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ABSTRACT

Neural Stochastic Differential Equations (NSDEs) have recently attracted wide
attention as a promising tool for modeling dynamical systems. However, we
find that existing NSDE frameworks struggle to capture multimodal distributions,
which are prevalent in real-world scenarios. To better understand this failure, we
analyze the origins of multimodality in real-world data and show that it largely
arises from shifts in the underlying data-generating process (DGP). We then fur-
ther provide a theoretical explanation for why current NSDEs fail in these scenar-
ios. To address this fundamental limitation, we propose the Multimodal Neural
SDE (MM-NSDE) framework. MM-NSDE automatically perceives shifts in the
underlying DGP and adaptively modifies the SDE dynamics, enabling more ef-
fective modeling of multimodal behaviors. Experiments on both synthetic and
real-world datasets demonstrate that MM-NSDE achieves stable state-of-the-art
performance. Remarkably, MM-NSDE is highly parameter-efficient, surpassing
Mamba’s performance while using only 1% of its parameter count. To facilitate
further research, we release the code and implementation details at the following
link: https://anonymous.4open.science/r/MMNSDE-10EF.

1 INTRODUCTION

Neural Stochastic Differential Equations (NSDEs) (Tzen and Raginsky, [2019) extend classical
SDEs (Black and Scholes,|1973;Merton,|1973;|Yang et al., |2020; Mariani et al.,2022) by parameter-
izing drift and diffusion with neural networks, thereby removing the need for predefined functional
assumptions. Compared to deterministic sequence models (Rumelhart et al.l 1986} [Hochreiter and
Schmidhuber, [1997) or state space models (Rangapuram et al., 2018; |[Forgione and Pigal 2023} L1
et al.| 2021), NSDEs naturally capture both continuous-time dynamics and stochasticity, making
them a principled choice for modeling complex dynamical systems. However, we observe that NS-
DEs often fail to capture multimodal terminal distributions, despite the absence of such an assump-
tion as a priori. Even in synthetic settings specifically designed to induce them, our experiments
(Section[4.2) show that standard NSDEs rarely generate clearly multimodal behaviors.

To understand this failure, we first analyze the sources of multimodality in real-world data (Jalali
et al| 2023). As illustrated in Figure [T, multimodal outcomes frequently arise from switching in
the underlying data-generating process (DGP). For example, financial markets alternate between
bullish and bearish phases, while physiological signals such as blood glucose exhibit recurrent tran-
sitions between active and resting states. We then provide a theoretical explanation for why NSDEs
cannot adequately represent such distributions. The central issue is a Lipschitz conflict: training
objectives in push-forward models (Arjovsky et al.,[2017) require small Lipschitz constants to guar-
antee stability and convergence; for NSDEs, such constraints are also needed to ensure the existence
and uniqueness of solutions. In contrast, capturing abrupt transitions in the data-generating pro-
cess demands large Lipschitz constants to represent highly non-smooth dynamics. This trade-off
substantially limits the expressive capacity of standard NSDEs in multimodal scenarios.

Motivated by these limitations, we propose MultiModal NSDEs (MM-NSDEs). MM-NSDE intro-
duces a state-aware module that detects switching in the underlying data-generating process and
updates the NSDE formulation accordingly. This self-adaptive design preserves the ability of NS-
DEs to model a single DGP, while also adapting to high-frequency or even continuous switching
scenarios. In summary, our contributions are threefold:
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Figure 1: Motivation and overview of MM-NSDE. (A) Real-world time series (e.g., bull vs. bear
markets, plant growth stages, blood pressure, and traffic flow) naturally exhibit multimodal terminal
distributions. In practice, sliding-window segmentation mixes regimes into the training set, leading
to aggregated multimodality. (B) Standard NSDEs face a Lipschitz conflict: high constants ensure
expressiveness but harm stability, while low constants stabilize at the cost of limited expressiveness.
(C) Empirical results on Bitcoin dataset, show MM-NSDE consistently outperforms strong base-
lines. (D) Unlike traditional NSDEs, MM-NSDE employs adaptive drift and diffusion networks,
avoiding the Lipschitz conflict and enabling robust multimodal modeling.

* We analyze the sources of multimodality in real-world data and explain why standard NSDEs
fail to capture this ubiquitous phenomenon, pinpointing the Lipschitz conflict in both drift and
diffusion terms as the key limiting factor.

* We propose MultiModal NSDEs (MM-NSDEs), an elegant and effective extension that intro-
duces a state-aware module to adaptively update the NSDE formulation in response to switching
behaviors.

* We conduct extensive experiments on both synthetic and real-world datasets, demonstrating that
MM-NSDE consistently outperforms existing approaches while maintaining parameter efficiency.
In addition, we provide a detailed theoretical analysis to further support our method.

2 RELATED WORK

Our related work is organized into three categories of models: NSDEs, state space models and other
deep sequential models.

NSDEs. NSDEs (Tzen and Raginskyl 2019; [Liu et al.l 2019) are able to explicitly model sys-
tem noise in continuous time, which makes them widely applied in finance (Cuchiero et al.,|2020),
generative modeling (Song et al.| 2020), and scientific computing (Rackauckas et al.l |2020). Com-
pared with other models, their advantage lies in naturally capturing stochastic dynamics. However,
existing NSDEs face a fundamental trade-off: ensuring training stability, maintaining uniqueness
of solutions, and achieving strong expressive power cannot be simultaneously guaranteed (Kidger
et al.l 20215 Li et al.| 2020). This limitation prevents reliable modeling of multimodal trajectories.

State Space Models. To address DGP switching, another line of work introduces ‘“‘state” as an
explicit variable. From the classical Kalman Filter (Kalmanl [1960) to modern deep variants such as
RNNs (Gu et al., 20215 |Smith et al.;, 2022) and Mamba (Gu and Dao, [2023), these models emphasize
capturing long-range dependencies and state-aware modeling. Mamba further introduces structured
state transitions to partially model regime changes explicitly. However, these approaches rely on
discretization formulations and often assume Gaussian noise in structured equations, which limits
their expressive power under highly non-stationary dynamics.

Other Sequential models. Recent architectures such as DLinear (Zeng et al.| [2023), TimesNet
(Wu et al.} 2022), SegRNN (Lin et al., [2023)), and Transformers (Liu et al.} 2022} improve forecast-
ing through structural innovations. Yet, they assume deterministic data generation and collapse to
averages in stochastic regimes. While we acknowledge that such deterministic networks can serve as
useful components in NSDE frameworks (e.g., as drift or diffusion modules), applying them directly
in highly stochastic contexts leads to severe performance degradation.
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3 METHODOLOGY

In this section, we first introduce NSDEs together with a formal definition of multimodal distribu-
tion, and then explain why existing approaches fall short in real-world scenarios. Building on this,
Section [3.2] analyzes the root causes as DGP switching. And then Section [3.3| presents MM-NSDE
with two key components—state-awareness and state-adaptive SDEs. Notably, additional explana-
tion is given in Appendix 4] and complete proofs are deferred to Appendix 4]

3.1 PRELIMINARIES

NSDEs. We consider a d-dimensional stochastic process {Y;};>¢. In traditional SDEs, the drift
and diffusion functions, f;(Y;) and ¢;(Y}), are typically assumed to be analytically tractable. NSDEs
instead leverage neural networks as flexible approximators:

dYy = fo, +(Yy) dt + gg,,:(Y2) AWy, (D

where, for each t > 0, fyp, ¢ : R¢Y — R? and Goq.t - R¢ — R¥>™ are neural networks with
parameters 01, 5. The function fy, ; specifies the drift term that describes the average dynamics of
the system at time ¢, and gy, ; specifies the diffusion term that accounts for stochastic fluctuations.
Here, W, is an m-dimensional Wiener process that drives the stochasticity of the system. In the
special case m = d, each state dimension is driven by an independent noise source, whereas when
m = 1, a single noise source is shared across all dimensions.

Multimodal Distribution. At any fixed time ¢, the random variable Y; € R< is characterized
by a transition probability density Y; ~ p(- | Yp), p : RY — R,. A fundamental challenge
for NSDEs arises when this transition distribution is multimodal rather than unimodal. Intuitively,
multimodality means that the density is concentrated in multiple distinct regions (or “peaks”), which
often correspond to shifts in the underlying data-generating process.

Definition 1 (K -modality in R?). Let p : R — R be a continuous probability density function.
If there exists a threshold A\, € (0, sup p) such that the super-level set

L) ={y eR?|p(y) > \.}

has exactly K connected components, then we say that p is K-modal. If K = 1, the distribution
is called unimodal; If K > 1, the distribution is called multimodal.

3.2 FAILURE ANALYSIS OF NSDESs.

There are two widely recognized reasons why NSDEs are often designed with relatively small Lips-
chitz constants. From classical SDE theory (@ksendal, 2003} [Karatzas and Shreve, [1991)), the drift
and diffusion functions are required to be Lipschitz continuous in order to guarantee the existence
and uniqueness of strong solutions. This condition naturally extends to neural parameterizations of
SDEs. In particular, SDE-Net (Liu et al.,2019) established the following guarantee:

Theorem 2 (Existence and Uniqueness of Neural SDE Solutions (Liu et al.l 2019)). Suppose
there exists a constant C' > 0 such that for all y, z € R? and t > 0,

1for,6(¥) = fore(2)l + [1962.6(¥) — 90,6 (2| < Clly —=|.

Then, for every Yy € RY, there exists a unique continuous and adapted process {Y: }i>0 satisfying

¢ ¢
Y;ﬁ :YO+/ f91,s(1/s)d5+/ 992,5(}/5)dW53
0 0
and moreover, B [supg< .1 ||Ys||?] < +oo forall T > 0.

Beyond existence and uniqueness, small Lipschitz constants are also favored in practice for stabi-
lizing training. Empirical evidence from generative modeling suggests that excessive Lipschitz con-
stants often lead to exploding gradients or unstable dynamics. Consequently, many works impose
Lipschitz control through techniques such as spectral normalization or gradient penalties. Although
most of these observations were originally made in the context of GANs and VAEs, the same prin-
ciple applies to NSDEs: bounding the Lipschitz constant of fg, and gy, helps maintain numerically
stable trajectories and prevents mode collapse during training.
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While small Lipschitz constants guarantee stability, Theorem [3] makes clear that they also suppress
the amplification factor .A;. Because the threshold for separated multimodality grows exponentially
in 6 /o, dynamics that are too contractive cannot reach it. A NSDE with small L and L, may lacks
the expressive capacity to generate separated multimodality, even under state-dependent diffusion.

Theorem 3 (Necessary amplification for separated multimodality). If the terminal law v = L(Y;)
exhibits separated bimodality in some direction with mixture weight )\, separation 6 > 0, and
scale o > 0, then there exist constants cg, c; > 0 (depending only on dimension and ellipticity)
such that

— 2 —_
||g||ooexp(cl(Lf—|—L3)t) > c&aexp(é%—%(@ 1(/\))2>,

where Ly and L, denote the Lipschitz constants of the drift and diffusion in y, respectively, and
19lloc = sup(y 5 11902, () llop-

The stability of standard NSDEs typically relies on strict Lipschitz constraints imposed on the drift
and diffusion functions (see Theorem . On the one hand, such constraints guarantee existence
and uniqueness of the solution and ensure stable training; on the other hand, they significantly limit
the ability of the system to generate separated multimodal distributions within a finite horizon (see
Theorem 3. This reveals a fundamental conflict:

* Prioritizing stability: small Lipschitz constants ensure well-posedness, but a single NSDE lacks
sufficient expressiveness to capture multimodal dynamics.

* Prioritizing expressiveness: relaxing the Lipschitz constraint increases modeling capacity but
often leads to exploding gradients or unstable trajectories during training.

3.3 MM-NSDEs

Problem Definition. To balance the conflict, we introduce a Stare Awareness and adaptation
mechanism, where our framework first identifies the current DGP and then applies an NSDE spe-
cialized for it. In this way, each NSDE only needs to model a single mode of the dynamics, thereby
reducing the burden on expressiveness while maintaining stability.

This reformulation is also consistent with real-world scenarios: in practice, DGPs often change over
time rather than remaining fixed, naturally giving rise to multimodal dynamics. More generally, we
consider a multivariate time series {(7,,,¥n)}2_g, Yn € RY, 0 =79 < 74 < --- < 77, possibly
sampled at irregular timestamps and generated by an unknown DGP that may change over time.
The task is to (i) recognize the current DGP and (ii) switch to the corresponding DGP to generate
future trajectories at timestamps {741, ..., Tn4 g } With predictions {#, ..., ¥z, }. The pre-
dictive distribution is required to approximate the true conditional data distribution: p(Y}7, . .7, , .1 |
Yirn_pirn]) = Pdata(Yiryyirnss] | Yirn_ire)), Where p denotes the model-induced predictive distri-
bution and pg,, the true data distribution. In the autoregressive forecasting setting, this recognition
and adaptation step must be performed at every prediction step: before generating 4, .., the system
first infers the active DGP at time 7,,,,,—1 and then conditions the next-step dynamics accordingly.

Stare Awareness Module. To realize the proposed recognition mechanism, we introduce a Stare
Awareness Module that infers the currently active DGP and embeds it into a continuous latent rep-
resentation h; € RP. This latent process conditions the subsequent NSDE dynamics and evolves
according to

dht = At (y[’rn_k:Tn]) O] ht dt + Bt (y['r,,,_k,:rn]) dt7
—_——
DGP transition Input modulation

where yi,, .- € R*+1xd denotes the most recent observation window of length £ + 1, and
hy is the latent embedding of the active DGP, with the above dynamics applied for t € (74, Ty 41].
The functions A;(-) and B;(-) are neural networks that take the observation window as input (the
subscript ¢ indexes time), and © denotes element-wise multiplication. The first term A;(-) ® hy dt
governs smooth transitions of the latent state, while the second term B;(-) d¢ introduces input-driven
corrections. In the case of a constant sampling interval AT = 7,,,1 — 7,,, the latent process admits
the Buler discretization A, , ~ hr, + AT (Aar(Yr, i) © Pr + Bar(Yr,_ir)))-

Stare Adaptive Module. Once the active DGP is recognized, our framework needs to switch to
the corresponding dynamics before performing prediction. Conditioned on the latent process h;, we
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Figure 2: Overview of the MM-NSDE. A time-series window is mapped to a latent state by the State
Awareness Module. The latent state then parameterizes the drift and diffusion of the State-Adaptive
NSDE, which generates future trajectories.

transform the canonical drift and diffusion fields via modulators H () and G(-) generated from h;.
Specifically, let

{ﬁ(y) := H(ht) fo.u(y),
g:(y) == G(ht) go,t(y),

where, for each t > 0, fo+ : RY — R? and go,t : R% — R*™ are the base drift and diffusion
functions. are base drift/diffusion functions. After modulation, the effective dynamics remain in
the standard NSDE form: dy; = fi(y:) dt + g¢(y:) dWy,. At discrete timestamps 7,, with step size
AT, = Tpt1 — Tn, the Euler-Maruyama update is

Y R Yr, T ﬁ'n(yrn) AT, + g'rn(yrn) Tin \/TTna

where 1,, ~ N(0, I,;,) denotes an m-dimensional standard Gaussian vector corresponding to the
Brownian increments.

Training Objective. At each prediction step, our goal is to measure the discrepancy between the
empirical distribution of predicted samples and that of the real data. A suitable loss must satisfy two
criteria: (i) it should be differentiable, so that it can be integrated into gradient-based training, and
(ii) it should be sensitive to multimodality, since real-world dynamics often involve multiple regimes
or modes. To this end, we compare three loss functions: Maximum Mean Discrepancy (MMD),
Wasserstein-2 distance, and the entropically regularized Sinkhorn divergence. Their sensitivity can
be analyzed under a multimodal setting.

Proposition 4 (Sensitivity to multimodality). Under mild assumptions on the distributions (see
Appendix X), we have the following asymptotic behavior as mode separation a — 00:

Wa(p,q) = @a), Se(p,q) = Q(a), MMD(p,q) = O(1).

Proposition [ shows that MMD saturates and does not reflect increasing mode separation, while
Wasserstein-2 and Sinkhorn remain sensitive to multimodality. We therefore adopt the en-
tropically regularized Sinkhorn divergence, which combines this sensitivity with differentiability
and efficiency. Concretely, consider a prediction horizon of length H with future timestamps
{Tpi1,---,Tnyn}. Given a batch of real sequences {Y ()} | the model generates predictions
{Y(®MN in an autoregressive manner. At each stepm € {1,..., H}, we define the empirical dis-

. . 1 N 1 N .
tributions Pr, . = % > i1 6y9>+ yQri = N it 5g<Ti>+ . The discrepancy between P

and @, ,, is measured by the Sinkhorn loss:

L

T + -
T TEl(Pr, Qe

| 2o Tasllusl, = 92,3 4+ A+ Entropy(T)|

ij
where T € RY ™" is constrained by II(P;, ,,.,Qr,.,,.) = {T: T1 = £1, T'1 = L1}, and
the entropy regularizer is Entropy(T) = — Zl ; Ti,jlog T; ;. This term avoids degenerate one-
to-one matchings by encouraging smoother transport plans, stabilizing optimization and preserving
information about all modes. The overall training objective is the average loss over the horizon.
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4 EXPERIMENTS

In this section, we begin by outlining the experimental setup, including baselines, benchmarks,
evaluation metrics (Section . We then present results on the simulated datasets (Section ,
followed by real-world datasets across finance, environment, and cryptocurrency (Section .3). Fi-
nally, we provide further analyses, including multimodality validation, sensitivity to input window
length, scalability to high-dimensional data, and computational efficiency (Section {.4).

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate performance on simulated and real-world datasets. The simulated
datasets are based on three representative SDEs: Geometric Brownian Motion (GBM), the Orn-
stein—Uhlenbeck process (OU), and the Cox—Ingersoll-Ross process (CIR). They fall into three cat-
egories: 1) Intra-family switching: transitions occur within the same type of SDE. 2) Inter-family
switching: transitions occur across different SDE types. 3) Continuous switching: parameters
vary at each time step, capturing richer temporal dynamics. For real-world datasets, we use data
from finance, cryptocurrency, and environmental domains. The financial data include stock prices
of multiple companies, while the environmental dataset tracks daily municipal solid waste in five
global cities. Further details are provided in Appendix [4]

Baselines. We compare MM-NSDEs with a broad set of representative baselines that cover both
time-series forecasting and SDE-based generative modeling. For time-series forecasting, we con-
sider a diverse set of architectures: DLinear (Zeng et al., |2023), a strong linear baseline; Seg-
RNN (Lin et al.|[2023)), a recurrent model with segmentation capability; TimesNet (Wu et al.,|2022),
a convolutional architecture for capturing multi-periodic patterns; and the NS-Transformer (Zeng
et al} [2023), a transformer-based model tailored for non-stationary forecasting. In addition, we
include Mamba (Gu and Dao} [2023)), a recent selective state-space model designed for efficient se-
quence modeling. For comparison with generative approaches, we adopt Latent-SDEs (Hauberg
et al. 2023)) and GAN-SDEs (Kidger et al.l 2021}, both of which leverage SDEs for sequence gen-
eration. Further implementation details and hyperparameter settings are given in Appendix [4]

Task setting and Metrics. For all sequence lengths, we use 100 points as historical input and
50 points as the prediction horizon. NSDEs are fundamentally generative models. Following prior
work (Rhee and Glynn, 2015} [Kidger et al.| 2021), such models are capable of both conditional
prediction and unconditional generation. Accordingly, we evaluate them using three metrics: the
Mean Integrated Squared Error (MISE) and the difference in the tail cumulative distribution function
(TD) for distributional fitting, and the Mean Squared Error (MSE) for prediction accuracy. Detailed
formulas are provided in Appendix [}

4.2 EVALUATION ON SIMULATED DATA

Model GBM; ou, CIR,
MISE, TD, MMD| MSE| MISE|, TD, MMD| MSE| MISE, TD, MMD| MSE|

DLinear 021 002 008 101 121 009 052 121 138 009 046  1.16
SegRNN 053 007 014 201 036 008 009 172 059 001 0.3 149
TimesNet 061 008 0I5 2100 037 00l 008 174 060 003 0.3 151
Autoformer 012 008 017 206 036 002 009 181 056 003 009  1.80
NS-Transformer ~ 0.19  0.04 005 113 142 000 007 175 087 001 008 1.4
Mamba 057 009 015 201 058 00l 004 173 058 001 012 153
Latent-SDEs 097 010 019 235 068 009 048 160  0.89 008 041 136
GAN-SDEs 120 010 022 260 271 010 065 195 322 010 058 190
MM-NSDEs 004 001 012 075 008 000 003 002 008 001 003 021

Table 1: Comparison of different models on the simulated dataset with Intra-family switching. Our
results are highlighted with darker shading, and the best performance is shown in bold. For pre-
diction models, directly applying MSE supervision leads to mode collapse; therefore, we adopt the
Sinkhorn loss as the training objective. For Latent-SDEs and GAN-SDESs, we rely on their publicly
available implementations. Detailed experimental configurations are provided in the Appendix [Z_f}

Our model addresses the stochastic simulation tasks, as shown in Table E], achieving lower errors
across all settings. In contrast, sequential prediction models are inadequate for stochastic sequence
switching. With MSE supervision, they collapse to matching only second-order moments, leading
to mode collapse. Even under distributional supervision, the learned trajectory law deviates from the
ground truth. The error can be traced to three sources: discretization bias, distributional mismatch,
and model capacity limitations. Any increase in these components amplifies the overall deviation,
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causing models such as Mamba to exhibit large errors in our benchmarks. Further details of this
analysis are provided in the Appendix. Latent-SDEs and GAN-SDE:s fail for a different reason:
Although these models have inherent stochasticity and appear capable of modeling such dynamics,
Lipschitz conflicts in the drift and diffusion terms destabilize training and ultimately lead to collapse.

Figure [3 makes clear the capability of MM-NSDE. Although the continuous switching (Type-3)
setting is difficult, as the underlying DGP changes at each time step, MM-NSDE successfully re-
produces the evolving distributions. By contrast, most baseline models capture only the mean and
overall range, and DLinear collapses entirely to the mean.
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0487
0.06° 051
0327 0321 0.32
004 034
002 o017 0161 0161 0.16
000 -10 5 2 o0 2 0 PR E} 3 3 000 2 0 2 0 2 3 2
MM-NSDE - Time 30 5 Autoformer - Time 30 DLinear - Time 30 Mamba - Time 30 o5/  TimeNet - Time 30

0.015 02) 0591 023

-15 5 25 2 0 2 2 [ 2 A5 0 15 2 [ 2

00451 MM-NSDE - Time 50 o6 Autoformer - Time 50 |, | DLinear - Time 50 Mamba - Time 50 TimeNet - Time 50
gaad | 0863

0421 18 0.42

0015 0.21] 08

00 00 0.0
000 15 5 2 000 2 0 2 E o 15 EQ 0o 15 2 0 2

Figure 3: Comparison between the empirical distributions of real trajectories (blue) and generated
trajectories (red) at different time steps for the continuous switching (Type-3) simulated data. Re-
sults are shown for MM-NSDE and four representative baseline models.

4.3 EVALUATION ON REAL-WORLD DATA

Model Stock-AAL Stock-ADBE Stock-ADM Soil BitCoin
MISE, TD, MISE, TD), MISE, TD|/ MISE, TD| MISE, TD|
Autoformer 1.12 9.98 0.38 5.21 0.71 8.09 0.03 7.63 1.79 1.84
DLinear 1.59 10.00 1.33 8.80 1.69 9.03 0.64 0.71 1.58 8.78
Mamba 0.73 7.82 0.45 6.26 0.57 9.78 0.25 1.60 1.10 4.53
NS-Transformer 1.19 9.99 1.30 6.77 2.76 4.72 0.26 9.89 1.85 342
SegRNN 1.57 9.93 0.54 1.81 1.03 9.95 0.27 2.88 3.78 9.01
TimesNet 0.93 9.91 0.90 3.99 0.87 9.94 0.20 8.52 1.68 9.86
Latent-SDE 0.36 9.90 0.35 9.08 0.41 9.97 0.47 9.26 0.35 9.99
GAN-SDE 0.38 9.95 0.38 9.98 0.43 9.99 0.95 9.93 0.11 10.01
MM-NSDE 0.02 0.01 0.02 0.06 0.06 0.02 0.01 0.05 0.05 0.03
Model Stock-AAL Stock-ADBE Stock-ADM Soil BitCoin
MMD, MSE| MMD| MSE| MMD| MSE| MMD| MSE| MMD| MSE|
Autoformer 0.99 4.35 0.07 1.42 1.09 7.28 0.01 1.23 1.03 2.74
DLinear 0.72 3.59 1.09 441 1.13 8.69 0.30 1.25 0.99 5.32
Mamba 0.42 12.62 0.09 1.37 0.70 44.51 0.02 7.15 1.02 11.54
NS-Transformer 0.25 2.34 0.58 2.37 0.98 7.78 0.06 0.88 0.89 4.59
SegRNN 0.97 3.72 0.06 141 0.58 14.89 0.05 1.06 1.03 6.88
TimesNet 0.52 4.93 0.05 1.29 0.75 20.41 0.05 091 0.96 9.71
Latent-SDE 0.95 10.57 0.65 3.01 0.96 25.12 0.35 1.30 1.05 10.01
GAN-SDE 1.10 13.01 0.90 4.81 1.15 40.01 0.45 1.50 1.15 12.01
MM-NSDE 0.03 0.15 0.07 0.73 0.05 1.30 0.01 0.33 0.01 0.40

Table 2: Comparison of different models on various domains, including finance, environment, and
bitcoin. All values are scaled by 10~2. Bold text indicates the best performance. |: lower is better.
From Table 2] we observe that sequential models perform poorly on volatile and non-stationary

sequences such as stocks and Bitcoin. Their performance degrades severely in both error and distri-
butional metrics; although Latent-SDE and GAN-SDE mitigate the issue, they cannot fully resolve
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Model Performance across Historical Windows
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Figure 5: Model performance across varying historical window sizes k& € {50, 100, 150}, evaluated
by MISE (lower is better). To examine the impact of different historical window sizes, all models
are evaluated on the GBM1 dataset with sequence length 250, where a regime switch occurs at time
step ¢ = 200. All other experimental configurations remain identical to the previous setup.

it. On low-noise data such as Soil, traditional models achieve reasonable results, yet MM-NSDE
still delivers the best performance across all metrics. Interestingly, even within the same financial
market, different stocks demonstrate substantial variability in stochasticity, underscoring the need
for models that can adapt to heterogeneous noise levels. We also observe that real-world data often
display multi-modal behaviors that are more complex than simulation, where transformers tend to
collapse into trivial solutions by directly copying the previous ground-truth value as the next-step
prediction, highlighting their fundamental inability to capture stochasticity. MM-NSDE avoids such
overfitting through its intrinsic stochasticity, while training each DGP with sufficient expressive
capacity to capture multi-modal distributions.

4.4 FURTHER ANALYSIS

Empirical Validation of Separated Multimodal-
ity. We empirically validate Theorem which
states that small Lipschitz constants (Ls, Ly) sup-
press the amplification factor A;, preventing the  ,s

Heatmap of sep over (Lf, Lg)
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get constants Ly and L,. NSDEs were trained on 1933
a bimodal Gaussian mixture target using an MMD

loss, and the terminal distributions were evaluated 0s
with a Gaussian mixture model. The separation in- 05 10 15 20 25 3.0
dex d/0 > 2 was taken as evidence of separated
multimodality. As shown in Figure [] separated
multimodality appears only when (L, L,) are suf-
ficiently large, while smaller values fail to reach the
threshold. This provides numerical evidence for the theorem: excessive contractivity limits the
expressive power of NSDEs and prevents separated multimodality.
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Figure 4: Heatmap of separated multimodal-
ity with varying Lipschitz constants.

Effect of Input Window Length. We conducted an ablation study with & € {50,100, 150}, sum-
marized in Figure 5} MM-NSDE consistently achieves extremely low MISE (0.04 — 0.017 —
0.011), demonstrating robustness to the historical window size. Nonetheless, a sufficiently large in-
put window is required for the state-awareness module to fully capture latent regime transitions. In
the main experiments, we set k = 100 as a practical trade-off between performance and efficiency.

Scalability to High-Dimensional Sequences. We design synthetic multivariate financial time se-
ries where the data-generating process switches between two configurations. Specifically, we sim-
ulate two correlated asset prices, S1(t) and Sa(t), with state-drifts, volatilities, and changing cor-
relation between the driving Brownian motions. This setup induces non-stationary dependencies
and multimodal endpoint distributions, resembling realistic market fluctuations (full configuration
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in Appendix [). Figure [6] compares the ground-truth and model-generated endpoint distributions,
showing that MM-NSDE accurately captures the joint dynamics of S; and Ss.

Real Data Distribution (top view) Generated Data Distribution (top view)
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600 600

500 084 500

52 400 0.60 S2 400 0.64
0.48 0.48

300 0.36 300
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K . 0.24

200 200
0.12 0.16
100 0.00 100 0.00

100 200 300 400 500 600 700 100 200 300 400 500 600 700
S1 S1
Real Data Distribution Generated Data Distribution

)
>
JSTSVET

Figure 6: Comparison of real and generated endpoint distributions at ¢ = 252 for the synthetic
financial series. Left: ground-truth distribution of 57 and S5; Right: MM-NSDE results, accurately
recovering the multimodal density induced by DGP switching.

In addition, we further validated the robustness of MM-NSDE on ultra high-dimensional data such
as images. The detailed results can be found in the Appendix [4]

Computational Efficiency Analysis. In addition to the theoretical analysis discussed in Sec-
tion B3] we evaluated alternative loss functions. As shown in Table [3} the results reveal trade-offs
among accuracy, efficiency, and memory. MSE yields the largest error, and MMD, lacking entropic
regularization, remains too rigid to capture complex distributional structures. Sinkhorn-based vari-
ants perform best overall: the baseline setting (N = 512, ¢ = 0.1, iter=100) yields the highest
accuracy at the cost of runtime and memory, whereas mini-batch and online kernel variants reduce
resource demands with minimal loss in accuracy. By contrast, high blur severely harms perfor-
mance, while low blur approaches optimal accuracy but incurs prohibitive computational overhead.

Method (Loss) Total Time [10% s] Peak Memory [GB]  Final MISE
MSE 1.21 15.24 0.108
MMD (RBF, o = 0.5) 1.57 16.89 0.049
Sinkhorn (Baseline, N = 512, ¢ = 0.1, iter=100) 1.98 32.55 0.004
Sinkhorn w/ Mini-batch (N = 128, ¢ = 0.1, iter=100) 1.48 17.53 0.011
Sinkhorn w/ Online Kernel (N = 512, ¢ = 0.1, iter=100) 2.00 18.16 0.009
Sinkhorn w/ High Blur (N = 512, ¢ = 1.0, iter=100) 1.68 32.19 0.048
Sinkhorn w/ Low Blur (N = 512, ¢ = 0.01, iter=100) 2.35 32.89 0.005
Sinkhorn w/ Fewer Iter (N = 512, ¢ = 0.1, iter=50) 1.52 32.48 0.008
Sinkhorn w/ Sparse Sampling (N = 256, € = 0.1, iter=100) 1.72 24.32 0.006

Table 3: Performance comparison of different loss functions and Sinkhorn variants within the MM-
NSDE framework. Mini-batch means computing Sinkhorn loss on randomly subsampled batches
(N = 128) to reduce complexity. Online Kernel replaces the full N x N cost matrix with a
streaming kernelized approximation to save memory. Blur refers to the entropic regularization
coefficient €, where a larger e produces smoother (blurred) transport plans. Iter denotes the number
of Sinkhorn iterations used in optimization. Sparse Sampling reduces the number of support points
(N = 256) for approximating the cost matrix. All experiments were conducted on an NVIDIA
A800 GPU (80GB) using the GBM-1 dataset, with other experimental settings kept identical.
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ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT

This paper aims to advance the field of Machine Learning. While the work may have potential so-
cietal implications, we do not identify any specific ethical concerns that require special attention.
We provide sufficient details of the model, training procedure, and evaluation setup to allow inde-
pendent reproduction of our results. All hyperparameters, datasets, and experimental settings are
documented in the paper or supplementary material.

REPRODUCIBILITY CHECKLIST

Instructions for Authors:

This document outlines key aspects for assessing reproducibility. Please provide your input by
editing this . tex file directly.

For each question (that applies), replace the “Type your response here” text with your answer.

Example: If a question appears as

\question{Proofs of all novel claims are included}
{(yes/partial/no)}
Type your response here

you would change it to:

\question{Proofs of all novel claims are included}
{(yes/partial/no)}
yes

Please make sure to:

* Replace ONLY the “Type your response here” text and nothing else.
* Use one of the options listed for that question (e.g., yes, no, partial, or NA).

* Not modify any other part of the \quest ion command or any other lines in this document.

You can \input this .tex file right before \end{document} of your main file or compile it as
a stand-alone document. Check the instructions on your conference’s website to see if you will be
asked to provide this checklist with your paper or separately.

1. General Paper Structure

1.1. Includes a conceptual outline and/or pseudocode description of Al methods introduced (yes/-
partial/no/NA) yes

1.2. Clearly delineates statements that are opinions, hypothesis, and speculation from objective facts
and results (yes/no) yes

1.3. Provides well-marked pedagogical references for less-familiar readers to gain background nec-
essary to replicate the paper (yes/no) yes

2. Theoretical Contributions

2.1. Does this paper make theoretical contributions? (yes/no) yes

If yes, please address the following points:
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2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

All assumptions and restrictions are stated clearly and formally (yes/partial/no) yes

All novel claims are stated formally (e.g., in theorem statements) (yes/partial/no) yes
Proofs of all novel claims are included (yes/partial/no) yes

Proof sketches or intuitions are given for complex and/or novel results (yes/partial/no) yes
Appropriate citations to theoretical tools used are given (yes/partial/no) yes

All theoretical claims are demonstrated empirically to hold (yes/partial/no/NA) yes

All experimental code used to eliminate or disprove claims is included (yes/no/NA) yes

3. Dataset Usage

3.1. Does this paper rely on one or more datasets? (yes/no) Type your response here

If yes, please address the following points:

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

A motivation is given for why the experiments are conducted on the selected datasets
(yes/partial/no/NA) yes

All novel datasets introduced in this paper are included in a data appendix (yes/par-
tial/no/NA) yes

All novel datasets introduced in this paper will be made publicly available upon publi-
cation of the paper with a license that allows free usage for research purposes (yes/par-
tial/no/NA) yes

All datasets drawn from the existing literature (potentially including authors’ own previ-
ously published work) are accompanied by appropriate citations (yes/no/NA) yes

All datasets drawn from the existing literature (potentially including authors’ own previ-
ously published work) are publicly available (yes/partial/no/NA) yes

All datasets that are not publicly available are described in detail, with explanation why
publicly available alternatives are not scientifically satisficing (yes/partial/no/NA) NA

4. Computational Experiments

4.1. Does this paper include computational experiments? (yes/no) yes

If yes, please address the following points:

4.2.

4.3.
4.4.

45.

4.6.

4.7.

This paper states the number and range of values tried per (hyper-) parameter during de-
velopment of the paper, along with the criterion used for selecting the final parameter
setting (yes/partial/no/NA) yes

Any code required for pre-processing data is included in the appendix (yes/partial/no) yes

All source code required for conducting and analyzing the experiments is included in a
code appendix (yes/partial/no) yes

All source code required for conducting and analyzing the experiments will be made pub-
licly available upon publication of the paper with a license that allows free usage for
research purposes (yes/partial/no) yes

All source code implementing new methods have comments detailing the implementation,
with references to the paper where each step comes from (yes/partial/no) yes

If an algorithm depends on randomness, then the method used for setting seeds is de-
scribed in a way sufficient to allow replication of results (yes/partial/no/NA) yes
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4.8. This paper specifies the computing infrastructure used for running experiments (hardware
and software), including GPU/CPU models; amount of memory; operating system; names
and versions of relevant software libraries and frameworks (yes/partial/no) no

4.9. This paper formally describes evaluation metrics used and explains the motivation for
choosing these metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used to compute each reported result
(yes/no) yes

4.11. Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,
average; median) to include measures of variation, confidence, or other distributional in-
formation (yes/no) yes

4.12. The significance of any improvement or decrease in performance is judged using appro-
priate statistical tests (e.g., Wilcoxon signed-rank) (yes/partial/no) no

4.13. This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s
experiments (yes/partial/no/NA) yes
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DETAILS OF EXPERIMENTAL SETUP

DATASETS

Simulated Data. Table [4]illustrates the first benchmark category, intra-family switching, where
transitions remain within the same SDE family. Table [5]further details the parameter settings used
for both intra-family and inter-family switching. For each setting, we generate 10,000 trajectories,
with 2,000 held out for evaluation. In all cases, the task is formulated as conditional prediction: the
model observes the first 100 steps and forecasts the following 50.

Model Type Data Generation Process SDE1 Parameters SDE2 Parameters SDE3 Parameters
nzedt + o1z, dWy, ¢ < 100 1 = —4.0/365,0, = 0.01 1 = —4.0/365,0, = 0.004 = —1.0/365, 01 = 0.004
GBM dry =  paydt + oz dWy, ¢ > 100, probability p 2 = 3.0/365,09 = 0.01 p2 = —1.0/365, 09 = 0.006 2 = 4.0/365, o2 = 0.006
piowpdt + oo dWy,  t > 100, probability 1 — p p=08 p=02 p=02
0,(1 — w0)dt + o1dWy, ¢ < 100 01 = 0.01, 1 = 50.0,01 = 0.1 0, = 0.05, 11 = 30.0,01 = 0.1 0y = 0.02, 11 = 35.0,01 = 0.1
ou dry = ¢ 01(p1 — x)dt + o1dW,, ¢ > 100, probability p 0y = 0.02, po = 35.0,09 = 0.2 0y = 0.02, pp = 45.0,09 = 0.3 0y = 0.05, ptp = 25.0,09 = 0.3
02z — 1)t + 02dWy, ¢ > 100, probability 1 — p =05 p=05 =05
K1(6) — 2)dt + oy /TdW,, 1 < 100 k1 =0.02,0, = 500,01 = 0.04 k= 0.02,0, = 300,01 =0.04 k= 0.02,0, = 30.0,01 = 0.05
CIR dry = { Ki(0y — 2)dt + 01\ /TdWy, ¢ > 100, probability p kg = 0.05,0 = 40.0, 05 = 0.03 kg = 0.05,0, = 40.0, 05 = 0.05 g = 0.05,6 = 20.0,09 = 0.04
Ko (02 — a¢)dt + o9\/TdW;, t > 100, probability 1 — p p=05 p=0.5 p=05

Table 4: Parameter configurations for intra-family switching. Transitions within the same SDE
type are shown for SDE1-SDE3 across GBM, OU, and CIR.

For multidimensional data, we consider a two-asset stochastic system where the log-prices follow
correlated Brownian motions with time-varying correlation. Specifically, let Wy (t) and Wh(¢) de-
note Brownian motions with instantaneous correlation p(t). The log-price dynamics are governed
by the coupled stochastic differential equations:

dSl (t) = M1 (t)Sl (t) dt + o1 (t)Sl (t) dW1 (t),
dSa(t) = pa(t)S2(t) dt + o2 (t)S2(t) dWa(t).

with Corr(dW1 (t), dWa(t)) = p(t). The drift—volatility parameters {1, 2,01, 02, p} evolve ac-
cording to a two-regime switching mechanism: Baseline regime: ;; = 0.1, ps = 0.05, o1 =
0.2, o2 = 0.3, p = 0.5. Switched regime: iy = 0.05, po = 0.1, 07 = 0.25, 09 = 0.15, p =
—0.2. At each discrete timestep, the system transitions from the baseline to the switched regime
with probability pswicen = 0.3, mimicking abrupt market shifts. The initial conditions are set as
S1(0) = S2(0) = 100. The discretization step is fixed at At = 1/252, corresponding to daily
increments under a yearly horizon.

Real-world Datasets. We evaluate our method on three domains: (i) Stock, (ii) Cryptocurrency,
and (iii) Environment. The stock domain includes time-series price data for AAL (American
Airlines Group), ADBE (Adobe Inc.), and ADM (Archer Daniels Midland Company), spanning
September 11, 2017 to February 16, 2018, with 5-minute sampling intervals. The cryptocurrency
domain consists of Bitcoin high-price data at 1-minute intervals from December 29, 2024 to January
13, 2025, providing a high-frequency view of market dynamics. The environmental domain contains
waste management records from Boralasgamuwa, Homagama, and Ballarat, merged into a unified
dataset with 9,608 entries spanning July 3, 2000 to December 31, 2018. All datasets are divided into
training and testing sets with an 8:2 ratio.

ALGORITHM IMPLEMENT DETAILS

In the final experimental setup, we ensured that each baseline was configured with model-specific
yet comparable hyperparameters. Autoformer used 2 encoder and 2 decoder layers with hidden size
256 and dropout 0.1. TimesNet employed 4 temporal convolutional blocks with hidden size 256 and
SiLU activations. NS-Transformer was configured with 2 encoder layers, hidden size 128, and 4 at-
tention heads. SegRNN contained 2 layers with hidden size 256, while Mamba used 2 selective-scan
layers with hidden size 256. For stochastic baselines, both Latent-SDE and GAN-SDE parameter-
ized the drift and diffusion terms with two-layer MLPs (128 hidden units, ReLU activations) under
the same SDE solver and discretization scheme. Within MM-NSDE, the drift and diffusion functions
were also modeled by two-layer MLPs with hidden size 256 and ReLU activations. The state-aware
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module was implemented with stacked two blocks consisting of input projection, 1D convolution
and SiLU activation. The parameter choices were determined through systematic grid search: we
uniformly searched learning rates {1e-3, 5e-4, le-4}, hidden sizes {64, 128, 256}, number of layers
{2,4,6}, dropout {0.1,0.3,0.5}, and weight decay {0, le-4, 1e-3}, selecting the best-performing
configurations on the validation set. For stochastic models, we additionally tuned SDE discretiza-
tion and noise intensity parameters. All experiments were repeated with five random seeds, and we
report the mean preformance, ensuring robustness and fairness in comparisons across models.

EVALUATION METRICS

We employ four complementary metrics to evaluate model performance. First, MISE assesses the
discrepancy between true and generated distributions under hybrid conditioning paths, defined as

oo

~ 2
MISE = EyI:L+T"‘p!rue |:EQL+1:L+T~Pmodsl(-|y1:L) [/ (MT(yL+T | Hh)_MT(yL+T | Hl)) dyL+T:|:|’

— 00

where Hy, = {§1.1,§r+1..+7} combines true history and model predictions, and H, = y1.+7
denotes the complete true path. Second, for extreme risk assessment, we use the TD metric, which
measures discrepancies in the lower and upper 5% quantiles of the cumulative distribution function

(CDF):
F (o)
Ar = /

where F(z) and F'(x) denote the true and empirical CDFs, respectively, with o = 0.05. Third, we
compute the MMD to quantify the overall distributional gap between true and generated samples:

MMD? (He, Hn) = Ea o/ mpiue [k(z, xl)] + Ey g~ proa (& (y, yl)} = 2 pre, y~prmoce (k(,y)],

o0

F(z) — F(z)|dx,

F(z) - F(x)’ dz + /

F-1(1-a)

where k(-, -) is a positive definite kernel (RBF kernel in our experiments). Finally, we include the
MSE to measure pointwise prediction accuracy:

T
1 .
MSE = T E E[(yL+t - yL-i—t)ﬂa
=1

which evaluates the expected squared error between true trajectories and model predictions under
teacher forcing.
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MORE ANALYSIS

MORE RESULTS.

Simulated Results. As shown in Table[6]and Table[7] the results show that MM-NSDEs maintain
competitive performance across nearly all evaluation metrics, achieving both high point-wise trajec-
tory accuracy and distributional alignment. This is, to our knowledge, the first evidence that a model
can perform well in both aspects without a trade-off, highlighting its capability of global general-
ization and local precision. Switching dynamics serve as the key stress test: while some baselines
remain reasonable under intra-family scenarios, they fail in inter-family settings, with MSE rising
to high levels. This indicates their inability to capture the mechanisms governing transitions across
dynamical families. Latent-SDEs, for instance, work within a single dynamical regime but fail once
family shifts occur. These findings suggest that not all SDE-based approaches are generalizable; the
key lies in incorporating structured inductive biases that reflect the properties of real-world data to
achieve cross-family generalization.

Model GBM2 GBM3 ou2

MISE T™D MMD MSE MISE TOD MMD MSE MISE TD MMD MSE
Autoformer 0.16 008  0.17 2.06 032 009 0.08 1.66 .30 0.04  0.09 1.81
DLinear 024 009 0.08 1.01 0.17  0.10 0.12 0.99 1.89 010 052 1.21
Mamba 0.13 007 0.15 2.01 030 009 0.07 1.62 136 0.04 0.09 1.73
NS-Transformer ~ 0.10  0.09  0.05 1.13 0.10  0.10  0.06 1.18 129 005 0.09 1.75
SegRNN 0.12 007 0.14 2.01 028 009 0.07 1.61 142 0.05 0.09 1.73
TimesNet 012 006 0.15 2.10 0.31 0.09  0.06 1.59 1.37 004 0.09 1.74
Latent-SDEs 1.03 010 030 2.01 068 0.10 025 1.81 1.17  0.10 041 2.20
GAN-SDEs 366 0.10 051 3.00 054 0.10 030 2.00 1.12 010 045 2.50
MM-NSDEs 0.01  0.01 0.02 0.75 002 0.10 0.03 0.08 0.03 0.02 0.03 0.12
Model ou3 CIR2 CIR3

MISE T™O MMD MSE MISE TD MMD MSE MISE TD MMD MSE
Autoformer 0.74  0.01 0.17 1.47 0.44  0.01 0.09 1.80 063 002 0.11 1.61
DLinear 1.90  0.10 040 1.18 1.16  0.10 046 1.16 .61 009 039 1.19
Mamba 076 0.03  0.19 1.41 042 000 0.12 1.53 0.60 002 0.11 1.58
NS-Transformer ~ 0.75  0.02  0.17 1.47 0.41 0.03 020 1.87 0.17  0.04 0.10 1.65
SegRNN 072 001 021 1.41 045 002 0.3 1.49 0.63  0.01 0.12 1.57
TimesNet 076 0.02  0.19 1.41 044 001 0.13 1.51 065 002 0.11 1.57
Latent-SDEs 069 010 035 2.00 082 0.10 030 1.91 047 002 020 1.50
GAN-SDEs 059 010 041 2.31 092 010 035 2.20 071 010 026 1.80
MM-NSDEs 045 003 0.03 0.03 033 0.00 0.01 0.01 0.03 0.07 0.05 0.07

Table 6: Comparison of different models on the simulated dataset with Intra-family switching. Our
results are highlighted with darker shading, and the best performance is shown in bold. The reported
values are scaled by 1072,

Real-world Tasks. We extend our evaluation to a public benchmark on uncertainty estimation in
financial time series, a setting where modeling stochastic variability is essential for tasks such as risk
management and portfolio optimization. As shown in Table[8} MM-NSDE reduces the MMD score
by several orders of magnitude compared to all baselines. This demonstrates its ability to capture
distributional uncertainty in financial dynamics, which is critical for stress testing and volatility
forecasting.

MM-NSDE FOR NON-SEQUENTIAL DATA MODELING

Differential equation (DE) based models can be viewed as a block, as prior work has shown the
equivalence between residual networks and SDE formulations (Tzen and Raginskyl 2019; [Kong
et al., [2020). We benchmarked DE- and SDE-based blocks on the MNIST OOD detection task
using three metrics: TNR@TPR95%, Detection Accuracy, and AUPR Out. As shown in Table E}
DE methods perform well on in-distribution data but achieve lower AUPR Out, indicating weaker
rejection of OOD samples. SDE-based approaches provide stronger uncertainty estimation. Our
MM-NSDE block achieves the best TNR@TPR95% and AUPR Out while maintaining competitive
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Model OU — OU or GBM OU — OU or CIR OU — GBM or CIR
MISE TD MMD MSE MISE TD MMD MSE MISE TD MMD MSE
Autoformer 0.67 009 0.16 1.90 283  0.07 020 2.01 145 006 0.19 1.80
DLinear 024 0.0l 0.11 1.26 2.81 0.06 029 1.62 830 0.06 028 1.52
Mamba 068 009 0.18 2.31 285 0.06 0.14 1.74 144 006 0.13 1.62
NS-Transformer ~ 0.23  0.01  0.11 1.22 285 0.02 0.16 1.71 090 004 0.14 1.60
SegRNN 0.67 010  0.19 2.36 291 0.07  0.15 1.92 148 006 0.13 1.74
TimesNet 0.67 009 0.19 2.34 2.84 0.06 0.14 1.83 144 006 0.13 1.67
Latent-SDEs 066 0.10 035 1.81 1.00 0.10 041 2.10 086 0.10 0.38 1.91
GAN-SDEs 1.40 010 046 2.30 140 0.10 0.50 2.61 0.63 0.10 049 2.40
MM-NSDEs 0.07 0.07 0.05 0.06 0.09 0.02 0.01 0.04 012 019 0.01 0.00
Model CIR — CIR or GBM CIR — CIR or OU CIR — GBM or OU
MISE TOD MMD MSE MISE TD MMD MSE MISE TD MMD MSE
Autoformer 044 009 0.13 2.24 0.08 003 0.04 1.20 073 005 0.03 1.16
DLinear 070  0.09 0.12 1.19 223 007 037 0.94 1.78 008 033 0.92
Mamba 037 007 0.09 1.97 0.10 0.02 0.05 1.07 079  0.04 0.04 1.02
NS-Transformer ~ 0.26 0.09 0.10 1.50 0.08 0.01 0.05 1.01 0.27 0.03 0.08 1.11
SegRNN 039 008 0.11 2.11 0.08  0.01 0.04 1.08 072 003 0.03 1.00
TimesNet 040 007 0.10 2.05 0.09 0.01 0.05 1.09 072 004 0.03 1.03
Latent-SDEs 062 005 029 1.61 022 0.10 0.22 1.30 0.16 005 0.19 1.20
GAN-SDEs 260 010 0.38 2.21 1.80 0.10 0.34 1.80 041 010 0.28 1.71
MM-NSDEs 020 0.05 0.01 0.02 0.05 0.00 0.01 0.10 0.04 0.09 0.03 0.42

Table 7: Comparison of different models on the simulated dataset with Inter-family switching. Our
results are highlighted with darker shading, and the best performance is shown in bold. The reported
values are scaled by 1072,

Metric DLinear SegRNN TimesNet Autoformer NS-Transformer Mamba Latent-SDEs GAN-SDEs MM-NSDE
MMD (x107%) | 240.76 210.89 205.12 195.33 98.61 215.47 455.18 510.42 0.28

Table 8: Performance on uncertainty estimation in financial time series (MMD ). Lower values
indicate better distributional uncertainty modeling.

Detection Accuracy, showing that modeling network evolution as a stochastic process improves
OOD detection compared to DE-based counterparts.

Model TNR@TPR95% Detect. Acc. AUPR Out
Threshold 94.0+14 94.8 +0.7 89.4+1.1
MC-Dropout 929+ 1.6 942 +0.7 88.5 £ 1.7
PN 93.4+2.2 94.5+1.1 88.5+1.3
BBP 75.0+ 3.4 90.4+22 76.0 = 4.2
p-SGLD 85.3+2.3 90.5+1.3 82.8 £2.2
SDE-Net 99.6 0.2 98.6 £0.5 99.5+0.3
MM-NSDE 99.7 +£ 0.2 98.3+0.4 99.9 + 0.1

Table 9: Full comparison of all baselines on MNIST OOD detection using three representative
metrics. Best results are in bold, and second best are underlined.

) = MNIST
= = R0 TR L R R

SVHN

T > F(z) > > F(z) +2
[

Figure 7: Ilustration of the MM-NSDE block applied to non-sequential data (image classification).
Each residual connection can be interpreted as a discretization step dt of an underlying stochastic
differential equation, allowing the network depth to be viewed as the time axis.
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MODEL SCALABILITY ANALYSIS

Figure [§]illustrates the performance of different models as their parameter scales increase. As the
number of parameters grows, Mamba shows a steady decrease in error, indicating good scalability.
SegRNN performs relatively well at smaller scales, but its error initially increases as the model size
grows, before improving again at larger scales. This pattern may reflect differences in optimization
and generalization behaviors across capacity ranges. Autoformer maintains its error within a rela-
tively stable range across the examined scales. In contrast, MM-NSDE consistently achieves error
levels that are substantially lower than all other models, and its performance further improves with
scale, highlighting its strong scalability advantage.

Model Scalability

Mamba SegRNN
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1.40
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136 0.96
0134 094
=13 Z 0
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050 075 100 125 150 175 200 225 1 2 3 4 6
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Figure 8: Comparison of model performance across different parameter scales on the GBM1 simu-
lated dataset, with all other experimental settings kept consistent with the previous experiments.

ANOTHER PERSPECTIVE ON THE FAILURE OF NSDES

Another perspective on why NSDEs struggle to capture multimodal behaviors lies in their structural
limitations. Although the drift and diffusion terms are parameterized by expressive neural networks,
the underlying SDE dynamics are still continuous stochastic flows. Such flows inherently preserve
smoothness and local regularity, which naturally bias the resulting transition densities toward uni-
modality. Consequently, multimodality can only arise under restrictive conditions, and these are
rarely satisfied in practice.

For instance, the GBM, widely applied in finance and economics, produces a log-normal transition
density that is strictly unimodal. More generally, many classical SDEs share this unimodal bias. To
formalize when multimodality is possible, we provide the following theorem:

Theorem 5. Suppose Y; follows the NSDE in Eq.[lI} Suppose f and g are Lipschitz continuous
functions, and f(Yy,t) and g(Yz,t) have finite moments. If Assumptions in Appendix A
hold, then the stationary transition density is multimodal.

Theorem[3]establishes a theoretical framework for determining when multimodality can occur. How-
ever, these conditions are typically violated by standard SDEs. As a concrete example, the following
corollary shows that the Ornstein—Uhlenbeck (OU) process always yields a unimodal stationary dis-
tribution.
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Corollary 6 (Ornstein—Uhlenbeck process). Suppose Y; follows the Ornstein—Uhlenbeck process
dY; = k(p — Y)dt + odWy, k>0, 0 >0,
then the stationary transition density of Y, p(Y¢|Yi—1), is unimodal.

Proof. We provide only a brief outline here; the full derivation can be found in Appendix ] By
Theorem the stationary point is Y* = p. At this point, v(Y*) = —x/0? < Hence, the
stationary transition density of the Ornstein—Uhlenbeck process is strictly unimodal. O

'Y* and ~(-) are defined in Assumptions
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PROOFS

PROOF FOR THEOREM 3]
We begin by stating the assumptions used throughout.

Assumption 7 (Coefficient regularity). The drift and diffusion satisfy: 1) global Lipschitz conti-
nuity in y, with constants L, Ly; 2) uniform boundedness: ||gl|co := sup(, 4 196, (¥, 8)[lop <

oo, 3) uniform ellipticity: g(y,s)g(y,s) " = algy for some o > 0.

Assumption 8 (Separated bimodality). The terminal law v = L(Y:) has separated bimodality
along some u € ST, Specifically, the one-dimensional marginal density q,, satisfies

L -5 aon Lt
e o = — ¢ o ,
oV 2

for some my < meo, separation § := mo — my > 0, scale o > 0, and mixture weight X € (0,1).

qu(s) < A

Proposition 9 (Content bound for separated mixtures). Let v be a probability measure on R¢
whose projection onto some v € S~ has density q, satisfying the separated bimodality con-
dition in Assumption @ with means m; < ms, separation 6 = mo — my > 0, and variance
parameter 2. Then the half-space profile J,()\) satisfies

1 52
L) < —— _ 2, A€ (0,1).
J,(A) < - 27Texp( 802) VA€ (0,1)

Proof. By the isoperimetric transport inequality , if 7" is L-Lipschitz and T 1 = v, then
1)

L > sup ,
xe(0,1) Ju(A)

where I()\) = ¢(®71()\)) is the Gaussian half-space profile and .J,,()) is the half-space profile of
v. Under Assumption [8] Proposition [9]ensures

2
J(A) < . 1271_ exp(— ;7),

so that .
Lo e@)

S exp(% - %(@_10\))2)-

On the other hand, standard variational estimates for SDEs with globally Lipschitz coefficients (see,
e.g., Friz—Victoir) yield that the Ito—Lyons map I" of the NSDE is Lipschitz with
Lxspe < collglls exp(er(Ly + L?])t)a

where ¢y, c; depend only on the dimension and ellipticity. Since both bounds apply to the same map
I', we conclude

o lglloe expler(Ly + L2)1) = o exp( oz — H(@71(V)?),

which is the claimed inequality. O
PROOF OF PROPOSITION [4]

Assumption 10 (Separated multimodal distributions). Let

P=30_aj2+ 3002, 4= 30_as2+ 30as241,

with mode separation a — co. Generalizations to higher dimensions or Gaussian mixtures follow
analogously.
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Proof. (1) Wasserstein-2:
Wip.q) > &-a®> = Walp,q) = Qa).
(2) Sinkhorn (e-regularized OT):

Se(pa q) Z WQ(]% q) - 0(8)7
hence S.(p, q) = Q(a).

(3) MMD with Gaussian kernel k(z,y) = exp(—||z — y||?/o?):

MMD?(p, q) = Ep[k(x,2")] + Eqlk(y, )] = 2Ep glk(x,1)]-
As a — 0o, cross-mode terms — 0, leaving only bounded within-mode terms. Thus MMD(p, q) =
O(1).

PROOF OF THEOREM [3]

Assumption 11. Equation f (Y, t) — g(Yz, t)a% 9(Yi, t) = 0 has at least one solution at Y*

Assumption 12. Define 'Y(thy t) — (Vi t)g® (Yt7t)—(gl(Yt7t))2g2(Y;f();ftJ;(Yt7t)g/(Yt7t)—g(Yt7t)(gl(Yt7t))2 )

At Y*, v(Y*,t) is strictly positive.

Proof. The Fokker—Planck equation for the transition density p(Y;|Y;—1, t) is given by:

82 QQ(K t)
= = ——f(Ys, t)p(Ye|Yeo1,t — [
8tp( ) 8Y[f( ty )p( t| t—1, )}+8Y2[ 9
Suppose that the transition density is stationary, that is, % p(Y:|Yi—1,t) = 0, then the Fokker—Planck
equation degenerates to

Yi|Yi_1,t p(YelYi-1,1)]

) g2 2
— oy (e p(ViYier)] + W[%

where p(Y;|Yi—1) = limy—, o0 p(Y|Yi—1,t). Then, there must be a constant C' s.t.
d g*(Vi,t)

aYy 2
We take an integral for both sides of the above equation on the real line and obtain:

[ om

p(Yi]Yi—1)] =0

Fp(YlYi1) = F(Ye Dp(YilYi 1) = C.

0o 2
| iy - S 0p(ilYio)av,

Y 2
* ¢2(Y;,t) O
+'/ %87 (Y3|Yi—1)dY;

— 00

- d
<’/ p(YelYi-1)g(Yi, t) 7-9(Ye, t)dY;

879

— 00

; ‘ [ v s nay

<0

Therefore, C' must be zero. This gives us a differential equation for the stationary transitional den-
sity:
2

%p(yt\yt—l) = m(f(ytat) - Q(Ytﬂf)%g(

It is easy to verify that if Assumptionis satisfied, then 3 Y * s.t. %p(Y*) = 0. Further, because
9 OpilY,1)/0Y

Yy, 1)p(YelYioa).

o y(Y:, t).
¥ v e
Under Assumption[12] we have
2
—p(Y*) > 0.
Hy2P(Y")
This means the stationary transitional density has at least one minimum at Y, i.e., at least two local
maximums. O
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PROOF OF COROLLARY [6]

Proof. The Fokker—Planck equation for the transition density p(Y;|Y;—1, t) is given by:
0 0 9% o2
p(Y:|Y: = Y )p(Yi|Yeo1,t
at(t|t17) 8Y[ k(= Ye)p(YelYio1, )] + 8yg[
Suppose that the transition density is stationary, that is, % p(Y:|Yi—1,t) = 0, then the Fokker—Planck

equation degenerates to

0 9% o2

(}/;5|Y2 1 )}

8Y[ k(p = Y)p(YelYi-1)] + W[gp(Ytlthl)} =0
where p(Y;|Y:—1) = limy—, o0 p(Y2|Yz—1,t). Then, there must be a constant C' s.t.

o2 0

-5 *ay? p(Ye|Yi—1) — k(p = Yy)p(Yi|Yi—1) = C.

We take an integral for both sides of the above equation on the real line and obtain:

[ om

V Uzay (Ye|Yie1) — K(p — Yo)p(Yi|Yio1))dY,

Sw/ p(Yi|Yi1)dY: + & +f\[p (Y3]Yeo1)] % |

/ Yip(Y|Yi_1)dY:

< 0

Therefore, C' must be zero. This gives us a differential equation for the stationary transitional den-
sity:
0 2K
aiyp(Yt‘Y;tfl) (M Yi)p(Ye|Yi-1).

We have %p(YAY}_l) > 0if Y; < p, and Wp(Y}\Yt_l) < 0if Y; > p. This means p(Y;|Y;_1)
has a unique maximum. O
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SHOWCASES
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Figure 9: Fitting results of different models for OU-1. Red bins represent the density output by the
models, while blue bins represent the true density of the data. Each row corresponds to a different
model, and each column represents a specific time point.
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