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ABSTRACT

Neural Stochastic Differential Equations (NSDEs) have recently attracted wide
attention as a promising tool for modeling dynamical systems. However, we
find that existing NSDE frameworks struggle to capture multimodal distributions,
which are prevalent in real-world scenarios. To better understand this failure, we
analyze the origins of multimodality in real-world data and show that it largely
arises from shifts in the underlying data-generating process (DGP). We then fur-
ther provide a theoretical explanation for why current NSDEs fail in these scenar-
ios. To address this fundamental limitation, we propose the Multimodal Neural
SDE (MM-NSDE) framework. MM-NSDE automatically perceives shifts in the
underlying DGP and adaptively modifies the SDE dynamics, enabling more ef-
fective modeling of multimodal behaviors. Experiments on both synthetic and
real-world datasets demonstrate that MM-NSDE achieves stable state-of-the-art
performance. Remarkably, MM-NSDE is highly parameter-efficient, surpassing
Mamba’s performance while using only 1% of its parameter count. To facilitate
further research, we release the code and implementation details at the following
link: https://anonymous.4open.science/r/MMNSDE-10EF.

1 INTRODUCTION

Neural Stochastic Differential Equations (NSDEs) (Tzen and Raginsky, 2019) extend classical
SDEs (Black and Scholes, 1973; Merton, 1973; Yang et al., 2020; Mariani et al., 2022) by parameter-
izing drift and diffusion with neural networks, thereby removing the need for predefined functional
assumptions. Compared to deterministic sequence models (Rumelhart et al., 1986; Hochreiter and
Schmidhuber, 1997) or state space models (Rangapuram et al., 2018; Forgione and Piga, 2023; Li
et al., 2021), NSDEs naturally capture both continuous-time dynamics and stochasticity, making
them a principled choice for modeling complex dynamical systems. However, we observe that NS-
DEs often fail to capture multimodal terminal distributions, despite the absence of such an assump-
tion as a priori. Even in synthetic settings specifically designed to induce them, our experiments
(Section 4.2) show that standard NSDEs rarely generate clearly multimodal behaviors.
To understand this failure, we first analyze the sources of multimodality in real-world data (Jalali
et al., 2023). As illustrated in Figure 1, multimodal outcomes frequently arise from switching in
the underlying data-generating process (DGP). For example, financial markets alternate between
bullish and bearish phases, while physiological signals such as blood glucose exhibit recurrent tran-
sitions between active and resting states. We then provide a theoretical explanation for why NSDEs
cannot adequately represent such distributions. The central issue is a Lipschitz conflict: training
objectives in push-forward models (Arjovsky et al., 2017) require small Lipschitz constants to guar-
antee stability and convergence; for NSDEs, such constraints are also needed to ensure the existence
and uniqueness of solutions. In contrast, capturing abrupt transitions in the data-generating pro-
cess demands large Lipschitz constants to represent highly non-smooth dynamics. This trade-off
substantially limits the expressive capacity of standard NSDEs in multimodal scenarios.
Motivated by these limitations, we propose MultiModal NSDEs (MM-NSDEs). MM-NSDE intro-
duces a state-aware module that detects switching in the underlying data-generating process and
updates the NSDE formulation accordingly. This self-adaptive design preserves the ability of NS-
DEs to model a single DGP, while also adapting to high-frequency or even continuous switching
scenarios. In summary, our contributions are threefold:
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Figure 1: Motivation and overview of MM-NSDE. (A) Real-world time series (e.g., bull vs. bear
markets, plant growth stages, blood pressure, and traffic flow) naturally exhibit multimodal terminal
distributions. In practice, sliding-window segmentation mixes regimes into the training set, leading
to aggregated multimodality. (B) Standard NSDEs face a Lipschitz conflict: high constants ensure
expressiveness but harm stability, while low constants stabilize at the cost of limited expressiveness.
(C) Empirical results on Bitcoin dataset, show MM-NSDE consistently outperforms strong base-
lines. (D) Unlike traditional NSDEs, MM-NSDE employs adaptive drift and diffusion networks,
avoiding the Lipschitz conflict and enabling robust multimodal modeling.

• We analyze the sources of multimodality in real-world data and explain why standard NSDEs
fail to capture this ubiquitous phenomenon, pinpointing the Lipschitz conflict in both drift and
diffusion terms as the key limiting factor.

• We propose MultiModal NSDEs (MM-NSDEs), an elegant and effective extension that intro-
duces a state-aware module to adaptively update the NSDE formulation in response to switching
behaviors.

• We conduct extensive experiments on both synthetic and real-world datasets, demonstrating that
MM-NSDE consistently outperforms existing approaches while maintaining parameter efficiency.
In addition, we provide a detailed theoretical analysis to further support our method.

2 RELATED WORK

Our related work is organized into three categories of models: NSDEs, state space models and other
deep sequential models.

NSDEs. NSDEs (Tzen and Raginsky, 2019; Liu et al., 2019) are able to explicitly model sys-
tem noise in continuous time, which makes them widely applied in finance (Cuchiero et al., 2020),
generative modeling (Song et al., 2020), and scientific computing (Rackauckas et al., 2020). Com-
pared with other models, their advantage lies in naturally capturing stochastic dynamics. However,
existing NSDEs face a fundamental trade-off: ensuring training stability, maintaining uniqueness
of solutions, and achieving strong expressive power cannot be simultaneously guaranteed (Kidger
et al., 2021; Li et al., 2020). This limitation prevents reliable modeling of multimodal trajectories.

State Space Models. To address DGP switching, another line of work introduces “state” as an
explicit variable. From the classical Kalman Filter (Kalman, 1960) to modern deep variants such as
RNNs (Gu et al., 2021; Smith et al., 2022) and Mamba (Gu and Dao, 2023), these models emphasize
capturing long-range dependencies and state-aware modeling. Mamba further introduces structured
state transitions to partially model regime changes explicitly. However, these approaches rely on
discretization formulations and often assume Gaussian noise in structured equations, which limits
their expressive power under highly non-stationary dynamics.

Other Sequential models. Recent architectures such as DLinear (Zeng et al., 2023), TimesNet
(Wu et al., 2022), SegRNN (Lin et al., 2023), and Transformers (Liu et al., 2022) improve forecast-
ing through structural innovations. Yet, they assume deterministic data generation and collapse to
averages in stochastic regimes. While we acknowledge that such deterministic networks can serve as
useful components in NSDE frameworks (e.g., as drift or diffusion modules), applying them directly
in highly stochastic contexts leads to severe performance degradation.
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3 METHODOLOGY

In this section, we first introduce NSDEs together with a formal definition of multimodal distribu-
tion, and then explain why existing approaches fall short in real-world scenarios. Building on this,
Section 3.2 analyzes the root causes as DGP switching. And then Section 3.3 presents MM-NSDE
with two key components—state-awareness and state-adaptive SDEs. Notably, additional explana-
tion is given in Appendix 4, and complete proofs are deferred to Appendix 4.

3.1 PRELIMINARIES

NSDEs. We consider a d-dimensional stochastic process {Yt}t≥0. In traditional SDEs, the drift
and diffusion functions, ft(Yt) and gt(Yt), are typically assumed to be analytically tractable. NSDEs
instead leverage neural networks as flexible approximators:

dYt = fθ1,t(Yt) dt+ gθ2,t(Yt) dWt, (1)
where, for each t ≥ 0, fθ1,t : Rd → Rd and gθ2,t : Rd → Rd×m are neural networks with
parameters θ1, θ2. The function fθ1,t specifies the drift term that describes the average dynamics of
the system at time t, and gθ2,t specifies the diffusion term that accounts for stochastic fluctuations.
Here, Wt is an m-dimensional Wiener process that drives the stochasticity of the system. In the
special case m = d, each state dimension is driven by an independent noise source, whereas when
m = 1, a single noise source is shared across all dimensions.

Multimodal Distribution. At any fixed time t, the random variable Yt ∈ Rd is characterized
by a transition probability density Yt ∼ p( · | Y0), p : Rd → R+. A fundamental challenge
for NSDEs arises when this transition distribution is multimodal rather than unimodal. Intuitively,
multimodality means that the density is concentrated in multiple distinct regions (or “peaks”), which
often correspond to shifts in the underlying data-generating process.

Definition 1 (K-modality in Rd). Let p : Rd → R+ be a continuous probability density function.
If there exists a threshold λ⋆ ∈ (0, sup p) such that the super-level set

L(λ⋆) := {y ∈ Rd | p(y) ≥ λ⋆}

has exactly K connected components, then we say that p is K-modal. If K = 1, the distribution
is called unimodal; If K > 1, the distribution is called multimodal.

3.2 FAILURE ANALYSIS OF NSDES.

There are two widely recognized reasons why NSDEs are often designed with relatively small Lips-
chitz constants. From classical SDE theory (Øksendal, 2003; Karatzas and Shreve, 1991), the drift
and diffusion functions are required to be Lipschitz continuous in order to guarantee the existence
and uniqueness of strong solutions. This condition naturally extends to neural parameterizations of
SDEs. In particular, SDE-Net (Liu et al., 2019) established the following guarantee:

Theorem 2 (Existence and Uniqueness of Neural SDE Solutions (Liu et al., 2019)). Suppose
there exists a constant C > 0 such that for all y, z ∈ Rd and t ≥ 0,

∥fθ1,t(y)− fθ1,t(z)∥+ ∥gθ2,t(y)− gθ2,t(z)∥ ≤ C∥y − z∥.

Then, for every Y0 ∈ Rd, there exists a unique continuous and adapted process {Yt}t≥0 satisfying

Yt = Y0 +

∫ t

0

fθ1,s(Ys) ds+

∫ t

0

gθ2,s(Ys) dWs,

and moreover, E
[
sup0≤s≤T ∥Ys∥2

]
< +∞ for all T ≥ 0.

Beyond existence and uniqueness, small Lipschitz constants are also favored in practice for stabi-
lizing training. Empirical evidence from generative modeling suggests that excessive Lipschitz con-
stants often lead to exploding gradients or unstable dynamics. Consequently, many works impose
Lipschitz control through techniques such as spectral normalization or gradient penalties. Although
most of these observations were originally made in the context of GANs and VAEs, the same prin-
ciple applies to NSDEs: bounding the Lipschitz constant of fθ1 and gθ2 helps maintain numerically
stable trajectories and prevents mode collapse during training.
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While small Lipschitz constants guarantee stability, Theorem 3 makes clear that they also suppress
the amplification factor At. Because the threshold for separated multimodality grows exponentially
in δ/σ, dynamics that are too contractive cannot reach it. A NSDE with small Lf and Lg may lacks
the expressive capacity to generate separated multimodality, even under state-dependent diffusion.

Theorem 3 (Necessary amplification for separated multimodality). If the terminal law ν = L(Yt)
exhibits separated bimodality in some direction with mixture weight λ, separation δ > 0, and
scale σ > 0 , then there exist constants c0, c1 > 0 (depending only on dimension and ellipticity)
such that

∥g∥∞ exp
(
c1(Lf + L2

g)t
)

≥ c−1
0 σ exp

(
δ2

8σ2 − 1
2 (Φ

−1(λ))2
)
,

where Lf and Lg denote the Lipschitz constants of the drift and diffusion in y, respectively, and
∥g∥∞ = sup(y,s) ∥gθ2,s(y)∥op.

The stability of standard NSDEs typically relies on strict Lipschitz constraints imposed on the drift
and diffusion functions (see Theorem 2). On the one hand, such constraints guarantee existence
and uniqueness of the solution and ensure stable training; on the other hand, they significantly limit
the ability of the system to generate separated multimodal distributions within a finite horizon (see
Theorem 3). This reveals a fundamental conflict:
• Prioritizing stability: small Lipschitz constants ensure well-posedness, but a single NSDE lacks

sufficient expressiveness to capture multimodal dynamics.
• Prioritizing expressiveness: relaxing the Lipschitz constraint increases modeling capacity but

often leads to exploding gradients or unstable trajectories during training.

3.3 MM-NSDES

Problem Definition. To balance the conflict, we introduce a Stare Awareness and adaptation
mechanism, where our framework first identifies the current DGP and then applies an NSDE spe-
cialized for it. In this way, each NSDE only needs to model a single mode of the dynamics, thereby
reducing the burden on expressiveness while maintaining stability.

This reformulation is also consistent with real-world scenarios: in practice, DGPs often change over
time rather than remaining fixed, naturally giving rise to multimodal dynamics. More generally, we
consider a multivariate time series {(τn, yn)}Tn=0, yn ∈ Rd, 0 = τ0 < τ1 < · · · < τT , possibly
sampled at irregular timestamps and generated by an unknown DGP that may change over time.
The task is to (i) recognize the current DGP and (ii) switch to the corresponding DGP to generate
future trajectories at timestamps {τn+1, . . . , τn+H} with predictions {ŷτn+1

, . . . , ŷτn+H
}. The pre-

dictive distribution is required to approximate the true conditional data distribution: p̂(Y[τn+1:τn+H ] |
y[τn−k:τn]) ≈ pdata(Y[τn+1:τn+H ] | y[τn−k:τn]), where p̂ denotes the model-induced predictive distri-
bution and pdata the true data distribution. In the autoregressive forecasting setting, this recognition
and adaptation step must be performed at every prediction step: before generating ŷτn+m , the system
first infers the active DGP at time τn+m−1 and then conditions the next-step dynamics accordingly.

Stare Awareness Module. To realize the proposed recognition mechanism, we introduce a Stare
Awareness Module that infers the currently active DGP and embeds it into a continuous latent rep-
resentation ht ∈ RD. This latent process conditions the subsequent NSDE dynamics and evolves
according to

dht = At

(
y[τn−k:τn]

)
⊙ ht︸ ︷︷ ︸

DGP transition

dt+Bt

(
y[τn−k:τn]

)︸ ︷︷ ︸
Input modulation

dt,

where y[τn−k:τn] ∈ R(k+1)×d denotes the most recent observation window of length k + 1, and
ht is the latent embedding of the active DGP, with the above dynamics applied for t ∈ (τn, τn+1].
The functions At(·) and Bt(·) are neural networks that take the observation window as input (the
subscript t indexes time), and ⊙ denotes element-wise multiplication. The first term At(·) ⊙ ht dt
governs smooth transitions of the latent state, while the second term Bt(·) dt introduces input-driven
corrections. In the case of a constant sampling interval ∆τ = τn+1 − τn, the latent process admits
the Euler discretization hτn+1

≈ hτn +∆τ
(
A∆τ (y[τn−k:τn])⊙ hτn +B∆τ (y[τn−k:τn])

)
.

Stare Adaptive Module. Once the active DGP is recognized, our framework needs to switch to
the corresponding dynamics before performing prediction. Conditioned on the latent process ht, we

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Traditional NSDE True Value 
Probability 
Density

multimodal

MM-NSDE

stateObs. Unchanged

Input Window Output

SDE Sampling

State Init

Noise

State Awareness Module

State Representation

Parameter

Nets

Drift NN

Diffusion NN

Changable

Figure 2: Overview of the MM-NSDE. A time-series window is mapped to a latent state by the State
Awareness Module. The latent state then parameterizes the drift and diffusion of the State-Adaptive
NSDE, which generates future trajectories.

transform the canonical drift and diffusion fields via modulators H(·) and G(·) generated from ht.
Specifically, let {

f̃t(y) := H
(
ht

)
f0,t(y),

g̃t(y) := G
(
ht

)
g0,t(y),

where, for each t ≥ 0, f0,t : Rd → Rd and g0,t : Rd → Rd×m are the base drift and diffusion
functions. are base drift/diffusion functions. After modulation, the effective dynamics remain in
the standard NSDE form: dyt = f̃t(yt) dt + g̃t(yt) dWt,. At discrete timestamps τn with step size
∆τn = τn+1 − τn, the Euler–Maruyama update is

yτn+1 ≈ yτn + f̃τn
(
yτn

)
∆τn + g̃τn

(
yτn

)
ηn

√
∆τn,

where ηn ∼ N (0, Im) denotes an m-dimensional standard Gaussian vector corresponding to the
Brownian increments.

Training Objective. At each prediction step, our goal is to measure the discrepancy between the
empirical distribution of predicted samples and that of the real data. A suitable loss must satisfy two
criteria: (i) it should be differentiable, so that it can be integrated into gradient-based training, and
(ii) it should be sensitive to multimodality, since real-world dynamics often involve multiple regimes
or modes. To this end, we compare three loss functions: Maximum Mean Discrepancy (MMD),
Wasserstein-2 distance, and the entropically regularized Sinkhorn divergence. Their sensitivity can
be analyzed under a multimodal setting.

Proposition 4 (Sensitivity to multimodality). Under mild assumptions on the distributions (see
Appendix X), we have the following asymptotic behavior as mode separation a → ∞:

W2(p, q) = Ω(a), Sε(p, q) = Ω(a), MMD(p, q) = O(1).

Proposition 4 shows that MMD saturates and does not reflect increasing mode separation, while
Wasserstein-2 and Sinkhorn remain sensitive to multimodality. We therefore adopt the en-
tropically regularized Sinkhorn divergence, which combines this sensitivity with differentiability
and efficiency. Concretely, consider a prediction horizon of length H with future timestamps
{τn+1, . . . , τn+H}. Given a batch of real sequences {Y (i)}Ni=1, the model generates predictions
{Ŷ (i)}Ni=1 in an autoregressive manner. At each step m ∈ {1, . . . ,H}, we define the empirical dis-
tributions Pτn+m

= 1
N

∑N
i=1 δy(i)

τn+m

, Qτn+m
= 1

N

∑N
i=1 δŷ(i)

τn+m

. The discrepancy between Pτn+m

and Qτn+m
is measured by the Sinkhorn loss:

Lτn+m
= min

T∈Π(Pτn+m
,Qτn+m

)

[∑
i,j

Ti,j ∥y(i)τn+m
− ŷ(j)τn+m

∥22 + λ · Entropy(T)

]
,

where T ∈ RN×N
+ is constrained by Π(Pτn+m , Qτn+m) = {T : T1 = 1

N 1, T⊤1 = 1
N 1}, and

the entropy regularizer is Entropy(T) = −
∑

i,j Ti,j logTi,j . This term avoids degenerate one-
to-one matchings by encouraging smoother transport plans, stabilizing optimization and preserving
information about all modes. The overall training objective is the average loss over the horizon.
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4 EXPERIMENTS

In this section, we begin by outlining the experimental setup, including baselines, benchmarks,
evaluation metrics (Section 4.1). We then present results on the simulated datasets (Section 4.2),
followed by real-world datasets across finance, environment, and cryptocurrency (Section 4.3). Fi-
nally, we provide further analyses, including multimodality validation, sensitivity to input window
length, scalability to high-dimensional data, and computational efficiency (Section 4.4).

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate performance on simulated and real-world datasets. The simulated
datasets are based on three representative SDEs: Geometric Brownian Motion (GBM), the Orn-
stein–Uhlenbeck process (OU), and the Cox–Ingersoll–Ross process (CIR). They fall into three cat-
egories: 1) Intra-family switching: transitions occur within the same type of SDE. 2) Inter-family
switching: transitions occur across different SDE types. 3) Continuous switching: parameters
vary at each time step, capturing richer temporal dynamics. For real-world datasets, we use data
from finance, cryptocurrency, and environmental domains. The financial data include stock prices
of multiple companies, while the environmental dataset tracks daily municipal solid waste in five
global cities. Further details are provided in Appendix 4.

Baselines. We compare MM-NSDEs with a broad set of representative baselines that cover both
time-series forecasting and SDE-based generative modeling. For time-series forecasting, we con-
sider a diverse set of architectures: DLinear (Zeng et al., 2023), a strong linear baseline; Seg-
RNN (Lin et al., 2023), a recurrent model with segmentation capability; TimesNet (Wu et al., 2022),
a convolutional architecture for capturing multi-periodic patterns; and the NS-Transformer (Zeng
et al., 2023), a transformer-based model tailored for non-stationary forecasting. In addition, we
include Mamba (Gu and Dao, 2023), a recent selective state-space model designed for efficient se-
quence modeling. For comparison with generative approaches, we adopt Latent-SDEs (Hauberg
et al., 2023) and GAN-SDEs (Kidger et al., 2021), both of which leverage SDEs for sequence gen-
eration. Further implementation details and hyperparameter settings are given in Appendix 4.

Task setting and Metrics. For all sequence lengths, we use 100 points as historical input and
50 points as the prediction horizon. NSDEs are fundamentally generative models. Following prior
work (Rhee and Glynn, 2015; Kidger et al., 2021), such models are capable of both conditional
prediction and unconditional generation. Accordingly, we evaluate them using three metrics: the
Mean Integrated Squared Error (MISE) and the difference in the tail cumulative distribution function
(TD) for distributional fitting, and the Mean Squared Error (MSE) for prediction accuracy. Detailed
formulas are provided in Appendix 4.

4.2 EVALUATION ON SIMULATED DATA

Model GBM1 OU1 CIR1

MISE↓ TD↓ MMD↓ MSE↓ MISE↓ TD↓ MMD↓ MSE↓ MISE↓ TD↓ MMD↓ MSE↓
DLinear 0.21 0.02 0.08 1.01 1.21 0.09 0.52 1.21 1.38 0.09 0.46 1.16
SegRNN 0.53 0.07 0.14 2.01 0.36 0.08 0.09 1.72 0.59 0.01 0.13 1.49
TimesNet 0.61 0.08 0.15 2.10 0.37 0.01 0.08 1.74 0.60 0.03 0.13 1.51
Autoformer 0.12 0.08 0.17 2.06 0.36 0.02 0.09 1.81 0.56 0.03 0.09 1.80
NS-Transformer 0.19 0.04 0.05 1.13 1.42 0.00 0.07 1.75 0.87 0.01 0.08 1.14
Mamba 0.57 0.09 0.15 2.01 0.58 0.01 0.04 1.73 0.58 0.01 0.12 1.53
Latent-SDEs 0.97 0.10 0.19 2.35 0.68 0.09 0.48 1.60 0.89 0.08 0.41 1.36
GAN-SDEs 1.20 0.10 0.22 2.60 2.71 0.10 0.65 1.95 3.22 0.10 0.58 1.90

MM-NSDEs 0.04 0.01 0.12 0.75 0.08 0.00 0.03 0.02 0.08 0.01 0.03 0.21

Table 1: Comparison of different models on the simulated dataset with Intra-family switching. Our
results are highlighted with darker shading, and the best performance is shown in bold. For pre-
diction models, directly applying MSE supervision leads to mode collapse; therefore, we adopt the
Sinkhorn loss as the training objective. For Latent-SDEs and GAN-SDEs, we rely on their publicly
available implementations. Detailed experimental configurations are provided in the Appendix 4.
Our model addresses the stochastic simulation tasks, as shown in Table 1, achieving lower errors
across all settings. In contrast, sequential prediction models are inadequate for stochastic sequence
switching. With MSE supervision, they collapse to matching only second-order moments, leading
to mode collapse. Even under distributional supervision, the learned trajectory law deviates from the
ground truth. The error can be traced to three sources: discretization bias, distributional mismatch,
and model capacity limitations. Any increase in these components amplifies the overall deviation,
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causing models such as Mamba to exhibit large errors in our benchmarks. Further details of this
analysis are provided in the Appendix. Latent-SDEs and GAN-SDEs fail for a different reason:
Although these models have inherent stochasticity and appear capable of modeling such dynamics,
Lipschitz conflicts in the drift and diffusion terms destabilize training and ultimately lead to collapse.

Figure 3 makes clear the capability of MM-NSDE. Although the continuous switching (Type-3)
setting is difficult, as the underlying DGP changes at each time step, MM-NSDE successfully re-
produces the evolving distributions. By contrast, most baseline models capture only the mean and
overall range, and DLinear collapses entirely to the mean.
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Figure 3: Comparison between the empirical distributions of real trajectories (blue) and generated
trajectories (red) at different time steps for the continuous switching (Type-3) simulated data. Re-
sults are shown for MM-NSDE and four representative baseline models.
4.3 EVALUATION ON REAL-WORLD DATA

Model Stock-AAL Stock-ADBE Stock-ADM Soil BitCoin
MISE↓ TD↓ MISE↓ TD↓ MISE↓ TD↓ MISE↓ TD↓ MISE↓ TD↓

Autoformer 1.12 9.98 0.38 5.21 0.71 8.09 0.03 7.63 1.79 1.84
DLinear 1.59 10.00 1.33 8.80 1.69 9.03 0.64 0.71 1.58 8.78
Mamba 0.73 7.82 0.45 6.26 0.57 9.78 0.25 1.60 1.10 4.53
NS-Transformer 1.19 9.99 1.30 6.77 2.76 4.72 0.26 9.89 1.85 3.42
SegRNN 1.57 9.93 0.54 1.81 1.03 9.95 0.27 2.88 3.78 9.01
TimesNet 0.93 9.91 0.90 3.99 0.87 9.94 0.20 8.52 1.68 9.86
Latent-SDE 0.36 9.90 0.35 9.08 0.41 9.97 0.47 9.26 0.35 9.99
GAN-SDE 0.38 9.95 0.38 9.98 0.43 9.99 0.95 9.93 0.11 10.01

MM-NSDE 0.02 0.01 0.02 0.06 0.06 0.02 0.01 0.05 0.05 0.03

Model Stock-AAL Stock-ADBE Stock-ADM Soil BitCoin
MMD↓ MSE↓ MMD↓ MSE↓ MMD↓ MSE↓ MMD↓ MSE↓ MMD↓ MSE↓

Autoformer 0.99 4.35 0.07 1.42 1.09 7.28 0.01 1.23 1.03 2.74
DLinear 0.72 3.59 1.09 4.41 1.13 8.69 0.30 1.25 0.99 5.32
Mamba 0.42 12.62 0.09 1.37 0.70 44.51 0.02 7.15 1.02 11.54
NS-Transformer 0.25 2.34 0.58 2.37 0.98 7.78 0.06 0.88 0.89 4.59
SegRNN 0.97 3.72 0.06 1.41 0.58 14.89 0.05 1.06 1.03 6.88
TimesNet 0.52 4.93 0.05 1.29 0.75 20.41 0.05 0.91 0.96 9.71
Latent-SDE 0.95 10.57 0.65 3.01 0.96 25.12 0.35 1.30 1.05 10.01
GAN-SDE 1.10 13.01 0.90 4.81 1.15 40.01 0.45 1.50 1.15 12.01

MM-NSDE 0.03 0.15 0.07 0.73 0.05 1.30 0.01 0.33 0.01 0.40

Table 2: Comparison of different models on various domains, including finance, environment, and
bitcoin. All values are scaled by 10−2. Bold text indicates the best performance. ↓: lower is better.
From Table 2, we observe that sequential models perform poorly on volatile and non-stationary
sequences such as stocks and Bitcoin. Their performance degrades severely in both error and distri-
butional metrics; although Latent-SDE and GAN-SDE mitigate the issue, they cannot fully resolve
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Figure 5: Model performance across varying historical window sizes k ∈ {50, 100, 150}, evaluated
by MISE (lower is better). To examine the impact of different historical window sizes, all models
are evaluated on the GBM1 dataset with sequence length 250, where a regime switch occurs at time
step t = 200. All other experimental configurations remain identical to the previous setup.

it. On low-noise data such as Soil, traditional models achieve reasonable results, yet MM-NSDE
still delivers the best performance across all metrics. Interestingly, even within the same financial
market, different stocks demonstrate substantial variability in stochasticity, underscoring the need
for models that can adapt to heterogeneous noise levels. We also observe that real-world data often
display multi-modal behaviors that are more complex than simulation, where transformers tend to
collapse into trivial solutions by directly copying the previous ground-truth value as the next-step
prediction, highlighting their fundamental inability to capture stochasticity. MM-NSDE avoids such
overfitting through its intrinsic stochasticity, while training each DGP with sufficient expressive
capacity to capture multi-modal distributions.

4.4 FURTHER ANALYSIS

higher-probability to form multimodality

Figure 4: Heatmap of separated multimodal-
ity with varying Lipschitz constants.

Empirical Validation of Separated Multimodal-
ity. We empirically validate Theorem 3, which
states that small Lipschitz constants (Lf , Lg) sup-
press the amplification factor At, preventing the
emergence of separated multimodality. To test this,
we imposed hard Lipschitz constraints by applying
spectral normalization to each linear layer (enforc-
ing 1-Lipschitz) and scaling the outputs to the tar-
get constants Lf and Lg . NSDEs were trained on
a bimodal Gaussian mixture target using an MMD
loss, and the terminal distributions were evaluated
with a Gaussian mixture model. The separation in-
dex δ/σ > 2 was taken as evidence of separated
multimodality. As shown in Figure 4, separated
multimodality appears only when (Lf , Lg) are suf-
ficiently large, while smaller values fail to reach the
threshold. This provides numerical evidence for the theorem: excessive contractivity limits the
expressive power of NSDEs and prevents separated multimodality.

Effect of Input Window Length. We conducted an ablation study with k ∈ {50, 100, 150}, sum-
marized in Figure 5. MM-NSDE consistently achieves extremely low MISE (0.04 → 0.017 →
0.011), demonstrating robustness to the historical window size. Nonetheless, a sufficiently large in-
put window is required for the state-awareness module to fully capture latent regime transitions. In
the main experiments, we set k = 100 as a practical trade-off between performance and efficiency.

Scalability to High-Dimensional Sequences. We design synthetic multivariate financial time se-
ries where the data-generating process switches between two configurations. Specifically, we sim-
ulate two correlated asset prices, S1(t) and S2(t), with state-drifts, volatilities, and changing cor-
relation between the driving Brownian motions. This setup induces non-stationary dependencies
and multimodal endpoint distributions, resembling realistic market fluctuations (full configuration
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in Appendix 4). Figure 6 compares the ground-truth and model-generated endpoint distributions,
showing that MM-NSDE accurately captures the joint dynamics of S1 and S2.

Real Data Distribution (top view)

Real Data Distribution

D
ensity

D
ensity

Generated Data Distribution (top view)

Generated Data Distribution
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Figure 6: Comparison of real and generated endpoint distributions at t = 252 for the synthetic
financial series. Left: ground-truth distribution of S1 and S2; Right: MM-NSDE results, accurately
recovering the multimodal density induced by DGP switching.
In addition, we further validated the robustness of MM-NSDE on ultra high-dimensional data such
as images. The detailed results can be found in the Appendix 4.

Computational Efficiency Analysis. In addition to the theoretical analysis discussed in Sec-
tion 3.3, we evaluated alternative loss functions. As shown in Table 3, the results reveal trade-offs
among accuracy, efficiency, and memory. MSE yields the largest error, and MMD, lacking entropic
regularization, remains too rigid to capture complex distributional structures. Sinkhorn-based vari-
ants perform best overall: the baseline setting (N = 512, ϵ = 0.1, iter=100) yields the highest
accuracy at the cost of runtime and memory, whereas mini-batch and online kernel variants reduce
resource demands with minimal loss in accuracy. By contrast, high blur severely harms perfor-
mance, while low blur approaches optimal accuracy but incurs prohibitive computational overhead.

Method (Loss) Total Time [103 s] Peak Memory [GB] Final MISE

MSE 1.21 15.24 0.108
MMD (RBF, σ = 0.5) 1.57 16.89 0.049
Sinkhorn (Baseline, N = 512, ϵ = 0.1, iter=100) 1.98 32.55 0.004
Sinkhorn w/ Mini-batch (N = 128, ϵ = 0.1, iter=100) 1.48 17.53 0.011
Sinkhorn w/ Online Kernel (N = 512, ϵ = 0.1, iter=100) 2.00 18.16 0.009
Sinkhorn w/ High Blur (N = 512, ϵ = 1.0, iter=100) 1.68 32.19 0.048
Sinkhorn w/ Low Blur (N = 512, ϵ = 0.01, iter=100) 2.35 32.89 0.005
Sinkhorn w/ Fewer Iter (N = 512, ϵ = 0.1, iter=50) 1.52 32.48 0.008
Sinkhorn w/ Sparse Sampling (N = 256, ϵ = 0.1, iter=100) 1.72 24.32 0.006

Table 3: Performance comparison of different loss functions and Sinkhorn variants within the MM-
NSDE framework. Mini-batch means computing Sinkhorn loss on randomly subsampled batches
(N = 128) to reduce complexity. Online Kernel replaces the full N × N cost matrix with a
streaming kernelized approximation to save memory. Blur refers to the entropic regularization
coefficient ϵ, where a larger ϵ produces smoother (blurred) transport plans. Iter denotes the number
of Sinkhorn iterations used in optimization. Sparse Sampling reduces the number of support points
(N = 256) for approximating the cost matrix. All experiments were conducted on an NVIDIA
A800 GPU (80GB) using the GBM-1 dataset, with other experimental settings kept identical.
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ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT

This paper aims to advance the field of Machine Learning. While the work may have potential so-
cietal implications, we do not identify any specific ethical concerns that require special attention.
We provide sufficient details of the model, training procedure, and evaluation setup to allow inde-
pendent reproduction of our results. All hyperparameters, datasets, and experimental settings are
documented in the paper or supplementary material.

REPRODUCIBILITY CHECKLIST

Instructions for Authors:

This document outlines key aspects for assessing reproducibility. Please provide your input by
editing this .tex file directly.

For each question (that applies), replace the “Type your response here” text with your answer.

Example: If a question appears as

\question{Proofs of all novel claims are included}
{(yes/partial/no)}
Type your response here

you would change it to:

\question{Proofs of all novel claims are included}
{(yes/partial/no)}
yes

Please make sure to:

• Replace ONLY the “Type your response here” text and nothing else.

• Use one of the options listed for that question (e.g., yes, no, partial, or NA).

• Not modify any other part of the \question command or any other lines in this document.

You can \input this .tex file right before \end{document} of your main file or compile it as
a stand-alone document. Check the instructions on your conference’s website to see if you will be
asked to provide this checklist with your paper or separately.

1. General Paper Structure

1.1. Includes a conceptual outline and/or pseudocode description of AI methods introduced (yes/-
partial/no/NA) yes

1.2. Clearly delineates statements that are opinions, hypothesis, and speculation from objective facts
and results (yes/no) yes

1.3. Provides well-marked pedagogical references for less-familiar readers to gain background nec-
essary to replicate the paper (yes/no) yes

2. Theoretical Contributions

2.1. Does this paper make theoretical contributions? (yes/no) yes

If yes, please address the following points:
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2.2. All assumptions and restrictions are stated clearly and formally (yes/partial/no) yes

2.3. All novel claims are stated formally (e.g., in theorem statements) (yes/partial/no) yes

2.4. Proofs of all novel claims are included (yes/partial/no) yes

2.5. Proof sketches or intuitions are given for complex and/or novel results (yes/partial/no) yes

2.6. Appropriate citations to theoretical tools used are given (yes/partial/no) yes

2.7. All theoretical claims are demonstrated empirically to hold (yes/partial/no/NA) yes

2.8. All experimental code used to eliminate or disprove claims is included (yes/no/NA) yes

3. Dataset Usage

3.1. Does this paper rely on one or more datasets? (yes/no) Type your response here

If yes, please address the following points:

3.2. A motivation is given for why the experiments are conducted on the selected datasets
(yes/partial/no/NA) yes

3.3. All novel datasets introduced in this paper are included in a data appendix (yes/par-
tial/no/NA) yes

3.4. All novel datasets introduced in this paper will be made publicly available upon publi-
cation of the paper with a license that allows free usage for research purposes (yes/par-
tial/no/NA) yes

3.5. All datasets drawn from the existing literature (potentially including authors’ own previ-
ously published work) are accompanied by appropriate citations (yes/no/NA) yes

3.6. All datasets drawn from the existing literature (potentially including authors’ own previ-
ously published work) are publicly available (yes/partial/no/NA) yes

3.7. All datasets that are not publicly available are described in detail, with explanation why
publicly available alternatives are not scientifically satisficing (yes/partial/no/NA) NA

4. Computational Experiments

4.1. Does this paper include computational experiments? (yes/no) yes

If yes, please address the following points:

4.2. This paper states the number and range of values tried per (hyper-) parameter during de-
velopment of the paper, along with the criterion used for selecting the final parameter
setting (yes/partial/no/NA) yes

4.3. Any code required for pre-processing data is included in the appendix (yes/partial/no) yes

4.4. All source code required for conducting and analyzing the experiments is included in a
code appendix (yes/partial/no) yes

4.5. All source code required for conducting and analyzing the experiments will be made pub-
licly available upon publication of the paper with a license that allows free usage for
research purposes (yes/partial/no) yes

4.6. All source code implementing new methods have comments detailing the implementation,
with references to the paper where each step comes from (yes/partial/no) yes

4.7. If an algorithm depends on randomness, then the method used for setting seeds is de-
scribed in a way sufficient to allow replication of results (yes/partial/no/NA) yes
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4.8. This paper specifies the computing infrastructure used for running experiments (hardware
and software), including GPU/CPU models; amount of memory; operating system; names
and versions of relevant software libraries and frameworks (yes/partial/no) no

4.9. This paper formally describes evaluation metrics used and explains the motivation for
choosing these metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used to compute each reported result
(yes/no) yes

4.11. Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,
average; median) to include measures of variation, confidence, or other distributional in-
formation (yes/no) yes

4.12. The significance of any improvement or decrease in performance is judged using appro-
priate statistical tests (e.g., Wilcoxon signed-rank) (yes/partial/no) no

4.13. This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s
experiments (yes/partial/no/NA) yes
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DETAILS OF EXPERIMENTAL SETUP

DATASETS

Simulated Data. Table 4 illustrates the first benchmark category, intra-family switching, where
transitions remain within the same SDE family. Table 5 further details the parameter settings used
for both intra-family and inter-family switching. For each setting, we generate 10,000 trajectories,
with 2,000 held out for evaluation. In all cases, the task is formulated as conditional prediction: the
model observes the first 100 steps and forecasts the following 50.

Model Type Data Generation Process SDE1 Parameters SDE2 Parameters SDE3 Parameters

GBM dxt =


µ1xtdt+ σ1xtdWt, t < 100

µ1xtdt+ σ1xtdWt, t ≥ 100, probability p

µ2xtdt+ σ2xtdWt, t ≥ 100, probability 1− p

µ1 = −4.0/365, σ1 = 0.01

µ2 = 3.0/365, σ2 = 0.01

p = 0.8

µ1 = −4.0/365, σ1 = 0.004

µ2 = −1.0/365, σ2 = 0.006

p = 0.2

µ1 = −1.0/365, σ1 = 0.004

µ2 = 4.0/365, σ2 = 0.006

p = 0.2

OU dxt =


θ1(µ1 − xt)dt+ σ1dWt, t < 100

θ1(µ1 − xt)dt+ σ1dWt, t ≥ 100, probability p

θ2(µ2 − xt)dt+ σ2dWt, t ≥ 100, probability 1− p

θ1 = 0.01, µ1 = 50.0, σ1 = 0.1

θ2 = 0.02, µ2 = 35.0, σ2 = 0.2

p = 0.5

θ1 = 0.05, µ1 = 30.0, σ1 = 0.1

θ2 = 0.02, µ2 = 45.0, σ2 = 0.3

p = 0.5

θ1 = 0.02, µ1 = 35.0, σ1 = 0.1

θ2 = 0.05, µ2 = 25.0, σ2 = 0.3

p = 0.5

CIR dxt =


κ1(θ1 − xt)dt+ σ1

√
xtdWt, t < 100

κ1(θ1 − xt)dt+ σ1
√
xtdWt, t ≥ 100, probability p

κ2(θ2 − xt)dt+ σ2
√
xtdWt, t ≥ 100, probability 1− p

κ1 = 0.02, θ1 = 50.0, σ1 = 0.04

κ2 = 0.05, θ2 = 40.0, σ2 = 0.03

p = 0.5

κ1 = 0.02, θ1 = 30.0, σ1 = 0.04

κ2 = 0.05, θ2 = 40.0, σ2 = 0.05

p = 0.5

κ1 = 0.02, θ1 = 30.0, σ1 = 0.05

κ2 = 0.05, θ2 = 20.0, σ2 = 0.04

p = 0.5

Table 4: Parameter configurations for intra-family switching. Transitions within the same SDE
type are shown for SDE1–SDE3 across GBM, OU, and CIR.

For multidimensional data, we consider a two-asset stochastic system where the log-prices follow
correlated Brownian motions with time-varying correlation. Specifically, let W1(t) and W2(t) de-
note Brownian motions with instantaneous correlation ρ(t). The log-price dynamics are governed
by the coupled stochastic differential equations:

dS1(t) = µ1(t)S1(t) dt+ σ1(t)S1(t) dW1(t),

dS2(t) = µ2(t)S2(t) dt+ σ2(t)S2(t) dW2(t).

with Corr(dW1(t), dW2(t)) = ρ(t). The drift–volatility parameters {µ1, µ2, σ1, σ2, ρ} evolve ac-
cording to a two-regime switching mechanism: Baseline regime: µ1 = 0.1, µ2 = 0.05, σ1 =
0.2, σ2 = 0.3, ρ = 0.5. Switched regime: µ1 = 0.05, µ2 = 0.1, σ1 = 0.25, σ2 = 0.15, ρ =
−0.2. At each discrete timestep, the system transitions from the baseline to the switched regime
with probability pswitch = 0.3, mimicking abrupt market shifts. The initial conditions are set as
S1(0) = S2(0) = 100. The discretization step is fixed at ∆t = 1/252, corresponding to daily
increments under a yearly horizon.

Real-world Datasets. We evaluate our method on three domains: (i) Stock, (ii) Cryptocurrency,
and (iii) Environment. The stock domain includes time-series price data for AAL (American
Airlines Group), ADBE (Adobe Inc.), and ADM (Archer Daniels Midland Company), spanning
September 11, 2017 to February 16, 2018, with 5-minute sampling intervals. The cryptocurrency
domain consists of Bitcoin high-price data at 1-minute intervals from December 29, 2024 to January
13, 2025, providing a high-frequency view of market dynamics. The environmental domain contains
waste management records from Boralasgamuwa, Homagama, and Ballarat, merged into a unified
dataset with 9,608 entries spanning July 3, 2000 to December 31, 2018. All datasets are divided into
training and testing sets with an 8:2 ratio.

ALGORITHM IMPLEMENT DETAILS

In the final experimental setup, we ensured that each baseline was configured with model-specific
yet comparable hyperparameters. Autoformer used 2 encoder and 2 decoder layers with hidden size
256 and dropout 0.1. TimesNet employed 4 temporal convolutional blocks with hidden size 256 and
SiLU activations. NS-Transformer was configured with 2 encoder layers, hidden size 128, and 4 at-
tention heads. SegRNN contained 2 layers with hidden size 256, while Mamba used 2 selective-scan
layers with hidden size 256. For stochastic baselines, both Latent-SDE and GAN-SDE parameter-
ized the drift and diffusion terms with two-layer MLPs (128 hidden units, ReLU activations) under
the same SDE solver and discretization scheme. Within MM-NSDE, the drift and diffusion functions
were also modeled by two-layer MLPs with hidden size 256 and ReLU activations. The state-aware
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module was implemented with stacked two blocks consisting of input projection, 1D convolution
and SiLU activation. The parameter choices were determined through systematic grid search: we
uniformly searched learning rates {1e-3, 5e-4, 1e-4}, hidden sizes {64, 128, 256}, number of layers
{2, 4, 6}, dropout {0.1, 0.3, 0.5}, and weight decay {0, 1e-4, 1e-3}, selecting the best-performing
configurations on the validation set. For stochastic models, we additionally tuned SDE discretiza-
tion and noise intensity parameters. All experiments were repeated with five random seeds, and we
report the mean preformance, ensuring robustness and fairness in comparisons across models.

EVALUATION METRICS

We employ four complementary metrics to evaluate model performance. First, MISE assesses the
discrepancy between true and generated distributions under hybrid conditioning paths, defined as

MISE = Ey1:L+T∼ptrue

[
EŷL+1:L+T∼pmodel(·|y1:L)

[∫ ∞

−∞

(
M̂T (yL+T | Hh)−MT (yL+T | Ht)

)2
dyL+T

]]
,

where Hh = {ŷ1:L, ŷL+1:L+T } combines true history and model predictions, and Ht = y1:L+T

denotes the complete true path. Second, for extreme risk assessment, we use the TD metric, which
measures discrepancies in the lower and upper 5% quantiles of the cumulative distribution function
(CDF):

∆T =

∫ F−1(α)

−∞

∣∣∣F (x)− F̂ (x)
∣∣∣ dx+

∫ ∞

F−1(1−α)

∣∣∣F (x)− F̂ (x)
∣∣∣ dx,

where F (x) and F̂ (x) denote the true and empirical CDFs, respectively, with α = 0.05. Third, we
compute the MMD to quantify the overall distributional gap between true and generated samples:

MMD2(Ht,Hh) = Ex,x′∼ptrue [k(x, x
′)] + Ey,y′∼pmodel [k(y, y

′)]− 2Ex∼ptrue,y∼pmodel [k(x, y)],

where k(·, ·) is a positive definite kernel (RBF kernel in our experiments). Finally, we include the
MSE to measure pointwise prediction accuracy:

MSE =
1

T

T∑
t=1

E
[
(yL+t − ŷL+t)

2
]
,

which evaluates the expected squared error between true trajectories and model predictions under
teacher forcing.
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MORE ANALYSIS

MORE RESULTS.

Simulated Results. As shown in Table 6 and Table 7, the results show that MM-NSDEs maintain
competitive performance across nearly all evaluation metrics, achieving both high point-wise trajec-
tory accuracy and distributional alignment. This is, to our knowledge, the first evidence that a model
can perform well in both aspects without a trade-off, highlighting its capability of global general-
ization and local precision. Switching dynamics serve as the key stress test: while some baselines
remain reasonable under intra-family scenarios, they fail in inter-family settings, with MSE rising
to high levels. This indicates their inability to capture the mechanisms governing transitions across
dynamical families. Latent-SDEs, for instance, work within a single dynamical regime but fail once
family shifts occur. These findings suggest that not all SDE-based approaches are generalizable; the
key lies in incorporating structured inductive biases that reflect the properties of real-world data to
achieve cross-family generalization.

Model GBM2 GBM3 OU2

MISE TD MMD MSE MISE TD MMD MSE MISE TD MMD MSE

Autoformer 0.16 0.08 0.17 2.06 0.32 0.09 0.08 1.66 1.30 0.04 0.09 1.81
DLinear 0.24 0.09 0.08 1.01 0.17 0.10 0.12 0.99 1.89 0.10 0.52 1.21
Mamba 0.13 0.07 0.15 2.01 0.30 0.09 0.07 1.62 1.36 0.04 0.09 1.73
NS-Transformer 0.10 0.09 0.05 1.13 0.10 0.10 0.06 1.18 1.29 0.05 0.09 1.75
SegRNN 0.12 0.07 0.14 2.01 0.28 0.09 0.07 1.61 1.42 0.05 0.09 1.73
TimesNet 0.12 0.06 0.15 2.10 0.31 0.09 0.06 1.59 1.37 0.04 0.09 1.74
Latent-SDEs 1.03 0.10 0.30 2.01 0.68 0.10 0.25 1.81 1.17 0.10 0.41 2.20
GAN-SDEs 3.66 0.10 0.51 3.00 0.54 0.10 0.30 2.00 1.12 0.10 0.45 2.50

MM-NSDEs 0.01 0.01 0.02 0.75 0.02 0.10 0.03 0.08 0.03 0.02 0.03 0.12

Model OU3 CIR2 CIR3

MISE TD MMD MSE MISE TD MMD MSE MISE TD MMD MSE

Autoformer 0.74 0.01 0.17 1.47 0.44 0.01 0.09 1.80 0.63 0.02 0.11 1.61
DLinear 1.90 0.10 0.40 1.18 1.16 0.10 0.46 1.16 1.61 0.09 0.39 1.19
Mamba 0.76 0.03 0.19 1.41 0.42 0.00 0.12 1.53 0.60 0.02 0.11 1.58
NS-Transformer 0.75 0.02 0.17 1.47 0.41 0.03 0.20 1.87 0.17 0.04 0.10 1.65
SegRNN 0.72 0.01 0.21 1.41 0.45 0.02 0.13 1.49 0.63 0.01 0.12 1.57
TimesNet 0.76 0.02 0.19 1.41 0.44 0.01 0.13 1.51 0.65 0.02 0.11 1.57
Latent-SDEs 0.69 0.10 0.35 2.00 0.82 0.10 0.30 1.91 0.47 0.02 0.20 1.50
GAN-SDEs 0.59 0.10 0.41 2.31 0.92 0.10 0.35 2.20 0.71 0.10 0.26 1.80

MM-NSDEs 0.45 0.03 0.03 0.03 0.33 0.00 0.01 0.01 0.03 0.07 0.05 0.07

Table 6: Comparison of different models on the simulated dataset with Intra-family switching. Our
results are highlighted with darker shading, and the best performance is shown in bold. The reported
values are scaled by 10−2.

Real-world Tasks. We extend our evaluation to a public benchmark on uncertainty estimation in
financial time series, a setting where modeling stochastic variability is essential for tasks such as risk
management and portfolio optimization. As shown in Table 8, MM-NSDE reduces the MMD score
by several orders of magnitude compared to all baselines. This demonstrates its ability to capture
distributional uncertainty in financial dynamics, which is critical for stress testing and volatility
forecasting.

MM-NSDE FOR NON-SEQUENTIAL DATA MODELING

Differential equation (DE) based models can be viewed as a block, as prior work has shown the
equivalence between residual networks and SDE formulations (Tzen and Raginsky, 2019; Kong
et al., 2020). We benchmarked DE- and SDE-based blocks on the MNIST OOD detection task
using three metrics: TNR@TPR95%, Detection Accuracy, and AUPR Out. As shown in Table 9,
DE methods perform well on in-distribution data but achieve lower AUPR Out, indicating weaker
rejection of OOD samples. SDE-based approaches provide stronger uncertainty estimation. Our
MM-NSDE block achieves the best TNR@TPR95% and AUPR Out while maintaining competitive
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Model OU → OU or GBM OU → OU or CIR OU → GBM or CIR

MISE TD MMD MSE MISE TD MMD MSE MISE TD MMD MSE

Autoformer 0.67 0.09 0.16 1.90 2.83 0.07 0.20 2.01 1.45 0.06 0.19 1.80
DLinear 0.24 0.01 0.11 1.26 2.81 0.06 0.29 1.62 8.30 0.06 0.28 1.52
Mamba 0.68 0.09 0.18 2.31 2.85 0.06 0.14 1.74 1.44 0.06 0.13 1.62
NS-Transformer 0.23 0.01 0.11 1.22 2.85 0.02 0.16 1.71 0.90 0.04 0.14 1.60
SegRNN 0.67 0.10 0.19 2.36 2.91 0.07 0.15 1.92 1.48 0.06 0.13 1.74
TimesNet 0.67 0.09 0.19 2.34 2.84 0.06 0.14 1.83 1.44 0.06 0.13 1.67
Latent-SDEs 0.66 0.10 0.35 1.81 1.00 0.10 0.41 2.10 0.86 0.10 0.38 1.91
GAN-SDEs 1.40 0.10 0.46 2.30 1.40 0.10 0.50 2.61 0.63 0.10 0.49 2.40

MM-NSDEs 0.07 0.07 0.05 0.06 0.09 0.02 0.01 0.04 0.12 0.19 0.01 0.00

Model CIR → CIR or GBM CIR → CIR or OU CIR → GBM or OU

MISE TD MMD MSE MISE TD MMD MSE MISE TD MMD MSE

Autoformer 0.44 0.09 0.13 2.24 0.08 0.03 0.04 1.20 0.73 0.05 0.03 1.16
DLinear 0.70 0.09 0.12 1.19 2.23 0.07 0.37 0.94 1.78 0.08 0.33 0.92
Mamba 0.37 0.07 0.09 1.97 0.10 0.02 0.05 1.07 0.79 0.04 0.04 1.02
NS-Transformer 0.26 0.09 0.10 1.50 0.08 0.01 0.05 1.01 0.27 0.03 0.08 1.11
SegRNN 0.39 0.08 0.11 2.11 0.08 0.01 0.04 1.08 0.72 0.03 0.03 1.00
TimesNet 0.40 0.07 0.10 2.05 0.09 0.01 0.05 1.09 0.72 0.04 0.03 1.03
Latent-SDEs 0.62 0.05 0.29 1.61 0.22 0.10 0.22 1.30 0.16 0.05 0.19 1.20
GAN-SDEs 2.60 0.10 0.38 2.21 1.80 0.10 0.34 1.80 0.41 0.10 0.28 1.71

MM-NSDEs 0.20 0.05 0.01 0.02 0.05 0.00 0.01 0.10 0.04 0.09 0.03 0.42

Table 7: Comparison of different models on the simulated dataset with Inter-family switching. Our
results are highlighted with darker shading, and the best performance is shown in bold. The reported
values are scaled by 10−2.

Metric DLinear SegRNN TimesNet Autoformer NS-Transformer Mamba Latent-SDEs GAN-SDEs MM-NSDE

MMD (×10−3) ↓ 240.76 210.89 205.12 195.33 98.61 215.47 455.18 510.42 0.28

Table 8: Performance on uncertainty estimation in financial time series (MMD ↓). Lower values
indicate better distributional uncertainty modeling.

Detection Accuracy, showing that modeling network evolution as a stochastic process improves
OOD detection compared to DE-based counterparts.

Model TNR@TPR95% Detect. Acc. AUPR Out
Threshold 94.0± 1.4 94.8± 0.7 89.4± 1.1
MC-Dropout 92.9± 1.6 94.2± 0.7 88.5± 1.7
PN 93.4± 2.2 94.5± 1.1 88.5± 1.3
BBP 75.0± 3.4 90.4± 2.2 76.0± 4.2
p-SGLD 85.3± 2.3 90.5± 1.3 82.8± 2.2
SDE-Net 99.6± 0.2 98.6± 0.5 99.5± 0.3

MM-NSDE 99.7 ± 0.2 98.3± 0.4 99.9 ± 0.1

Table 9: Full comparison of all baselines on MNIST OOD detection using three representative
metrics. Best results are in bold, and second best are underlined.

......CNN

M
L
P

MNIST

SVHN

Figure 7: Illustration of the MM-NSDE block applied to non-sequential data (image classification).
Each residual connection can be interpreted as a discretization step dt of an underlying stochastic
differential equation, allowing the network depth to be viewed as the time axis.
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MODEL SCALABILITY ANALYSIS

Figure 8 illustrates the performance of different models as their parameter scales increase. As the
number of parameters grows, Mamba shows a steady decrease in error, indicating good scalability.
SegRNN performs relatively well at smaller scales, but its error initially increases as the model size
grows, before improving again at larger scales. This pattern may reflect differences in optimization
and generalization behaviors across capacity ranges. Autoformer maintains its error within a rela-
tively stable range across the examined scales. In contrast, MM-NSDE consistently achieves error
levels that are substantially lower than all other models, and its performance further improves with
scale, highlighting its strong scalability advantage.

Figure 8: Comparison of model performance across different parameter scales on the GBM1 simu-
lated dataset, with all other experimental settings kept consistent with the previous experiments.

ANOTHER PERSPECTIVE ON THE FAILURE OF NSDES

Another perspective on why NSDEs struggle to capture multimodal behaviors lies in their structural
limitations. Although the drift and diffusion terms are parameterized by expressive neural networks,
the underlying SDE dynamics are still continuous stochastic flows. Such flows inherently preserve
smoothness and local regularity, which naturally bias the resulting transition densities toward uni-
modality. Consequently, multimodality can only arise under restrictive conditions, and these are
rarely satisfied in practice.

For instance, the GBM, widely applied in finance and economics, produces a log-normal transition
density that is strictly unimodal. More generally, many classical SDEs share this unimodal bias. To
formalize when multimodality is possible, we provide the following theorem:

Theorem 5. Suppose Yt follows the NSDE in Eq. 1. Suppose f and g are Lipschitz continuous
functions, and f(Yt, t) and g(Yt, t) have finite moments. If Assumptions 11–12 in Appendix A
hold, then the stationary transition density is multimodal.

Theorem 5 establishes a theoretical framework for determining when multimodality can occur. How-
ever, these conditions are typically violated by standard SDEs. As a concrete example, the following
corollary shows that the Ornstein–Uhlenbeck (OU) process always yields a unimodal stationary dis-
tribution.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Corollary 6 (Ornstein–Uhlenbeck process). Suppose Yt follows the Ornstein–Uhlenbeck process

dYt = κ(µ− Yt)dt+ σdWt, κ > 0, σ > 0,

then the stationary transition density of Yt, p(Yt|Yt−1), is unimodal.

Proof. We provide only a brief outline here; the full derivation can be found in Appendix 4. By
Theorem 5, the stationary point is Y ∗ = µ. At this point, γ(Y ∗) = −κ/σ2 < 01. Hence, the
stationary transition density of the Ornstein–Uhlenbeck process is strictly unimodal.

1Y ∗ and γ(·) are defined in Assumptions 11–12
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PROOFS

PROOF FOR THEOREM 3

We begin by stating the assumptions used throughout.

Assumption 7 (Coefficient regularity). The drift and diffusion satisfy: 1) global Lipschitz conti-
nuity in y, with constants Lf , Lg; 2) uniform boundedness: ∥g∥∞ := sup(y,s) ∥gθ2(y, s)∥op <

∞; 3) uniform ellipticity: g(y, s)g(y, s)⊤ ⪰ αId for some α > 0.

Assumption 8 (Separated bimodality). The terminal law ν = L(Yt) has separated bimodality
along some u ∈ Sd−1. Specifically, the one-dimensional marginal density qu satisfies

qu(s) ≤ λ
1

σ
√
2π

e−
(s−m1)

2

2σ2 + (1− λ)
1

σ
√
2π

e−
(s−m2)

2

2σ2 ,

for some m1 < m2, separation δ := m2 −m1 > 0, scale σ > 0, and mixture weight λ ∈ (0, 1).

Proposition 9 (Content bound for separated mixtures). Let ν be a probability measure on Rd

whose projection onto some u ∈ Sd−1 has density qu satisfying the separated bimodality con-
dition in Assumption 8 with means m1 < m2, separation δ = m2 − m1 > 0, and variance
parameter σ2. Then the half-space profile Jν(λ) satisfies

Jν(λ) ≤ 1

σ
√
2π

exp
(
− δ2

8σ2

)
, ∀λ ∈ (0, 1).

Proof. By the isoperimetric transport inequality , if T is L-Lipschitz and T#µ = ν, then

L ≥ sup
λ∈(0,1)

I(λ)

Jν(λ)
,

where I(λ) = φ(Φ−1(λ)) is the Gaussian half-space profile and Jν(λ) is the half-space profile of
ν. Under Assumption 8, Proposition 9 ensures

Jν(λ) ≤ 1

σ
√
2π

exp
(
− δ2

8σ2

)
,

so that

L ≥ φ(Φ−1(λ))

Jν(λ)
≥ σ exp

(
δ2

8σ2 − 1
2 (Φ

−1(λ))2
)
.

On the other hand, standard variational estimates for SDEs with globally Lipschitz coefficients (see,
e.g., Friz–Victoir) yield that the Itô–Lyons map Γ of the NSDE is Lipschitz with

LNSDE ≤ c0 ∥g∥∞ exp
(
c1(Lf + L2

g)t
)
,

where c0, c1 depend only on the dimension and ellipticity. Since both bounds apply to the same map
Γ, we conclude

c0 ∥g∥∞ exp
(
c1(Lf + L2

g)t
)

≥ σ exp
(

δ2

8σ2 − 1
2 (Φ

−1(λ))2
)
,

which is the claimed inequality.

PROOF OF PROPOSITION 4

Assumption 10 (Separated multimodal distributions). Let

p = 1
2δ−a/2 +

1
2δa/2, q = 1

2δ−a/2 +
1
2δa/2+1,

with mode separation a → ∞. Generalizations to higher dimensions or Gaussian mixtures follow
analogously.
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Proof. (1) Wasserstein-2:
W 2

2 (p, q) ≥ 1
2 · a2 ⇒ W2(p, q) = Ω(a).

(2) Sinkhorn (ε-regularized OT):
Sε(p, q) ≥ W2(p, q)− C(ε),

hence Sε(p, q) = Ω(a).

(3) MMD with Gaussian kernel k(x, y) = exp(−∥x− y∥2/σ2):

MMD2(p, q) = Ep[k(x, x
′)] + Eq[k(y, y

′)]− 2Ep,q[k(x, y)].

As a → ∞, cross-mode terms → 0, leaving only bounded within-mode terms. Thus MMD(p, q) =
O(1).

PROOF OF THEOREM 5

Assumption 11. Equation f(Yt, t)− g(Yt, t)
∂
∂Y g(Yt, t) = 0 has at least one solution at Y ∗

Assumption 12. Define γ(Yt, t) =
f ′(Yt,t)g

2(Yt,t)−(g′(Yt,t))
2g2(Yt,t)−2f(Yt,t)g

′(Yt,t)−g(Yt,t)(g
′(Yt,t))

2

g4(Yt,t)
.

At Y ∗, γ(Y ∗, t) is strictly positive.

Proof. The Fokker–Planck equation for the transition density p(Yt|Yt−1, t) is given by:

∂

∂t
p(Yt|Yt−1, t) = − ∂

∂Y
[f(Yt, t)p(Yt|Yt−1, t)] +

∂2

∂Y 2
[
g2(Yt, t)

2
p(Yt|Yt−1, t)]

Suppose that the transition density is stationary, that is, ∂
∂tp(Yt|Yt−1, t) = 0, then the Fokker–Planck

equation degenerates to

− ∂

∂Y
[f(Yt, t)p(Yt|Yt−1)] +

∂2

∂Y 2
[
g2(Yt, t)

2
p(Yt|Yt−1)] = 0

where p(Yt|Yt−1) = limt→∞ p(Yt|Yt−1, t). Then, there must be a constant C s.t.

∂

∂Y

g2(Yt, t)

2
∗ p(Yt|Yt−1)− f(Yt, t)p(Yt|Yt−1) = C.

We take an integral for both sides of the above equation on the real line and obtain:∣∣∣∣∫ ∞

−∞
CdYt

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞
(
∂

∂Y

g2(Yt, t)

2
p(Yt|Yt−1)− f(Yt, t)p(Yt|Yt−1))dYt

∣∣∣∣
≤

∣∣∣∣∫ ∞

−∞
p(Yt|Yt−1)g(Yt, t)

∂

∂Y
g(Yt, t)dYt

∣∣∣∣+ ∣∣∣∣∫ ∞

−∞

g2(Yt, t)

2

∂

∂Y
p(Yt|Yt−1)dYt

∣∣∣∣
+

∣∣∣∣∫ ∞

−∞
p(Yt|Yt−1)f(Yt, t)dYt

∣∣∣∣
< ∞

Therefore, C must be zero. This gives us a differential equation for the stationary transitional den-
sity:

∂

∂Y
p(Yt|Yt−1) =

2

g2(Yt, t)
(f(Yt, t)− g(Yt, t)

∂

∂Y
g(Yt, t))p(Yt|Yt−1).

It is easy to verify that if Assumption 11 is satisfied, then ∃ Y ∗ s.t. ∂
∂Y p(Y ∗) = 0. Further, because

∂

∂Y

∂p(Yt|Yt−1)/∂Y

p(Yt|Yt−1)
∝ γ(Yt, t).

Under Assumption 12, we have
∂2

∂Y 2
p(Y ∗) > 0.

This means the stationary transitional density has at least one minimum at Y ∗, i.e., at least two local
maximums.
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PROOF OF COROLLARY 6

Proof. The Fokker–Planck equation for the transition density p(Yt|Yt−1, t) is given by:

∂

∂t
p(Yt|Yt−1, t) = − ∂

∂Y
[κ(µ− Yt)p(Yt|Yt−1, t)] +

∂2

∂Y 2
[
σ2

2
p(Yt|Yt−1, t)]

Suppose that the transition density is stationary, that is, ∂
∂tp(Yt|Yt−1, t) = 0, then the Fokker–Planck

equation degenerates to

− ∂

∂Y
[κ(µ− Yt)p(Yt|Yt−1)] +

∂2

∂Y 2
[
σ2

2
p(Yt|Yt−1)] = 0

where p(Yt|Yt−1) = limt→∞ p(Yt|Yt−1, t). Then, there must be a constant C s.t.

σ2

2
∗ ∂

∂Y
p(Yt|Yt−1)− κ(µ− Yt)p(Yt|Yt−1) = C.

We take an integral for both sides of the above equation on the real line and obtain:∣∣∣∣∫ ∞

−∞
CdYt

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞
(
σ2

2

∂

∂Y
p(Yt|Yt−1)− κ(µ− Yt)p(Yt|Yt−1))dYt

∣∣∣∣
≤ κµ

∫ ∞

−∞
p(Yt|Yt−1)dYt + κ

∣∣∣∣∫ ∞

−∞
Ytp(Yt|Yt−1)dYt

∣∣∣∣+ σ2

2

∣∣[p(Yt|Yt−1)]
∞
−∞

∣∣
< ∞

Therefore, C must be zero. This gives us a differential equation for the stationary transitional den-
sity:

∂

∂Y
p(Yt|Yt−1) =

2κ

σ2
(µ− Yt)p(Yt|Yt−1).

We have ∂
∂Y p(Yt|Yt−1) > 0 if Yt < µ, and ∂

∂Y p(Yt|Yt−1) < 0 if Yt > µ. This means p(Yt|Yt−1)
has a unique maximum.
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SHOWCASES

Density on different time points for OU-1:

Real Values

MM-NSDE - Time 1 MM-NSDE - Time 20 MM-NSDE - Time 35 MM-NSDE - Time 50

DLinear - Time 1 DLinear - Time 20 DLinear - Time 35 DLinear - Time 50

TimesNet - Time 1 TimesNet - Time 20 TimesNet - Time 35 TimesNet - Time 50

Autoformer - Time 1 Autoformer - Time 20 Autoformer - Time 35 Autoformer - Time 50

Mamba - Time 1 Mamba - Time 20 Mamba - Time 35 Mamba - Time 50

Generated Values

3 4210

1 20-1-2

1 20-1-2

1 20-1-2 1 20-1-2 1 20-1-2

1 20-1-2

1 20-1-2

1 20-1-2

1 20-1-21 20-1-2

4 620-23 4 5210-12.5 3.0 3.52.01.51.0 4.0

1.0 2.00.0-1.0-2.0 1.0 1.50.0-1.0 -0.5 0.5-1.50 1 2-1-2-3 3

0 1 2-1-2-3 3

0 1 2-1-2-3 3

0 1 2 3-1-2-3

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

1.0

0.8

0.6

0.4

0.2

0.8

0.7

0.6

0.4

0.5

0.2

0.1

0.3

0.8

0.7

0.6

0.4

0.5

0.2

0.1

0.3

1.4

1.2

1.0

0.4

0.6

0.8

0.2

0.8

0.7

0.6

0.4

0.5

0.2

0.1

0.3

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.8

0.6

0.4

0.2

Figure 9: Fitting results of different models for OU-1. Red bins represent the density output by the
models, while blue bins represent the true density of the data. Each row corresponds to a different
model, and each column represents a specific time point.
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Density on different time points for GBM→GBM or CIR:

Real Values Generated Values
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Figure 10: Fitting results of different models for GBM→GBM or CIR. Red bins represent the
density output by the models, while blue bins represent the true density of the data. Each row
corresponds to a different model, and each column represents a specific time point.
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