning paths.
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Figure 2: Illustration of the overall proposed training paradigm for GeoVLM-R1. The model is
first initialized via supervised fine-tuning using diverse earth observation tasks. It is then succes-
sively optimized using GRPO-based reinforcement learning (RL) for each task. The GeoVLM-R1
processes queries and outputs a structured format that comprises an interpretable reasoning trace
(<think>...</think>) and a final prediction (<answer>. . .</answer>).

3 METHOD

We propose GeoVLM-R1, a RL framework designed to enhance structured reasoning for complex
EO tasks. Our method adopts a two-stage training paradigm (Fig. [2), combining supervised fine-
tuning (SFT) with R1-style post-training based on GRPO [2024). In the first stage, SFT
equips the model with core EO knowledge and baseline reasoning ability by training across diverse
tasks such as referred object detection, grounding, region captioning, classification, and temporal
change detection. However, SFT alone yields shallow reasoning, often failing under complex multi-
step EO queries. To address this limitation, we introduce a task-aware RL stage, where GRPO
stabilizes optimization by exploiting relative advantages among candidate responses, while a dual-
objective reward mechanism that enforces both semantic accuracy and structured interpretability
that guides the model toward generating explicit reasoning traces before final predictions. This
joint design allows GeoVLM-R1 to produce robust and interpretable reasoning paths that generalize
effectively across diverse EO scenarios. We explain these training stages below.

3.1 SFT-BASED REASONING ACTIVATION

Given an EO multimodal sample Q; = {i, ¢;} consisting of a satellite image 7 and corresponding
text prompt ¢;, the SFT training objective is to maximize the conditional likelihood of generating
the target sequence y;, which contains both reasoning steps and the final answer:

T
Lsrr(mo) = —Eig, )~ | O 10gmo(yi | 4,05, yi<t) | ey

t=1
where D represents the training dataset, Ty denotes the model with parameters ¢, and y; «; repre-
sents the sequence of tokens generated before position ¢ for sample 7. The resulting fine-tuned model

me serves as a foundation for the subsequent reinforcement learning stage, ensuring the model has
acquired fundamental EO domain knowledge and reasoning capabilities.

3.2 RL-BASED REASONING ENHANCEMENT

After SFT, we focus on enhancing the model’s structured reasoning capabilities by leveraging anal-
ogous task-specific reward mechanisms through reinforcement learning. In contrast to traditional
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Figure 3: Overall pipeline of GeoVLM-R1 policy update mechanism (left). During fine-tuning, the
GRPO module generates multiple candidate responses. These responses are evaluated, and each is
assigned a distinct reward equipped with our reward mechanism. In particular, our reward mecha-
nism comprises (i) a format reward to enforce structural compliance and (ii) a task-aware accuracy
reward to ensure accuracy compliance. We present a few examples showcasing GeoVLM-R1 using
a unique task-aware accuracy reward function, resulting in better performance (right).

PPO, which requires an additional critic model to estimate policy performance and incurs high com-
putational cost, we employ GRPO that mitigates the need for a separate critic by directly utilizing
relative rewards among candidate responses, making it particularly effective for structure-aware and
constraint-driven visual reasoning tasks.

Given a multimodal sample Q;, GRPO generates a group of K candidate responses So, =
{51, 82, ..., 8K} from the old policy model 7y ,. The current policy model 7y is then optimized

using the following objective: "

K
1 . .
Jareo(0) = E{Si}fﬂwreold(gi) T E min [Pi Aj,clip(pi,1 —€,14¢) Ai:| — B DxL[mo || eet] 2)
i=1

mo(s:] Qi)
T 6414 (52|Q1)

, Dxi[mo||meet] = Esmmgy {log %} .

pi =
where the policy ratio p; controls the update step size, ¢ denotes the clipping threshold, and S
controls the strength of the KL penalty (Schulman et al.| 2013} [2017) that prevents 7y from de-
viating excessively from the reference model m.s. For each candidate response s;, an analogous
task-specific reward function r; = R(Q;, s;) quantifies the quality of the candidate response in the
context of the given sample. GRPO computes the relative advantage A; for candidate response s;
compared to other responses as:

A="10 “

Oy

where 7 = % Zfil r; is the mean reward and o, = \/ + Z;K:1 (rj — 7)? is the standard deviation
across all candidate responses. This normalization process reduces reward variance across samples,
thereby stabilizing training and enhancing the robustness of policy gradient estimation.

3.3 TASK-AWARE REWARD DESIGN FOR VISUAL REASONING

Inspired by recent progress in applying RL to enhance reasoning capabilities (Shao et al.,[2024} [Shen|
2025), we adopt an RL-based post-training strategy to enhance the reasoning capabilities of
the policy model. In contrast to mathematics and coding tasks where ground-truth is well-defined,
the EO data samples pose unique challenges in reward design for various tasks. Therefore, as can
be seen in Fig. [B| we have a sophisticated reward mechanism, enabling effective RL in EO rea-
soning contexts. To generate structurally coherent and semantically accurate reasoning outputs, we
introduce format and task-aware accuracy rewards to better guide reasoning optimization.
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Table 1: Summary of QA instruction pairs and reward functions used in GRPO optimization across
diverse Earth Observation tasks.

Dataset | Temporal Task # QA Pairs Task-Aware Accuracy Rewards
BigEarthNet (Sumbul et al.{2019] Single Classification 30,000 Recall

RSCIS (Lu et al.{ 2017} Single Image Captioning 43,670  Levenshtein Similarity Ratio
RSVQA-LRBEN (Lobry et al.£2020} Single Visual Question Answering 57,223 Jaccard

GeoChat-Instruct (Kuckreja et al.;12024} Single Region Captioning 69,269 SBERT

GeoChat-Instruct (Kuckreja et al.; 2024} Single Referred Object Detection 73,000 Detection

GeoChat-Instruct (Kuckreja et al.j 2024} Single Grounding 69,269  Lexical-Metric-based Grounding Reward
xBD (Gupta et al.|201Y] Bi-Temporal Referred Object Detection 4,202 Detection

xBD (Gupta et al.| 2019 Bi-Temporal Object Detection 2,283  Detection

LEVIR-MCI (Liu et al./2024a}, DUBAI- Cq] MUDS (Yang et al.}2024] | Bi-/Multi-Temporal ~Change Detection Caption 352,825 Hybrid SBERT and Lexical-Metric
FMoW (Irvin et al.[[2024] Multi-Temporal Classification 83,412 Accuracy

Format Reward: The objective of format reward (Rsormat) 1S to make sure that the model’s output
adheres to a predefined structured format. It comprises (i) think reward, intending to think deeply
before answering and constrain the model to have <think>¢</think> tags, where ¢ is the language
reasoning, and (ii) an answer reward to generate the final answer a having <answer>a</answer>
tags. If both reward tags are included in the response, the reward is 1; otherwise, it is 0.

Task-aware Accuracy Reward: The goal of this reward (Ryask_acc) is to quantify the semantic cor-
rectness of the content (a) within the <answer></answer>, matches with the ground-truth answer
gi- Hence, the total reward is defined as: R(a) = Rformat + Riask ace» Where Rk ace € [0, 1]. Table
presents datasets, tasks, the number of question-answer pairs for each task, and the reward functions
used for each task during RL process. Now, we present the details of task-aware accuracy reward
functions.

Recall Reward: We employ recall as a reward function in RL fine-tuning of a vision-language
model for the classification task. It is important to detect rare but critical instances, particularly
in disaster assessment scenarios. To encourage the sensitivity to correct positive predictions for
classification tasks, we define a recall reward as: Rgecan = where TP is the number of true
positives and FN is the number of false negatives.

TP
TP+FN?

Sentence-BERT (SBERT) Reward: The region-captioning task describes the complex visual con-
tent, demanding the model to output key semantic elements (category, color, relative size, relative
location, position) even if phrased differently. To capture the semantic fidelity between the candidate
response and ground truth strings, we employ a Sentence-BERT (SBERT)-based reward function
(Reimers & Gurevych, [2019). We encode each string into a fixed-dimensional embedding such that
semantically similar strings exhibit high cosine similarity. Let e,, and e, represent the embed-
dings of the candidate response and ground truth string, respectively. The SBERT reward is defined

as: Rggerr = max (0, cos(es,, €4,)) = max (O ) , where cos(-, -) represents the cosine

€5, €g;
similarity function. Since cosine similarity ranges from —1 to 1, we apply a rectified linear trans-
formation to ensure Rsggrr € [0, 1], which prevents negative rewards and maintains compatibility

with our RL objectives.

Detection Reward: To evaluate the precise spatial accuracy for the object detection task,
where the model outputs a rotated bounding box, we formulate the reward function based on
the Intersection-over-Union (IoU) between the candidate response and the ground-truth rotated
bounding box. We compute the final reward by computing a matching reward by pairing each
ground truth bounding box with the best-overlapping predicted bounding box as: Rpeection =
% ZnNzl max,, IoU(s;"™,¢;"), where N is the total number of ground truth. This reward encour-
ages the RL model to generate bounding boxes that closely match the ground truth bounding boxes.

Lexical-Metric-based Grounding Reward (LMGR): The grounding description task comprises
both object detection and text description, which requires a hybrid reward function to force the RL
model to learn both object detection as well as textual description, aligning semantically. Using
detection reward alone ignores the quality of text description and vice versa, leading to performance
degradation. For spatial accuracy, we use Rpeection. FOr semantic correction, to evaluate the lexical
accuracy and informativeness of the string, we employ an average of Rouge-1 (R1), Rouge-L (RL),
and Meteor (MT) metrics. The reward is defined as: Ry = M where «, (3, and ~y are
set to 1. Finally, we combine Rpeection and Ry to encode the spat1a1 grounding and lexical fidelity,
and it can be expressed as RpyvGgr = W.

Levenshtein Similarity Ratio (LR) Reward: The image caption task requires the model to pro-
vide a sequence-level similarity, which is structured and worded to human references. Therefore,
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Model \AID (ZS) UCMerced (ZS) WHU-19 (ZS) BigEarthNet \ xBD Set 1 (Temporal) FMoW (Temporal)
GPT-40 74.73 88.76 91.14 49.00 67.95 21.43
InternVL-8B |Chen et al.|(2024) 60.40 58.23 79.30 19.73 51.44 21.04
Qwen2.5-VL-3B|Bai et al.|(2025) | 58.27 60.86 78.21 24.75 51.44 34.36
GeoChat|Kuckreja et al.|(2024) 72.03 84.43 80.09 20.35 53.32 59.2
EarthDial|Soni et al.[(2025) 88.76 92.42 96.21 73.03 96.37 70.03
GeoVLM-R1 | 8846 97.81 97.91 80.91 \ 98.93 76.93

Table 2: GeoVLM-RI illustrates a consistent improvement among zero-shot (ZS), multi-label
BigEarthNet, and temporal classification datasets compared to other existing VLMs.

we employ Levenshtein similarity ratio (Po| [2020), where we quantify the similarity between the
candidate response s; and ground truth g;, going beyond binary correctness and supporting partial

. . . N—D(s:.0;
credit for near matches. The reward function is defined as: Rig = ‘”H}g?l‘w, where |s;| and

|g:| denote the length of strings and D(s;, g;) is the Levenshtein distance. The Ry € [0, 1] with a
value of 0 indicates totally dissimilar image captions, and a value of 1 means that two captions are
identical.

Jaccard Similarity Reward: The visual question answering (VQA) task outputs short phrases;

therefore, giving partial credit for answers is important, rather than requiring exact matches. We

employ a Jaccard similarity reward function, which measures the ratio of the intersection to the union
[siNgi|

between candidate response and ground truth tokens. It is defined as: Ryaccara(Si, 9i) = Ts:09:] "

Hybrid SBERT and Lexical-Metric Reward (HSLR): Change detection task involves the textual
description between the pre-change and post-change events in the scene. The textual description
indicates the semantic changes that occurred, such as the construction or demolition of roads, build-
ings, or any man-made infrastructure. The RL goal is to align visual observations with their corre-
sponding language expressions. To leverage both semantic fidelity and lexical accuracy, we define a
hybrid reward combining Rgggrr and Ry . This hybrid reward is defined as: Rysir = w.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We select Qwen2.5VL-3B-Instruct (Bai et al.,|2025) as our base model due to its promising perfor-
mance on visual-language understanding. We adopt the EarthDial-Instruct (Soni et al.| [2025) and
resized the images to 448 x 448 before passing to the model and normalized the rotated bounding
boxes between 0-448 to ensure consistency across the multi-resolution images.

For SFT, we fine-tune the model using 8 A100 GPUs for 2 epochs, setting the batch size to 2 per
device, the learning rate to 1e — 5, weight decay to 0.1, and a warmup ratio of 0.03 under a cosine
learning rate scheduler. For GRPO, we use 4 A100 GPUS and fine-tune for 2 epochs with batch
size = 1, gradient accumulation = 2, bfloat16 precision, temperature to 0.9, KL divergence ratio (i.e.,
B) to 0.04, and learning rate of 1e — 6. Following (Soni et al.,|2025), we discuss the results of our
method in a diverse set of applications for RS optical imagery, such as scene classification, region
captioning, refer object detection, grounding descriptions, VQA, image captioning, and temporal
change detection captioning.

4.2 STATE OF THE ART COMPARISONS

Scene Classification: Table [2]compares our method with existing VLMs over diverse scene classi-
fication datasets. We notice that our method shows an improvement over the zero-shot evaluation.
In addition, our method achieves 7.88% improvement compared to recent EarthDial over the large-
scale multi-label BigEarthNet dataset. Moreover, our method shows promising results over temporal
datasets. For instance, our method gains an absolute advantage of 2.56% and 6.9% over xBD test-
set-1 and FMoW datasets, respectively.

Referred Object Detection, Region Captioning, and Grounding Descriptions: In Table 3] we
compare GeoVLM-R1 over three tasks (including referred object detection, region captioning, and
grounding description). For the referred object detection task, our method consistently shows bet-
ter results by a large margin. For example, for multiple object detection, we obtain 21.63% gain
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| Referred Object Detection Task | Region-Captioning Task | Grounding Task

| GeoChat-Instruct | NWPU VHR-10 (Zero-Shot) | GeoChat-Instruct | NWPU VHR-10 (Zero-Shot) | NWPU VHR-10 (Zero-Shot)

| Small Med. Large Single Mult. | Small Med. Large Single Mult. | Rougel Rouge-L Metcor | Rougel Rougel, Meteor | @05 @0.25 Rougel Rougel Meteor
GPT-4o - - - - - - - - - - 9.41 7.6 802 1768 1181 963 | 07 61 1472 1082 94l
InermVL2-4B | 63 2437 3738 2496 1172 | 7.1 1268 2548 2296 8.1 - - - - - - 106 2987  30.67 2909 2192
InternVL2-8B | 720 2376 3199 2577 930 | 426 1185 2072 2166 586 | 1058  9.06 8.5 11.88 9.63 7.7 - - - - -
GeoChat 29 136 217 16 43 | 25 32 147 1323 19 | 7277 7274 619 6202 6202 5331 | 22 1527 2146 2074 2138
EarthDial 1143 3176 3907 3429 1341 | 1166 1421 2312 2537 89 | 7338 7334 6272 7214 7214 6001 | 17.07 4100 27.05 2635  23.12
GeoVLM-RI | 3602 5472 5503 57 3504 | 3444 4876 6491 5597 4145 | 7592 759 6643 7210 7210 5549 | 3874 6145 3134 3008  26.10

Table 3: GeoVLM-R1 illustrating a consistent performance gain, indicating better capabilities to
locate objects, across referred object detection, region-captioning, and grounding description tasks.

Model [ CD Dubai-CC [ CD LEVIR-MCI [ CD MUDS | CDSYSU (ZS) | ICNWPU-Captions | ICRSCID-Captions | IC RSITMD-Captions (ZS)
| Rougel Rouge-l Meteor | Rougel Rouge-L Meteor | Rougel Rouge-L Meteor | Rougel Rouge-L Meteor | Rougel Rouge-L Meteor | Rougel Rouge-l Meteor | Rougel Rouge-L  Meteor
GPT-4o 881 745 1868 | 1033 84 2205 | 1408 1102 2092 1648 1232 1749 | 1943 1486 2816 | 2053 1559 2603 1831 1422 2483
InternVL2-4B[Chen etal 12024~ 7.31 638 2112 | 888 743 2214 | 1025 790 1773 1327 998 1436 0 0 0 0 0 0 0 0 )
TnternVL2-8B|Chen et al | 2024 - - - - - - - - - - - - 2069 1564 3008 | 2159 1613 2817 1891 1465 2602
Qwen2S:VL-SBlBaretal 2025|1441 1362 2759 | 1227 1041 2611 | 1213 930 1822 1361 1034 1606 | 1882 1472 2679 | 2137 1642 2653 1879 1502 2505
GeoChat[Kuckreja et al- | 1024 1421 1419 2891 | 1715 3542 1235 | 1228 1223 1598 1345 1202 1396 | 1486 1254 1521 | 1348 1159 1239 1341 1150 1233
EarthDial 3194 3066 5583 | 3378 3047 748 | 2816 2403 3356 1803 1742 1498 | 4584 3996 8061 | 3377 2761 5618 2674 2172 3406
GeoVLM-RI 3660 3415 6122 | 3785 3402 7356 | 3407 2765 4594 1964 1846 1545 | 4694 4096 8200 | 3464 2863 5654 3062 2539  39.07

Table 4: Comparison of GeoVLM-R1 over change detection (CD) and image captioning (IC)
datasets. Results indicate better capabilities of our method to generate captions compared to ex-
isting VLMs for both temporal CD and image-captioning datasets. ZS means zero-shot evaluation.

Model | Image Captioning | Region Classification | Image Classification | Object Detection | Referred Object Detection
| Rougel Rouge-L. Meteor | TestSet-1 Test Set-2 | Test Set-1 ~ Test Set-2  Test Set-3 | mAP@0.5 mAP@0.25 | mAP@0.5 mAP@0.25
GPT-40 14.21 10.35 19.52 51.68 71.62 67.95 75.45 70.41 0.2 2.15 0 0
InternVL2-8B 13.89 10.37 14.92 14.39 58.33 51.44 61.52 5112 0.6 1.07 0 0.7
Qwen2.5-VL-3B 11.98 8.12 19.94 71.19 59.69 51.44 56.16 41.26 - - - -
GeoChat 14.18 10.67 12.20 25.30 57.65 53.32 52.19 49.51 1.15 72 0.2 3.09
EarthDial 87.26 87.26 88.53 53.70 83.09 96.37 82.85 54.01 7.6 21.11 5.1 13.09
GeoVLM-R1 92.26 92.26 9337 | 8136 83.55 98.93 86.39 68.60 | 38.15 48.13 | 2452 34.52

Table 5: We compare GeoVLM-R1 for various tasks on the xBD dataset (temporal). Our method
exhibits substantial progress across the tasks. In particular, our approach shows a notable perfor-
mance gain over object detection and referred object detection tasks, compared to other VLMs.

compared to EarthDial. Our method demonstrates a consistent improvement across the tasks over
GeoChat-Instruct and NWPU VHR-10 datasets. In the case of the region captioning task, our
method obtains better performance compared to other methods over GeoChat-Instruct and compa-
rable performance over the NWPU-VHR-10 dataset. Furthermore, our method presents a promising
performance in the grounding description task, particularly in object detection, where other VLMs
struggle to localize the objects. In short, we notice that our approach shows favorable performance
in these tasks, demonstrating its merits.

Image Captioning, and Change Detection ‘

. . . . Model Presence Comp R/U Avg. | Model Presence Comp Avg.
Captlomng. Our GeoVLM-R1 shows consis- MiniGPTv2 55.16  55.22 39.00 54.96|MiniGPTv2 4079  50.91 46.46
tent performance gain across the image cap- Qwen2-VL 38.57  67.59 61.00 55.35|Qwen2-VL 66.44 6041 63.06

O . C IntemVL2-8B 5854 7228 71.00 66.51|IntemVL2-8B  67.35 7691 72.70
tioning datasets as shown in Table Simi-  Qwen25-VL-3B 5959 7504 63.00 68.40|Qwen25-VL-3B  59.89  72.26 66.81

: . . GeoChat 91.09 9033 9400 90.70| GeoChat 5845 (83197 7230

]arly 1t c()nSlstent]y performs favorably agalnst LHRS-Bot 88.51  90.00 89.07 89.19|EarthGPT 62.77  79.53 72.06
S . .. TeoChat 91.70 9270 9400 92.29 | TeoChat 6750 81.10 75.04

the existing generic and specialized VLMs over  Earhbial 9258 9275 94.00 9270 | EarthDial 5880 83.11 7245

Change detection Captioning datasets. GeoVLM-R1 91.81 9320 96 92.66| GeoVLM-R1 66.38 8226 7527

Table 6: Our method performs better compared to
existing VLMs for Comp and R/U categories over
RSVQA-LRBEN (left) and obtains a better av-

dataset (Gupta et al.,|2019) in the TableE} This Stage score for RSVQA-HRBEN (right). Comp:

dataset covers eight diverse tasks, such as tem- Comparison, R/U: Rural/Urban.

poral image captioning, region classification, image classification, object detection, and referred
object detection. Our method is compared with recent EarthDial and other generic and special-
ized VLMs. Overall, our method demonstrates better performance across tasks. In addition, our
method achieves significant performance gain over object detection and referred object detection
tasks, where recent EarthDial as well as existing VLMs struggle alot. For example, in the case
of object detection, our approach obtains an absolute gain of 30.55% using the mAP@0.5 metric,
which demonstrates the effectiveness of our method.

Temporal Disaster Assessment : We also val-
idate the performance of our GeoVLM-R1 over
the temporal building damage assessment xBD

Visual Question Answering (VQA): We demonstrate the performance of our method on the VQA
task in Table @ Following (Soni et al., 2025), we compare our method over RSVQA-LRBEN and
RSVAQ-HRBEN. Our method demonstrates advantages for comparison and the rural/urban category
over RSVQA-LRBEN. Moreover, in the RSVQA-HRBEN dataset, our method achieves a better
weighted average score of 75.27% using zero-shot evaluation.
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Figure 4: Ablation over change detection MUDS dataset shows that GeoVLM-R1 with HSLR per-
forms better. Whereas for image captioning task, GeoVLM-R1 with LR reward performs favorably.

4.3 ABLATION STUDY

To validate the effectiveness of our GeoVLM-R1 using task-aware accuracy reward-based during
GRPO optimization, we perform extensive ablation experiments across various tasks as discussed
below. To do so, we first fine-tune our base model (Qwen2.-VL-3B) using EarthDial-Instruct to ob-
tain GeoVLM-SFT and then apply the proposed R1-style optimization across tasks. To validate our
RL-based approach, we employ different reward functions (e.g., Levenshtein Ratio (LR), Lexical-
Metric (LM), Jaccard, Detection Reward, Recall, Sentence-BERT (SBERT), Hybrid SBERT and
Lexical-Metric Reward (HSLR), Hybrid Jaccard and Lexical-Metric Reward (HJLR), SBERT-based
Grounding Reward (SGR), and Lexical-Metric-based Grounding Reward (LMGR)).

Ablation on Classification Tasks: During RL process,
we introduce a range of reward functions, such as Jaccard,
Levenshtein Ratio (LR), CLIPScore, SBERT, accuracy,
and recall reward functions for the classification task. As
in Fig. [5] GeoVLM-SFT achieves 73.03. Using the recall
reward function, our GeoVLM-R1 achieves higher results
than all other methods with an 80.91% score.

Performance (%)

Multilabel BigEarthNet classification

Image Captioning and Change Detection: Fig. [4in- i ] ]

dicates that GeoVLM-R1 utilizing LR reward function Figure 5: Ablation using various reward
performs better compared to other reward functions us- functions for the classification task. Our
ing zero-shot evaluation over RSITMD-Captions dataset. Method with the recall reward is more
Similarly, in case of the change detection captioning task, ¢ffective than other models.

the proposed HSLR reward shows better score across

metrics (e.g., Rouge-1, Rouge-L, and Meteor) over MUDS zero-shot evaluation.

Ablation on Referred Object Detection, Region-

Obj. Detection mAP@0.5

Captioning, and Grounding Description Tasks: The 5| = oy pecionmsr@ozs . 4813
. . . Referred Obj. Detection mAP@0.5
baseline does not provide the rotated bounding boxes S8 Reerred Ob, Detecion mAP@0.25

(RBB). For fair comparison, we fine-tune our baseline
using RBB and then apply accuracy-aware reward pol-
icy optimization. For the referred object detection task,
we apply a detection reward, where the output responses
and ground truth are first converted to polygons and com-
pared based on their IoU score. In addition, we also ap- GeoVLM-SFT GeoVLM-R1

ply the detection reward using horizontal bounding boxes

(HBB), where the boxes are first converted to horizon- Figure 6: Ablation on xBD shows
tally aligned boxes and set the angle zero. We observe GCQVLM'Rl improves building local-
that small-angle prediction errors can reduce IoU during 1Zation.

RL. Therefore, during GRPO optimization, HBB predictions with higher intragroup advantage guide
the policy toward more stable and reward-maximizing outputs. For the region captioning task, we
notice that SBERT reward performs better. In case of the grounding description task, it is crucial
to correctly locate the objects and provide their description. We notice that our RL approach using
LMGR shows significant improvement using zero-shot evaluation, as shown in Fig.
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Figure 7: Ablation over referred object detection shows that horizontally aligned boxes during RL
result in better object detection. GeoVLM-R1 with SBERT and LMGR reward functions performs
better for region-captioning and grounding description tasks, respectively.
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Figure 8: Ablation over RSVQA-HRBEN
dataset. The zero-shot evaluation shows that

our method (GeoVLM-R1) with Jaccard reward
achieves a better score over the presence cate-
gory as well as the favorable average score.

EJ @ %
Percentage (%)

Figure 9: Comparison over multi-temporal
FMoW dataset, where the model is fine-tuned
and tested over TeoChat-Instruct. GeoVLM-
R1 with the accuracy reward performs favorably
against other VLMs.

VQA and xBD Object Detection: In Fig. [6] we show that our method GeoVLM-R1 performs better
and obtains a significant gain compared to GeoVLM-SFT, indicating the effectiveness of GRPO
optimization using detection reward on the xBD dataset. Moreover, for the VQA task, the Jaccard
similarity reward function performs better over the presence category and obtains a better average
score compared to other methods in Fig. [§lover RSVQA-HRBEN using zero-shot evaluation, which
reflects the merits of GeoVLM-R1.

Experiments on FMoW: We also demonstrate our method’s performance on the temporal FMoW
dataset using TeoChat-Instruct as shown in Fig. [0} Experimental results reveal
that our GeoVLM-R1 using an accuracy-based reward function obtains a favorable score over both
FMoW-High-Res and FMoW-Low-Res datasets.

5 CONCLUSION

In this work, we present GeoVLM-RI1, an effective post-training framework tailored for task-
oriented structured reasoning in remote sensing imagery. To mitigate the poor reasoning capabilities
of domain-specific VLMs, we propose supervised finetuning and subsequently task-oriented-based
GRPO reinforcement learning, where a task-aware accuracy reward function is combined with for-
mat reward to minimize the policy variance and improve the stable, structured, and semantically
consistent reasoning path. Extensive experiments demonstrate that our reinforcement learning ap-
proach is effective and obtains state-of-the-art performance across EO tasks.
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