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Abstract

Retrieval is a widely adopted approach for im-001
proving language models leveraging external002
information. As the field moves towards multi-003
modal large language models, it is important004
to extend the pure text based methods to in-005
corporate other modalities in retrieval as well006
for applications across the wide spectrum of007
machine learning tasks and data types. In this008
work, we propose multi-modal retrieval with009
two approaches: kNN-LM and cross-attention010
techniques. We demonstrate the effectiveness011
of our retrieval approaches empirically by ap-012
plying them to automatic speech recognition013
tasks with access to external information. Un-014
der this setting, we show that speech-based015
multi-modal retrieval outperforms text based re-016
trieval, and yields up to 50% improvement in017
word error rate over the multi-modal language018
model baseline. Furthermore, we achieve state-019
of-the-art recognition results on the Spoken-020
Squad question answering dataset.021

1 Introduction022

The wide adoption of large language models023

(LLMs) has driven new application areas lever-024

ing this technology. One such direction is jointly025

modeling multi-modal inputs and outputs with a026

single generative LLM model. In the speech do-027

main, models such as those proposed by Ruben-028

stein et al. (2023), jointly model text and audio by029

tokenizing speech signals into discrete units. With030

an expanded vocabulary encompassing tokens of031

multiple modalities, this modeling approach has032

been used in both single task (Xue et al., 2023) and033

multi-task settings, with Maiti et al. (2023) arguing034

that the multi-task training of speech-LLMs im-035

proves overall generalization of the model through036

synergies across tasks and modalities.037

With generalization capabilities, multi-modal038

LLMs such as AudioPalm (Rubenstein et al., 2023)039

and Seamless (Barrault et al., 2023), have targeted040

many tasks, including Automatic Speech Recog- 041

nition (ASR). These models rely on the decoder 042

language model (LM) to generate the output text 043

transcription when consuming tokenized speech as 044

a prompt. Because the multi-modal LLM approach 045

can leverage the use of a large text-only corpus 046

for training and multi-tasking, the approach has 047

an advantage compared to traditional ASR mod- 048

els such as recurrent neural network transducers 049

(RNN-T) (Makino et al., 2019) or whisper-like ar- 050

chitectures (Radford et al., 2023), which rely pri- 051

marily on paired audio-transcription data. However, 052

enterprise-grade ASR systems often include fur- 053

ther advances, such as functionality to incorporate 054

auxiliary information to assist decoding accuracy, 055

which has yet to be fully addressed with these new 056

multi-modal LLM-based approaches. 057

Perhaps the two most common approaches for 058

incorporating auxiliary information for ASR have 059

been shallow fusion with an external LM (Gourav 060

et al., 2021; Zhao et al., 2019; Le et al., 2021) and 061

contextual biasing (Sathyendra et al., 2022; Liu 062

et al., 2021; Chang et al., 2021). Shallow fusion 063

with an external LM is a modular way to bias the 064

ASR model at inference time by interpolating the 065

probability distribution of the ASR model with that 066

of the external LM. Shallow fusion though, can suf- 067

fer from a loss of generality since the external LM 068

does not have direct access to acoustic information. 069

Neural biasing, meanwhile, resolves this issue by 070

ingesting the auxiliary information directly into the 071

acoustic model training (Sathyendra et al., 2022). 072

Yet, neural biasing is ultimately limited in the num- 073

ber of contextual documents it can ingest since 074

attention over an ever larger number of documents 075

renders the method less effective through dilution. 076

We aim to address both of these limitations in this 077

work through retrieval augmentation. 078

Retrieval augmentation is a well known ap- 079

proach to improve existing LMs for ingesting ad- 080

ditional information (Mialon et al., 2023; Khan- 081
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delwal et al., 2019; Guu et al., 2020; Borgeaud082

et al., 2022; Wang et al., 2023a; Zhong et al., 2022;083

Wu et al., 2020; Zhang et al., 2022a; Karpukhin084

et al., 2020; Yasunaga et al., 2022). The overarch-085

ing idea of all retrieval augmented models is to use086

an external knowledge base, i.e. retrieval corpus,087

to improve LM performance. During inference, the088

retrieval corpus is queried for relevant context and089

information. The query usually consist of a key090

computed using an encoder model followed by a091

search step to find the closest neighbors to the key092

- typically in a cosine similarity or Euclidean dis-093

tance sense. The retrieved neighbors are provided094

to the retrieval augmented LM as additional inputs,095

which can be used as prompts or cross-attended096

over.097

1.1 Contributions098

In this work, we show that using multi-modal re-099

trieval can improve results significantly over canon-100

ical text based retrieval. Specifically, we demon-101

strate our method for speech recognition tasks in102

two settings 1) Ingesting dynamic multi-modal in-103

formation; and 2) Domain adaptation of the multi-104

modal LLM. We propose and detail two retrieval105

approaches to achieve this result: a kNN-LM and106

a cross-attention based neural model. Experimen-107

tally, we compare each retrieval approach using two108

model sizes: a small model with 300 million pa-109

rameters (Zhang et al., 2022b); and a larger model110

with 7 billion parameters. We ultimately demon-111

strate that while both approaches are capable of112

significant reduction of word error rate (WER)113

for domain adaptation, only the cross-attention114

model improved consistently speech recognition115

performance for the dynamic information task. We116

also show that multi-modal LLMs can be used ef-117

fectively as key encoders for nearest neighbour118

search, removing the need to use an external neural119

model as encoder. This result leads to a deploy-120

able, application-friendly simplification which has121

compelling savings of compute resources.122

1.2 Related Work123

One of the first retrieval augmented LM was kNN-124

LM that used retrieved results to directly augment125

token softmax probabilities (Khandelwal et al.,126

2019). Since the kNN-LM did not use a neural127

network to ingest the dynamic information, the128

method is easy to apply on existing models, but129

limited the performance compared with more in-130

volved models.131

Subsequent models such as RETRO (Borgeaud 132

et al., 2022) or REALM (Guu et al., 2020) used 133

a cross-attention based mechanism to incorporate 134

the retrieved context into the causal and masked- 135

LMs. RETRO devised a chunked cross-attention 136

to retrieve text continuations which also allowed 137

it to scale to a very large knowledge base, when 138

compared with the kNN-LM. 139

For speech-recognition applications, Zhou et al. 140

(2023) used a modified kNN-LM. In this work, 141

the authors used a Connectionist Temporal Clas- 142

sification (CTC) decoder to create retrieval keys 143

as opposed to an LM used in the standard kNN- 144

LM (Khandelwal et al., 2019). This change en- 145

abled the keys to have acoustic information, but lim- 146

ited the training data to consist only of transcribed 147

speech compared with multi-modal LMs which can 148

utilize both modalities independently. The output 149

probabilities were computed in the same manner as 150

in the standard kNN-LM. Further, retrieval meth- 151

ods have also been successfully applied in cold 152

fusion (Yusuf et al., 2023). With a pre-trained LM 153

as the key encoder, partial hypotheses from the de- 154

coder were used to search for text continuations, 155

followed by contextual biasing for generating the 156

transcription. However, the key encoder lacked 157

phonetic context making the retrieved token accu- 158

racy low for the initial tokens and at entity start 159

positions. In contrast, we will demonstrate that this 160

limitation can be overcome by using a multi-modal 161

LM instead of a pre-trained text-only LM, by in- 162

corporating the audio information into the retrieval 163

context. 164

Chan et al. (2023) built key-value databases from 165

semantic text and its corresponding text-to-speech 166

(TTS) audio embeddings. The text and TTS embed- 167

dings were independently created using two differ- 168

ent models. The retrieval database was used with 169

approximate k-nearest neighbour search to bias the 170

ASR model using attention. Meanwhile, Wang et al. 171

(2023b) experimented with a multi-modal LM and 172

Speech2Entity retriever. The retriever, however, 173

was not strictly multi-modal because keys were 174

acoustic encoding of speech from a CTC model, 175

later used to retrieve a set of textual candidate enti- 176

ties as values. 177

2 Proposed Approach 178

In the following sections, we describe the multi- 179

modal speech-LLM and the modelling approaches 180

to incorporate the retrieved context. 181
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2.1 Multi-Modal Language Models182

Speech based multi-modal LMs model speech us-183

ing quantized discrete audio tokens in addition to184

text tokens (Rubenstein et al., 2023). The discrete185

audio tokens are extracted from pre-trained Hu-186

BERT embeddings (Hsu et al., 2021) followed by187

k-means clustering. This is illustrated in Fig. 1.188

Figure 1: Illustration of a speech multi-modal LM. In-
puts to the LM consist of three parts: a prompt specify-
ing the task, audio tokens from an audio tokenizer, and
text tokens.

For speech recognition, the multi-modal LM is189

decoded by concatenating the audio tokens x with190

a prompt p and generated text tokens y to form191

model inputs z:i = [p0, · · · , x0, · · · , y0, · · · , yi−1].192

Next token probability is predicted by:193

PSLM (yi) = softmax(Eo(f(z:i)), (1)194

where PSLM (yi) is the posterior distribution of the195

next token yi; f(z:i) is the multi-modal LM’s last196

hidden state for token yi−1; and Eo is the output197

embedding matrix that projects the hidden state198

to the vocabulary dimension. The first text token199

- y0 - is a special start-of-sentence token and the200

generation is continued until an end-of-sentence201

token is obtained or maximum sequence length202

is reached. In this work, the maximum sequence203

length is 2048 for all models.204

2.2 Retrieval for Multi-Modal Language205

Models206

We consider two retrieval augmented models in this207

study: a kNN-LM (Khandelwal et al., 2019), and208

a novel neural cross-attention based model. Both209

models aim to augment the posterior token distribu- 210

tion via dynamic information retrieved based on the 211

prior tokens and follow the same retrieval search 212

process. However, they differ in the way retrieved 213

values are constructed and used. 214

2.2.1 kNN-LM 215

kNN-LM can be directly applied for speech- 216

recognition with an exception of formatting the 217

inputs as described in the prior section. The prin- 218

cipal idea of kNN-LM is to directly modify the 219

token softmax probabilities by interpolating them 220

with a multi-modal distribution constructed from 221

the retrieved neighbors: 222

PkNN−LM = αPSLM (yi) + (1− α)PkNN , (2) 223

where α is a scalar and PkNN is the probability 224

distribution predicted from the retrieved neighbors 225

given by: 226

PkNN ∝
∑

j∈D(f(z:i))

1yi=tje
−β∥kj−f(z:i)∥. (3) 227

Here tj is the retrieved next token; kj is its key 228

embedding; D(f(z:i)) is a set containing retrieved 229

indices; β is a constant used to normalize the Eu- 230

clidian norm; and 1yi=tj is the indicator function. 231

Retrieved neighbors are obtained by finding the 232

closest keys (in Euclidian sense) kj to the mod- 233

els last hidden state f(z:i). In this work, we used 234

β = 10−3 for all kNN-LM experiments and α is 235

found by minimizing cross-entropy in a tuning data 236

set. 237

For the prompt p and the audio tokens x we 238

do not perform any retrieval, and retrieve the first 239

neighbors starting with the first generated token y0 - 240

a start-of-sentence token. After this token, retrieval 241

is performed for all tokens until end-of-sentence 242

token or maximum sequence length is reached. 243

2.2.2 Cross-Attention Based Retrieval 244

The cross-attention model consists of three sub- 245

modules: 1) fr is a retrieval augmented decoder 246

model; 2) g is a key encoder model; and 3) h is a 247

value encoder model. The interplay between these 248

models is illustrated in Fig. 2a. The retrieval aug- 249

mented decoder model is used to decode the tran- 250

scription from the prior tokens (including a prompt 251

and audio tokens). The key encoder model is used 252

to encode all retrieval keys similar to kNN-LM 253

while the value encoder model is used to encode 254

the context documents. 255
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(a) (b)

Figure 2: (a): Illustration of the cross-attention based retrieval model. Input tokens are used as inputs both to the
decoder model (shown on left-hand side) and key encoder (shown on the right-hand side). The encoded value are
used as inputs to the decoder as the key and query for multi-head cross-attention (shown with the red-block). The
depicted transformer architecture (normalization layers, etc.) is for illustration purposes and may vary slightly
between different models. (b) Illustration of retrieval database creation. Text tokens are encoded and used as keys
for the database. Values are surrounding tokens of the key.

For each token yi we encode the sequence z:i256

using the key encoder model g to obtain a key257

embedding ki. The encoder model is a multi-modal258

LM that uses the same tokens and audio tokenizer259

as the decoder model fr. The last hidden state of260

the multi-modal LM is used as the key embedding261

ki for retrieval lookup in the same way as in the262
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Figure 3: Illustration of the token level multi-head cross-
attention. Here eli is the ith token of the lth layer. Color
highlights the interactions between the context and the
query tokens. MHA stands for standard multi-head
cross-attention. The dashed arrow lines from the MHA
outputs illustrate the causal dependencies.

kNN-LM model. 263

The retrieved values vi,j corresponding to the 264

key ki are contiguous token sequences of fixed 265

length extracted from a window around the key to- 266

ken from the corpus. The value tokens may include 267

both speech and text tokens as opposed to indi- 268

vidual tokens used in the kNN-LM. The retrieval 269

database construction is illustrated in Fig. 2b. Each 270

value sequence vi,j is encoded by the value en- 271

coder model h to obtain an encoded embedding 272

ṽi,j = h(vi,j). 273

In this study, we employ a small BERT (Devlin 274

et al., 2018) model with two transformer layers as 275

the value encoder model (other hyper-parameters 276

matched key encoder model g). Pooling the BERT 277

embeddings is done by selecting the token embed- 278

ding that follows directly after the token used for 279

computing the corresponding key. In this study, 280

the context document length is fixed, hence this 281

translates to selecting a token with a predefined 282

index. 283

The encoded value vectors ṽi,j are stacked to 284

form a context value matrix ṽi = [ṽi,0, · · · , ṽi,n]. 285

The context value matrix is used as an input to 286

the decoder model, fr, token level cross-attention 287

layers as the key and value matrices as illustrated 288

in Fig. 3. More formally, for token i we have: 289

P (yi) = softmax(Eo(fr(z:i, ṽ:i)) (4) 290
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The retrieval augmented decoder fr is con-291

structed from a multi-modal LM by adding a token292

level cross-attention block with a normalization293

layer to selected transformer layers before the self-294

attention as illustrated in Fig. 2a. In this work, we295

used the four topmost layers for the cross-attention296

blocks. During training, the original transformer297

weights are frozen and only the new parameters are298

updated. In this regard, the cross-attention layer299

can be considered as an adapter for new functional-300

ity.301

We used pre-layer norm (Xiong et al., 2020) for302

the query inputs of the cross-attention block (see303

Fig. 2a) and applied an additional mask on the304

outputs that is constructed from the pooled context305

documents. If all context documents for a given306

token are omitted, we would zero out the output307

vector. This procedure in combination with the pre-308

layer norm and the parameter freezing guarantees309

that when there is no context documents provided310

the model predictions for all tokens matches the311

underlying LM.312

3 Experiments313

In the following sub-sections, we describe datasets314

used for experiments, model adaptation specifics,315

and retrieval data construction.316

3.1 Datasets317

We investigate retrieval augmentation using318

Spoken-Squad (Lee et al., 2018) and Spoken Lan-319

guage Understanding Evaluation (SLUE) Voxpop-320

uli (Shon et al., 2022). These datasets differ in321

utterance lengths and topics widely, allowing us322

to gauge the models in wide range of applications.323

For, Spoken-Squad, we used Amazon Polly TTS324

service to synthesize speech for questions and an-325

swers.326

We applied a simple text normalization for all327

datasets: lower-casing and punctuation removal. In328

the case of Spoken-Squad, since the test partition329

was not available, we used validation partition for330

testing.331

3.2 Models332

We use two base multi-modal LMs in this work:333

a small model based on the public OPT model334

with 330 million parameters (Zhang et al., 2022b);335

and an internal larger model using the Llama ar-336

chitecture (Touvron et al., 2023) with 6.8 billion337

parameters. Model attributes are listed in Table 1.338

Table 1: Summary of model hyper-parameters.

Attribute Small Large
Parameters ∼ 330M ∼ 6.8B
Text tokens 50266 50001

Speech tokens 2000 2000
Embedding Dimension 512 4096

Hidden Size 1024 4096
Number of Layers 24 32
Attention Heads 16 32

Intermediate Dimension 4096 11008

Speech was encoded into continuous vectors 339

with a pre-trained HuBERT model (Hsu et al., 340

2021) with ∼ 1 billion parameters and further dis- 341

cretized using 2000 k-means centroids. Text was 342

tokenized using the corresponding sentence piece 343

model for all models. We used greedy search for 344

the small model and beam search with beam width 345

of two for the large model. 346

3.3 Model Training and Fine-Tuning 347

The multi-modal LMs were first pre-trained with 348

a large text corpus. Pre-training setup for the 349

small model is identical to Zhang et al. (2022b). 350

The large model was pre-trained using RedPa- 351

jama (Computer, 2023) with an exception that the 352

books subset was replaced by internal text corpus. 353

Training hyper-parameters are obtained from (Tou- 354

vron et al., 2023). 355

After text pre-training, LM vocabularies were 356

extended with the speech tokens followed by multi- 357

task training. The small model was trained us- 358

ing multi-lingual Libri-Speech (Pratap et al., 2020) 359

while the large model was trained using: multi- 360

lingual Libri-Speech, Libri-Light (Kahn et al., 361

2020), People-Speech (Galvez et al., 2021), a large- 362

scale multilingual speech-to-text translation corpus 363

(CoVOST2) (Wang et al., 2020), Tedlium (Hernan- 364

dez et al., 2018), and internal audio data. For all 365

multi-tasking models, the training tasks included 366

speech continuation, text continuation, speech 367

recognition (ASR), and speech generation from 368

text (TTS) with equal weights assigned. The train- 369

ing setup is similar to VoxtLM (Maiti et al., 2023). 370

Task specific prompts are listed in Table 2. 371

For the cross-attention models, the underlying 372

speech multi-modal LM parameters were frozen, 373

with only the value encoder transformer layer 374

and cross-attention adapter blocks trained. The 375

value encoder embedding layer was initialized with 376
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Task Format
Text ⟨st⟩ text ⟨st⟩

Speech ⟨sa⟩ audio ⟨st⟩
ASR ⟨st⟩ [ASR] ⟨sa⟩ audio ⟨st⟩ text ⟨st⟩
TTS ⟨st⟩ [TTS] ⟨st⟩ text ⟨sa⟩ audio ⟨st⟩

Table 2: Token formats for pre-training tasks. Here ⟨·⟩
are special tokens, [ASR] and [TTS] are text prompts.

weights from the corresponding multi-modal LM377

input embedding layer; for the small model we378

used the input projection layer to up-project the379

embedding to the hidden size whereas for the large380

model input embeddings were used directly.381

The cross-attention model training was divided382

in two stages: 1) Starting with randomized weights,383

the model was trained with pre-training tasks and384

cross-entropy loss along with context extracted385

from a random document. For half of the tokens,386

one of the random context documents contained387

the correct next token while the rest were incorrect.388

This training approach helped the model distin-389

guish between relevant and irrelevant context. 2)390

Next, the model was fine-tuned using retrieved con-391

text from SLUE Voxpopuli training partition and392

Spoken-Squad context paragraphs. For SLUE Vox-393

populi, the training partition was split in two parts:394

one part used for the training samples and the other395

part to construct the retrieval corpus (along with all396

the context documents from Spoken-Squad).397

3.4 Retrieval Data Construction398

Retrieval data is constructed from the correspond-399

ing train partition of the datasets with the exception400

of Spoken-Squad where the context paragraphs401

are used. Audio-transcription pairs are encoded402

in ASR format shown in Table 2 for multi-modal403

memory. For text-only memory, transcriptions and404

contexts are encoded in text format. For both text-405

only and multi-modal retrieval memory, keys are406

encoded using the same model. Note that in both407

cases, the number of retrieval keys remains fixed408

because they correspond to the text tokens, but409

with the difference being whether audio was used410

as prompt or not. FAISS library (Johnson et al.,411

2019) is used for nearest neighbor search with a412

Voronoi based index.413

For kNN-LM, the retrieved values (neighbours)414

contained the corresponding next token and their415

Euclidian distance from the retrieval query. For416

the cross-attention model, the values included the417

tokens within a fixed widow, namely, seven tokens 418

preceding the token used for creating the retrieval 419

key and also the following eight tokens. 420

4 Results and Discussion 421

4.1 Effect of Corpus Modality on Retrieval 422

We compare the effect of corpus modality using 423

Spoken-Squad validation partition and quantify the 424

recall of the transcription tokens in the retrieved 425

values. 426

Retrieval recall statistics are shown in Table 3. 427

The percentages show the fraction of the retrieved 428

tokens matching the next token (relative to retrieval 429

key) in the transcription. The next token is pre- 430

dicted with a high degree using a multi-modal cor- 431

pus (69% and 85%) as opposed to the text-only 432

corpus. We believe this is due to the corpus having 433

both acoustic and semantic information. Higher 434

number of retrieved documents increase the recall 435

slightly for the multi-modal corpus as opposed to 436

the text-only corpus, suggesting that lesser number 437

of retrieved documents (and consequently compute) 438

can be effectively used in applications, when us- 439

ing multi-modal memory. The subsequent tokens 440

are predicted with significantly lower accuracy and 441

recall than the first token, which can be attributed 442

to the fact that LMs are trained to predict the next 443

token but not the subsequent ones. 444

This result has two implications: (1) the re- 445

trieved documents likely work well on a token level 446

model predicting the next such as the kNN-LM; (2) 447

models relying on chunks such as chunked cross- 448

attention used in RETRO (Borgeaud et al., 2022) 449

are likely to have performance reduction when com- 450

pared with token level models when the retrieved 451

documents are obtained from a multi-modal auto- 452

regressive LM. 453

We demonstrate the impact of the retrieval 454

modality on ASR with the large multi-modal kNN- 455

LM. For Spoken-Squad validation partition, using 456

text-only memory for decoding results in a higher 457

WER of 17.9% when compared to the multi-modal 458

memory case, which achieves a WER of 16.5%. 459

Corresponding 1-best retrieval accuracy is 34% 460

and 85% respectively as shown in 3. Hence, acous- 461

tic information is principally important for retrieval 462

key construction in speech recognition applications 463

using speech-text LLMs. 464

Table 3 also shows the retrieval statistics with 465

the bert-large-uncased model (Devlin et al., 2018), 466

which has similar number of parameters (336 mil- 467
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Table 3: Token recall in Spoken-Squad validation partition. Index column shows the token used for recall
computation relative to the token used for the retrieval key (in inputs). Document columns show the recall of
subsequent retrieved tokens.

Small Model Large Model BERT
Speech and Text Text Speech and Text Text Text

Index 1st Doc. 8 Docs. 1st Doc. 8 Docs. 1st Doc. 8 Docs. 1st Doc. 8 Docs. 1st Doc. 8 Docs.
1 69% 83% 16% 35% 85% 92% 34% 54% 10% 25%
2 31% 50% 6.8% 19% 47% 65% 16% 35% 8% 20%
3 17% 34% 4.2% 15% 30% 49% 11% 27% 7% 19%
4 12% 29% 3.9% 15% 22% 39% 9% 25% 7% 19%

lion) as the small speech-text LM. For text-only468

retrieval corpus, the speech-text LM has higher469

recall for the next token (Index 1) for 1-best and 8-470

best neighbors compared to the BERT model . For471

subsequent tokens, BERT show a less steep decline472

in recall and fares better in terms of absolute recall473

values. When both speech and text are used for474

the retrieval corpus, the speech-text LM has higher475

1-best and 8-best recall for all considered tokens476

(indices one to four).477

4.2 Speech Recognition478

We investigate our retrieval approaches in speech479

recognition setting. For these experiments, we only480

consider a multi-modal corpus for retrieval as it481

produced superior recall compared to the text-only482

corpus.483

Table 4 shows the WER evaluated on all datasets,484

which are grouped by their relationship to the485

multi-modal LMs training. The speech adapta-486

tion datasets were not used for retrieval fine-tuning.487

Training partition of the datasets was used to488

construct the retrieval corpus. For Libri-Speech,489

Tedlium and SLUE-Voxpopuli, this corresponds490

to audio and transcription pairs and for Spoken-491

Squad, it is the context paragraphs’ audio and text492

data over all Spoken-Squad titles. In the variant,493

Spoken-Squad (paragraph), we limit the retrieval494

corpus to each question/answer’s corresponding495

context paragraph.496

The small kNN-LM model show consistent im-497

provement over the baseline with an exception of498

the Libri-Speech other dataset. We observe similar499

trend also for the large model with an exception that500

both Libri-Speech datasets degrade slightly. This501

can be explained by the strong in-domain baselines502

- in particular for the large model. The WER Reduc-503

tion (WERR) from kNN-LM ranges from single504

digits to ∼ 40% depending on the dataset and the505

baseline model.506

For dynamic context in case of Spoken-Squad 507

(paragraph), kNN-LM showed mixed results. For 508

the small model we observe relative degradation 509

of 13%, as opposed to improvement of of 23% for 510

the large model. This discrepancy can be attributed 511

to underlying LMs retrieval recall (see Table 4) and 512

the interpolation weight. In particular, re-tuning in- 513

terpolation weight for the paragraph level Spoken- 514

Squad would guarantee that the model does not 515

degrade the baseline. 516

The cross-attention (CA) model requires train- 517

ing and the performance is impacted by the fine- 518

tuning data and the retrieval corpus. This aspect 519

is magnified in the large model that has a large 520

number of trainable parameters from the value en- 521

coder and cross-attention layers. In the case of 522

fine-tuning data and retrieval corpus overlapping 523

(Spoken-Squad, SLUE-Voxpopuli), the CA model 524

performs better than the kNN-LM. For Spoken- 525

Squad, this is most prominent where the large CA 526

model out performs all the other models by a wide 527

margin. 528

The larger improvement from CA model com- 529

pared with kNN-LM can be attributed to two main 530

factors: 1) the model has more trainable parameters 531

(about ∼ 40M parameters for the small model and 532

∼ 400M for the larger model) from the value- 533

encoder and the additional CA blocks in the upper 534

decoder layers; 2) kNN-LM is unable to discrimi- 535

nate incorrect context based on the context tokens 536

and relies solely on the key distance while the cross- 537

attention and value encoder allow more complex 538

interactions between the context documents and 539

the input tokens. With this context, one can con- 540

clude that the cross-attention approach tends to be 541

a better candidate than kNN-LM when the dataset 542

that we are domain adapting to is covered to some 543

extent in the pre-training data of the model. 544

For dynamic context (paragraph Spoken-Squad) 545

we see consistent improvement over the baselines 546
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Table 4: WER on ASR datasets. Bold numbers indicate the best result obtained for the dataset. Numbers in the round
brackets show WER Reduction (WERR) compared to the baseline model. Training column depicts the stage at
which the datasets were used viz. speech-text LM adaptation or retrieval fine-tuning. CA stands for Cross-Attention

Training Dataset Small kNN-LM (S) CA (S) Large kNN-LM (L) CA (L)
Libri-Speech (clean) 6.2 3.7 (40) 3.4 (45) 3.5 3.7 (−5.7) 3.6 (−2.9)

Adaptation Libri-Speech (other) 8.1 10.6 (−30) 7.9 (2.5) 6.5 6.8 (−4.6) 7.5 (−15)
Tedlium 16.8 12.2 (27) 10.0 (40) 6.1 7.5(-23) 8.6(-41)

SLUE Voxpopuli 21.4 20.1 (6.0) 15.9 (25) 12.5 12.4 (1) 11.3 (9.6)
Fine-tuning Spoken-Squad 27.2 20.6 (24) 15.5 (43) 18.4 16.5 (10) 8.4 (54)

Spoken-Squad (paragraph) 27.2 30.9 (−13) 16.9 (38) 18.4 14.2 (23) 8.9 (52)

from both the small and large model. Interestingly,547

the improvement we see in the dynamic context548

case is less than we observe for the whole corpus549

case. This finding could be attributed to two effects:550

1) The CA model is fine-tuned using the whole551

corpus and hence might perform better using that552

corpus. 2) The paragraph based retrieval corpus553

may be missing some tokens that would be present554

in the whole corpus. Overall, the CA model seem555

a better choice for dynamic context than the kNN-556

LM model.557

Both models demonstrate also a high tolerance558

for unrelated keys in the retrieval corpus. Adding559

unrelated data to the retrieval corpus has minimal560

impact or can even improve the results (see Spoken-561

Squad results for the whole retrieval corpus com-562

pared to paragraph level retrieval corpus) on re-563

trieval precision or recall of the next token. This564

property allows domain adaptation of the kNN-LM565

or the cross-attention model to multiple domains566

by combining multiple retrieval corpus.567

Finally, in Table 5 we compare our results568

against the large whisper v2 model (Radford et al.,569

2023) for entity heavy SLUE and Spoken-Squad570

datasets. As can be seen, we reach parity on SLUE571

Voxpopuli dataset (used in training data of whis-572

per), and improve the WER of whisper by ∼ 40%573

for Spoken-Squad, achieving state-of-the-art re-574

sults.575

Table 5: WER Comparison of Whisper and Large Cross-
Attention (CA) model on Fine-tuning datasets. WERR
is shown in parentheses.

Dataset Whisper CA (L)
SLUE Voxpopuli 11.2 11.3 (−0.8%)

Spoken-Squad 14.3 8.4 (41%)
Spoken-Squad (paragraph) 14.3 8.9 (38%)

5 Conclusion 576

We investigate use of retrieval augmented multi- 577

modal LMs for ingesting dynamic context and do- 578

main adaptation in speech recognition. We showed 579

that a multi-modal LM can be effectively used for 580

contextualizing retrieval database with audio, lead- 581

ing to an improvement of 10-50% (absolute) in re- 582

trieved token accuracy and recall compared to the 583

text-only counterpart. Furthermore, we compared 584

masked-LM (BERT) with a similar sized multi- 585

modal LM as key encoder for constructing a text 586

based retrieval database. Overall, the multi-modal 587

LM fared better for next token retrieval by 6-10% 588

(absolute), whereas the BERT model had better 589

recall for subsequent tokens by 3-4% (absolute). 590

We considered two different approaches for do- 591

main adaptation: a kNN-LM and a cross-attention 592

based neural approach. Both approaches are stud- 593

ied using two different model sizes: a small model 594

with ∼ 300M parameters and a larger model with 595

∼ 7B parameters. In all cases we used a multi- 596

modal LM to encode the keys used for retrieval. 597

Domain adaptation using cross-attention outper- 598

formed the kNN-LM for both small and large mod- 599

els by 30-100% relative. The large multi-modal 600

LM with cross-attention outperformed whisper 601

model by 40% relative for the entity heavy Spoken- 602

Squad QA dataset, achieving state-of-the-art re- 603

sults. 604

Additionally, the multi-modal LM’s parameters 605

can be shared between the key encoder and decoder. 606

Activation from the early layers can be computed 607

once, used for retrieval and re-used with the re- 608

trieved context in the modified top layers for re- 609

trieval augmented generation. This reduces mem- 610

ory footprint of the model, which can be an impor- 611

tant consideration for embedded applications. 612
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6 Limitations613

We believe that the limitations of our work mainly614

stem from the limitations of Retrieval Augmented615

Generation (RAG), namely hallucinations and size616

of the retrieval database. With regards to halluci-617

nations, a mismatch between the retrieval database618

and the task (in this case ASR) can lead to in-619

correct transcriptions. Homonyms and rare proper-620

nouns are especially prone to this. Additionally,621

size of the retrieval database is also a concern622

from two standpoints: 1. Having a very large623

database (billions of tokens) can negatively affect624

retrieval statistics like recall. Modeling better key625

encoder is one way to alleviate this. 2. Very large626

databases have higher memory requirements and627

can be costly to maintain.628

In this work, we showed that using paired audio629

and text for creating retrieval store is better than630

using text alone for speech recognition. This places631

a dependency on having paired audio data for im-632

proved performance, which might not always be633

readily available or accessible. In such cases, us-634

ing a Text-to-Speech system can be relied upon for635

generating paired data but it comes with its own636

pitfalls viz noisy speech, inaccurate pronunciation637

of rare words etc. These can lead to hallucinations638

in the RAG process.639
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