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CONTEXT-AWARE SELF-TRAINING FRAMEWORK FOR
CELL TYPE ANNOTATION USING MARKER GENES

ABSTRACT

Single-cell annotation is a fundamental task in the analysis of single-cell data, and
one promising research direction relies on the marker gene information accumu-
lated in biology. Recently, self-training strategies have been introduced into the
field, which significantly improve the annotation accuracy by iteratively optimizing
the model. However, existing methods have not yet systematically explored how
to construct self-training frameworks that are more applicable to single-cell data.
To this end, we propose the context-aware self-training model CSSTA. First, the
contextual information of marker genes is introduced to enhance the compatibil-
ity of marker genes with different single-cell datasets to generate high-quality
pseudo-labels. Second, high- and low-confidence pseudo-labels recognition and
supervision strategies more applicable to single-cell data are designed that can
better guide the optimization of the model. Finally, the insight of the single-cell
foundation model on cell-cell association information is introduced by GNN. Ex-
periments demonstrate that the introduction of marker gene contextual information
significantly improves the ability to recognize cell-cell type associations with
heuristic-based strategies. Benchmark experiments show that CSSTA significantly
outperforms state-of-the-art methods. Notably, we demonstrate the potential of
CSSTA for hierarchical cellular annotation by extending it to hierarchies.

1 INTRODUCTION

Emerging single-cell RNA sequencing (scRNA-seq) technologies have allowed us to monitor bio-
logical systems at a much higher resolution. The identification of distinct cell types within complex
tissues contributes to a deeper understanding of their roles in biological processes (Liu et al., 2021).
Over the years, the field has established an extensive repertoire of cell-specific features, including
widely validated marker genes that facilitate precise cell classification in tissue samples (Franzén
et al., 2019). These marker-based approaches have become a cornerstone of cell type annotation
(Ianevski et al., 2022; Chen et al., 2024; Hou & Ji, 2024; Busarello et al., 2025).

Traditional marker-based methods mainly use heuristic strategies to assess the association between
cells/cell clusters and cell types (Shao et al., 2020; Mikolajewicz et al., 2022). They mimic manual
annotation by quantifying the overlap between cell/cluster-specific genes and canonical marker genes
through statistical measures (Shao et al., 2020). However, recent studies have revealed significant
noise in the cell-type association scores derived from such heuristic approaches (Chen et al., 2024).
To overcome these limitations, advanced computational frameworks (Chen et al., 2024; Amini et al.,
2025) integrate self-training mechanisms from machine learning to denoise association scores and
enhance cell classification performance. As illustrated in Figure 1, the self-training architecture for
single-cell annotation operates through three synergistic modules: pseudo-label generation based on
heuristic-based association scores (Figure 1a), iterative refinement of classifiers and pseudo-labels
(Figure 1b), and cell prediction by neural classifiers (Figure 1c). While existing approaches are
mainly preliminary applications of the self-training paradigm, this work systematically addresses
three fundamental challenges in the self-training workflow to develop self-training models that are
more applicable to single-cell data.

First, the effectiveness of self-training is thought to benefit from the quality of the pseudo-labels,
i.e., the performance of the heuristic association scoring strategy (Chen et al., 2024). scCATCH
(Shao et al., 2020) assesses the degree of overlap of cell cluster-specific genes with cell type marker
genes by counting strategies (Figure 2a). Ianevski et al. (2022) find that rare marker genes appearing
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Figure 1: Schematic diagram of the self-training-based single-cell annotation framework. (a) Pseudo-
label generation process. (b) Self-training process for supervising downstream classifiers using
pseudo-labels. (c) Network architecture of the downstream classifiers.

in fewer cell types may be more discriminatory, and therefore propose a cell type-specific score
(Figure 2b). However, these strategies ignore the effects of experimental noise and high rates of
loss of single-cell data on the compatibility between marker genes and specific single-cell datasets.
When these genes lose their discriminatory power due to experimental noise or high dropout rates
on a particular dataset, this scheme may introduce errors rather than improve the accuracy of the
annotation (Figure 2c). Therefore, we propose that just as human language is context-dependent
(Devlin, 2018; Liang et al., 2023; Naveed et al., 2025), the effectiveness of marker genes is inherently
contingent upon the intrinsic characteristics of the processed data.

Second, self-training methods are commonly used to filter out possible noise in pseudo-labels, thereby
enhancing model performance. However, most existing self-training methods adopt global thresholds
to select high-confidence samples as pseudo-labels (Chen et al., 2024; Yoon et al., 2024). This simple
strategy can be problematic for single-cell data, which often suffers from the problem of category
imbalance and varying levels of classification difficulty across cell types. Since high-confidence
pseudo-labels are typically associated with easily classified samples, an over-reliance on them may
impair the model’s ability to generalize to more challenging cases. As a result, these methods often
overlook reliable predictions for hard-to-classify categories.

Third, a number of methods have made progress by integrating clustering algorithms. MarkerCount
(Kim et al., 2022) first evaluates the association between cells and cell types using a counting strategy,
and then through principal component analysis and Gaussian mixture modeling to identify cell clusters,
and finally corrected the initial association after eliminating uncertain cells. Based on this, HiCAT
(Lee et al., 2023) further introduced hierarchical marker gene information to identify major types,
minor types, and subsets hierarchically. Although these methods divide the cell classification process
into two phases, clustering and assignment, and the marker information of cell types cannot effectively
guide the unsupervised cell clustering optimization, they have shown promising performance in
previous evaluations, indicating the importance of cell association information, which has been
neglected by previous self-training based single-cell annotation methods.

To address the above challenges, we propose a Context-aware Self-training model for Single-cell
Type Annotation (CSSTA)1, as shown in Figure 3. To begin with, we propose the Contextualized
Association Scoring (CAS) strategy. This strategy innovatively combines cell-type-specific scor-
ing (Ianevski et al., 2022) with contextualized information of marker genes to effectively generate
high-quality pseudo-labels. Subsequently, existing methods rely excessively on high-confidence
pseudo-labels during self-training iterations, which may lead to biased adaptation to familiar samples

1The source code of our CSSTA is available at https://anonymous.4open.science/r/
CSSTA-FDEA.

2

https://anonymous.4open.science/r/CSSTA-FDEA
https://anonymous.4open.science/r/CSSTA-FDEA


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Cell type Cell type 1

(a) (b) (c)
         (Low 
specificity)

M1          (High
specificity)

M3         (Medium
specificity)

M2 Cell type
Marker geneGene expression

M1

M2

M3

M4

M5

 Cell
Cell type 2

Cell type 4Cell type 3

 Dataset 1

Expr. of M3 
min max min max

Cell and type association evaluation Marker specificity across cell types Contextualized information for marker genes

Cell type 1 Cell type 2

Cell type 4Cell type 3

 Dataset 2

Expr. of M3 

Figure 2: Schematic representation of the key ideas of different association scoring strategies. (a)
Cell and cell type association evaluation is based on counting the expression values of all marker
genes on the cell for a given cell type. (b) Marker gene specificity assesses whether marker genes
are present in a small number of types, e.g., M3 that occurs only in cell type 1 has high specificity.
Circles indicate presence in this cell type and vice versa forks. (c) The validity of a marker is affected
by the contextualized information of the dataset in which they are located. For instance, M3 has low
discriminatory power on dataset 2. Dots represent M3 expression values on cells.

or specific cell types. Therefore, we introduce metric learning to distinguish high-confidence and
low-confidence pseudo-labels by calculating the distance between cell embeddings and cell type
prototypes, and implement differentiated supervisory strategies for pseudo-labels with different
confidence levels to better guide model optimization. Lastly, we integrate cell network topology
knowledge. We utilize a pre-trained single-cell foundation model to obtain high-quality cell embed-
dings and construct a cell association network accordingly. Learning cell association information
through Graph Neural Network (GNN) allows CSSTA to effectively capture the spatial relationships
between cells, which helps to improve the annotation accuracy. Experimental results show that
CSSTA significantly outperforms state-of-the-art methods on several benchmark datasets. Notably,
CSSTA can be naturally extended to hierarchical cell annotation tasks and has demonstrated excellent
performance on example datasets, providing a new solution for hierarchical cell classification.

2 METHODOLOGY

This section details our proposed CSSTA. The development of this model focuses on 3 challenges
of current self-training based single-cell annotation frameworks. RQ1: How to quantify and utilize
marker contextualized information to enhance the quality of pseudo-labels? RQ2: How to optimize
the process of guiding models with pseudo-labels? RQ3: How to integrate the knowledge of the
cell-cell topology to enhance annotation performance? Below, we first present the details of the
relevant techniques, and then describe the framework of CSSTA as shown in Figure 3. Finally, we
provide details of model inference and training.

2.1 MEASURING THE RELEVANCE BETWEEN CELLS AND CELL TYPES

How to assess association scores between cells and cell types based on marker genes has been
extensively studied. Here, we introduce six commonly used association scoring strategies, two of
which (i.e., Count and Cell-type-specific) are described below and the others in Appendix A. Then we
present our strategy CAS. Specifically, single-cell expression data is denoted as X ∈ Rn×g, where
n and g are the number of cells and genes, respectively. xi denotes the ith cell in X . Assuming
that there are T known cell types, each type Tj has a list of marker genes {mk

j }, k = 1 . . . nj . The
different scoring strategies are described below.

(i) Count-based correlation scoring (Count): The relevance between cell xi and type Tj is assessed
by checking whether the marker genes in Tj are expressed in xi. It can be described as follows:

Rij =

nj∑
k=1

I(xi

[
mk

j

]
> 0), (1)

3
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Figure 3: Network architecture of CSSTA. (a) Pseudo-labels generated by CAS scoring. (b) High-
confidence and low-confidence pseudo-labels are identified based on cell type prototypes and cell
embedding distances, and the classifier optimization is guided in using the discretization loss function.
(c) Integration of cell network topology knowledge in single-cell foundation models via GNN.

where I(xi

[
mk

j

]
> 0) denotes whether the kth marker gene of the jth cell type Tj is expressed in xi.

If xi

[
mk

j

]
> 0, then I(xi

[
mk

j

]
> 0) = 1, and vice versa for 0.

(ii) Relevance scoring based on marker specificity for cell types (Cell-type-specific): Since the
same gene may appear in the list of markers corresponding to multiple cell types, Ianevski et al.
(2022) propose a Cell-type-specific score, which quantifies the specificity of a marker, with higher
specificity indicating that the marker gene occurs less frequently. Specifically, given a marker pool
M that contains marker genes from all cell types, the score Sj for marker Mj is defined as follows:

Sj = 1− |Mj | − |Mmin|
|Mmax| − |Mmin|

, (2)

where |Mj | denotes the number of marker genes Mj , and |Mmin| = minMk∈M |Mk| and |Mmax| =
maxMk∈M |Mk| are the minimum and maximum number of marker genes. The expression of the
genes in each cell is then multiplied by the S scores to derive the cell-cell type score Rij , i.e.,

X′ =
((

Z
(
XT

))T ⊆M
)
· S, Rij =

1√
nj

∑nj

k=1 x
′
i

[
mk

j

]
, (3)

where x′
i means the ith cell in X′ ∈ Rn×|M | and Z(·) denotes the z-score-transformation.

(iii) Relevance scoring based on marker specificity and contextualization (CAS): Previous studies
(Wang et al., 2019; Pullin & McCarthy, 2024) mention that marked genes are expected to show large
expression differences between cell types, i.e., it should be up-regulated in relevant cell types, while
showing low expression in the other types. To quantify the above property of markers considering
the specificity and contextualized information in a given dataset, we define 3 metrics following the
understanding of biologists:

◦ Unique Marker genes are unique, which means they should appear less frequently. Given that
fX,mk

j
=
∑n

i=1 I(xi

[
mk

j

]
> 0) denotes the occurrence frequency of the marker gene mk

j , the

uniqueness score for mk
j is defined as follows:

U
(
mk

j

)
= log

(
n

fX,mk
j

)
. (4)
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◦ Co-occurring Given the marker gene mk
j , the conditional probability P

(
Tj | mk

j

)
of a cell

belonging to the cell type Tj should be high, which we call the co-occurrence of the marker with
its corresponding cell type. With fTj ,mk

j
=
∑

xi∈Tj
I(xi

[
mk

j

]
> 0), the co-occurring score is

calculated as follows:

C
(
Tj ,mk

j

)
= P

(
Tj | mk

j

)
=

fTj ,mk
j

fX,mk
j

. (5)

◦ Frequent Ideally, marker genes occur as frequently as possible in their corresponding cell types,
which is defined as follows:

F
(
Tj ,mk

j

)
= relu

(
fTj

(
mk

j

)
fTj

)
, (6)

where fTj =
∑n

i=1 I(xi ∈ Tj) and fTj

(
mk

j

)
=
∑

xi∈Tj
xi

[
mk

j

]
denote the number of cells

belonging to the type Tj and the frequency of mk
j in them, respectively. Since the average frequency

is unbounded, we scale it with the relu function. Finally, we combine these three measures using
geometric averaging to derive contextualized scores:

O
(
Tj ,mk

j

)
=
(
U
(
mk

j

)
× C

(
Tj ,mk

j

)
× F

(
Tj , (mk

j )
))1/3

. (7)

Next, we utilize marker’s score O and the Cell-type-specific score, resulting in a CAS score with
better compatibility. Specifically, we first obtain the initial pseudo-label by the Cell-type-specific
score and use this as a basis for calculating O score (Eqs. (4-7)). Then, the O score is combined with
the Cell-type-specific score to obtain the final CAS score, as shown in the following equation:

X ′′ = X ′ ·N(O), Rij =
1√
nj

∑nj

k−1 x
′′
i

[
mk

j

]
, (8)

where x′′
i is the ith cell in X ′′ and N(·) denotes the normalization-transformation.

2.2 GUIDING MODEL OPTIMIZATION THROUGH PSEUDO-LABELS

This section describes how our CSSTA uses pseudo-labels to guide model optimization.

(i) Identification of high and low-confidence pseudo-labels: To address the prevalent noise problem
in pseudo-labels, existing studies such as Li et al. (2022) and Chen et al. (2024) employ global
thresholding to filter low-confidence predictions, but this approach is difficult to adapt to the inherent
type imbalance characteristics in single-cell data. To this end, we propose a type-adaptive thresholding
scheme that sets an exclusive threshold δj for the jth cell type. The specific implementation process
is as follows: in the initialization stage of the rth round of iteration, generate the pseudo-label
ỹ(r) = argmaxj ŷ

(r−1)
j based on the current model prediction probability distribution ŷ(r−1); and

subsequently, for each cell type Tj , screen all the cell types that have been labeled with this type
sample set X[Tj ] = {xi|ỹ(r)i = j}; ultimately, based on the predictive probability distribution, the
samples of each type are sorted by confidence, and the top ϵ% (corresponding to the threshold δj) are
taken as the high-confidence sample set XH [Tj ]. Except for the high-confidence samples of each
type, the rest are categorized into the low-confidence sample set XL[Tj ], which is defined as follows:

XH [Tj ] =
{
xi | xi ∈ X [Tj ] , ŷ

(r)
i,j > δj

}
, (9)

XH =

l⋃
j=1

XH [Tj ] , X
L = X [Tj ]−XH (10)

(ii) Loss function for low-confidence pseudo-labels: For the design of the loss function for low-
confidence pseudo-labels, we consider in depth the special properties of such samples and their
potential impact on model training. Low-confidence samples usually correspond to difficult instances
near the classification boundary, and their prediction reliability is relatively low, but completely
ignoring these samples will cause the model to be overly biased towards simple instances, thus
impairing the discriminative ability for complex samples. To address this challenge, we design a
loss function mechanism based on KL dispersion to optimize Low-confidence Pseudo Labels (LPL)
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are utilized efficiently. Specifically, this loss function is mathematically expressed as the KL scatter
between the predictive distribution and the pseudo-label distribution by the following equation:

LLPL(Ỹ
(r), Ŷ(r+1)) =

∑
xL
i ∈XL

l∑
j=1

ỹ
(r)
ij log

ỹ
(r)
ij

ŷ
(r+1)
ij

. (11)

We employ soft supervision based on probability distributions, which can more accurately characterize
the uncertainty in the cell type boundary regions by preserving the relative similarity relationship
between cell and type prototypes.

(iii) Loss function for high confidence pseudo labels: Unlike LPL, HPL is widely recognized as a
reliable supervised signal in traditional self-training methods. To more fully utilize these high-quality
samples, we introduce an additional cross-entropy loss function on top of the KL divergence loss
to further distance the high confidence samples from the corresponding types of prototypes in the
embedding space, thus strengthening the model’s ability to discriminate explicit samples. The HPL
loss function is specifically defined as follows.

LHPL(Ỹ
(r), Ŷ(r+1)) =

∑
xH
i ∈XH

l∑
j=1

[
ŷ
(r+1)
ij log

ŷ
(r+1)
ij

ỹ
(r)
ij

− 1
(
ỹ
(r)
i = j

)
· log ŷ(r+1)

ij

]
. (12)

2.3 DUAL-VIEW NETWORK ARCHITECTURE

To introduce comprehensive cell-cell association information, we utilize a single-cell foundation
model Geneformer (Theodoris et al., 2023) and design a dual-view network architecture consisting
of two branches, GNN and Transformer. The Transformer is used to extract gene-level information,
including gene expression and gene-gene interactions. The GNN is used to extract cell-level informa-
tion, including the associations between cells. We consider cell representations obtained from the
single-cell foundation model as the coordinates of the global cell space, and use them as the basis for
constructing a cell-cell network G, which is used as an input to the GNN. Detailed descriptions of the
branches are described in the Appendix B. We input the single-cell data into the GNN branch fg and
the Transformer branch ft, and obtain the corresponding cell embeddings hg and ht, respectively.

hg = fg(X, G), ht = ft(X), hf = columnbind(hg, ht). (13)
In contrast to approaches that use feedforward neural networks as classifiers, we transform the cell
classification process into a metric learning problem in the embedding space. Specifically, we map
cell embeddings hi

f and learnable cell type prototypes µj into the same feature space and optimize
the distance between them by pseudo-label supervision. Specifically, for the i-th cell with embedded
feature µj and the j-th cell type prototype with embedded feature hi

f , we compute their distances via

ỹi,j =
exp

(
sim

(
hi
f , µj

)
/τ
)

∑l
j=1 exp

(
sim

(
hi
f , µj

)
/τ
) , (14)

where sim(·, ·) denotes the cosine similarity and τ is the temperature. More details on model training
can be found in Appendix C.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To demonstrate the effectiveness of CSSTA in the task of cell type annotation, we collected 8
scRNA-seq datasets with manual annotations including different species, tissues, and scales for our
experiments. The dataset details are given in Appendix D. To better evaluate the performance of
CSSTA, we use 7 state-of-the-art single-cell annotation methods as benchmark models, including
Garnett (Pliner et al., 2019), SCINA (Zhang et al., 2019), scSorter (Guo & Li, 2021), scType (Ianevski
et al., 2022), MarkerCount (Kim et al., 2022), Geneformer (Theodoris et al., 2023), and sICTA (Chen
et al., 2024). The details of the implementation of the CSSTA and benchmarking models are given in
Appendix E.

3.2 COMPARING DIFFERENT CORRELATION SCORING STRATEGIES

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of different methods, where Avg represents the average of the performance
over all single-cell datasets, Bold denotes the optimal result, and underline denotes the second best
result. Std denotes the standard deviation of all single-cell datasets, and its smaller the better.

Model Avg↑ Std↓ Muraro Stoeckius Zheng Tirosh Puram Zeisel Dominguez Yoshida-Conde

Macro-F1

scSorter 0.483 0.287 0.936 0.419 0.204 0.449 0.092 0.839 0.469 0.481
Garnett 0.376 0.181 0.471 0.421 0.092 0.349 0.294 0.786 0.279 0.470
SCINA 0.568 0.165 0.842 0.754 0.479 0.774 0.340 0.604 0.448 0.391
scType 0.584 0.132 0.884 0.639 0.479 0.625 0.545 0.624 0.433 0.440
MarkerCount 0.680 0.138 0.806 0.821 0.763 0.808 0.788 0.760 0.440 0.502
Geneformer 0.682 0.110 0.609 0.803 0.772 0.795 0.730 0.708 0.530 0.511
sICTA 0.785 0.133 0.954 0.926 0.753 0.810 0.792 0.837 0.575 0.537

CSSTA 0.832 0.129 0.964 0.932 0.780 0.863 0.902 0.952 0.672 0.593

Micro-F1

scSorter 0.644 0.234 0.949 0.720 0.722 0.809 0.384 0.874 0.551 0.505
Garnett 0.539 0.171 0.631 0.709 0.383 0.569 0.761 0.821 0.403 0.493
SCINA 0.620 0.189 0.900 0.895 0.798 0.623 0.421 0.564 0.531 0.426
scType 0.657 0.133 0.921 0.790 0.543 0.568 0.712 0.649 0.517 0.459
MarkerCount 0.754 0.148 0.795 0.942 0.893 0.754 0.937 0.843 0.525 0.664
Geneformer 0.721 0.131 0.729 0.924 0.877 0.682 0.738 0.746 0.547 0.522
sICTA 0.835 0.122 0.967 0.947 0.871 0.698 0.967 0.886 0.712 0.600

CSSTA 0.895 0.107 0.975 0.971 0.886 0.948 0.973 0.964 0.777 0.667

Count LR-marker Cell-type-specific

(d)

Pseudo-cellLR-labelCos
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Figure 4: Average performance of different
association scoring strategies.

To find the optimal heuristic correlation assessment
strategies to generate higher quality initial pseudo-
labels, this section evaluates the performance of 7 cor-
relation assessment strategies (Count, Cos, LR-label,
LR-marker, Pseudo-cell, Cell-type-specific, and CAS)
on 8 single-cell datasets using Macro-Precision, Macro-
Recall, Macro-F1 and Micro-F1 metrics. The results
are shown in Figure 4. Among all association assess-
ment strategies, the Cell-type-specific strategy achieved
the second best performance, compared to the third
ranked Count, which effectively utilized the specificity
between marker genes and cell types. CAS achieved
the overall optimal performance, with an average im-
provement of 6.2% on two comprehensive evaluation
metrics (Macro-F1 and Micro-F1) compared to Cell-type-specific, demonstrating the effectiveness of
incorporating marker gene contextual information. The pseudo-cell strategy obtains overall lower
and unstable performance, which may be due to the fact that on some datasets its generated cells
differ significantly from the real data distribution In summary, the above experiments show that by
introducing contextual information of the marker genes, CAS can better adapt to different single-cell
datasets and improve the accuracy of recognizing cell type associations. Therefore, the proposed
CAS is used to generate the initial pseudo-labels.

3.3 PROVIDING HIGH QUALITY CELL TYPE ANNOTATIONS

In this section, we benchmark CSSTA and compare it to 7 benchmark methods for single-cell
annotation. The results (Table 1 and 2) show that CSSTA significantly outperforms other methods,
with 6.0% higher Macro-F1, and 7.2% higher Micro-F1 than the previous self-training based sICTA,
which proves the effectiveness of our optimization of the self-training framework. Compared to
scType, CSSTA improved by 35.5% on average on all four metrics, suggesting that the context-aware
self-training strategy and the powerful nonlinear fitting ability of the dual-view structure greatly
improve the model’s ability to capture potential dependencies between cells and types. Furthermore,
we find that scSorter’s performance varies significantly across datasets, as it tends to predict cells as
categories with higher sample sizes when faced with unbalanced datasets. In contrast, the standard
deviation of CSSTA on different datasets shows greater robustness. We then examined the changes in
different metrics of CSSTA during self-training, and the results on all single-cell data consistently
showed that the performance of CSSTA gradually improved until convergence during self-training,
which further demonstrated the robustness of the model (Figures 5 and 8).
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Figure 5: Plot of performance variation of
CSSTA in self-training.
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Figure 6: Impact of different branches on model per-
formance.

Next, we further refine our evaluation of model performance. Since the number of different cell types
in single-cell datasets is not balanced, for instance, the number of Tcm/Naive helper T cells in the
Yoshida dataset is 56 times that of Memory B cells, and the number of T cells in the Tirosh dataset is
45. 6 times. Therefore, we evaluate the prediction accuracy of CSSTA and the two best benchmark
models (MarkerCount and sICTA) on the rarest and highest percentage of cell types. The results
(Tables 3 and 4) show that CSSTA achieves optimal performance on both cell types. Besides, CSSTA
accurately identifies cell types that are not recognized by MarkerCount and sICTA, such as the rarest
cell types in the Puram dataset in Table 3.

3.4 REVEALING THE EFFECTIVENESS OF DIFFERENT BRANCHES

To explore the impact of different branches in the model on performance, we ablated the framework
of CSSTA and evaluated the ablated model on all datasets. Specifically, we evaluated the following
scenarios: (i) ablation of the Transformer branch (CSSTA w/o Transformer); (ii) ablation of the GNN
branch (CSSTA w/o GNN); (iii) eliminating the self-training strategy (CSSTA w/o self-training).
Figure 6 shows the average performance of CSSTA in each ablation over multiple datasets.

The results show that the Transformer branch has the greatest impact on the results, and when the
Transformer branch is removed, the model exhibits lower stability, due to the fact that this branch
contains the essential cell expression data. The self-training process also has a significant impact
on the performance, which is in line with the findings of previous work (Chen et al., 2024), further
demonstrating the effectiveness of the self-training process. Furthermore, the average performance
of CSSTA on Macro-F1 and Micro-F1 is improved by 7.8% and 8.4%, respectively, compared to
CSSTA w/o GNN, which proves the importance of introducing cell network information.

3.5 EXPLORING STRATEGIES FOR PSEUDO-LABEL GENERATION AND SUPERVISION

To explore the impact of pseudo-label generation and supervisory strategies on model performance,
we performed a comprehensive ablation. Specifically, we compare strategies that do not focus on
low confidence pseudo-labels (CSSTA w/o LPL), that use all cells for training (CSSTA w AC) or
that distinguish between high and low-confidence pseudo-labels by a global threshold (CSSTA w
GT). To ensure consistency in the experimental setup, the global threshold was set to the ϵ%, i.e. the
ϵ% of samples with the highest probability scores are considered as high-confidence pseudo-labels.
In addition, the performance of Cell-type-specific substitution of CAS when utilized to generate
pseudo-labels (CSSTA w/o CAS) is also compared.

As shown in Table 5, despite achieving comparable performance with the ablation model on some
datasets, CSSTA significantly outperforms the ablation model in terms of overall performance. When
ignoring low-confidence pseudo-labels or utilizing Cell-type-specific to generate pseudo-labels, the
average performance of the model on the four metrics decreases by 10.0% and 11.5%, respectively,
which demonstrates the importance of these two components for CSSTA. Moreover, we observe
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that although CSSTA w GT and CSSTA w AC can achieve good performance on specific datasets,
their overall classification accuracy is poor, which suggests that they are sensitive to different data
distributions and do not have the ability to generalize.

3.6 VERIFYING THE ROBUSTNESS OF CSSTA FROM DIVERSE PERSPECTIVES

To comprehensively evaluate the stability and generalization capability of the CSSTA model in
practical applications, we validated its robustness using two representative datasets, Tirosh and
Zheng, which differ in scale and sequencing technology. The evaluation focused on three aspects:
(i) robustness to noisy marker gene lists; (ii) sensitivity to key hyperparameter choices; and (iii)
scalability when integrated with different single-cell foundation models (see Appendix F for details).

First, by randomly masking marker genes (10%-30%), we find that both the CAS module and the
full CSSTA model demonstrate good resilience (Tables 6 and 7), indicating insensitivity to marker
gene noise. Second, sensitivity analysis shows that the model’s performance remained stable against
variations in key hyperparameters (confidence threshold ϵ% and temperature τ ) within a reasonable
range (Tables 8 and 9). Finally, by integrating CSSTA with different foundation models like scGPT
(Cui et al., 2024) and CellPLM (Wen et al., 2023), it consistently and significantly outperformed
the baselines (Table 10), demonstrating the framework’s generality. These experiments collectively
indicate that CSSTA exhibits high robustness.

3.7 EXTENDING CSSTA TO HIERARCHICAL CELL CLASSIFICATION TASKS

With the deeper study of the single-cell field, researchers begin to define different levels of cell
types (Miller et al., 2020; Kim et al., 2022), such as major and minor types, and organize them into
hierarchical structures, which allows for cells to be understood and analyzed in a much finer-grained
way. Therefore, it is an important challenge to utilize the structural knowledge of cell types so that
cells can be accurately assigned to cell types at different levels. Here, inspired by hierarchical text
categorization methods (Meng et al., 2019; Ji et al., 2023), CSSTA is extended to hierarchical cell
annotation (h_CSSTA), as shown in Figure 7. See Appendix G for a more detailed description.

 (Root)

0.6 0.4

0.3 0.4 0.3 0.8 0.2

: Cell type node

: Known relationships 
between cell types

Figure 7: Schematic diagram of h_CSSTA.

To assess the ability of h_CSSTA to perform hierarchi-
cal classification of cell types, we perform experiments
on the example dataset provided by Lee et al. (2023),
where the cell types are categorized into five major and
seven minor types. We use the hierarchical cell anno-
tation method HiCAT (Lee et al., 2023), as a baseline.

The results (Table 11) show that h_CSSTA significantly
outperforms the latest baseline model. Compared with
HiCAT, the performance of h_CSSTA at major and
minor types is improved by 19.7% and 11.3%, respec-
tively, indicating that h_CSSTA benefits from the ex-
plicit modeling the structural information of cell types.
In addition, we observe that h_CSSTA improves its
performance on major cell types compared to CSSTA,
which suggests that h_CSSTA is capable of correct-
ing the errors of the upper layers by training the lower
layers, validating the strong potential of h_CSSTA.

4 CONCLUSION

We propose CSSTA, a context-aware self-training framework tailored for single-cell data. CSSTA
quantifies the contextual information of marker genes to enhance dataset compatibility, employs
a differentiated supervision strategy adapted to single-cell data characteristics, and incorporates
external cell topology to boost performance. Experiments demonstrate that our model achieves
state-of-the-art performance in cell type annotation. Extensive ablation and robustness analyses
validate the model’s effectiveness. Finally, we extend CSSTA to hierarchical cell annotation and
validate its outstanding performance on example datasets, providing a highly promising approach for
addressing cell hierarchy classification tasks.
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A RELEVANCE SCORING STRATEGY

(i) Relevance scoring based on external knowledge and cosine similarity (Cos): Here we
introduce the gene embedding Eg generated by previous work (Du et al., 2019). Based on the
expression data of cells and Eg, the embedding representation of each cell (cemb

i ) is obtained by
weighted averaging. And the embedding representation of each cell type (T emb

j ) is the average of its
marker gene embeddings.

cemb
i =

xi ·Eg

sum(xi)
, T emb

j =

∑nj

k=1 e
k
j

nj
(15)
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where ekj is the embedding of its corresponding marker gene mk
j . Next, the cosine similarity between

cell embeddings and type embeddings is used as the association score between them.

Rij = cosine(cemb
i , T emb

j ) (16)

(ii) Relevance scoring based on external knowledge and logistic regression (LR-label & LR-
marker): Instead of cosine similarity, we can employ logistic regression classifiers trained on external
knowledge to infer associations between cells and candidate types. In the LR-label strategy, we
consider the cell type and its corresponding marker as a cell containing multiple genes. Therefore,
we obtain the embedding representation of this sample by averaging the marker gene embeddings
and use it to train the classifier (one cell sample per class). Oppositely, in the LR-marker strategy,
each marker gene contained in a cell type is considered to be a representation of that cell type, and
thus each marker gene embedding is used as a training sample (multiple cell samples per class).

(iii) Pseudo-cell-based correlation scoring (Pseudo-cell): This strategy is adapt from the pseudo-
document generation method proposed by Meng et al. (2018). We map cells and genes into the same
embedding space, where each cell type is modelled as a high-dimensional spherical distribution.
Then pseudo-cells are generated by sampling from the type distributions. Next, pseudo-cells and their
corresponding type labels are used to train downstream classifiers.

B ARCHITECTURE OF THE DIFFERENT BRANCHES

(i) GNN branch: To exploit the external cellular topology information, we choose the classical GNN
architecture (Kipf & Welling, 2016) as the backbone. The GNN fuses representations of neighbouring
nodes through an aggregation layer to efficiently capture the structural information of the cellular
network. Specifically, for each single-cell dataset, we input its cell expression data into Geneformer to
get an embedded representation of each cell. Then, the similarity between each cell pair is quantified
by using Cos correlation. Next, the cell-cell network is constructed by selecting the cell pairs with the
correlations upper bound of the 1% quantile. Previous methods (Wang et al., 2021; Yu et al., 2022)
generally select 10 or 15 nearest neighbor cells to construct the network. We think that as the dataset
gets bigger, a fixed number of neighbors might make the network too sparse. So, we use 1% as the
threshold to make sure that when we’re dealing with larger datasets. It is worth noting that unlike the
Geneformer used as a baseline, we froze all the parameters of Geneformer and did not fine-tune them
when extracting the cell embeddings.

(ii) Transformer branch: Transformer has been widely used in various fields in recent years, and its
advanced features in non-linear association modelling help to better exploit single-cell expression
data. In addition, its attention mechanism allows explicit construction of gene-gene interactions to
better utilize the internal knowledge of cells, hence we have chosen TOSICA (Chen et al., 2023)
as the backbone network for this branch. TOSICA is the most recent SOTA single-cell supervised
classification model, which stacks multiple multi-head attention layers.

C TRAINING PROCESS

On the basis of the previous section detailing the methods for distinguishing between pseudo-labels of
different confidence levels and their supervisory strategies, we will now illustrate how they supervise
the training of the model. The training process is divided into two key stages:

Pre-training process: we use the correlation score (CAS) obtained based on the heuristic strategy as
the initial pseudo-label of the model, i.e., Ỹ(0) = R. In the initialization phase of the rth iteration, we
generate the pseudo-label Ỹ(r) based on the current model’s prediction probability Ŷ(r). Considering
that the pseudo-labels generated by heuristic methods usually contain more noise (it has been shown
that their accuracy is only about 50%, and our experimental results also verify this phenomenon), we
adopt a conservative training strategy by utilizing only high-confidence pseudo-labels for the initial
training of the model, with the loss function defined:

LPreTrain = LHPL(Ỹ
(r), Ŷ(r+1)). (17)

Self-training process: After entering the self-training phase, the pre-trained neural network has
already possessed a strong ability to capture nonlinear relationships, and the quality of the generated
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pseudo-labels is significantly improved at this time. In this phase, we adopt a more aggressive training
strategy, while using high and low-confidence samples for model optimization.

LSelfTrain = LHPL(Ỹ
(r), Ŷ(r+1)) + LLPL(Ỹ

(r), Ŷ(r+1)). (18)

D DASASETS

To demonstrate the effectiveness of our CSSTA in the task of cell type annotation, we collected 8
scRNA-seq datasets with manual annotations for our experiments. We used the data provided by Kim
et al. (2022). They obtained the marker information from two databases (Panglao (Franzén et al.,
2019) and CellMarker (Hu et al., 2023)), and we removed the Genformer pre-training dataset that
was used. Additionally, we collected a mouse brain dataset (Zeisel) and two human blood datasets
(Dominguez_Conde and Yoshida). The markers for Zeisel were derived from the original paper,
while those for Dominguez_Conde and Yoshida were obtained from the CellTypist immune cell atlas
(Domínguez-Conde et al., 2022). It is worth noting that for cell expression data, some benchmark
models utilize only the expression information of marker genes, and some benchmark models utilize
the expression information of non-marker genes. Following the experimental setting of Guo & Li
(2021). we set the number of their non-marker genes to the top-2000 highly variable genes. A
summary of dataset statistics is shown in Table 12.

E HYPERPARAMETER SETTINGS

Our CSSTA is implemented in Python, and the core model is build on the Pytorch (v.1.8.1) framework.
The pre-training and self-training phases of the training process took a total of 50 epochs. The
optimization of CSSTA is done by AdamW (Loshchilov & Hutter, 2017). In addition, we set all
embedding dimensions in CSSTA to 200. For the Transformer architecture, we set its depth to 2
and the number of attention heads to 4. For GNN, we set the number of convolution layers to 2. In
addition, for the threshold we empirically chose 20% as the high confidence label, and the temperature
τ was set to 0.05 following previous work (Zhai et al., 2024). The parameter inference method for
CSSTA is presented in Algorithm 1.

F SUPPLEMENTARY DETAILS FOR ROBUSTNESS EXPERIMENTS

This appendix provides detailed settings for the robustness experiments described in the main text
and offers further descriptions of the results.

(i) Noisy marker gene experiments: To analyze the robustness of marker gene selection, we
randomly masked marker genes with 10%, 20%, and 30% probabilities and then examined the
performance of CAS. To ensure the stability of the results, each experiment was repeated five times.
We find (Table 6) that CAS maintains relatively stable performance when subjected to 10% and 20%
random perturbations. In addition, we further obtain the performance of CSSTA based on these CAS.
The results (Table 7) further demonstrate that the model is robust in the face of perturbed marker data.

(ii) Hyperparameter sensitivity experiments: We conducte a comprehensive sensitivity analysis
of hyperparameters ϵ% and τ to systematically evaluate the robustness of CSSTA. The selection of
temperature τ value followed the work of Zhai et al. (2024). To assess the model’s sensitivity to τ ,
we tried multiple τ values. The results in Table 8 show that the model maintained good stability for
different τ values around the default value of 0.05. It is only when the τ value deviates significantly
from 0.05 (CSSTA (τ = 0.2)) that the model’s performance changes significantly.

In addition, we also explore the impact of different confidence thresholds ϵ% on the results. As shown
in Table 9, we find that when using higher confidence thresholds such as 10% and 20%, the model still
maintained good performance. However, as ϵ% further increased, the model performance significantly
declined. We think this is mainly because when too many samples are classified as high-confidence
samples, it introduces too much noise, which affects the model’s optimization direction. This further
proves the necessity of the differentiated loss function. In summary, we conclude that the CSSTA can
be stabilized within a reasonable range of hyperparameter perturbations.
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(iii) Single-cell foundation model compatibility experiments: For the foundation models, we
further integrate scGPT and CellPLM foundation models, with results shown in Table 10. We observe
that CSSTA can be effectively combined with different single-cell foundation models, and even
outperforms CSSTA (Genformer) on the Tirosh dataset, further validating the model’s scalability.

G HIERARCHICAL CSSTA

To extend our CSSTA to h_CSSTA for hierarchical cell type annotation, we start by generating
pseudo-labels for cells at each layer via the CAS strategy. Then, for each layer except the leaf
layer, we pre-train an internal classifier for each node in it, thus predicting the probability that a cell
is assigned to a child node in its lower layer. As shown in Figure 7, each node θ

(ℓ)
i corresponds

to a classifier ϕ(ℓ)
i . Next, the probability distribution of all categories at level ℓ is predicted by

ensembling the results from the root classifier to those classifiers at level (ℓ − 1). The ensemble
method conducts multiplication operation between the output of the parent classifier and the output
of the child classifiers which can be explained by the following conditional probability formula:

p
(
xi ∈ T ℓ

c

)
= p

(
xi ∈ T ℓ

c ∩ xi ∈ T ℓ−1
p

)
= p

(
xi ∈ T ℓ

c | xi ∈ T ℓ−1
p

)
p
(
xi ∈ T ℓ−1

p

)
,

(19)

where xi is a cell. T ℓ
c is one of the children type of T ℓ−1

p . The final classification prediction is then
derived by the multiplication of the results from the root classifier to the classifier at the current level,
which enables lower-level classifiers to correct misclassifications at the higher level, making full use
of the structural information.

H RELATED WORK

In order to quickly and accurately identify cell types, a series of cell annotation models have been
developed in recent years, including reference-based and marker-based methods. Reference-based
methods (Kiselev et al., 2018; Aran et al., 2019; Jia et al., 2023; Xu et al., 2023) utilize a reference
dataset to train a classifier and then migrate it to a new dataset, which have achieved excellent
performance on cell annotation tasks. However, such approaches require that the reference dataset
and the target dataset are similar to each other, which may cause problems for scRNA-seq studies
(Ianevski et al., 2022; Jia et al., 2023). Moreover, previous work (Lee et al., 2023) has suggest
that marker-based methods require only marker information and are easier to use. Based on these
considerations, this study focuses on marker-based methods.

Some marker-based approaches focus on improving heuristic association scoring strategies, such
as the Cell-type-specific scoring method mentioned above and the Miko scoring method that can
be adapted to different gene set sizes (Mikolajewicz et al., 2022; Ianevski et al., 2022). Meanwhile,
another line of research proposes a two-stage workflow. For instance, Garnett (Pliner et al., 2019)
first uses a heuristic-based approach to obtain association scores between cells and types, and then
generates pseudo-labels and trains a generalized linear model based on this. MarkerCount (Kim et al.,
2022) uses a counting strategy to assess associations between cells and types, and then modifies
previous predictions by clustering results. scSorter (Guo & Li, 2021) is a classical marker-based
single-cell annotation model that alternately optimizes cluster assignments and centroids to assign
cells to different predefined cell types. We discover that due to the large amount of noise in the
heuristic relevance scores, previous approaches have to correct for it further, with Garnett leveraging
the fitting power of machine learning algorithms and MarkerCount utilizing the information from
the clusters. sICTA introduces a basic self-training framework, however it ignores the properties of
single-cell datasets. Previous approaches are at a cursory stage of exploring how to better optimize
the results of heuristic strategy annotation. Unlike previous work, we introduce a new self-training
strategy, which greatly enhances the model’s ability to self-optimize. Furthermore, we propose
contextualized association scoring CAS to improve the compatibility of marker and datasets. Notably,
for a more comprehensive comparison, we uses CAS to generate pseudo-labels to fine-tune a large
single-cell model, i.e., Geneformer (Theodoris et al., 2023) as our baseline.
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Algorithm 1 Overall Network Training
Input: Single-cell expression data X and cell type marker genes {mj}; Cell embeddings Ec obtained
from large single-cell models; Number of epochs for pre-training ep and self-training es.
Output: The association between cell and cell type Ŷ.

1: Construct cell-cell networks G based on Ec

2: Calculate the CAS scores by using Eqs. (2-8) as the initial Ỹ(0)

3: for i = 1, ..., ep do
4: Infer GNN Embedding hg ← fg(X, G)
5: Infer Transformer Embedding ht ← ft(X)

6: Estimate Ŷ by Eqs. (13-14)
7: Compute LPreTrain by Eq. (17)
8: Update f(·), fg(·, ·), ft(·)
9: Update pseudo-label Ỹ(1) ← Ŷ(1)

10: for i = 1, ..., es do
11: Infer GNN Embedding hg ← fg(X, G)
12: Infer Transformer Embedding ht ← ft(X)

13: Estimate Ŷ by Eqs. (13-14)
14: Compute LSelfTrain by Eq. (18)
15: Update Ỹ, f(·), fg(·, ·), and ft(·)
16: return Y

Table 2: Performance of different methods, where Avg represents the average of the performance
over all single-cell datasets, Bold denotes the optimal result, and underline denotes the second best
result. Std denotes the standard deviation of all single-cell datasets, and its smaller the better.

Model Avg↑ Std↓ Muraro Stoeckius Zheng Tirosh Puram Zeisel Dominguez Yoshida-Conde

Macro-Precision

scSorter 0.580 0.254 0.927 0.562 0.610 0.678 0.065 0.826 0.519 0.536
Garnett 0.516 0.190 0.554 0.648 0.064 0.744 0.540 0.769 0.341 0.470
SCINA 0.627 0.164 0.859 0.742 0.645 0.830 0.342 0.702 0.481 0.452
scType 0.574 0.128 0.863 0.617 0.452 0.615 0.521 0.647 0.455 0.442
MarkerCount 0.736 0.107 0.830 0.794 0.794 0.826 0.782 0.843 0.472 0.618
Geneformer 0.719 0.111 0.607 0.768 0.822 0.830 0.835 0.756 0.585 0.548
sICTA 0.807 0.133 0.942 0.949 0.828 0.831 0.798 0.852 0.572 0.547

CSSTA 0.852 0.116 0.958 0.976 0.839 0.856 0.889 0.943 0.754 0.604

Macro-Recall

scSorter 0.564 0.249 0.949 0.449 0.562 0.416 0.167 0.870 0.572 0.582
Garnett 0.398 0.195 0.471 0.421 0.092 0.349 0.294 0.824 0.356 0.591
SCINA 0.654 0.170 0.859 0.871 0.689 0.891 0.387 0.626 0.496 0.453
scType 0.747 0.110 0.915 0.884 0.656 0.904 0.667 0.698 0.629 0.607
MarkerCount 0.729 0.128 0.861 0.859 0.756 0.925 0.800 0.775 0.530 0.541
Geneformer 0.758 0.116 0.632 0.947 0.768 0.924 0.797 0.692 0.661 0.644
sICTA 0.822 0.106 0.968 0.907 0.748 0.928 0.802 0.848 0.694 0.632

CSSTA 0.858 0.103 0.971 0.902 0.778 0.895 0.937 0.965 0.717 0.702

Table 3: Prediction accuracy of MarkerCount, sICTA, and CSSTA for the rarest cell type in each
dataset. Percentages indicate the proportion of the rarest cell type in each dataset.

Model
Avg Muraro Stoeckius Zheng Tirosh Puram Zeisel Dominguez-Conde Yoshida

(2.00%) (3.80%) (1.20%) (3.20%) (1.60%) (1.60%) (3.30%) (0.80%) (0.50%)
MarkerCount 0.433 0 0.295 0.418 0.913 0 0.806 0.099 0.161

sICTA 0.713 0.988 0.841 0.486 1 0 0.939 0.756 0.339
CSSTA 0.778 0.975 0.636 0.436 0.609 0.961 1 0.864 0.746
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Muraro Stoeckius Zeisel ZhengYoshida Dominguez-Conde Tirosh Puram

Precision_macro Recall_macro

Figure 8: Plot of performance variation of CSSTA in self-training.

Table 4: Prediction accuracy of MarkerCount, sICTA, and CSSTA for the cell type with the highest
percentage in each dataset. Percentages indicate the proportion of the rarest cell type in each dataset.

Model
Avg Muraro Stoeckius Zheng Tirosh Puram Zeisel Dominguez-Conde Yoshida

(44.8%) (38.7%) (44.3%) (71.2%) (73.0%) (44.7%) (31.2%) (27.1%) (28.0%)
MarkerCount 0.803 0.979 0.994 0.942 0.831 0.918 0.973 0.064 0.726

sICTA 0.818 0.970 0.999 0.906 0.577 0.992 0.892 0.697 0.511
CSSTA 0.883 0.995 1 0.927 0.937 0.993 0.965 0.707 0.542

Table 5: The influence of different strategies on model performance during pseudo-label generation
and supervision.

Model Avg↑ Std↓ Muraro Stoeckius Zheng Tirosh Puram Zeisel Dominguez Yoshida-Conde

Macro-Precision

CSSTA w GT 0.670 0.243 0.614 0.836 0.680 0.825 0.879 0.948 0.244 0.331
CSSTA w AC 0.740 0.173 0.967 0.948 0.529 0.843 0.787 0.779 0.521 0.544
CSSTA w/o LPL 0.751 0.105 0.900 0.814 0.833 0.716 0.712 0.828 0.577 0.626
CSSTA w/o CAS 0.793 0.147 0.962 0.963 0.810 0.853 0.641 0.895 0.535 0.681
CSSTA 0.852 0.116 0.958 0.976 0.839 0.856 0.889 0.943 0.754 0.604

Macro-Recall

CSSTA w GT 0.704 0.255 0.700 0.781 0.737 0.936 0.926 0.967 0.288 0.293
CSSTA w AC 0.738 0.170 0.979 0.889 0.711 0.944 0.705 0.638 0.513 0.527
CSSTA w/o LPL 0.802 0.126 0.945 0.941 0.773 0.920 0.709 0.872 0.638 0.622
CSSTA w/o CAS 0.767 0.119 0.978 0.894 0.728 0.857 0.706 0.691 0.680 0.605
CSSTA 0.858 0.103 0.971 0.902 0.778 0.895 0.937 0.965 0.717 0.702

Macro-F1

CSSTA w GT 0.640 0.258 0.649 0.692 0.630 0.828 0.892 0.957 0.210 0.258
CSSTA w AC 0.690 0.192 0.972 0.916 0.570 0.831 0.730 0.620 0.438 0.446
CSSTA w/o LPL 0.723 0.135 0.909 0.852 0.759 0.710 0.671 0.832 0.535 0.515
CSSTA w/o CAS 0.729 0.165 0.969 0.924 0.739 0.853 0.580 0.712 0.490 0.561
CSSTA 0.832 0.129 0.964 0.932 0.780 0.863 0.902 0.952 0.672 0.593

Micro-F1

CSSTA w GT 0.722 0.224 0.834 0.726 0.703 0.857 0.956 0.967 0.343 0.388
CSSTA w AC 0.754 0.157 0.979 0.965 0.663 0.830 0.773 0.730 0.572 0.522
CSSTA w/o LPL 0.764 0.157 0.946 0.957 0.870 0.698 0.675 0.870 0.547 0.550
CSSTA w/o CAS 0.805 0.150 0.979 0.965 0.844 0.960 0.660 0.783 0.546 0.700
CSSTA 0.895 0.107 0.975 0.971 0.886 0.948 0.973 0.964 0.777 0.667

Table 6: CAS scoring sensitivity to incomplete marker genes (x% = masking probability), with
standard deviations across five trials shown in parentheses.

Dataset CAS CAS 10% CAS 20% CAS 30%
Macro-F1

Tirosh 0.644 0.637 (0.003) 0.630 (0.004) 0.621 (0.010)
Zheng 0.510 0.505 (0.006) 0.502 (0.013) 0.492 (0.013)

Micro-F1
Tirosh 0.619 0.615 (0.006) 0.629 (0.012) 0.615 (0.014)
Zheng 0.591 0.588 (0.006) 0.567 (0.016) 0.569 (0.015)
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Table 7: CSSTA sensitivity to incomplete marker gene data.
Dataset CSSTA CSSTA (CAS 10%) CSSTA (CAS 20%) CSSTA (CAS 30%)

Macro-F1
Tirosh 0.863 0.856 (0.006) 0.865 (0.005) 0.829 (0.033)
Zheng 0.780 0.765 (0.006) 0.749 (0.017) 0.668 (0.072)

Micro-F1
Tirosh 0.948 0.940 (0.018) 0.956 (0.015) 0.856 (0.132)
Zheng 0.886 0.872 (0.003) 0.854 (0.015) 0.777 (0.052)

Table 8: Sensitivity of model performance to hyperparameter τ .
Model CSSTA ( τ = 0.02) CSSTA (τ = 0.05) CSSTA ( τ = 0.1) CSSTA ( τ = 0.2)

Macro-F1
Tirosh 0.865 0.863 0.868 0.813
Zheng 0.755 0.78 0.779 0.776

Micro-F1
Tirosh 0.954 0.948 0.945 0.771
Zheng 0.863 0.886 0.884 0.875

Table 9: Sensitivity of model performance to hyperparameter ϵ.
Model CSSTA (ϵ% = 10%) CSSTA ( ϵ%= 20%) CSSTA (ϵ% = 30%) CSSTA (ϵ% = 40%)

Macro-F1
Tirosh 0.853 0.863 0.788 0.814
Zheng 0.773 0.780 0.734 0.715

Micro-F1
Tirosh 0.963 0.948 0.637 0.744
Zheng 0.874 0.886 0.847 0.825

Table 10: Performance of CSSTA combined with different foundation models. Genformer, scGPT, and
CellPLM are fine-tuned using pseudo labels obtained through CAS, and then the final predictions are
obtained. CSSTA (Genformer), CSSTA (scGPT), and CSSTA (CellPLM) represent the performance
of CSSTA when utilizing embeddings from different single-cell foundational models.

Dataset Zheng Zheng Tirosh Tirosh
Macro-F1 Micro-F1 Macro-F1 Micro-F1

CSSTA (Genformer) 0.78 0.886 0.863 0.948
CSSTA (scGPT) 0.778 0.884 0.876 0.971
CSSTA (CellPLM) 0.772 0.89 0.872 0.971
Genformer 0.772 0.877 0.795 0.682
scGPT 0.623 0.53 0.656 0.786
CellPLM 0.513 0.691 0.644 0.913

Table 11: Performance of different methods on single-cell datasets with hierarchical structure.
Model Macro-Precision Macro-Recall Macro-F1 Micro-F1

CSSTA (major) 0.944 0.830 0.837 0.963
CSSTA (minor) 0.851 0.828 0.778 0.884

HiCAT (major) 0.667 0.784 0.692 0.968
HiCAT (minor) 0.799 0.795 0.793 0.843

h_CSSTA (major) 0.968 0.867 0.885 0.971
h_CSSTA (minor) 0.887 0.875 0.852 0.924
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Table 12: Statistical information for the single-cell dataset. Ratio indicates the ratio of the type that
accounts for the most cells and the number of cells contained in the rarest cell type.

Dataset Tissue #Cell #Class Ratio Protocol Accession ID Reference
Muraro Human pancreas 2,098 7 10.2 CEL-Seq2 GSE84133 Muraro et al. (2016)

Stoeckius Human blood 7,467 6 36.9 Drop-seq GSE100866 Stoeckius et al. (2017)
Zheng Mouse blood 68,302 6 23.0 10X genomics GSE93421 Zheng et al. (2017)
Tirosh Human tumor (Melanoma) 2,949 6 45.6 Smart-Seq2 GSE72056 Tirosh et al. (2016)
Puram Human tumor (HeadNeck) 3,224 6 2.8 Smart-Seq2 GSE103322 Puram et al. (2017)
Zeisel Mouse brain 3,005 7 9.5 STRT-Seq GSE60361 Zeisel et al. (2015)

Dominguez-Conde Human blood 25,362 9 33.9 10X genomics E-MTAB-11536 Domínguez-Conde et al. (2022)
Yoshida Human blood 43,468 14 56.0 10X genomics GSE168215 Yoshida et al. (2022)
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