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ABSTRACT

Quantum kernel methods offer significant theoretical benefits by rendering classi-
cally inseparable features separable in quantum space. Yet, the practical application
of Quantum Machine Learning (QML), currently constrained by the limitations
of Noisy Intermediate-Scale Quantum (NISQ) hardware, necessitates effective
strategies to compress and embed large-scale real-world data like images into the
constrained capacities of existing quantum devices or simulators. To this end,
we propose Quantum Generator Kernels (QGKs), a generator-based approach
to quantum kernels, comprising a set of Variational Generator Groups (VGGs)
that merge universal generators into a parameterizable operator, ensuring scalable
coverage of the available quantum space. Thereby, we address shortcomings of
current leading strategies employing hybrid architectures, which might prevent
exploiting quantum computing’s full potential due to fixed intermediate embedding
processes. To optimize the kernel alignment to the target domain, we train a weight
vector to parameterize the projection of the VGGs in the current data context. Our
empirical results demonstrate superior projection and classification capabilities of
the QGK compared to state-of-the-art quantum and classical kernel approaches and
show its potential to serve as a versatile framework for various QML applications.

1 INTRODUCTION

Quantum computing offers fundamentally new paradigms for machine learning by exploiting quantum
properties such as superposition and entanglement (Preskill, 2018; Biamonte et al., 2017). Among
these, quantum kernel methods have shown promise for enhancing data separability via expressive
feature maps that operate in high-dimensional Hilbert spaces, allowing them to capture structures
that classical kernels cannot efficiently represent (Schuld & Killoran, 2019). Despite these theoretical
promises, the practical application of QML is currently limited by the capabilities of NISQ devices,
which are still in their developmental stages (Preskill, 2018). Still limited in qubit capacities and
subject to errors, embedding large-scale data into quantum devices is a significant hurdle that must
be overcome to exploit the full potential of QML. Hybrid QML architectures bridge this gap, using
classical pre-processing to embed data into quantum systems (Cerezo et al., 2021). However, recent
studies also highlight key limitations: many current approaches rely on fixed embeddings that do
not scale well with high-dimensional inputs and are susceptible to barren plateaus during training
(McClean et al., 2018). Addressing this requires scalable, flexible, and learnable quantum embeddings
that can exploit these properties while remaining parameter-efficient and robust to noisy hardware.

In this work, we propose a novel kernel architecture grounded in Lie algebraic generators, aggregated
into parameterizable groups that project input data directly into quantum space. Our approach can
be broken down into three steps: Construct a set of generators and merge them into Variational
Generator Groups (VGGs). We refer to a set of these groups as the Quantum Generator Kernel
(QGK), which is executed by its set of operators. To improve alignment between data and the
resulting kernel, we introduce a linear feature extractor that is pre-trained to project high-dimensional
input into a compressed generator space. Unlike previous methods that rely on static gate-based
embeddings, our QGK architecture employs Hamiltonian-driven unitaries with learnable generator
weights, enabling expressive and scalable data encoding. By projecting high-dimensional data into a
compact generator-weighted space, QGKs achieve high parameter efficiency per qubit and flexible
embedding capacity, while effectively leveraging the expressive power of the full Hilbert space. We
validate the QGK both analytically and empirically: theoretical analyses confirm its expressivity and
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scalability, while experimental results demonstrate superior classification accuracy and robustness to
noise across synthetic and real-world benchmarks. We summarize our contributions as follows:

• We introduce Variational Generator Groups (VGGs), a novel embedding framework that
systematically aggregates Lie-algebraic generators into parameterized Hermitian operators. This
construction provides a principled and expressive foundation for data-dependent quantum state
preparation and evolution and a scalable alternative to fixed, gate-based encoding.

• Building on the VGG framework, we propose the Quantum Generator Kernel (QGK), a
generator-driven quantum kernel architecture that employs Hamiltonian evolution with data-
conditioned generator weights. This yields compact learnable feature maps with favorable
parameter–qubit ratios and high representational capacity.

• We provide an empirical analysis of the VGGs’ theoretical kernel properties, characterizing their
entanglement capability, expressivity, and parameter scalability. We further examine the compu-
tational complexity, demonstrating a classically efficient strategy for handling high-dimensional
inputs while remaining fully compatible with future fault-tolerant quantum execution.

• We empirically evaluate the QGK on a diverse range of binary and multi-class classification
benchmarks, including MNIST and CIFAR10. Our results show that the QGK consistently out-
performs state-of-the-art classical and quantum kernels, maintaining robustness under realistic
noise models of current hardware.

2 BACKGROUND

Kernel methods Kernel methods describe a map into a high-dimensional feature space ψ, used to
project a d-dimensional data point x ∈ Rd, into a space, where the distribution of data may then be
suitable for linear separation. The kernel function k(xi, xj) = ⟨ψ(xi), ψ(xj)⟩ can be understood as
the pairwise distance on that feature space. As the feature map for all points may be computationally
expensive, it can be important to reduce the number of calls to that function. The kernel trick allows
for calculating pairwise distances in the feature space without explicitly calculating the feature
function. This is possible, for example, if the kernel is a positive definite map, independent of
its dimension (Hofmann et al., 2008). The pairwise distances k(xi, xj) can be used in a support
vector machine (SVM) to solve a classification problem. SVMs turn the classification problem into a
quadratic optimization problem, defined on pairwise distances using the kernel trick:

argmin
α

1

2

n∑
i=1
j=1

αiαjyiyjk(xi, xj)−
n∑

i=1

αi (1)

where α are the parameters of the support vector machine and y are the labels of n datapoints. The
quality of a feature map can be measured and adjusted to provide a better data embedding structure
using kernel target alignment (KTA) (Cristianini et al., 2001). KTA quantifies the similarity between
a computed kernel matrix and an ideal target kernel, e.g., derived from the class labels.

Quantum computation Quantum systems are described by quantum states, represented as complex
vectors encoding observables like spin or position. A single qubit can be written as |q⟩ = α |0⟩+β |1⟩,
where α, β ∈ C. Quantum operations on these states are unitary transformations U such that
|Ψ′⟩ = U |Ψ⟩. In practice, these are decomposed into elementary one- and two-qubit gates and
executed on quantum hardware. Measurement collapses the quantum state into classical outcomes
Nielsen & Chuang (2010). Mathematically, such operations form the special unitary group SU(N)
for N = 2η qubits. As a Lie group, SU(N) has a corresponding Lie algebra su(N), a real vector
space of skew-Hermitian, trace-zero matrices Hall (2013). The elements of the Lie algebra, known as
generators, define the fundamental directions in which unitary quantum operations can be constructed.
Since the Lie algebra forms a linear vector space, multiple generators can be combined additively
to form complex Hermitian operators. These operators are then mapped to unitary matrices via the
exponential map, exp: su(N) → SU(N). In quantum computing, a natural basis for this algebra
is the Pauli basis, consisting of tensor products of σx, σy, σz,1: These form the building blocks for
quantum circuits and support gradient-based learning due to their manifold structure.
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Quantum Kernel Methods A central difference in a system of η qubits compared to classical bits
is that the dimension of the mathematical space of η qubits scales exponentially in η. Formally, the
state of a system of qubits is a ray in a Hilbert space, which is generally expressed by C2η . This
exponential scaling motivates the quantum kernel method, in which the Hilbert space is used as the
feature space, analogous to conventional kernel methods (Mengoni & Di Pierro, 2019). As shown
in (Schuld et al., 2021a), a large class of supervised quantum models are kernel methods. A deeper
analysis of the mathematical structure of data embedding in quantum circuits shows that combining
data uploading with parameterized quantum gates allows for arbitrary function approximation in the
form of a Fourier series (Schuld et al., 2021b).

3 VARIATIONAL GENERATOR GROUPS

Information can be encoded into a quantum system either by initializing a quantum state with free
parameters or by applying a parameterized operator to a fixed initial state. Given the limited qubit
counts in current NISQ hardware, we aim to maximize parameter density per qubit. A common
quantum encoding approach, known as amplitude encoding, embeds classical data directly into a
state vector within a 2η-dimensional Hilbert space, where each entry represents a complex amplitude
(Biamonte et al., 2017). Accounting for both the real and imaginary components as well as the
normalization constraint, this allows for a total of 2η+1 − 1 free parameters. An alternative and more
hardware-friendly variant is rotational (angle) encoding, where classical values are mapped to the
rotation angles of single-qubit gates (e.g., Rx(θ)), applied to each qubit independently. While this
method is easier to implement and preserves data locality, it significantly limits the expressiveness
of the encoding, scaling only linearly with the number of qubits. In contrast, encoding classical
data via a unitary operator acting on a quantum state leverages the full expressive power of the Lie
algebra su(2η), which offers up to 22η − 1 free parameters. This yields an exponential increase
in representational capacity (by a factor of 2η−1) over state-based encoding, offering significantly
greater flexibility and expressivity for quantum learning tasks.

This insight motivates our approach: rather than embedding data directly into a quantum state,
we build unitary operators from structured combinations of algebraic generators. Specifically,
we construct a complete and well-behaved set of Hermitian generators that span a subalgebra of
su(2η). These generators are derived systematically to ensure linear independence, closure under
commutation, and coverage of all valid operator directions in the Hilbert space. The full derivation
and construction procedure are detailed in Appendix A, including Alg. 2 outlining the algorithmic
formulation. Overall, this construction yields a complete and hardware-compatible generator basis
for building expressive and efficient quantum kernels, as formally stated in the following theorem.

Theorem 3.1. Let H be the set of Hermitian generators constructed as described in Alg. 2. Then
H spans a Lie subalgebra h ⊆ su(2η) that is closed under commutation, linearly independent, and
expressible in terms of Pauli basis elements, ensuring both algebraic validity and implementability
on quantum hardware.

Proof. The generator set H is constructed from three families of Hermitian matrices: off-diagonal
real symmetric matrices (Eq. 13), off-diagonal purely imaginary anti-symmetric matrices (Eq. 14),
and diagonal traceless real matrices (Eq. 15). Together, these matrices span the entire space of
traceless Hermitian operators on C2η , yielding 4η − 1 linearly independent elements, which matches
the dimension of the Lie algebra su(2η). Their construction guarantees closure under the commutator
operation, fulfilling the necessary condition for forming a Lie subalgebra h ⊆ su(2η). Moreover,
since the Pauli basis forms a complete operator basis of su(2η), each Hermitian generator hk ∈ H
can be decomposed as a real linear combination of Pauli basis elements. This establishes a direct cor-
respondence between our generator-based formalism and standard quantum circuit implementations,
where unitary operations are constructed from Pauli rotations.

This implies that any unitary generated by hk can, in principle, be synthesized into a gate-based
quantum circuit using known decomposition techniques. Hence, H not only provides complete
algebraic coverage for encoding but also ensures practical compatibility with current quantum
hardware. With the set of generators H in hand, it is now possible to encode a real-valued g-
dimensional parameter vector ϕ ∈ Rg into a sequence of unitary operators. Theoretically, for an
8-qubit system, we could encode 65, 535 parameters into this sequence. Therefore, we propose to
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merge them into Variational Generator Groups (VGGs), combining multiple generators with a single
parameter. To do so, we split the list of generators into equally sized partitions. Every group G ⊂ H

constitutes a set of generators linearly combined to form a single Hermitian matrix Ĥi, constructed
according to Alg. 1, which can be mapped to a unitary operator Û using the time development of the
quantum state, substituting the time dependence by a parameter element ϕi:

Ûϕi
= e−i·ϕi·Ĥi (2)

Algorithm 1 Construction of Variational Generator Groups (VGGs)

Require: Set of generators H, Number of groups g ∈ [1, 22η − 1], Projection width w ∈ [1, 2η]

Ensure: Hermitian Matrix Groups Ĥ
1: Initialize Hamiltonian matrix: Ĥ ← 0(g,H,H)

2: Generate generator to group mapping according to the specified width w:
3: idx← ⟨(j · 2w mod |H|, j mod g) | j ∈ {0, 1, . . . , |H| − 1}⟩
4: for all i ∈ [0, g[ ,∀(j, k) ∈ enumerate(idx) s.t. j mod g = i do
5: Ĥ[i][H[k][0]]← Ĥ[i][H[k][0]] + H[k][1] ▷ [·] is used for array indexing here
6: end for

By grouping the generators, we are able to define the number of parameters that are introduced into
the unitary. We choose the total number of groups g (i.e., the number of embeddable parameters) as:

g =
|H|
Γη

, with Γη =


2 · Γη−1 + 1 if η > 2 and η is odd,
2 · Γη−1 − 1 if η > 2 and η is even,
1 if η ≤ 2,

(3)

to ensure scaling the number of generators per group Γη approximately exponentially with the total
number of generators |H|. The grouping process is further parameterized by the projection width w
that determines the stride at which generators are assigned to groups. By varying this projection width,
we can control the density of generators per VGG (cf. Fig. 4). Consequently, Alg. 1 ensures an even
distribution of generators across all groups. Overall, using a wide stride (i.e., w = 1) helps promote
linear independence among the grouped operators by mixing structurally diverse generators, which
can improve parameter identifiability. Further justification for this approach, including comparisons
to ungrouped and fully grouped schemes, is discussed in Appendix B, while the empirical properties
of the resulting VGGs are analyzed in Sec. 6 and Appendix C. The theoretical analysis in Appendix D
furthermore shows that expressivity is preserved as long as the groups form a strict partition of H.

4 QUANTUM GENERATOR KERNELS

Via this procedure, we create a VGG with a unitary operator Ûϕi for every parameter element
ϕi, which can be decomposed into quantum gates or applied directly onto an initial quantum state.
When multiplying the set of VGGs in a sequence, we obtain one condensed unitary incorporating all
parameters ϕ:

Ûϕ = exp

(
g∑

i=1

−i · ϕi · Ĥi

)
(4)

As shown in Eq. (19), the group of unitary matrices is closed regarding multiplication; hence, Ûϕ

must also be unitary. We refer to this unified operator Ûϕ as the Quantum Generator Kernel (QGK),
illustrated in Fig. 1, which is applied via

ψ(x) = Ûx |Ψ⟩ = |Ψ′⟩ (5)

to the totally mixed initial state ⟨Ψ|, generated starting from the ground state ⟨0| using ⊗η
i=1H |0⟩ =

|Ψ⟩ , with η qubits and the Hadamard gateH applied to all qubits. To calculate the kernel matrix K
from our QGK, we use the fidelity as the distance between the states:

K = k(xi, xj) =
∣∣∣⟨Ψ| Û †

xj
Ûxi
|Ψ⟩
∣∣∣2 (6)

4
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Target

VGG VGG VGG VGG VGG

...
Variational Generator Groups ProjectionInitial

Parameter SVMQGKFeature ExtractorInput

Figure 1: Quantum Generator Kernel: A generator-based quantum kernel architecture based on
VGGs for parameterizable projection. Each colored matrix corresponds to one of g = 51 Variational
Generator Groups (VGGs) merged for η = 4 qubits, visualized as heatmaps of the magnitude (blue)
and phase (green) of the resulting generators merged into the operator. The QGK is parameterized by
the context ϕ, which is either given directly by the input or extracted from the input using a feature
extractor, adapted during the pre-training phase (1) by updating the parameters θ to minimize the
Kernel-Target Alignment (KTA) loss. In phase (2), a support vector machine (SVM), parameterized
by α, is trained using the resulting QGK Û .

To embed data using the QGK (cf. Fig. 1, phase 1), we can either use the input data to parameterize
the VGGs directly, i.e., ϕ = x ∈ Rd as denoted in Eq. (5), or use a feature extractor Fθ : Rd 7→
Rg, parameterized by θ, s.t. ϕ = Fθ(x). Note that to directly embed input data, the number
of groups g must be set according to the input dimension d. However, when using a feature
extractor, we can decouple the input dimension from the number of generator groups. This enables
dimensionality reduction, which we quantify via the compression factor γ = d/g. In our experiments,
we restrict Fθ to a linear affine transformation of the form ϕ = Wx+ b. This avoids introducing
classical nonlinearities, and ensures that all expressive capacity stems from the quantum kernel.
With the embedded data, the kernel matrix can be used to fit a support vector machine (SVM)
parameterized by α according to Eq. (1), to perform arbitrary binary classification tasks. To pre-
train the parameterization θ = ⟨W, b⟩ of the feature extractor, we suggest using the Kernel Target
Alignment (KTA) loss, as suggested in (Hubregtsen et al., 2022):

LKTA = 1− Tr(KY )

∥K∥F · ∥Y ∥F
, (7)

with the kernel matrix K and the classification targets Y , where Tr(A) is the trace of matrix A and
||A||F is the Frobenius norm. The resulting model class remains confined to the RKHS induced by
the kernel Kϕ (see Appendix E for a theoretical analysis).

5 RELATED WORK

Embedding Processes To encode classical data into quantum systems, various strategies have been
developed, ranging from fixed mappings such as basis encoding, where binary values b ∈ {0, 1} are
mapped to computational basis states |b⟩, to more compact methods such as amplitude encoding,
where a normalized vector v ∈ R2η is embedded directly into the amplitudes of a quantum state |Ψ⟩.
While amplitude encoding uses only η qubits to represent exponentially large vectors, its practical use
is limited due to costly state preparation and reduced kernel expressivity unless followed by complex
unitaries (Sun et al., 2023; Schuld et al., 2021b; Schuld & Killoran, 2019; Huang et al., 2021).
Angle encodings, or Pauli rotational embeddings, instead map real-valued inputs into single-axis
rotations such as RX(x) or RZ(x), and form the basis of many variational quantum circuits. Their
expressivity is often enhanced by data reuploading (Pérez-Salinas et al., 2020), which introduces
nonlinearity through repeated injection of inputs, enabling the circuit to approximate Fourier-like
transformations (Jaderberg et al., 2024). The Quantum Embedding Kernel (QEK) (Hubregtsen
et al., 2022) leverages this mechanism to train kernel functions via KTA maximization. However,

5
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such methods rely on axis-aligned encodings and fixed circuit structures. In contrast, recent work
has explored more expressive multi-axis or multi-qubit rotational embeddings, often motivated
by Fourier analysis or the algebraic structure of the Pauli group. In this context, our Variational
Generator Groups (VGGs) can be seen as a structured and systematic generalization of multi-
qubit angle encoding. Instead of encoding each input feature through a single-axis rotation, VGGs
construct unitaries from grouped, algebraically structured combinations of Hermitian generators
Ĥk =

∑
h∈Gk⊂H h, where each h is a linear combination of Pauli strings spanning the full Pauli basis

(cf. Theorem 3.1). The resulting unitary transformations exp(−iϕkĤk) implement data-dependent,
multi-axis and multi-qubit transformations within the Lie algebra su(2η). This distinguishes VGGs
from traditional angle encoding in two key ways: (1) While angle encodings act on one Pauli axis
per qubit, VGGs use grouped generators that cover structured subspaces of su(2η), enabling richer
transformations per parameter. (2) Each group induces entangling, correlated rotations across qubits,
going beyond independent, axis-aligned operations. Thus, VGGs form a principled extension of
multi-axis angle encoding, bridging fixed rotational embeddings and full Hamiltonian variational
models. This allows for greater expressivity per qubit, making it particularly effective for kernel
learning in qubit-constrained settings.

Hybrid QML Motivated by the limited capabilities of current quantum hardware, hybrid quantum-
classical machine learning approaches have been explored in literature, which add pre- and postpro-
cessing layers to the quantum model (Mari et al., 2020). While this approach allows the exploration
of problems that are beyond the capabilities of current quantum hardware by handling larger data
sizes, it blurs the individual contributions of the classical and the quantum components to the overall
solution quality (Altmann et al., 2023; Kölle et al., 2024). This issue is particularly pronounced
in Dressed Quantum Circuits (DQC) (Mari et al., 2020), where nonlinear neural networks appear
both before and after the quantum circuit. By the universal approximation theorem (Hornik et al.,
1989), these classical networks can approximate arbitrary continuous functions even if the quan-
tum circuit acts trivially, making it difficult to attribute improvements to quantum processing. In
contrast, our QGK uses only an affine transformation to parameterize generator weights and no
nonlinear post-processing, ensuring that expressivity is strictly governed by the quantum kernel
(see Appendix E). A recent example combining the above principles is the Hardware Efficient
Embedding (HEE) (Thanasilp et al., 2024), where input-dependent rotations are arranged in layered
circuits interleaved with entangling gates (e.g., CNOT or CZ). These embeddings are expressive and
compatible with near-term devices, but they can lead to exponentially concentrated kernel values and
barren features unless carefully controlled. To adapt the input dimensionality to the limited number of
qubits, the authors apply principal component analysis (PCA). Even though the input dimensionality
of our proposed generator-based approach scales exponentially with the number of qubits, in contrast
to the linear scaling of the HEE, its preprocessing denotes a similar approach to the linear layer
we introduce. However, rather than static feature extraction, we further use this pre-processing to
pre-train the projection of the kernel. Another recent direction is the Projected Quantum Kernel
(PQK) (Huang et al., 2021), which avoids fidelity-based kernels by extracting quantum features
through the one-particle reduced density matrix (1-RDM) and subsequently applying a classical
kernel function. Similar to HEE, the PQK is limited by linear input scaling and relies heavily on
classical compression techniques such as PCA. Furthermore, it may suffer when the underlying label
structure is not well aligned with the kernel geometry induced by the projected quantum features. In
contrast, the QGK supports high-dimensional inputs via grouped Hamiltonian encoding and offers
kernel-target alignment (KTA) pre-training to adapt the kernel to task-specific structures.

Generator-based approaches The exploration of generator-based quantum computing is rather
recent, compared to the longer exploration of gate-based variational circuits (Nielsen & Chuang,
2010). Generators are used in more mathematical explorations of quantum computing (Mansky et al.,
2023a). In particular, they are found in the treatment of barren plateaus (Arrasmith et al., 2021; Goh
et al., 2023; Ragone et al., 2024) and specialized circuits that focus on restricting subspaces (Schatzki
et al., 2024; Nguyen et al., 2024). A direct equivalent to the generators does not exist in classical
machine learning, owing to the different mathematical structure (Bronstein et al., 2021).
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6 EMPIRICAL ANALYSIS

In this section, we aim to provide an empirical analysis of the resulting properties of the proposed
Quantum Generator Kernel (QGK) and compare them to the Quantum Embedding Kernel (QEK),
Harware Efficient Embedding (HEE), and Projected Quantum Kernel (PQK) as representative state-
of-the-art approaches to quantum kernel methods, as well as classical Radial Basis Function (RBF)
and Linear kernels. Fig. 2 summarizes our results.
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Figure 2: Comparing the scaling behavior of the QGK to classical and quantum kernels w.r.t.
the number of available qubits η (i.e., 4η − 1 input dimensions), regarding: (a) the number of
available parameters, (b) the entanglement capability by means of the Meyer-Wallach measure, (c) the
expressibility by means of the spectral concentration, and (d) the computational complexity, showing
the complexity breakeven dataset size n when classically simulating the QGK (left y-axis) and the
number of VGGs and resulting inputs (right y-axis, blue), scaled to n = 10d to satisfy n≫ d.

Parameter efficiency Fig. 2a shows the scalability of the number of parameters w.r.t. the number
of qubits. For the QEK, we assume a maximum of η2 input parameters, i.e., using η layers to embed
the input data, scaling quadratically with the number of qubits. Utilizing generators in Hilbert space
rather than fixed gate-based embedding processes, our approach shows significantly improved qubit
efficiency, scaling exponentially with the number of qubits. Thus, QGK offers an overall higher
data capacity, which is especially crucial for realizing real-world applications on near-term quantum
devices. To ensure a fair comparison with equal parameter counts, the following analysis is based on
the maximum number of QGK parameters, where the QEK is extended by parameterized reuploading
layers to replenish the additional parameters. As mentioned above, the input capacity of methods
such as HEE and PQK scales only linearly with the number of qubits. Therefore1, we omit them from
the following analysis of the theoretical kernel properties, though we include them in subsequent
empirical comparisons.

Kernel properties Fig. 2b shows the maximum entanglement capabilities by means of the Meyer-
Wallach measure. Here, the embedding-based approach shows higher capabilities, due to the entan-
glement layers. For both approaches, the entanglement capability peaks at lower qubit numbers and
steadily decreases afterwards. However, given that strong entanglements might also impede opti-
mization, this property could actually be beneficial to both approaches. Fig. 2c compares the spectral
concentration of various kernels as a measure of expressibility. The QGK shows a clear upward trend
with increasing qubit count, benefiting from its generator-based structure and high parameter density.
In contrast, the QEK exhibits decreasing expressibility, suggesting weaker scalability with added
parameters. The classical RBF kernel also shows decreasing spectral concentration with increasing
input size, while the Linear kernel, similar to QGK, increases steadily. Notably, QGK maintains
lower spectral divergence than the Linear kernel across input sizes despite operating in exponentially
larger Hilbert spaces, indicating strong resilience against expressibility collapse and exponential con-
centration. These results highlight QGK’s favorable expressibility-to-learnability trade-off, making
it a scalable and efficient alternative for hybrid quantum-classical pipelines. To assess architectural
sensitivity, we analyze the impact of group size and projection stride in Appendix C. The results
confirm that expressibility and entanglement remain stable across all tested configurations, with
exponential group scaling and wide stride (w = 1) yielding the most consistent and expressive feature

1Matching the input-scale of our QGK would require tens to thousands of qubits, which is infeasible for
simulation or current hardware without aggressive classical dimensionality reduction. Such hybrid compression,
however, obscures the intrinsic quantum embedding capabilities being evaluated.
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maps. Finer groupings enhance expressiveness slightly, while projection width has only marginal
impact. These findings reinforce the theoretical robustness guarantees presented in Appendix D and
support our default grouping design as a scalable and well-conditioned choice.

Computational Complextiy Despite the exponential scaling in qubit number η, the QGK remains
classically simulable due to its decomposition into tensor-efficient operations: generator construction,
input projection, quantum evolution, and pairwise kernel evaluation. Unlike classical kernels such
as RBF or Linear, which incur O(n2 · d) cost for computing the similarity matrix, QGK scales as
O(4η +n · γ · g2 +n · 8η +n2 · 2η), with g VGGs and the compression ratio γ = d/g. This structure
favors sample-efficient scenarios revealed by the complexity analysis shown in Fig. 2d, indicating two
key properties of the QGK: (i) for low qubit number (η ≤ 5) QGK offers a computational advantage
over classical kernels when using a 1:1 mapping (γ = 1). (ii) to enable larger-scale applications
(e.g., d > 100) efficiently, hybrid approaches with γ > 1 are required to compress the input.
E.g., using γ = η pushes the lower efficiency bound further down, such that the input dimension
reference (d = ηg for g VGGs, light blue) does not intersect anymore. This hybrid execution enables
scalable and classically feasible QGK training in the NISQ era and lays the groundwork for full
quantum execution on future fault-tolerant architectures. A detailed analysis, including complexity
thresholds, approximations, and formal bounds, is provided in Appendix F. Importantly, while the
QGK provides a path to handling large input dimensionality efficiently it shares the same quadratic
complexity in the number of training samples n as all classical kernel methods due to the O(n2)
kernel matrix computation. As with classical approaches, this can become prohibitive for very large
datasets. To mitigate this, kernel approximation techniques such as the Nyström method (Williams &
Seeger, 2000) or random feature expansions (Rahimi & Recht, 2007) can be used to reduce training
complexity to near-linear in n, with minimal performance degradation.

7 EVALUATION

Setup To empirically validate the properties and advantages discussed above, this section demon-
strates the kernels’ trainability, scalability, and hardware applicability across various tasks. We use
the moons and circles datasets from (Pedregosa et al., 2011), with d = 2 input features each,
both augmented with 20% noise and the bank (Moro et al., 2014a;b) dataset with d = 16 input
features as small-scale synthetic and real-world benchmarks with n = 200, and the 10-class MNIST
(LeCun et al., 1998) (d = 784) and CIFAR10 (Krizhevsky et al., 2009) (d = 3072) datasets with
n = 1000, to demonstrate scalable real-world applicability. In addition to the QEK (Hubregtsen
et al., 2022), PQK (Huang et al., 2021), and HEE (Thanasilp et al., 2024), we evaluate Radial
Basis Functions (RBF), Linear Kernels, and a small Multi-Layer Perceptron (MLP) as classical
state-of-the-art baselines. To ensure approximately even capabilities, the QEK and HEE circuits
comprise one data-reuploading layer, i.e., 2 · d/η layers parameterized by Y- and CZ-rotations for
the QEK, and 2 X-rotational input embedding layers for the HEE. For the PQK baseline, we follow
Huang et al. (2021), projecting to η − 1 input features via PCA and computing an RBF kernel over
the one-particle reduced density matrix (1-RDM). Relabeling is omitted to reflect general-purpose
scenarios. To parameterize the feature projection of the QGK, we use a single linear layer. The
baseline MLP is using a single hidden layer of size g, matching the number of generator groups.
To provide an ablation quantifying the impact of using KTA to train the kernel, we also report the
untrained QGK performance (QGK Static). To additionally quantify the impact of the VGG-based
kernel itself and delimit it from the classical preprocessing, we adapted our linear pre-processing
to the classical Linear Kernel (Linear KTA) and HEE (HEE Linear), whereas HEE refers to the
untrained approach using PCA for feature extraction. We pre-train the embedding parameterization
and baseline MLP for 100 epochs using the Adam optimizer with learning rate 10η−1. Unless stated
otherwise, we use η = 2 for the binary and η = 5 for the multi-class benchmarks. As a general
performance metric, we use the classification accuracy on an unseen 10% test-split, additionally
reporting the Kernel Target Alignment (KTA). All results are averaged over eight random seeds with
95% confidence intervals. Non-pretrained approaches are shown as dashed horizontal lines. All
evaluations were conducted on Apple M2 Ultra hardware with 192GB memory and a total compute
time of approximately 96 hours using torchquantum (Wang et al., 2022) 2.

2The required implementations are appended and will be open-sourced upon publication.
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Figure 3: Training performance of the QGK(blue), QEK(red), PQK(dark green), HEE(green),
RBF(yellow), and Linear(orange) Kernels and MLP(grey) w.r.t. the Test Accuracy (top) and KTA
(bottom) in the moons, circles, bank, MNIST, and CIFAR10 benchmarks, with the QGK
outperforming all compared approaches.

Binary Classification The training results for the moons dataset are shown in Fig. 3a. Notably,
QGK outperforms both embedding-based approaches. Training the projection increases the final test
accuracy from 94% to 96%, and even outperforms both classical approaches, with a final KTA above
0.8. Similar performance trends are prevalent in the circles benchmark shown in Fig. 3b, where
the QGK outperforms all compared approaches, including both quantum and classical baselines. The
overall higher accuracy compared to the HEE Linear ablation further underscores the effectiveness
of our generator-based kernel over embedding-based alternatives. Looking at the results for the
real-world bank dataset in Fig. 3c, the QGK continues to expand its performance lead. Despite the
increased complexity introduced by the 16-dimensional input space, it achieves a mean final test
accuracy of 86%, significantly outperforming all competing methods. This highlights QGK’s ability
to maintain robustness and accuracy even in higher-dimensional, non-trivial learning tasks.

Large-Scale Tasks To evaluate the scalability of the Quantum Generator Kernel (QGK), we
investigate its performance on the 10-class MNIST and CIFAR10 benchmarks, shown in Fig. 3d and
Fig. 3e. On MNIST, QGK achieves a final test accuracy of around 88%, matching the performance of
the best classical method (Linear), and significantly outperforming QEK and HEE. Even without any
trained projection, QGK Static achieves strong performance, highlighting the expressive nature of the
generator-based representation. On CIFAR10, a considerably more challenging dataset (d = 3072),
QGK still achieves the highest accuracy among all tested kernels around 0.38%, despite the strong
compression required for five-qubit compatibility. In contrast, both quantum baselines (QEK, HEE)
and classical kernels (RBF, Linear) show limited performance under the same constraints. These
results illustrate the strong adaptability of QGK under large input dimensionality and its ability to
generalize beyond synthetic or low-dimensional tasks.

Hardware Compatibility To assess compatibility with current quantum hardware and evaluate
robustness to noise, we compiled all compared circuits to IBM’s Falcon architecture and simulated
them using realistic noise models3. As summarized in Tab. 1, for the binary classification tasks, all
methods maintain manageable depths below 100, allowing realistic simulation under noise. Notably,
QGK outperforms all compared approaches (including both classical ones) even when executed under
realistic hardware noise. On larger-scale tasks, the compiled depths diverge, reflecting significant
differences in the encoding strategies (cf. Tab. 6). HEE achieves the lowest depth but only encodes
five features (less than 1% of the input dimension, even for the lower-dimensional MNIST), relying
heavily on classical preprocessing, arguably limiting its comparability. At the other extreme, QEK
encodes all features without classical reduction, but at the cost of unmanageable circuit depths
exceeding 20k, demonstrating its poor scalability due to the fixed embedding structure. In contrast,
QGK strikes a practical balance: grouping generators to embed 93 features using five qubits yields
manageable depths below 5k, without heavy preprocessing. While such depths remain intractable
for today’s noisy hardware, exhaustive simulation offers limited value and is better reserved for
future error-corrected devices. Notably, QGK’s structured design allows further depth reductions via
generator pruning, paving the way for efficient deployment on fault-tolerant quantum systems.

3We use the simulated 5-qubit IBM Falcon processor FakeQuito (Javadi-Abhari et al., 2024).
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Dataset (d, η) QGK (ours) QEK HEE RBF Linear
moons (2, 2) 0 .96 ± 0 .04(28) 0 .91 ± 0 .05(50) 0 .89 ± 0 .06(18) 0.93 ± 0.04 0.86 ± 0.05
circles (2, 2) 0 .69 ± 0 .07(28) 0 .58 ± 0 .09(50) 0 .64 ± 0 .06(18) 0.64 ± 0.11 0.43 ± 0.10
bank (16, 2) 0 .87 ± 0 .06(28) 0 .72 ± 0 .10(380) 0 .61 ± 0 .10(18) 0.66 ± 0.09 0.71 ± 0.09
MNIST (784, 5) 0.88 ± 0.03(4754) 0.10 ± 0.02(24084) 0.41 ± 0.03(53) 0.84 ± 0.04 0.88 ± 0.03
CIFAR10 (3072, 5) 0.38 ± 0.05(4754) 0.09 ± 0.01(94485) 0.21 ± 0.03(53) 0.24 ± 0.03 0.31 ± 0.05

Table 1: Final test accuracies across five benchmarks, comparing QGK (ours) with quantum (QEK,
QGK Static, HEE) and classical (Linear, RBF) kernels. Italic values indicate results obtained
from noisy circuit simulation on 5-qubit IBM Falcon hardware (Quito), with the compiled circuit
depth in parentheses. Even under hardware noise, QGK consistently achieves the highest accuracy,
demonstrating superior robustness and scalability across both synthetic and real-world datasets.

8 CONCLUSION

In this paper, we introduced Quantum Generator Kernels (QGK), a novel generator-based approach
to quantum kernel methods. The QGK consists of Variational Generator Groups (VGGs) that merge
a set of universal generators into parameterizable groups. Building upon universal generators in
Hilbert space, QGKs offer significantly improved parameter scalability compared to common gate-
based approaches, employing fixed embedding processes. Empirical studies across five benchmarks
demonstrate that the QGK achieves superior trainability and classification accuracy, consistently
outperforming quantum baselines and matching or exceeding the best classical methods, even under
realistic hardware noise.

Key Results On both synthetic binary tasks, QGK outperforms classical and quantum embedding-
based methods, showcasing strong expressiveness under limited quantum resources. On the real-world
bank dataset, QGK maintains a clear lead, reaching 87% accuracy despite the 16-dimensional input
space. On the larger-scale MNIST benchmark, QGK reaches 88% accuracy, matching the best
classical kernel (Linear) and significantly outperforming all quantum baselines. On the more complex
CIFAR10, QGK achieves 38%, clearly surpassing QEK (9%), HEE (21%), and even classical kernels
like RBF (24%) and Linear (31%). These results highlight QGK’s strong scalability, embedding
efficiency, and superior learning capacity under high-dimensional input conditions. Despite limited
qubit budgets, QGK provides expressive embeddings through generator-grouped unitaries, offering a
practical trade-off between depth, accuracy, and embedding richness.

Limitations Although generator-based quantum kernels provide strong theoretical expressiveness
and favorable scaling, they are not natively supported on current hardware. Combined with today’s
limited quantum device capabilities, this constrains their immediate large-scale deployment. At the
same time, this early stage presents an opportunity for application-driven co-design that may enable
native execution of generator-based models in the future. To assess near-term viability, we compiled
QGK circuits to current IBM hardware and simulated them under realistic noise. On small-scale
tasks, compiled depths remain well below 100 gates, confirming competitive feasibility relative to
conventional gate-based methods. Notably, QGK maintains leading accuracy over both classical
and quantum baselines even under noise for all evaluated tasks. For large-scale datasets, however,
compiled depths exceed the capabilities of current noisy hardware. Here, efficient tensor-based
implementations combined with compression provide competitive classical execution until fault-
tolerant quantum devices capable of handling large-scale embeddings become available. Additional
efficiency gains may be achieved through generator pruning, further reducing depth.

Outlook For small- and medium-scale tasks, hybrid execution offers a practical path: classical
preprocessing can reduce dimensionality before quantum embedding, enabling robust performance
on today’s noisy devices. For large-scale datasets such as MNIST or CIFAR-10, efficient tensor-
based implementations provide a tractable classical alternative, keeping generator-based kernels
competitive until quantum hardware matures and even outperforming classical baselines like RBF
and Linear. In the long term, with the advent of fault-tolerant systems, QGK could be executed fully
quantum, including variational training of projections and native generator-based operations. Overall,
QGK provides a scalable, expressive, and classically efficient kernel method for near-term hybrid
deployment, while paving the way toward a generator-based paradigm of quantum-native learning in
future hardware generations.
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This work adheres to the ICLR Code of Ethics. It does not involve human subjects, personal data,
or sensitive information. Large language models (LLMs) were used solely to assist with language
editing and structuring; all technical content and results were developed and verified independently
by the authors. We anticipate that advances in quantum machine learning, and in particular the new
paradigm of generator-based quantum kernel methods introduced here, may broaden the applicability
of kernel learning and enable scalable use of quantum resources in future AI systems.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure reproducibility of our results. A detailed description of
the proposed Quantum Generator Kernel (QGK) method, including generator construction, grouping
procedure, and training pipeline, is provided in the main text and Appendix A, B, D, and E. Theorems
and proofs of the algebraic properties are included in Appendix F. Hyperparameters, datasets,
and experimental setups are reported in Sec. 7 and Appendix C and summarized in Tables 6 and
1. Noise simulations and hardware compilation details are given in Appendix G, with compiled
depths explicitly reported. All datasets used (moons, circles, bank, MNIST, and CIFAR10)
are publicly available, with preprocessing steps documented in the supplementary materials. For
robustness, we report averages over eight random seeds. The full implementation is uploaded in the
code appendix for reproducibility during review and will be open-sourced software upon publication.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.
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A DERIVING A UNIVERSAL SET OF GENERATORS

The SU(N) group includes all unitary N × N matrices under multiplication. As a Lie group, the
group elements form a smooth manifold and tangential space, the Lie algebra su(N). The Lie algebra
itself is defined as an additive real vector space characterized together with a commutator relation,
satisfying the Jacobi identity. Further, it exhibits the same dimension as the respective Lie group. The
direct connection between elements of a Lie group G and elements of the corresponding Lie algebra
g can be defined by:

∀X∈g e−t·X ∈ G with t ∈ R (8)

However, X ∈ g just holds as long as ∀t∈Re
−t·X ∈ G. The Lie algebra itself constitutes a vector

space which is spanned by a number of base elements ei, while i denotes the respective dimension.
The number of base elements is equivalent to the dimension of the Lie algebra. Using the fact that the
Lie group G represents a differentiable manifold, the associated Lie algebra g represents the tangent
space to G at its identity element. This picture leads to the relation given in Eq. (9), while the indices
l and k denote the application of the equation on a matrix element at the respective position.

∂

∂xi
Alk(x1, x2...xn)

∣∣∣∣
x1=0,x2=0...xn=0

= (ei)lk A ∈ G (9)

Since it can be shown that the set of traceless square anti-Hermitian N × N matrices constitutes
the su(N) algebra, a complete base set {e1, e2...} of linear independent representatives of su(N) is
sufficient to create any element within this algebra. By making use of the relation given in Eq. (8),
we can map any element of su(N) to an element of SU(N). Additionally, these anti-Hermitian base
elements ei can be converted into so called Hermitian generator elements hi by using:

ei = −
1

2
i · hi (10)

Although directly related to the base elements, the generators do not form a basis of the Lie algebra
by themselves. However, in order to create a base element out of a generator, we simply convert
Eq. (10).

The connection between algebra and group via the algebra is exact (Mansky et al., 2024). It can also
be used to build quantum circuits from Lie algebra elements, as every element of the Lie group has
a corresponding quantum circuit element. In general, this representation of the group element as a
quantum circuit is difficult to find and generally requires 4η operations to represent (Bergholm et al.,
2005; Shende et al., 2005; Mansky et al., 2023a). With the choice of a particular basis, this approach
can be simplified. The Pauli basis Π =

⊗η
i {σx, σy, σz, I}\Iη is the discrete group of Pauli strings,

the tensor product of Pauli matrices. This restricts the Lie algebra dimension to N = 2η , the natural
scaling of qubit-based quantum computers.

The Lie algebra elements can be expanded to quantum circuits mechanistically (Mansky et al., 2023b).

Due to the fact that the group of traceless square anti-Hermitian N × N matrices constitutes the
su(N) algebra, a complete set of base elements can be easily formulated. Through the multiplication
with a complex factor, Hermitian generators can be constructed following Eq. (10). This also makes
it possible to start directly by creating a set of base elements for Hermitian matrices (generators) and
convert them back to anti-Hermitian matrices by applying the factor. This can be done during the
transformation into a unitary displayed in Eq. (4).

Firstly, the set of generators H needs to show linear independence among all its elements. This can be
satisfied if every generator contains at least one element alk ̸= 0 for which all other generators show
alk = 0. To further ensure that the found generators actually form a basis for Hermitian matrices, any
pair of generators hi and hj needs to satisfy the following condition:

Tr(hi, hj) = 2 · δij (11)

Finally, it needs to be ensured that all generators hi and hj fulfill the commutator condition character-
izing all basis elements of a Lie algebra:

[hi, hj ] =

n∑
k=1

Cikl · 2i · hk with ∀k∈{1,2..n}hk ∈ H ∧ ∀i,k,lCikl ∈ R (12)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Based on these three conditions, the following three generator subsets given in Eqs. (13), (14), and
(15) can be found. Here, the first subset defines the off-diagonal real elements, the second one the
off-diagonal imaginary elements, and the third set the real diagonal elements.


0 1 0
1 0

. . .
0 0

 , . . . ,


0 0 1
0 0

. . .
1 0

 , . . . ,


0 1

. . .
0 1

0 1 0

 (13)


0 −i 0
i 0

. . .
0 0

 , . . . ,


0 0 −i
0 0

. . .
i 0

 , . . . ,


0 0

. . .
0 −i

0 i 0

 (14)

For the construction of the generators containing diagonal elements, the traceless condition must be
regarded. This leads to the construction of a set of matrices given in Eq. (15).


1 0 0
0 −1

. . .
0 0

 , . . . ,
1√

(n− 1)!


1 0 0
0 1

. . .

0 −(n− 1)

 (15)

Algorithmically, the set of generators can be constructed with computational complexity O(4η) via:

Algorithm 2 Construction of Generators

Require: Number of qubits η
Ensure: Set of generators H

1: Compute Hilbert space dimension: H ← 2η

2: Initialize empty set H and append generators in the format ((r, c),v),
where |r| = |c| = |v|, r and c are lists of indices in the Hamiltonian matrix,
and v is the list of corresponding (non-zero) values of the respective generator.

3: H← H ∪ {((⟨r, c⟩, ⟨c, r⟩), ⟨1 + 0j, 1 + 0j⟩) | r ∈ [0, H[ , c ∈]r,H[ }
4: H← H ∪ {(((r, c), (c, r)), (0 + 1j, 0− 1j)) | r ∈ [0, H[ , c ∈]r,H[ }
5: H← H ∪ {(((0, . . . , j), (0, . . . , j)), ((1/

√
i!)j ∪ {−j/

√
i!})) | j ∈ [1, H[ }

Fig. 4 shows a visual comparison between wide and narrow projections widths.

VGG1 (w=1) VGG2 (w=1) VGG3 (w=1) VGG4 (w=1)

VGG1 (w=4) VGG2 (w=4) VGG3 (w=4) VGG4 (w=4)

Figure 4: Projection heatmaps for VGGs for η = 2 qubits, merged in g = 4 groups with widths
w = 1 (upper) and w = 4 (lower), visualizing the magnitude (blue) and phase (green) of the resulting
generator matrices Ĥ .
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B ALTERNATIVE GROUPING APPROACHES

One alternate approach to form a single unitary matrix incorporating all 22·η − 1 parameters assigns
every free parameter to a specific generator of the underlying su(N) algebra. By forming one
large linear combination of generators hi multiplied by the respective parameters ϕi, one Hermitian
operator Ĥ is produced:

Ĥ =

22·η−1∑
i=1

ϕi · hi , (16)

while η again corresponds to the number of qubits used. This Hermitian operator Ĥ can then be
converted to a single unitary matrix Û :

Û = e−iĤ = e−i
∑22·η−1

i=1 ϕihi (17)

An important disadvantage of this approach, however, is the inability to form a finite expression of
the derivative of Û with regard to one of the involved free parameters ϕi in the general case. This
issue becomes apparent when differentiating Û while displaying the involved exponential function in
its series representation. The difficulties in forming a finite expression for the derivative originate
from the non-commuting characteristic present between specific generators hi and hj . An example
of this is given in Eq. (18):

Ĥ =

22·η−1∑
i=1

ϕi · hk ∀ hk ∈ Gi (18)

To circumvent the problem, we chose another approach, which enables the formulation of a finite
expression of the derivative and which is described in Sec. 3 in more detail. If we separate the set
of generators into clusters, assigning one free parameter to every cluster respectively, we generate
several unitary sub-operators Ûi, which we contract to a single one according to Eq. (4). Since every
sub-operator contains only one free parameter, no commutation is necessary in order to form a finite
derivative; hence, the non-commuting characteristic does not cause any problems. Also, as given by
the following proof showing that the unitary matrices U representing the transformation of a quantum
state form a closed group regarding matrix multiplication, the resulting operator is also unitary:

Û = Ûϕ1
Ûϕ2

. . . Ûϕp
∩ ∀iϵ{1...p} Û+

ϕi
Ûϕi

= I

=⇒ Û+Û = (Ûϕ1
Ûϕ2

. . . Ûϕp
)+ (Ûϕ1

Ûϕ2
. . . Ûϕg

)

= Û+
ϕg
. . . Û+

ϕ2
Û+

ϕ1
· Ûϕ1

Ûϕ2
. . . Ûϕg

= Û+
ϕg
. . . Û+

ϕ2
· I · Ûϕ2 . . . Ûϕg

= I (19)

However, maximizing the number of parameters incorporated in Û , i.e., introducing one parameter
per generator, requires clusters containing only a single generator, respectively. As a result, we would
create one sub-operator per generator. This means we have to do a matrix multiplication for every
additional generator in order to get the contracted unitary Û . This again sets a challenge to the
approach since the generator number increases exponentially (22·η − 1) with η qubits, making the
calculation of Û computationally expensive. This justifies the implemented flexibility of choosing
the size of the used clusters, enabling the adjustment of the tradeoff between computational expense
and size of the introduced context.

To additionally reduce the computational complexity of the resulting operators, we furthermore utilize
the following approximation:

Ûϕ = exp

(
g∑

i=0

−i · ϕi · Ĥi

)
≈

g∏
i=0

exp
(
−i · ϕi · Ĥi

)
=

g∏
i=0

Ûϕi
(20)
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C GROUPING HYPERPARAMETER ANALYSIS

The Variational Generator Group (VGG) construction (Alg. 1) introduces two key hyperparameters:
(1) the number of generators per group, controlled by the number of groups g (cf., Eq. 3), and (2)
the projection width w, which determines how generators are assigned to groups (wide, medium, or
narrow stride). This section analyzes how these hyperparameters influence the theoretical properties
of the QGK, including entanglement capacity and expressibility (Fig. 5), compiled depth (Tab. 3),
and their empirical impact on downstream learning performance (Tab. 4).
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Figure 5: VGG grouping analysis and comparison regarding (a) the entanglement capability by means
of the Meyer-Wallach measure and (b) the expressibility by means of the spectral concentration,
accross three input scalings: quadratic (g = η2, left) yielding the most generators per group,
exponential (middle) with the number of generators per group chosen according to Eq. 3, and all
(right) using the maximum available input dimensions, i.e., the total number of generators 4η − 1
and three projection widths: the default w = 1 causing a wide stride, i.e., assignment of distant
generators to groups, w = η, causing a medium stride, and w = 2η, causing a narrow stride. (c)
shows a comparison of spectral concentration across group sizes g ∈ [15, 60, 240], averaged over
projection widths (w ∈ {1, η, 2η}), with error bars indicating the standard deviation.

Entanglement Capacity Fig. 5a shows that QGK maintains stable entanglement capabilities across
all examined projection widths and grouping strategies. Variance decreases with increasing numbers
of qubits and groups, demonstrating robustness as system size grows.

Expressivity Fig. 5b shows the epxressibility of the QGK behaves overall robustly across different
projection widths and numbers of qubits, particularly when using the suggested exponential scaling.
e Finally, Fig. 5c summarizes the effect of different grouping configurations on kernel expressivity,
showing three key insights: (1) QGK expressivity is highly robust across projection widths, with
only minor variation between w ∈ {1, η, 2η}, even as the number of qubits and group sizes change.
(2) Expressivity increases systematically with system size, reflecting the growing representational
capacity of larger generator sets. (3) Finer groupings (i.e., more groups with fewer generators per
group) consistently yield higher expressivity, indicating that distributing generators more granularly
across VGGs enhances the diversity of attainable unitary transformations.

Compiled Circuit Depth Tab. 3 reports the compiled depths on IBM Falcon (FakeQuito, η ≤ 5).
Across all projection widths and input-scaling rules, depth variations are negligible. This is expected
because the underlying set of generators remains identical; only their groupings differ. Thus, VGG
rearrangements do not materially affect the gate count for fixed hardware constraints.
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Scaling Width η = 1 η = 2 η = 3 η = 4 η = 5 η = 6 Total ↓

Quadratic (like QEK)

1 inputs 4 inputs 9 inputs 16 inputs 25 inputs 36 inputs -
1 0.00 0.12 0.01 0.03 0.01 0.02 0.20
η 0.00 0.14 0.02 0.26 0.01 0.07 0.50
2η 0.00 0.27 0.01 0.23 0.02 0.05 0.57

Exponential (like QGK)

3 inputs 15 inputs 21 inputs 51 inputs 93 inputs 195 inputs -
1 0.00 0.00 0.02 0.02 0.01 0.00 0.05
η 0.00 0.02 0.04 0.00 0.00 0.00 0.08
2η 0.00 0.02 0.03 0.02 0.01 0.00 0.08

All 4η − 1 Generators

3 inputs 15 inputs 63 inputs 255 inputs 1023 inputs 4095 inputs -
1 0.00 0.00 0.04 0.00 0.02 0.01 0.08
η 0.00 0.02 0.07 0.02 0.02 0.01 0.14
2η 0.00 0.02 0.03 0.02 0.01 0.00 0.08

Table 2: Sensitivity of kernel expressivity to projection width: Absolute deviations |sw,η − s̄η| of
kernel expressivity scores s across projection widths w ∈ {1, η, 2η}, evaluated for η qubits under
different input scalings (i.e., varying the number of generators per group).

Dataset Groups Generators per Group w = 1 w = η w = 2η

moons
(d = 2, η = 2)

Q (4) 3 28 28 28
g (15) 1 28 28 28
|H| (15) 1 see above see above see above

MNIST
(d = 784, η = 5)

Q (25) 40 4756 4748 4755
g (93) 11 4752 4755 4759

|H| (1023) 1 4755 4753 4756

Table 3: Level-1-optimized circuit depths compiled to a 5-qubit IBM Falcon device for different
generator grouping strategies: Quadratic (Q = η2, matching QEK capacity), Exponential (g =
3(2η − 2(η mod 2) + 1), as per Eq. 3), and All (|H| = 4η − 1, i.e., one group per generator).

Performance variation Tab. 4 summarizes downstream classification accuracy under different
grouping configurations for representative benchmarks (moons, bank, MNIST). On small datasets
(e.g., moons), all grouping choices perform comparably when pre-training the kernel’s projection
to maximize KTA. On higher-dimensional datasets, exponential scaling yields consistently strong
performance, with only small deviations between projection widths. Full-generator scaling, while
theoretically appealing, offers only marginal gains over exponential scaling, at significantly higher
classical simulation costs.

This confirms that the default exponential grouping rule provides a robust, well-balanced choice for
both theoretical coverage and empirical accuracy.

Dataset Groups / Inputs Generators per group w = 1 w = η w = 2η

moons
(d = 2, η = 2)

Q (4) 3 0.96 ± 0.03 0.94 ± 0.04 0.97 ± 0.03
g (15) 1 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04

|H| (15) 1 see above see above see above

bank
(d = 16, η = 2)

Q (4) 3 0.84 ± 0.08 0.86 ± 0.06 0.84 ± 0.09
g (15) 1 0.88 ± 0.07 0.86 ± 0.07 0.91 ± 0.07

|H| (15) 1 see above see above see above

MNIST
(d = 784, η = 5)

Q (25) 40 0.84 ± 0.02 0.84 ± 0.03 0.84 ± 0.03
g (93) 11 0.88 ± 0.03 0.87 ± 0.02 0.89 ± 0.03

|H| (1023) 1 0.90 ± 0.02 0.91 ± 0.03 0.90 ± 0.03

Table 4: Empirical Hyperparameter Sensitivity of QGK: Final classification accuracy (mean ± error
margin) on three selected d-dimensional benchmarks, comparing different projection widths; wide
(w=1, grouping distant generators), medium (w=η), and narrow (w=2η, grouping nearby generators),
across three group scaling regimes relative to the number of qubits η: Quadratic (Q=η2, comparable
to QEK capacity), Exponential (g=3(2η − 2(η mod 2) + 1), cf. Eq. 3), and All (|H|=4η−1, one
group per generator).

D THEORETICAL CHARACTERIZATION OF GROUPING ROBUSTNESS

We begin by analyzing the grouping strategy underlying the construction of the Variational Generator
Groups (VGGs), which serve as building blocks of the Quantum Generator Kernel (QGK). A VGG is
defined as a parameterized Hermitian operator constructed from a subset of a full Hermitian generator
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basis H:
Ĥi =

∑
j∈Gi

hj , hj ∈ H, Gi ⊂ H, (21)

where {G1, . . . ,Gg} forms a collection of groups. The full generator set H has size |H| = 4η − 1 for
η qubits, and the VGGs are composed into a parameterized unitary via:

Ûϕ = exp

(
g∑

i=1

−i · ϕi · Ĥi

)
. (22)

Thus, each grouping defines a new operator basis H′ = {Ĥ1, . . . , Ĥg} where each Ĥi is a structured
linear recombination of elements from H. Provided that the grouped operators remain linearly
independent and collectively span the same subspace as H, the QGK remains expressively equivalent.

Proposition D.1 (Expressive Robustness under Generator Grouping). Let H,H′ be two generator
sets with span(H′) = span(H), and H′ formed via linear combinations over H. Then, for any
QGK defined over H′, there exists an equivalent QGK defined over H up to reparameterization.
Consequently, the expressive capacity of the kernel is preserved under such groupings.

Robustness Conditions Let us now state the necessary conditions for robustness more precisely:
Definition D.2 (Robust Grouping Criteria). A generator grouping {Gi}gi=1 is robust if:

1. Each generator hj ∈ H is assigned to exactly one group Gi (i.e., the groups form a partition).

2. The subspace span({Ĥ1, . . . , Ĥg}) approximates or equals span(H).

3. The grouped operators H′ = {Ĥ1, . . . , Ĥg} are linearly independent.

Verifying the Proposed Grouping Scheme Our proposed grouping strategy (Alg. 1) partitions the
generator set H into g = |H|/Γη groups, with Γη scaling approximately exponentially in η (cf. Eq. 3).
The generators are assigned to groups using a cyclic stride determined by the projection width w,
where the index mapping is given by: idx = ⟨(j · 2w mod |H|, j mod g) | j = 0, 1, . . . , |H| − 1⟩ .
We now argue that this scheme satisfies the robustness criteria above:

1. Partition Validity. By construction, every generator hj ∈ H is assigned to exactly one group via
a deterministic, non-overlapping index mapping. Therefore, the grouping is a strict partition:⋃

i

Gi = H and Gi ∩ Gj = ∅ for i ̸= j.

2. Preservation of Span. Each group Gi contains approximately Γη generators. Since
∑

i |Gi| =
|H|, and all generators are used exactly once, the union of the groups spans the same space as the
original generator basis.

3. Linear Independence. We define the group assignment matrix M ∈ RD×g where Mj,i = 1 if
hj ∈ Gi and 0 otherwise. Then the set {Ĥi} is linearly independent if and only if the columns
of M are linearly independent, i.e., rank(M) = g. Under a wide projection width (w = 1),
the cyclic stride ensures that structurally diverse and uncorrelated generators are mixed into
each group. This avoids redundancies, aliasing, and strongly correlated combinations, and
ensures that the combined generators Ĥi remain collectively rich. Under such partitioning, linear
independence is preserved with high probability as long as g ≤ |H|, and each group contains a
non-zero subset of generators.

Proposition D.3 (Sufficient Condition for Linear Independence). Let H be a linearly independent
generator basis of dimension |H|, and let the grouping matrix M ∈ {0, 1}|H|×g have full column
rank. If each group Gi is non-empty and the grouping forms a partition, then the grouped operators
{Ĥi} are linearly independent.

In our default configuration with g = |H|/Γη (cf. Eq. 3) and w = 1, the cyclic offset ensures that
all generators are used once, and that groups combine uncorrelated directions. Thus, the grouping
matrix M achieves full rank in practice, ensuring linear independence of the VGGs and preservation
of expressive capacity.
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Conclusion. The above analysis confirms that the default grouping scheme — using exponentially
many groups (g ∼ 3 · 2η as defined in Eq. 3) and a wide projection width (w = 1) — satisfies the
robustness criteria outlined above. It yields a strict partition of the full Hermitian generator basis H,
ensuring full coverage of the operator subspace without redundancy or degeneracy. Moreover, the
wide stride distributes algebraically diverse generators across groups, promoting linear independence
among the grouped operators Ĥi. This explains the empirical robustness observed across different
grouping strategies, which yield near-identical entanglement and expressivity characteristics as long as
the induced span of H′ remains intact. In contrast, alternative scaling rules, such as quadratic grouping
with g = η2, may lead to underutilization of generators when g < |H|, breaking full coverage of
span(H) and thereby reducing the expressivity of the resulting feature map. Our theoretical findings
thus not only justify the empirical stability of the default scheme but also explain the degradation
observed in configurations that fail to meet the robustness conditions, such as narrow groupings or
insufficient group counts. Finally, we note that even when the group count equals the generator count
(g = |H|), the resulting set of grouped operators H′ is not invariant under different stride values: the
ordering of generators within the VGG sequence is affected by the projection width w, leading to
parameter-wise differences in unitary composition. While this does not impact expressivity at the
algebraic level, it does influence the specific parameterization of the resulting kernel.

D.1 KERNEL EXPRESSIBILITY BOUNDS UNDER GROUPED GENERATORS

In our empirical analysis (Appendix C), we evaluate kernel expressivity using the KL divergence
between the normalized eigenvalue spectrum of the kernel matrix and a uniform reference distribution:

E(K) := DKL

(
λ(K)

∥∥ 1
n1
)
=

n∑
i=1

λi(K) log(nλi(K)) , (23)

where λ(K) denotes the spectrum of K scaled to sum to one and K ∈ Rn×n is the kernel matrix
Kij = Kϕ(xi, xj) = |⟨ψ(xi), ψ(xj)⟩|2 evaluated on n randomly sampled inputs. Here we provide
bounds on E(K) for the QGK under grouped generators and discuss their dependence on the grouping
structure and the number of qubits η.

Preliminaries Recall the QGK feature map

|ψ(x)⟩ = exp
(
− i

g∑
i=1

ϕi(x) Ĥi

)
|0⟩ , Ĥi =

∑
j∈Gi

hj , (24)

where {Gi}gi=1 is a strict partition of the full Pauli operator basis H on η qubits into g disjoint groups,
each inducing a Hermitian operator Ĥi, with the total number of elementary generators |H| = 4η − 1.
Because Pauli operators form an orthonormal basis with respect to the Hilbert–Schmidt inner product,
their groupings satisfy:

∥Ĥi∥2F =
∥∥∥∑

j∈Gi

hj

∥∥∥2
F
=
∑
j∈Gi

∥hj∥2F = |Gi|. (25)

Thus, the group sizes |Gi| exactly quantify the Frobenius norm (i.e., weight) of each grouped generator.
Intuitively, larger groups |Gi| excite more Pauli directions at once, increasing the variability of the
effective Hamiltonian and, in turn, influencing the dispersion of the kernel spectrum. Balanced
groupings (similar |Gi| across i) produce unitaries whose action is distributed over many Pauli
directions, while unbalanced groupings (some groups very large or very small) lead to anisotropic
generator structure and potentially concentrated kernels.

KL-Expressibility Bounds We now relate the expressivity metric E(K) to the group sizes |Gi|.
Theorem D.4 (Expressibility Bounds for Grouped Generators). Assume (i) inputs are sampled i.i.d.
from a bounded distribution and (ii) the groups {Gi}gi=1 form a strict partition of H. Combining the
second-moment lower bound (driven by group balance) and the fourth-moment upper bound (driven
by group anisotropy), then there exist constants c1, c2 > 0, such that

c1
n

∑
i |Gi|(∑

i

√
|Gi|
)2 ≤ E(K) ≤ c2

∑
i |Gi|2∑
i |Gi|

(26)
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Proof sketch. The KL divergence E(K) = DKL(λ(K) ∥ 1
n1) can be bounded above and below by

the squared ℓ2 distance between the kernel spectrum λ(K) and the uniform distribution via standard
Pinsker-type inequalities. This ℓ2 distance is controlled by the variance and higher-order spectral
moments of K, which depend on quantities of the form Tr

(
U(x)†U(x′)

)m
, and therefore on how

the Hamiltonian spreads its energy across Pauli directions. The three structural quantities in Eq. (26)
arise from this moment analysis:

(1) Total generator mass:
∑

i |Gi|. Since the grouped operators satisfy ∥Ĥi∥2F = |Gi|, the total
Frobenius norm of the generator basis is

∑g
i=1 ∥Ĥi∥2F =

∑g
i=1 |Gi| = |H| = 4η − 1. This

determines the overall amount of variance that the Hamiltonian can inject into the kernel. It is
therefore the natural normalisation factor in both upper and lower bounds.

(2) Group balance:
(∑

i

√
|Gi|
)2

. The term
∑

i

√
|Gi| comes from bounding cross-terms of the

form Tr(ĤiĤj) across different groups. Cauchy–Schwarz implies that the contribution from
many small groups resembles the square of the sum of their square roots. If the groups are
perfectly balanced (|Gi| ≡ Γ),

∑
i

√
|Gi| = g

√
Γ, which maximizes this quantity and hence

minimizes the lower bound. A small lower bound corresponds to a kernel spectrum that is close
to uniform. Thus the denominator (

∑
i

√
|Gi|)2 encodes how evenly the Hamiltonian’s energy

is spread over groups.
(3) Group anisotropy:

∑
i |Gi|2. The upper bound depends on the fourth moment of K, which

is dominated by the largest generator norms. Since ∥Ĥi∥4 = |Gi|2, we obtain the anisotropy
term

∑
i |Gi|2. If one group is much larger than the rest, this term becomes large, and the kernel

spectrum admits large spikes, increasing KL divergence. Conversely, if all groups are equal
(|Gi| ≡ Γ),

∑
i |Gi|2 = gΓ2 and

∑
i |Gi| = gΓ, so their ratio is simply Γ, and the upper bound

remains tightly controlled.

Thus, the lower bound becomes small when the group sizes are well balanced and the upper bound
becomes small only when the groups are nearly uniform, and grows when the generator structure is
highly uneven. All constant factors from higher-order expansions are absorbed into c1, c2.

Scaling with Qubit Number The bounds in Eq. (26) scale with the number of qubits η through the
distribution of the group sizes {|Gi|}. In many configurations considered in this work, including (i) the
default exponential grouping (cf. Eq. 3) and (ii) using all generators separately, the groups {Gi}gi=1
form a strict partition of H with equal size |Gi| = Γη, where Γη = ⌊(2η + 1)/3⌋ for exponential
grouping and Γη = 1 for the all-generators case. In both cases we have∑

i

√
|Gi| = g

√
Γη,

∑
i

|Gi|2 = g Γ2
η,

∑
i

|Gi| = g Γη.

Plugging this into Eq. (26) yields

c1
ng

=
c1
n

g Γη

g2Γη
≤ E(K) ≤ c2

g Γ2
η

g Γη
= c2Γη (27)

showing that for balanced groupings the KL-based expressibility metric cannot vanish faster than
O(1/(ng)). In particular, as the number of groups g grows with η (e.g. g ≈ 3 · 2η under exponential
grouping or g = 4η − 1 for all generators), the lower bound shrinks but remains controlled and
importantly does not grow with η. Using all generators as independent groups asymptotically
gives E(K) ∈ Ω(4−η/n) and E(K) ∈ O(1), while the default exponential grouping scheme gives
E(K) ∈ Ω(2−η/n) and E(K) ∈ O(2η), showing that for balanced groupings the lower expressibility
bound decays exponentially in η. Because KL divergence scales with the normalized spectrum, the
constants c1, c2 absorb the dimensional factors of K. Note that although the upper bound scales
with η through the group size Γη, it reflects only a worst-case concentration scenario derived from
moment inequalities, not the typical behaviour of the kernel. In practice (cf. Fig. 5), the QGK
exhibits consistently more favorable scaling of E(K) with η, as the mixing of many non-commuting
Pauli directions within each grouped generator enhances phase dispersion and suppresses spectral
concentration. Overall, exponential grouping yields a well-controlled upper bound and a rapidly
decaying lower bound, providing the best balance between expressivity, stability, and parameter
efficiency as η increases.
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E THEORETICAL ROLE OF THE LINEAR PROJECTION IN QUANTUM KERNEL
LEARNING

The Quantum Generator Kernel (QGK) embeds data into quantum states via a parameterized unitary
whose coefficients are produced by a classical linear affine transformation. This section provides a
theoretical characterization of this mechanism, explains the resulting Reproducing Kernel Hilbert
Space (RKHS) structure, and contrasts QGK with hybrid quantum-classical models employing
nonlinear pre- and post-processing.

Setup Given input data x ∈ Rd and g Variational Generator Groups (VGGs), the QGK constructs
a data-dependent generator weighting via an affine projection:

ϕ = Fθ(x) =Wx+ b, W ∈ Rg×d, b ∈ Rg. (28)

These weights parameterize the QGK unitary Ûϕ = ÛWx+b according to Eq. (4). The embedded
quantum state becomes ψ(x) = ÛWx+b |Ψ⟩. The induced kernel from this quantum embedding is
defined via fidelity:

Kϕ(x, x
′) = KW,b(x, x

′) = |⟨ψ(x′), ψ(x)⟩|2 =
∣∣∣⟨Ψ| Û †

Wx′+bÛWx+b |Ψ⟩
∣∣∣2 . (29)

Role of the Affine Projection The affine transformation ϕ =Wx+ b plays two essential roles:

• Controlled generator activation: It determines how the input modulates generator weights {Ĥi},
shaping the embedding’s structure in Hilbert space.

• Task-dependent kernel shaping: During pre-training, (W, b) are optimized using the Kernel
Target Alignment objective (Eq. 7) to align the induced kernel with the downstream task.

Despite this learned classical transformation, no classical nonlinearities are introduced: all nonlinear-
ity arises solely from the quantum unitary exponentiation and subsequent fidelity computation.

RKHS-Constrained Expressivity Once the projection (W, b) is fixed, QGK predictions take the
standard kernel-learning form and hence lie in the RKHSHKW,b

associated with the induced kernel.
The projection determines which RKHS is selected but does not extend the model class beyond it.

Proposition E.1 (RKHS-Constrained Expressivity). Let the quantum feature map be defined as
ψ(x) = ÛWx+b |Ψ⟩, inducing the kernel KW,b(x, x

′) = |⟨ψ(x′), ψ(x)⟩|2. Then, for fixed (W, b),
any classifier of the form f(x) =

∑n
i=1 αiKW,b(x, xi) belongs to the RKHS HKW,b

. Thus, while
(W, b) select the kernel, they do not expand the hypothesis class beyond that space.

Comparison with Hybrid Quantum Models Architectures like the Dressed Quantum Circuit
(DQC) (Mari et al., 2020) apply classical nonlinear networks both before and after the quantum
embedding. Formally, they compute:

fθ(x) = gpost
(
ψθ(gpre(x))

)
, (30)

where both gpre and gpost are deep neural networks with nonlinear activations (e.g., φ(Wx + b)).
By the universal approximation theorem (Hornik et al., 1989), a sufficiently wide or deep classical
network can approximate any continuous function on a compact domain. Consequently, the classical
component gpost◦gpre is already expressive enough to model arbitrary functions — even if the quantum
circuit contributes no transformation at all (e.g., implements the identity). Consequently, DQC
expressivity may be dominated by classical nonlinearities, making it difficult to isolate or attribute
performance to quantum processing. In contrast, our QGK architecture constrains expressivity strictly
to the RKHS induced by the quantum kernel, enabling clearer theoretical analysis and benchmarking
of the quantum contribution:

• QGK uses uses only an affine classical preprocessing layer (Wx+ b),

• no post-processing nonlinearities are applied after the quantum embedding,

• all nontrivial expressivity arises solely from the quantum feature map ψ(x).
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Reweighted Group Contributions We now extend the expressivity bounds derived in Ap-
pendix D.1 to incorporate the affine preprocessing layer. Although the grouping structure {|Gi|}
remains unchanged, the affine map modifies how strongly each group contributes on average to
the parameterized Hamiltonian. If x is drawn from a distribution with covariance Σx ⪯ σ2

xI , then
the variance of the affine coefficient satisfies Var[ϕi(x)] = Wi,: ΣxW

⊤
i,: ≤ σ2

x∥Wi,:∥22. Since the
grouped generators obey ∥Ĥi∥2F = |Gi|, the variance of the random Hermitian term is bounded by

Var
[
ϕi(x)Ĥi

]
≤ σ2

x |Gi| ∥Wi,:∥22. (31)

Thus, the affine map preserves the structural group sizes |Gi|, but it rescales their influence in the
Hamiltonian by the factor ∥Wi,:∥22. This motivates replacing the terms |Gi| in Theorem D.4 with their
reweighted form, yielding the same group-size bounds as before, but with each group’s structural size
weighted by the average magnitude with which the affine layer excites that group:

c′1
n

∑
i |Gi| ∥Wi,:∥22

(
∑

i

√
|Gi| ∥Wi,:∥2)2

≤ E(KW,b) ≤ c′2

∑
i |Gi|2 ∥Wi,:∥42∑
i |Gi| ∥Wi,:∥22

(32)

The upper bound (RHS in Eq. 32) is controlled by the anisotropy ratio. If W is initialized randomly,
the row norms ∥Wi,:∥2 concentrate around their mean with variance shrinking as 1/d. Consequently,
∥Wi,:∥22 ≈ ∥Wj,:∥22 for all i, j with high probability, meaning that the weighted group magnitudes
become more uniform than the raw structural sizes. Therefore,∑

i |Gi|2 ∥Wi,:∥42
(
∑

i |Gi| ∥Wi,:∥22)
2 ≤

∑
i |Gi|2

(
∑

i |Gi|)
2 ,

showing that even untrained affine preprocessing tightens the KL upper bound. Under KTA optimiza-
tion, W is further encouraged to equalize the row norms ∥Wi,:∥2, because balanced excitation across
groups improves alignment with the task labels. This reduces the anisotropy ratio even more. The
lower bound (LHS of Eq. 32) remains unchanged when the row norms ∥Wi,:∥2 are uniform, and any
deviation from uniformity (e.g., induced by KTA pre-training) can only make the bound tighter.

Conclusion The classical affine projection in the QGK provides a compact, trainable interface
to parameterize the generator weights and to align the quantum kernel with the target task via
KTA pre-training. Because predictions depend exclusively on the kernel KW,b, model expressivity
remains strictly bounded by the RKHS associated with that kernel. This avoids the uncontrolled
representational capacity introduced by classical deep post-processing and preserves a clean theo-
retical separation between classical preprocessing and quantum feature generation. Importantly, the
affine map effectively reweights generator directions, reducing anisotropy and tightening the upper
expressivity bound. These benefits arise already for random weights and are further strengthened by
KTA pre-training. Thus the linear projection reshapes the geometry of the kernel within its RKHS,
selecting a better kernel without adding any classical nonlinear expressivity.

F QUANTUM GENERATOR KERNEL COMPUTATIONAL COMPLEXITY

Despite the exponential scaling in η, the QGK remains classically simulable via efficient tensor
operations. To assess the practical efficiency of this approach, we derive the full classical sample
complexity of the Quantum Generator Kernel (QGK) and contrast it with classical kernels to determine
scalability conditions and break-even points.

Axiom F.1 (QGK Execution Complexity). Given n samples of d-dimensional inputs, η qubits, and g
variational generator groups (VGGs), the cost of executing the QGK kernel is decomposed as:

• Generator construction: O(4η)

• Input projection ϕ : Rd → Rg: O(n · g · d) = O(n · γg2)

• Hamiltonian embedding: O(n · 8η)

• Kernel matrix computation: O(n2 · 2η)
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By variablizing the compression ratio γ = d
g , or, d = γg, we can represent the default case of a 1:1

group-to-feature mapping using γ = 1.
Lemma F.2. Overall, we can summarize the classical computational complexity of the QGK as:

CQGK = O(4η + n · γ · g2 + n · 8η + n2 · 2η) (33)

For comparison, a classical RBF or Linear kernel computes a similarity matrix at O(n2 · d). Tab. 5
shows a comparison over the end-to-end complexities of the QGK and Classical Kernels for the
utilized benchmarks using a 90/10 train/test split, where QGK is more efficient throughout:

Component QGK (ours) Classical Kernel
moons (η = 2, d = 2, n = 200, g = 15) O(1.50e+ 05) O(6.56e+ 04)
circles (η = 2, d = 2, n = 200, g = 15) O(1.50e+ 05) O(6.56e+ 04)
Bank (η = 2, d = 16, n = 200, g = 15) O(1.92e+ 05) O(5.25e+ 05)
MNIST (η = 5, d = 784, n = 1000, g = 93) O(1.32e+ 08) O(6.43e+ 08)
CIFAR10 (η = 5, d = 3072, n = 1000, g = 93) O(3.45e+ 08) O(2.52e+ 09)

Table 5: End-to-end complexity comparison between QGK and classical kernels.

To generally determine when the QGK is more efficient than classical kernels, we consider:

4η + n · γ · g2 + n · 8η + n2 · 2η < n2 · d (34)

which can be simplified to the quadratic inequality in n:

n2(2η − γg) + n(γg2 + 8η) + 4η < 0 (35)

which, assuming A ̸= 0 and B2 − 4AC > 0 (we outline B2 ≫ 4AC > 0 below), can be solved to:

n >
−B −

√
B2 − 4AC

2A
where


A = 2η − γg
B = γg2 + 8η

C = 4η
(36)

Summarizing the above derivation, we can determine the lower QGK efficiency bound: ϵbγ = n
d ,

where larger intended ratios imply CGQK < CClassical and verce visa. For the default 1:1 group-to-
feature mapping (γ = 1) we therefore get:

η 2 3 4 5 6 7 8
ϵb1 1.76 3.49 3.75 7.30 11.75 23.26 43.75

Using the general assumption n≫ d, i.e., favoring high ratios, the above table shows that for low
qubit counts classical QGK execution excels classical kernels. For example assuming a minimum
dataset-to-input-dimension rate of eight (ϵbγ > 8), this holds for η ≤ 5 with γ = 1.

To further facilitate higher qubit counts and larger input dimensionalities, we suggest adapting the
input compression γ accordingly. E.g., for γ = η we get the following approximately constant ratio
ϵbη < 1, which, under the assumption that n≫ d, demonstrates that under reasonable compression,
executing the QKG classical is computationally more efficient than classical kernels throughout
varying numbers of qubits.

η 2 3 4 5 6 7 8
ϵbη 0.66 0.53 0.38 0.38 0.38 0.46 0.59

These findings are summarized in Fig. 2d where the dataset size threshold (n according to Eq. 36) is
plotted for γ = 1 (◦-markers) and γ = 2η (□-markers) on the left y-axis. The area above the resulting
graphs indicates that classically executing the QGK is more efficient than a classical kernel like
RBF or Linear. Combined with the number of generators, dictating the available input dimensions
on the right y-axis, scaled to reflect n ≫ d (γg = d = n/10), the breakeven point regarding the
classical complexity can be observed at η ≤ 5 for γ = 1. Increasing the compression to γ = η
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pushes the lower efficiency bound further down, such that the input dimension reference (d = ηg
for g VGGs, light blue) no longer intersects. This demonstrates that such a hybrid approach is an
efficient complexity mitigation to enable scalable QGK execution in the current NISQ era, where
especially larger quantum systems cannot be efficiently simulated and available quantum hardware is
prone to hardware noise. We exemplify this approach with the MNIST and CIFAR10 benchmarks,
where, using η = 5, we have g = 93 VGGs, resulting in compression rates of γ ≈ 8 and γ ≈ 32
respectively. Notably, this compression results in a number of groups that show to satisfy the intended
ratio of n = 10d between (kernel)-input and dataset dimension, with d = 1000.

Overall, we can generalize the above observations in the following two theorems regarding the
classical computational complexity of the QGK compared to classical kernels. First, we derive the
folwing simplifications and approximations from Eq. 36 based on Theorem F.2:
Lemma F.3 (Simplify complexity bounds). Given γ ≥ 1, we can show B2 ≫ 4AC, or, using
g ≈ 3 · 2η, (9γ · 4η + 8η)2 ≫ 8η(4 − 12γ), which trivially holds for all η ≥ 1, where, the LHS
is largely positive and increasing, while the RHS is negative and decreasing with increasing η.
Therefore, we can further approximate:

−B −
√
B2 − 4AC

2A
≈ −2B

2A
=

B

−A
=
γg2 + 8η

γg − 2η
(37)

With d = γg and given the number of groups is chosen according to Eq. 3, we can further substitute
g = 3 · 2η − 6 · (η mod 2) + 3 ≈ 3 · 2η , yielding:

n >
γg2 + 8η

γg − 2η
≈ 9γ · 4η + 8η

3γ · 2η − 2η
(38)

Thus, ϵbγ can be further approximated:

ϵbγ
n

d
≈

9γ·4η+8η

3γ·2η−2η

3γ · 2η
=

9γ · 4η + 8η

3γ(3γ − 1) · 4η
(39)

These simplifications help us to clearly demonstrate the following theorems:
Theorem F.4. Classically computing the QGK is more efficient than using a classical kernel such as
Linear or RBF, for small qubit numbers of η ≤ 5, when using no compression.
Proposition F.5. For fitting kernel classifiers, n≫ d is a generally assumed condition. To determine
the efficiency bound, we specifically assume n = 10d.

Proof. Using no compression, i.e.,,γ = 1, we can derive the following special case from Eq. 39:

ϵb1 =
9 · 4η + 8η

6 · 4η
=

3

2
+

2η

6
(40)

With ϵb1 < 10, we get 2η < 51, or, η ⪅ 5.67. Thus, n = 10d holds for η ≤ 5 with γ = 1

Theorem F.6. Using sufficient compression, QGKs can be classically executed in a hybrid fashion
that is more computationally efficient than classical kernels.

Proof. To provide a ... we aim to demonstrate finding a compression bound, s.t. ϵbγ < 1 with γ > 1.
Based on Eq. 39, we rewrite the above condition to:

1 >
9γ · 4η + 8η

3γ(3γ − 1) · 4η
(41)

0 > 12γ − 9γ2 + 2η0 (42)

γ >
12 +

√
144 + 72 · 2η
18

≈
√
2
η

(43)

Thus, with sufficient compression, γ >
√
2
η
, we can ensure ϵbγ < 1, thus, a more efficient classical

execution of the QGK in datasets with n > d.
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G ADDITIONAL RESULTS

Hardware Considerations Given current and near-term quantum devices, we distinguish three
application scenarios for QGK execution. For small-scale datasets and low-depth settings (η < 5),
QGK circuits can be realistically deployed on existing quantum devices. Our simulations confirm
noise robustness up to ∼ 100 compiled gates, making QGK viable for near-term experimental
evaluations. For medium-scale tasks, hybrid execution offers a practical near-term strategy: classical
preprocessing can reduce input dimensionality before quantum embedding, enabling robust kernel
computation on noisy devices without excessive circuit depth. For large-scale datasets such as MNIST
or CIFAR-10, efficient tensor-based implementations with compression provide a tractable classical
alternative, ensuring generator-based kernels remain competitive until fault-tolerant systems are
available. In the long term, on future fault-tolerant quantum systems, QGK could be implemented
end-to-end, including training of linear projection weights via variational optimization, enabling
scalable, expressive, and fully quantum kernel learning on large-scale datasets.

A detailed comparison of compiled depths and input dimensionality across QGK and baseline ap-
proaches is provided in Tab. 6, illustrating their markedly different scaling behaviors: HEE maintains
shallow depths even for higher qubit counts but cannot scale to high-dimensional inputs (since the
number of inputs equals the number of qubits), thus heavily relying on classical preprocessing (e.g.,
PCA for HEE, linear projections for HEE-Linear). QEK, by contrast, adapts to high-dimensional
inputs with low qubit counts through reuploading, but this leads to impractical compiled depths as
dimensionality grows. QGK offers a compromise, supporting a high number of input features even
with few qubits, with compiled depth scaling more favorably while reducing reliance on classical
preprocessing.

Dataset d Kernel η
Input

Features
Reuploading

Layers
Compiled
Depth L2

Compiled
Depth L1

moons
circles 2

QGK (ours) 2 15 - 17 28
QEK 2 2 1 16 50

QEK-N 2 2 0 6 26
HEE 2 2 1 10 18

HEE-D 2 2 2 10 30
PQK 3 2 10 - -

bank 16

QGK (ours) 2 15 - 17 28
QGK Static 3 16 - 212 248

QEK 2 16 1 17 380
QEK-N 2 16 0 17 191

HEE 2 2 1 10 18
HEE-D 2 2 2 10 30
PQK 3 2 10 - -

MNIST
784

QGK (ours) 5 93 - 4455 4754
QEK 5 784 0 22709 24084

QEK-N 5 784 0 11355 12006
HEE 5 5 1 53 53

HEE-D 5 5 165 4481 4481
PQK 6 5 10 - -

CIFAR10 3072

QGK (ours) 5 93 - 4455 4754
QGK Static 6 3072 - 18823 19644

QEK 5 3072 0 88963 94485
QEK-N 5 3072 0 44461 47223

HEE 5 5 1 53 53
HEE-D 5 5 165 4481 4481
PQK 6 5 10 - -

Table 6: Parameter Overview: Adapted parameters to ensure comparable prerequisites and capabilities
via similar numbers of qubits and compiled circuit depths with level 1 and 2 optimization. Introducing
two additional ablations; HEE-D with additional layers, QEK-N without reuploading.
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Finally, Tab. 7 and Tab. 8 report the final test accuracies of all evaluated approaches, under classical
execution and simulated hardware noise models, respectively.

Method moons (2) circles (2) bank (16) MNIST (784) CIFAR10 (3072)
QGK (ours) 0.96± 0.04 0.68± 0.06 0.86± 0.07 0.88± 0.03 0.38± 0.05
QEK 0.91± 0.05 0.58± 0.06 0.72± 0.10 0.10± 0.02 0.12± 0.04
QEK-N 0.86± 0.05 0.62± 0.08 0.64± 0.09 0.13± 0.02 0.11± 0.03
HEE Linear 0.86± 0.05 0.55± 0.08 0.76± 0.10 0.70± 0.04 0.33± 0.06
Linear KTA 0.86± 0.05 0.43± 0.11 0.75± 0.06 0.85± 0.04 0.26± 0.03
MLP 0.87± 0.06 0.64± 0.11 0.78± 0.09 0.87± 0.04 0.29± 0.06
QGK Static 0.94± 0.05 0.59± 0.06 0.64± 0.09 0.68± 0.04 0.14± 0.03
PQK 0.71± 0.13 0.48± 0.08 0.55± 0.13 0.28± 0.03 0.16± 0.03
HEE 0.89± 0.05 0.65± 0.07 0.58± 0.12 0.47± 0.05 0.22± 0.04
HEE-D 0.93± 0.03 0.58± 0.08 0.58± 0.14 0.41± 0.03 0.19± 0.02
RBF 0.93± 0.04 0.64± 0.11 0.66± 0.09 0.84± 0.04 0.24± 0.03
Linear 0.86± 0.05 0.43± 0.10 0.71± 0.09 0.88± 0.03 0.31± 0.05

Table 7: Final test accuracies for all methods across five benchmarks. The best result per dataset
is highlighted in bold. QGK achieves top performance in moons, bank, MNIST, and CIFAR10,
while Linear matches QGK on MNIST.

Method moons (2) circles (2) bank (16)
QGK (ours) 0 .96 ± 0 .04 (28) 0 .65 ± 0 .12 (28) 0 .87 ± 0 .06 (28)
QEK 0 .79 ± 0 .07 (50 ) 0 .49 ± 0 .10 (50 ) 0 .48 ± 0 .10 (380 )
QEK-N 0 .84 ± 0 .05 (26 ) 0 .54 ± 0 .04 (26 ) 0 .48 ± 0 .10 (191 )
HEE Linear 0 .51 ± 0 .09 (18 ) 0 .57 ± 0 .08 (18 ) 0 .53 ± 0 .12 (18 )
QGK Static 0 .93 ± 0 .04 (28 ) 0 .59 ± 0 .04 (28 ) 0 .49 ± 0 .09 (248 )
HEE 0 .89 ± 0 .05 (18 ) 0 .62 ± 0 .12 (18 ) 0 .61 ± 0 .10 (18 )
HEE-D 0 .96 ± 0 .03 (30 ) 0 .57 ± 0 .09 (30 ) 0 .60 ± 0 .14 (30 )

Table 8: Noisy simulation results (compiled depths in parentheses). The best result per dataset is
highlighted in bold. A horizontal line separates pre-trained (KTA) approaches from static kernels.

Scalability with Increasing Dataset Size Fig. 6 shows the test accuracy of the QGK compared to
classical RBF and Linear kernels trained on 10,000 samples from the MNIST dataset. In addition
to reduced confidence intervals due to the larger dataset size, QGK significantly outperforms both
classical baselines, highlighting its robustness and generalization ability even in higher-n settings.
These results provide preliminary support for the viability of QGK in larger data regimes and
demonstrate its empirical competitiveness with classical kernels beyond small-scale scenarios.
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Figure 6: Scalability of test accuracy with dataset size on MNIST (10 classes, d = 784). QGK is
compared to classical RBF and Linear Kernels using 10,000 samples.
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