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ABSTRACT

How can we best encode structured data into sequential form for use in large
language models (LLMs)? In this work, we introduce a parameter-efficient method
to explicitly represent structured data for LLMs. Our method, GraphToken, learns
an encoding function to extend prompts with explicit structured information. The
encoding function in GraphToken uses graph neural networks to effectively transfer
the relational inductive biases in the structured data to an LLM. Unlike other work
which focuses on limited domains (e.g., knowledge graph representation), our work
is the first effort focused on the general encoding of structured data to be used for
various reasoning tasks. We show that explicitly representing the graph structure
allows significant improvements to graph reasoning tasks. Specifically, we see
across the board improvements - up to 73% points - on a wide variety of node,
edge and, graph-level tasks on benchmarks for graph reasoning (GraphQA) and
molecular property prediction tasks (ChemLLMBench).

1 INTRODUCTION

There has been an explosion of recent excitement around using LLMs (Vaswani et al., 2017; Devlin
et al., 2018; Raffel et al., 2020; Brown et al., 2020; Touvron et al., 2023; Team et al., 2023) to
represent, process, and analyze textual data. These models typically take sequential text as their input
but recent work has extended inputs to spatial and temporal modalities (e.g., to images as in Chen
et al. (2022b) and to videos as in Arnab et al. (2021)).

Despite their success, current realizations of LLMs have noticeable problems – including a tendency
to generate outputs which are untrue or unsupported by their prompt, commonly referred to as
hallucinations (Wang et al., 2023a). Another intimately related issue is the problem of freshness,
where the knowledge required to answer a query exists only after an LLM’s training date (Vu et al.,
2023). One mitigation for these problems is through the enrichment of the prompt with additional
factual and fresh data. As Kadavath et al. (2022) showed, when LLMs are supplied with new
and supporting information, they are capable of adapting their parametric beliefs to effectively
incorporate new evidence. Despite the promise of these approaches to improve generation, most
work in the area so far has focused primarily on the discovery and inclusion of relevant textual
information (Khandelwal et al., 2019; Guu et al., 2020). However beyond text, there is an abundance
of more structured data in many applications for LLMs. For example, structured data sources such as
social and biological networks, chemical compounds, relational databases, rich tables and knowledge
graphs are ubiquitous in industry. This begs the question - “How can we best include structured data
in a LLM’s context?”

Despite its importance, understanding how to best represent graph data optimally for LLM integration
is an unsolved problem. Currently, the predominant mode of encoding structured data for LLMs is to
use various types of hand-crafted, text-based serialization (Guo et al., 2023a; Wang et al., 2023b;
Stechly et al., 2023) This approach can impose significant decoding complexity for the language
model: from any text description, the model must first correctly decode and understand the structure
before it can utilize the information. Recently, Fatemi et al. (2024) et al., demonstrated that pure text
representations of structured data are insufficient for graph reasoning with LLMs. They show that
LLMs are not able to utilize structure efficiently when posed with common reasoning tasks that are
easily answered by classical graph algorithms. This highlights the need to explore better and more
expressive ways of representing structured data to a LLM.
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In this work, we propose GraphToken (Figure 1), a parameter-efficient method for encoding structured
data for LLMs to address this deficiency. Inspired by recent advancements in parameter-efficient fine-
tuning (Lester et al., 2021; Xu et al., 2023), GraphToken learns an encoding function that generates
fine-tuned soft-token prompts. The soft-token prompt extends a textual prompt with explicit structural
information, allowing us to train a much smaller number of GraphToken parameters compared to the
total LLM parameter allocation. To enable the model to account for the relational inductive biases
in the input, we employ various forms of graph neural networks within GraphToken. Unlike other
options available for increasing graph reasoning performance (e.g. changing the model’s pre-training
mixture or fine-tuning the model’s parameters Hu et al. (2021)), GraphToken’s GNN adapter works
with a frozen LLM, operating in the token-space of the model.

Our work is the first to develop parameter-efficient encoders specifically for general reasoning tasks
on structured data. Our experimental results demonstrate that explicitly representing structure leads
to significant improvement on the comprehensive GraphQA benchmark (Fatemi et al., 2024). For
example, we show that adding a small number of “graph-aware” parameters can allow a large model
like PaLM-2 S to outperform its much larger sibling PaLM-2 L by up to 41% accuracy.

Specifically, our contributions are as follows:

• GraphToken, a novel parameter-efficient encoder for structured data inclusion in LLMs.
• Experiments: Extensive experiments with a variety of both large proprietary and open source

models that illustrate the benefits of GraphToken. Our experiments on both graph reasoning
tasks and molecular property prediction show that our method can significantly improve LLM
capabilities, allowing small models to outperform larger ones.

• Analysis: We analyze GraphToken generalization on both unseen tasks and graphs.

2 BACKGROUND

We introduce the related work in LLMs, prompting methods, Graph Neural Networks (GNNs), graph
encoders, and graph models combined with LLMs.

2.1 LARGE LANGUAGE MODELS

Pre-Trained Large Language Models (LLMs): Language models (Rosenfeld, 2000; Zhao et al.,
2023) are autoregressive models, assigning likelihoods to tokens given a context of preceding or
surrounding tokens. While earlier methods counted frequencies of N-grams (Jurafsky, 2021, chapter
2), newer models adopted neural approaches with the advent of distributed word representations
(Bengio et al., 2000; Mikolov et al., 2013). The increased power offered by the neural language
models and the increase in model and dataset sizes has led to a new learning paradigm where large
language models (LLMs) are pre-trained in an unsupervised setting on massive amounts of textual
data and are used as base (foundation) models (Devlin et al., 2018; Radford et al., 2019). For each
downstream application, the base model is fine-tuned on small amounts of task-specific data to adapt
the model to the task.

Parameter-Efficient Fine-Tuning: With the rapid growth in the number of parameters for state-
of-the-art LLMs (Achiam et al., 2023; Team et al., 2023) fine-tuning for each downstream task
has become prohibitively expensive in both time and resources. The goal of parameter-efficient
fine-tuning (PEFT) (Xu et al., 2023) is to adapt models to new tasks by updating only a small number
of (possibly new) parameters. PEFT approaches are distinguished primarily by where parameters are
tuned (or added). Adapter-based approaches (Houlsby et al., 2019; He et al., 2021) hold the LLM
parameters frozen and add new trainable parameters to various parts of the model. Meanwhile, partial
fine tuning and partial masking methods (Zhao et al., 2020; Zaken et al., 2021) only fine-tune or mask
a subset of the LLM parameters – no new parameters are introduced. Some methods operate with
frozen LLM parameters. Soft-prompt methods (Li & Liang, 2021a; Lester et al., 2021; He et al., 2022)
prepend tokens with learnable parameters to the beginning of the LLM input or to the beginning of
every LLM layer. Finally, the most popular group of PEFT techniques, LoRA and derivative methods
(Hu et al., 2021; Edalati et al., 2022; Valipour et al., 2022) learn offsets to frozen model weights.

The closest related methods to this paper are the family of soft-prompt approaches. Most relevant is
the work of Levine et al. (2022), where the input is provided to a separate trainable neural network to
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Figure 1: A visual overview of the architecture of GraphToken. The framework takes a graph and
a corresponding question as input. The graph encoder takes the graph and generates graph tokens.
The question is tokenized and embedded to question tokens. A frozen LLM leverages the graph and
question tokens to generate an answer.

produce the soft-prompt. We extend this to encoding structured data input via a GNN to produce the
LLM soft-prompt. In this work, we focus on approaches that keep the weights in the model frozen
for two reasons. First, these methods are complimentary to the enormous body of ongoing work to
improve model capabilities. We can easily use GraphToken with newer and more powerful models
without imposing any architectural changes. Second, this class of PEFT approaches doesn’t require
many resources to train unlike methods which require full fine tuning, or many training examples.

2.2 GRAPH ENCODING WITH NEURAL NETWORKS

The field of graph representation learning (Chami et al., 2022) seeks ways to represent discrete
structured data in a continuous domain, typically for use in some downstream learning task. While
seminal work like DeepWalk (Perozzi et al., 2014) popularized the node embedding problem, later
work utilized GNNs to generalize and learn representations of entire graphs (graph embeddings).
Many approaches learning graph representations (node or graph embeddings) have followed since
(Tsitsulin et al., 2018; Xie et al., 2022).

2.3 GRAPHS AND LLMS

The confluence of graph representation learning and reasoning with LLMs is a rapidly growing field
of research – like language, structured data surrounds us but, unlike LLM input, it is not sequential.
Some of the first graphs represented in the literature were knowledge graphs as in Agarwal et al.
(2020), where the retrieval corpus of a retrieval LLM is augmented with text-encoded knowledge
graphs. Ye et al. (2023) utilize instruction fine-tuned LLMs for node classification. Similarly,
Chen et al. (2023b) leverage LLMs to enhance graph learning models by incorporating rich text
attributes. Wang et al. (2023b) showed that language models demonstrate preliminary abilities for
graph reasoning tasks. Later, Fatemi et al. (2024) proposed GraphQA – a comprehensive benchmark
to systematically evaluate models for graph reasoning tasks – finding that graph reasoning tasks are
currently difficult and that scaling laws do not seem to apply. Finally, in concurrent work to ours, Chai
et al. (2023) study how prefix tuning Li & Liang (2021b) can extend graph reasoning capabilities.
Interestingly their results are substantially different than ours. First, they were only able to operate on
graphs where each node has rich textual features. With GraphToken we show that it is possible to
use abstract graph representations (where the only node features are based on the graph itself (or are
learned). Secondly, their proposed method (prefix tuning) is much more expensive than ours (prompt
tuning) as adds additional parameters for each layer in the network - they require ∼10× as many
parameters as our method.
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3 GRAPHTOKEN: STRUCTURALLY INFORMED GENERATION

When considering how to pass graph data to an LLM there are largely two families of options:
(1) encoding it as lexical tokens for LLM embedding as in Fatemi et al. (2024) or (2) encoding it
directly as a continuous representation via a neural network – skipping any LLM token embedding.
While representing a graph as a sequence of lexical tokens has benefits in terms of interpretability, it
introduces a core problem – there is often no clear choice in what order to sequentially write the graph
data. In fact, this seemingly simple act of choosing a sequential serialization removes the permutation
equivariance which is a core inductive bias for geometric machine learning (Bronstein et al., 2017).
We believe a text encoding of structured data prohibits rich, concise, and expressive representations.
Instead, our method eschews representing a graph in text in favor of directly producing – using a GNN
as an encoder – the continuous representations for the LLM input. Our approach allows the GNN
to provide sample efficient graph learning (and when necessary, other properties like permutation
equivariance) for graph algorithmic tasks (Sanford et al., 2024). We refer to these new graph encoder
learned soft-tokens in the LLM embedding space as “graph tokens.”

To maintain the reasoning and language capabilities of the LLM, we freeze its parameters and teach
the graph encoder to align its output representations with the LLM embedding space. In other
words, we learn only the parameters of the graph encoder during the training process. This reduces
computational requirements significantly (graph encoder parameters are minuscule compared to the
LLM). During our tests, the LLM is prompted with the output of the graph encoder and a task about
the graph, for example: ‘Does this graph contain a cycle?’. As such, the quality of the results is
purely a function of how well the graph encoder represents the answer to the task and how well the
LLM interprets that output.

3.1 ARCHITECTURE

An overview of the architecture is provided in Figure 1. At a high level, our model only has two
components. First, the graph encoder takes a graph as input and outputs a fixed number of token
embeddings. These tokens are then prepended to the sequence of initial token embeddings in the
prompt for an LLM, which is then decoded to produce an answer as text.

Graph Encoder. GNN models range from simple averaging methods to complex models with multi-
headed attention. Thus there are a wide variety of graph representations possible. We suspect that
some of these representations are more suited to be consumed by an LLM. Therefore, we conducted
a thorough study that includes several well-known graph encoder choices in §4.3. Our graph encoder
takes the relational structure of the graph as input, using some form of graph positional encoding as
node features (either learned, Laplacian, or a combination thereof) - see §4.3.2 for details.) Next, we
apply a GNN to obtain a representation of the graph, which we read out using one of a few different
techniques techniques depending on the task.

• For graph-level tasks (e.g., cycle check) we do global pooling for readout, taking the mean
or sum of the representations over all of the nodes.

• For node-level tasks (e.g., node degree) we separately output the representation of each node.
This can be optionally row-wise concatenated with a graph-level pooling.
• For edge-level tasks (e.g., edge existence), we use a global representation or the two node-

level representations concatenated.

We note that the readout used (e.g., mean or sum pooling) is a hyper-parameter chosen during model
selection. Whichever the readout technique, this representation is then projected onto the token space
used by the LLM with a final dense layer.

LLM. For the experiments in the paper we use several LLMs, including PaLM 2 (Anil et al., 2023),
Gemma2 (Team et al., 2024), Mistral7B (Jiang et al., 2023), and Phi2 (Javaheripi et al., 2023).
however, our method generalizes to nearly any LLM in use today. For our purposes, any language
model which can accept a sequence of token embeddings and produce text is acceptable, so long as
it is possible to compute a gradient with respect to part of the input sequence. Some details about
training are available in §7.

4
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Table 1: Results comparing GraphToken against prompt engineering and soft prompting on graph
reasoning tasks using the GraphQATest benchmark (Fatemi et al., 2024), by accuracy. We see that
GraphToken substantially improves PaLM 2-S performance on all graph, node, and edge-level tasks.

Graph Tasks Node Tasks Edge Tasks

Node Edge Cycle Triangle Node Connected Reach- Edge Shortest
Method count count check count degree nodes ability existence path

PALM 62B ZERO-SHOT 0.217 0.124 0.760 0.015 0.140 0.147 0.849 0.445 0.115
PALM 62B ZERO-COT 0.146 0.094 0.323 0.127 0.104 0.088 0.735 0.335 0.336
PALM 62B FEW-SHOT 0.253 0.120 0.374 0.030 0.174 0.124 0.794 0.368 0.227
PALM 62B COT 0.276 0.128 0.580 0.081 0.292 0.131 0.452 0.428 0.386
PALM 62B COT-BAG 0.269 0.125 0.521 0.081 0.280 0.158 0.452 0.373 0.404

PALM 2-S ZERO-SHOT 0.365 0.121 0.747 0.006 0.414 0.250 0.835 0.482 0.020
PALM 2-S ZERO-COT 0.313 0.131 0.165 0.005 0.074 0.147 0.837 0.370 0.010
PALM 2-S FEW-SHOT 0.400 0.169 0.404 0.011 0.369 0.229 0.811 0.475 0.028
PALM 2-S COT 0.417 0.194 0.425 0.014 0.443 0.230 0.811 0.576 0.037
PALM 2-S COT-BAG 0.444 0.208 0.396 0.014 0.437 0.227 0.823 0.552 0.037

PALM 2-S PROMPT TUNING 0.056 0.018 0.832 0.162 0.098 0.068 0.838 0.544 0.462

PaLM 2-S GraphToken (ours) 0.996 0.426 0.956 0.348 0.962 0.264 0.932 0.738 0.638
%Gain vs. PALM 2-S ZS +172.9% +124.2% +28.0% +5700% +132.4% +5.60% +11.6% +53.1% +3090%

Comparing this smaller LLM (PaLM-2-S) with GraphToken to its large equivalent (PaLM 2-L), the larger model
now underperforms the smaller LLM in most graph reasoning settings:

PALM 2-L ZERO-SHOT 0.763 0.306 0.833 0.121 0.551 0.195 0.841 0.475 0.628
PALM 2-L ZERO-COT 0.739 0.244 0.224 0.037 0.079 0.395 0.710 0.416 0.230
PALM 2-L FEW-SHOT 0.603 0.359 0.738 0.214 0.558 0.461 0.851 0.415 0.607
PALM 2-L COT 0.622 0.344 0.727 0.223 0.597 0.452 0.815 0.522 0.687
PALM 2-L COT-BAG 0.631 0.346 0.692 0.220 0.600 0.450 0.846 0.604 0.680

4 EXPERIMENTS

In this section, we summarize the key experiments conducted with GraphToken. We begin by
highlighting some of the most exciting results from our analysis here:

• R1: GraphToken demonstrates superior performance compared to established baselines across a
comprehensive range of graph reasoning and molecular property prediction tasks.

• R2: GraphToken can significantly increase the capabilities of smaller models. In both graph reason-
ing and molecule property prediction tasks, we see GraphToken drastically boosting performance
of smaller models, making them competitive with much larger models on most tasks.

• R3: GraphTokens can generalize to both unseen graphs and unseen graph tasks.

Datasets. We conduct our experiments on the graph reasoning tasks proposed in GraphQA (Fatemi
et al., 2024). This dataset presents multiple graph reasoning problems with different difficulty levels.
These tasks can be categorized as follows.

• Graph-level. node count (counting the number of nodes in a graph), edge count (counting
the number of edges in a graph), cycle check (determining whether a graph contains a cycle),
and triangle count (counting the number of triangles in a graph).

• Node-level. node degree (calculating the degree of a given node in a graph), and connected
nodes (finding all the nodes that are connected to a given node in a graph),

• Edge-level. reachability (finding if there is a path from one node to another), edge
existence (whether a given edge exists in a graph, and shortest path (finding the length
of the shortest path from one node to another).

Setting. Details about the setting and reproducibility are available in §7. 1

4.1 EXPERIMENT 1: GRAPHTOKEN PERFORMANCE

In this experiment, we rigorously evaluate the performance of GraphToken against the following
comprehensive set of established baselines (described for brevity’s sake in §A.3).

1To accelerate future research, we will open-source our code upon acceptance of the paper.
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Table 2: Results comparing individual graph encoder performance with GraphToken and PaLM
2-S on GraphQATest tasks, by accuracy. Note that there is ‘no free lunch’ here – no single encoder
examined dominates across all tasks. Best result is bolded, second-best is underlined.

Graph Tasks Node Tasks Edge Tasks

Method Node count Edge count Cycle check Triangle count Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 0.746 0.056 0.964 0.208 0.264 0.264 0.918 0.680 0.604

GIN 0.704 0.052 0.898 0.194 0.252 0.180 0.902 0.650 0.586
MPNN 0.792 0.368 0.956 0.348 0.962 0.250 0.934 0.648 0.638
HGT 0.252 0.084 0.934 0.234 0.266 0.184 0.944 0.718 0.600
MHA 0.912 0.264 0.962 0.266 0.552 0.244 0.932 0.738 0.608

L
in

ea
r Node Set 0.996 0.080 0.948 0.198 0.190 0.118 0.942 0.596 0.568

Edge Set 0.618 0.426 0.964 0.228 0.220 0.096 0.904 0.592 0.568

Table 3: Molecular property prediction benchmarks, measured by accuracy. GraphToken allows
Gemma-2 2B to outperform larger models, even with parameter-efficient finetuning methods.

Trainable parameters BACE BBBP ClinTox

Majority class - 0.640 0.700 0.808

Gemma-2B (zero-shot) - 0.000 0.700 0.323
Phi2-2.7B (zero-shot) - 0.000 0.000 0.010
Mistral-7B (zero-shot) - 0.000 0.390 0.010

Gemma-2B + Prompt Tuning 40,960 0.360 0.040 0.141
Phi2-2.7B + Prompt Tuning 51,200 0.000 0.690 0.000
Mistral-7B v0.3 + Prompt Tuning 81,920 0.360 0.360 0.434

Gemma-2-2B + LoRA 516,096 0.500 0.740 0.808
Phi2-2.7B + LoRA 70,272 0.520 0.710 0.778
Mistral-7B v0.3 + LoRA 73,728 0.180 0.690 0.798

Gemma-2-2B + P Tuning 97,208 0.590 0.800 0.808
Phi2-2.7B + P Tuning 129,464 0.460 0.720 0.808
Mistral-7B v0.3 + P Tuning 172,472 0.580 0.710 0.808

Gemma-2-2B + GraphToken (MPNN) 299,520 0.820 0.800 0.879

Results. The results of this experiment, summarized in Table 1, demonstrate that GraphToken
significantly outperforms other options for encoding graph structure in PaLM-2-S on all graph,
node, and edge-level tasks. Compared to PROMPT TUNING, we see that having access to the graph
information provides a significant advantage for graph reasoning. Interestingly, after adding in
GraphTokens, we can see that our small LLM (PaLM-2-S) is able to outperform its significantly
larger sibling (PaLM-2-L) on 7 out of 9 tasks (the only task the large model seemed to retain a sizable
advantage on was connected nodes.

4.2 EXPERIMENT 2: CHEMICAL PROPERTY PREDICTION

We next evaluate the performance of GraphToken on a suite of molecular property prediction tasks
from the ChemLLMBench benchmarking suite (Guo et al., 2023b). A full description of both the
dataset and the experimental setting is provided in §A.6.

Baselines. We evaluate GraphToken against a suite of other parameter-efficient finetuning methods,
to isolate the performance improvement of GraphToken against other parameter-efficient methods
by virtue of efficiently encoding structure into the input tokens for the LLM. We compare against
LoRA (Hu et al., 2021), prompt tuning (Lester et al., 2021), and P tuning (Liu et al., 2023a), three
established methods for parameter-efficient tuning.

Results. The results of this experiment, summarized in Table 3, demonstrate that GraphToken
significantly outperforms existing parameter-efficient finetuning methods on molecular property
prediction tasks. GraphToken outperforms the next-closest parameter-efficient baseline, P Tuning
(Liu et al., 2023a), by up to 23% accuracy on molecular property prediction. Notably, GraphToken
does well on the highly imbalanced ClinTox dataset, where 80.8% of samples belong to the majority
class. Finally, we again see that GraphToken allows Gemma2-2B, to outperform a larger LLM
(Mistral-7B) even when it is also augmented with other parameter-efficient finetuning methods.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 ANALYSIS: GRAPH ENCODER DESIGN

From the results in Table 1, we can see that graph encoders can significantly improve a LLM’s
capability on graph reasoning tasks. However the choice of graph encoders has a significant effect on
task performance. Here we study how different architecture choices affect the quality of the graph
representation for a language model’s use, including the choices of the graph convolution, the features
available to the network, and the hyper-parameters.

4.3.1 CHOICE: GRAPH CONVOLUTION

This experiment investigates the impact of graph convolution choice on the performance of GraphTo-
ken. We evaluate the following diverse set of encoders:

• Graph Convolutional Network (GCN): One of the earliest GNNs, this model does mean pooling
of neighbor features, followed by a non-linearity (Kipf & Welling, 2017).

• Message Passing Neural Network (MPNN): A generalization of the GCN, this model allows for
more flexible aggregation of neighbor features, and has additional nonlinear feature transformations
possible (Gilmer et al., 2017).

• Graph Isomorphism Network (GIN): A GNN designed specifically to maximize the expressive-
ness of the model, w.r.t. a classic graph isomorphism test (Xu et al., 2018).

• Multi-Head Attention (Graph Transformer): This GNN adapts transformer style attention,
effectively learning a graph structure (Dwivedi & Bresson, 2021).

• Heterogeneous Graph Transformer (HGT): Another adoption of transformer style attention (it
can be applied to non-heterogeneous graphs as well) (Hu et al., 2020).

• Linear Aggregation In addition to the popular encoders from the literature, we also evaluated
a family of models which use linear aggregation of features, as this has been shown to work
surprisingly well on a number of tasks (Bojchevski et al., 2020).
– Node Set: This model simply pools all the node features in the graph together.
– Edge Set: This model simply pools all the edge features together (edge features are defined as

the concatenation of its two nodes’ features).

Setting: The experimental setup is similar to the experiment in §4.1.

Result: Table 2 shows the results for each model on GraphQATest. In general, we see that there is no
one model that consistently dominates across graph encoding tasks. Instead, we see that different
graph encoder architectures have strengths and weaknesses advantages.

There is one notable pattern however, the simple linear GNN models perform quite strongly at their
respective counting tasks (i.e. NodeSet does well at node count, EdgeSet does well at edge
count). However models with non-linear effects are still capable on these tasks (e.g., MHA does
well at node count, and MPNN does well on edge count).

4.3.2 CHOICE: GNN FEATURES

Recently, positional node encodings (Wang et al., 2022; Dwivedi et al., 2023; Lim et al., 2023) were
proposed to enhance the expressivity of GNNs. On the other hand, in molecular modeling it has been
shown recently that non-equivariant encoders can match or exceed quality of equivariant ones (Wang
et al., 2023c). This raises a more general question: do GNNs need to be equivariant in order to
generalize, especially with extremely powerful decoders, such as LLMs? We investigate this question
by testing the graph reasoning capability of GraphToken with three distinct node featurization settings:

• LPE: Laplacian positional encodings using the normalized Laplacian matrix (Dwivedi et al., 2023).
• IDX: unique identity encoding designed to break the GNN equivariance.
• LPE+IDX: a concatenation of the above two strategies.

Setting. The experimental setup is similar to §4.3. Node features of dim d = 4 are evaluated for LPE
and IDX featurization. Models using LPE+IDX contain node features of size d = 8.

Result. The outcome of this experiment are show in Figure 2, where we see the difference of all
models from the SOFTPROMPT baseline (Lester et al., 2021) when evaluated on GraphQATest. The
core result is that learned positional embeddings (Fig. 2b) generally outperform Laplacian position
embeddings (Fig 2a) for most encoders and most tasks. These results show that breaking equivariance
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(a) Spectral Features (LPE) (b) Learned Features (IDX) (c) Both Features (LPE+IDX)

Figure 2: Effect of varying node features used in the graph encoder. Shown are performance delta
from the PROMPT TUNING baseline on GraphQATest. We see that breaking equivariance via learned
features (Fig. 2b) generally improve the model performance, but the combination of learned and
spectral features (Fig. 2c) proves uniquely powerful for some encoders.

surprisingly adds additional capabilities for graph reasoning when powerful decoders are present.
Some additional observations include:

• Counting Tasks. Learned features seem to provide essential lift for basic counting tasks (node
count, edge count, and node degree) in many encoders.

• Combination. In some very interesting cases of task and encoder, the combination of both types
of features greatly improved model performance (Fig. 2c). For example, GCN and NodeSet
significantly improved at the node count task.

• Linear models. NodeSet (an encoder which does not use the graph edges) generally benefited from
spectral features as they added previously unseen information about the graph structure.

4.3.3 PARAMETER USAGE IN GRAPHTOKEN FOR GRAPHQA

Setting: We consider the graph convolution evaluation from §4.3.1, using LPE features with dimen-
sionality d = 4. The graph encoders have a latent space of size 128. We then project this into a
prompt embedding with approximately 80, 000 parameters in GraphToken .

Results:

Table 4: # of parameters in the graph encoder.

Encoder Body Head

GCN 17,152 1.1× 107

GIN 17,152 1.1× 107

MPNN 83,968 1.1× 107

HGT 198,788 1.1× 107

MHA 101,376 1.1× 107

Node Set 0 4.1× 105

Edge Set 0 7.4× 105

Table 4 shows the number of parameters used
in the graph encoder. Here ‘Body’ refers to
the number of parameters in the graph encoder
itself, and ‘Head’ refers to the parameters in the
transformation layer to the higher-dimensional
LLM token space.

Its also insightful to consider the number of
parameters used in each of the models. Table 4
specifies total number of parameters used by
each GNN architecture. We note that this size is
dominated by the total number of parameters in
the projection layer to the token space (roughly
11 million). Out of all non-linear architectures, attention-based ones (MHA and HGT) add the most
encoder-based parameters. In general, the size of our graph encoder models varies from 17k to 199k
parameters. This is significantly smaller than typical LLMs, which currently often contain tens or
hundreds of billions of parameters. For example, the open-source LLama2 language model scales
from 7 billion to 70 billion parameters (Touvron et al., 2023). Meanwhile the closed source PaLM
1 model contains 540 billion parameters (Chowdhery et al., 2022). In light of this, we can see that
GraphToken is highly parameter-efficient, and significantly improves the graph reasoning capability
of a LLM while barely adding any parameters at all.
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Table 5: Predicting bipartiteness using graph encoders trained for different tasks, as measured by
AUC×100 on all graphs with 8 nodes. Observe that graph encoders trained on cycle check and
triangle count generalize well to bipartiteness detection.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle count Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 53.82 53.28 55.46 50.00 50.00 54.64 50.00 48.48 51.60

GIN 51.09 53.27 52.74 51.91 53.26 53.57 51.36 52.17 52.18
MPNN 68.01 71.34 56.82 76.82 60.13 60.95 61.77 62.58 54.37
HGT 50.00 54.35 68.53 95.03 50.27 59.81 68.85 74.58 50.00
MHA 50.27 66.39 87.00 72.14 58.74 66.38 51.63 54.12 64.45

L
in

ea
r Node Set 56.55 57.38 56.30 55.74 56.29 56.28 55.73 57.93 56.56

Edge Set 50.82 50.82 50.82 50.55 50.54 50.54 50.82 50.82 50.54

5 DISCUSSION

So far we have examined the performance benefits of GraphToken, and the design choices necessary
when building a graph encoder. However several questions remain: (1) What exactly are the encoders
doing, and (2) does it generalize? In this section we seek to provide some insight (if not answers) to
these questions, and lay the foundations for future work.

5.1 GENERALIZATION OF GRAPH ENCODERS

This section studies the properties learned by GraphToken’s graph encoders by directly examining
the representations they produce. We study both the in-distribution and out-of-distribution properties
of these encoders. We briefly discuss one example here and present additional results in §A.9.

Setting: For the generalization experiment, we consider 9 additional tasks: total number of edges,
maximum node degree, graph diameter, number of triangles, average local clustering coefficient,
largest core number, average shortest path length, testing planarity, and testing bipartiteness.

The evaluation goes as follows: First, we train an encoder on a task from GraphQA (e.g., cycle
check). Then, to evaluate the cross-task generalizability of the different encoders we train a kNN
classifier (or regressor) with k = 5 on the representations of (i) an exhaustive set of connected graphs
with 8 nodes (called graph8c in Balcilar et al. (2021)) and (ii) an exhaustive set of tree graphs with
15 nodes. We note that because we are generating a large set of graphs (e.g., there are 11117 graphs
of size 8) and only trained on GraphQATrain (1000 instances), the vast majority of the graphs we
are using here are unseen. As an illustration, a UMAP (McInnes et al., 2018) visualization of the
embeddings for all 8 node graphs using two GNN encoders is presented in Figure 6.

Figure 3: UMAP (McInnes et al., 2018) projection
of GraphToken embeddings produced by two dif-
ferent encoders, colored by the diameter of a graph.
We plot all 8-node graphs.

The graphs are generated by enumerating all
graphs of a given size exhaustively. We use
geng (McKay et al., 1981) to generate these
graphs.

Results. We focus here on the task of predict-
ing whether a graph is bipartite. From basic
graph theory we know that if there is a triangle
or an odd cycle in a graph it can not be bipartite.
Therefore, we expect triangle count and
cycle check training objectives to perform
well on this task. In Table 5 we can see that this
is precisely what happens, with attention-based
methods taking the lead. This is an interesting
example of generalization from the graph en-
coders to a new task.

Overall, there is a significant performance gap between different graph encoders. We observe
significant correlations in performance of in-distribution learning – for instance, GraphToken trained
on edge count performs the best on edge count prediction. What is interesting is that node
count performs comparably here. This suggests that graph encoders learn some universal features
that are applicable to many different downstream tasks.
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Figure 4: t-SNE visualization of the Gemma2 token embeddings (grey), and learned GraphTokens
for 9 GraphQA tasks: connected nodes; cycle check; edge count; edge existence;
node count; node degree; reachability; shortest path; triangle counting.

5.2 VISUALIZATION OF GRAPH ENCODINGS

In order to better understand the latent representations giving GraphToken such strong performance
on graph reasoning tasks, we collected the activations for all 9 GraphQA tasks using a MPNN
GraphToken encoder. They are visualized using t-SNE (Van der Maaten & Hinton, 2008) in Figure
4. We observe that each task learns a specific set of soft tokens that are more similar within than
across tasks. Furthermore, when projected down to the space of language tokens, they exist in an
underutilized region of the space – the nearest neighbor’s cosine distance is 0.7. This sheds additional
light on how the model adapts for an unfamiliar task.

6 CONCLUSIONS

In this work we have studied the structured data encoding problem for LLMs. Our novel method,
GraphToken, learns a graph embedding function through the gradients provided by a frozen LLM.
GraphToken is especially well suited for projecting structured data into latent ‘prompt space’. It
is a parameter-efficient method as it requires only training the graph encoder and does not update
LLM parameters. Our extensive experimental analysis across 9 graph reasoning tasks shows that
GraphToken greatly improves graph reasoning in LLMs – we observe up to a 73% improvement on
the GraphQA benchmark. We also illustrated how GraphToken offered significant improvements
to the Gemma2-2B model on molecular property prediction tasks, presenting strong performance
against other PEFT methods, and even exceeding the performance of a larger 7B parameter model.

There is still much to do! We believe that our approach is fundamental for adapting new structured
data sources to LLMs (which are expensive and time consuming to train), and presents an attractive
way of improving fundamental problems in LLMs, including hallucinations, factuality, and freshness.
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7 REPRODUCIBILITY STATEMENT

Note: Our model GraphToken requires gradient access to a LLM in order to train. The primary
experiments in this paper are conducted on PaLM 2, a large model with proprietary weights. We
believe that understanding how structure can best be incorporated into large models is an important
area of work, and that our results show how our parameter efficient method can drastically increase
the graph reasoning capabilities of a truly large language model.

However, we also believe that it is important for research to be accessible. To that end, we have
developed a reference implementation compatible with smaller, open-weight models (i.e. Gemma2-
2B). Experiments using this implementation for molecular property prediction are shown in Section
4.2. We will release this implementation and tutorial materials designed to facilitate the training and
use of this reference implementation with smaller LMs upon the paper’s acceptance.

Source code: To accelerate future research, we will open-source a reference version of GraphToken
upon acceptance of the paper.

Graph Encoders The PaLM 2 GraphToken we describe was implemented in Tensorflow (Abadi
et al., 2015) using the TF-GNN library (Ferludin et al., 2023). Many of the graph encoders studied in
this paper are reference implementations of graph convolutions available in this TensorFlow library at
https://github.com/tensorflow/gnn/tree/main/tensorflow_gnn/models.

Large Language Model: The largest LLM used in our experiments is the instruction-fine-tuned
Flan (Chung et al., 2022) checkpoint of PaLM 2 S (Anil et al., 2023). A PaLM 2 API is available
through VertexAI at https://python.langchain.com/docs/integrations/llms/
google_vertex_ai_palm.html. For the smaller open weight models used in our experiments
(Gemma2, Phi2, and Mistral-7b), we used weights and code from HuggingFace (Wolf, 2019).

Accelerator usage: Experiments were carried out on Google TPUv3 and TPUv5e (Jouppi et al.,
2017).

GraphToken Training: Our training procedure is very similar to that used by soft prompting
methods (Lester et al., 2021). The training input consists of triples (G,T,A) where G is a graph
structure, T is a statement or question describing the task (e.g., ‘Does this graph contain a cycle?’ for
cycle check) and A is the ground truth answer (‘Yes, there exists a cycle in this graph.’).

In the forward pass, we compute the augmented query Q = E(G)||T (T ), concatenating the Graph-
Token encoding of the graph E(G) with the initial embedding of the task textual representation,
T (T ).
We train by optimizing the final LLM perplexity (total log-likelihood), L(A | Q), of the expected
answer A with respect to the augmented query, Q. We minimize this loss, back-propagating the
gradient of L with respect to E(G) to the parameters of the GraphToken encoder – keeping all LLM
parameters frozen. We use the Lion optimizer (Chen et al., 2023a) with a learning rate α = 0.05.

Model Selection: In order to select the best hyper-parameters for the graph encoder, we used the
loss on the training dataset (GraphQATrain) to perform model selection. Unless specified otherwise,
we report the corresponding test scores (from GraphQATest).
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Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024. Cited on page 4.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. Cited on pages 1 and 8.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models, 2021. Cited on page 19.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller. Sgr:
Self-supervised spectral graph representation learning. arXiv preprint arXiv:1811.06237, 2018.
Cited on page 3.

16

https://arxiv.org/abs/2310.13023
https://arxiv.org/abs/2310.13023


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022. Cited on page 2.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008. Cited on page 10.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 30, 2017. Cited on page 1.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung,
Denny Zhou, Quoc Le, and Thang Luong. Freshllms: Refreshing large language models with
search engine augmentation, 2023. Cited on page 1.

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi
Yao, Wenyang Gao, Xuming Hu, Zehan Qi, Yidong Wang, Linyi Yang, Jindong Wang, Xing Xie,
Zheng Zhang, and Yue Zhang. Survey on factuality in large language models: Knowledge, retrieval
and domain-specificity, 2023a. Cited on page 1.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In ICLR, 2022. Cited on page 7.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can
language models solve graph problems in natural language? In NeurIPS, 2023b. Cited on pages 1,
3, and 20.

Yuyang Wang, Ahmed A Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Angel Bautista.
Generating molecular conformer fields. arXiv preprint arXiv:2311.17932, 2023c. Cited on page 7.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS,
2022. Cited on page 20.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019. Cited on page 11.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018. Cited on page 21.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. IEEE TPAMI, 2022. Cited on page 3.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. Cited on page 7.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023. Cited on page 2.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is all
a graph needs. arXiv preprint arXiv:2308.07134, 2023. Cited on page 3.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021. Cited on
page 2.

Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong Li,
and Kaize Ding. A survey of deep graph learning under distribution shifts: from graph out-
of-distribution generalization to adaptation, 2024. URL https://arxiv.org/abs/2410.
19265. Cited on page 19.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hinrich Schütze. Masking as an efficient alternative
to finetuning for pretrained language models. arXiv preprint arXiv:2004.12406, 2020. Cited on
page 2.

17

https://arxiv.org/abs/2410.19265
https://arxiv.org/abs/2410.19265


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023. Cited on page 2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL RELATED WORK

We briefly discuss several additional areas of tangentially related work for completeness.

’GNN-only’ Pretraining While there is a growing body of work in pre-training, fine-tuning, and
prompt-tuning with GNNs by themselves (Fang et al., 2023; Liu et al., 2023b), the research, though
conceptually similar, differs crucially from our work. GNN-based approaches lack the textual
understanding capabilities that are central to the integration of LLMs with graph learning and
reasoning.

Soft Prompt Functions for Images The idea of parameterizable prompts has been explored in the
visual domain Tsimpoukelli et al. (2021); Alayrac et al. (2022); Luo et al. (2022); Chen et al. (2022a);
Li et al. (2023); Moon et al. (2023). In this light, our work could be viewed as an extension of these
ideas to the modality of graph structured ideas. We note that the visual domain has been studied
substantially more than graph neural networks (which are a younger field), and that developing a
soft prompt function for graph structured data introduces a number of additional challenges that we
describe in this work.

Abstract Parse Information Additionally some work has studied adding semantic parse trees in
order to semantically improve generation (Mager et al., 2020; Ribeiro et al., 2021). Unlike these works
which focus on AMR graphs, we focus on more general graph reasoning capabilities and downstream
tasks (such as molecular property prediction) that depend on graph structure. Understanding relational
structure is key for these tasks.

Concurrent Work Due to the importance of this research area, there have recently been a number of
concurrent works seeking to combine graph structure and large language models. GraphWiz (Chen
et al., 2024a) proposes an instruction following LM for graph reasoning, showing strong improvements
over SFT tuning of regular language models for textual reasoning over graphs. Similarly, GraphGPT
(Tang et al., 2024) uses an instruction tuning recipe, along with a frozen graph tokenizer to improve
classic graph learning tasks (node classification, link prediction, etc). Additionally, LLaGA (Kong
et al., 2024) and UniGraph (Chen et al., 2024b) propose different ways of aligning graph structure
and natural language.

Despite the growing amount of related work, we note that GraphToken still has significant advantages.
Much of the concurrent work focuses on tuning entire language models – our work shows that this is
frequently unnecessary, and competitive results can be achieved via our parameter efficient method.
In addition, we were the first (to the best of our knowledge) to propose soft prompting via GNN
encoders learned from LLM gradients.

A.2 LIMITATIONS AND FUTURE WORK

A.2.1 LIMITATIONS

Our results have shown that GraphToken is both a flexible and generalizable encoder of graph
structured data for LLMs. Here we discuss some limitations of the method as inspiration for future
work.

Encoder Generalizability. The main limitation of GraphToken is that its encoder might learn
spurious correlations due to idiosyncrasies in the distribution of input graphs it was trained on.
As such, it’s important that the encoder works robustly regardless if its evaluated on a different
distribution of input graphs (w.r.t. their density, number of nodes/edges, etc). We note that this is a
general weakness of GNNs and not specific to GraphToken itself. As such, there is a rich literature
on creating robust GNNs (Zhang et al., 2024) that has made significant progress in creating more
generalizable GNN architectures. We expect that these results will be directly able to be “plugged in”
to GraphToken encoders and will greatly aid in their generalization.

A.2.2 FUTURE WORK

This work opens up an exciting new avenue of exploration for reasoning with structured data and
LLMs. Some potential avenues that we consider particularly exciting include:
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• This work considers existing convolutions and measures their effectiveness. An obvious and
essential next step is designing graph convolutions that best support LLMs in various graph
reasoning tasks.

• Evaluating the usefulness of this approach for factual grounding. Can we improve the ability of an
LLM to answer questions about the data using prompting over knowledge graphs? Could an LLM
answer novel questions about a molecule given a GNN-produced representation of it?

• GraphToken improves performance with broken equivariance. Can this result inform other prob-
lems with very strong decoder models?

• This work examines how a GNN can be used to an enhance LLMs, but what about the reverse?
Can we use an LLM to interrogate a GNN to better explain its results or provide higher quality
answers?

A.3 BASELINES

To rigorously evaluate the performance of GraphToken, we compare it against the following estab-
lished baselines for prompt optimization:

• ZERO-SHOT. In this approach, the model is given a task description and immediately asked to
produce the desired output. No additional examples or demonstrations are provided.

• FEW-SHOT. This approach provides the model with a few examples of the task and their desired
outputs (Brown et al., 2020). Unlike traditional training, these examples are included directly in
the prompt, allowing the model to learn and adapt during the inference.

• COT. Chain-of-thought (CoT) prompting (Wei et al., 2022) provides examples each showing
step-by-step reasoning, teaching the LLM to generate its own thought processes for tackling new
tasks.

• ZERO-COT. Zero-shot CoT (Kojima et al., 2022) builds upon Chain-of-Thought (CoT) prompting
by eliminating the need for training examples. The LLM generates its own step-by-step reasoning
process using a simple trigger phrase like “Let’s think step by step”.

• COT-BAG. BAG prompting (Wang et al., 2023b) extends COT to improve the performance of LLMs
on graph-related tasks by appending “Let’s construct a graph with the nodes and edges first” to the
prompt.

• SOFT-PROMPT. This approach uses the standard soft prompt tuning of Lester et al. (2021).
It optimizes a global static prompt which is shared across problem instances to improve task
performance. Unlike our proposed method, it does not have access to the graph information,
making the results of this approach equivalent to that of a majority classifier.

A.4 GRAPH ENCODERS

Notation. We briefly describe the notation we will use. The graph G = (V,E) contains the set of V
nodes and E edges. While we will only discuss simple graphs, everything discussed can be extended
to heterogeneous graphs w.l.o.g. (Battaglia et al., 2018; Ferludin et al., 2023).

Using the notation of Ferludin et al. (2023), a GNN has two primary operations. First, a next
state function (NEXTSTATE) which computes the hidden state hv of a node (or edge, m(u,v)) given
information from its neighbors and its previous state, and an aggregation function (EDGEPOOL)
which pools information for a node’s immediate neighborhood into a fixed size representation. More
formally, we can say that the next state of a node is:

h(i+1)
v = NEXTSTATE

(i+1)
V (h(i)

v ,m(i+1)
v ).

Then the pooled messages m(i+1)
v are defined as follows:

m
(i+1)
(u,v) = NEXTSTATE

(i+1)
E (h(i)

u ,h(i)
v ,m

(i)
(u,v)),

m(i+1)
v = EDGEPOOL(i+1)(h(i)

v , {m(i+1)
(u,v) | u ∈ N (v)}).

Different realizations of the NEXTSTATE and EDGEPOOL functions can implement a wide variety of
GNN operations. This can include powerful models which use Transformer style attention instead of
the provided graph edges (Dwivedi & Bresson, 2021).

The architecture of NodeSet and EdgeSet is shown in Figure 5. Other GNN models have graph
convolutions before node/edge states are read out.
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Figure 5: Figurative illustrations of set-based GNN architectures employed in the paper. We pool
representations from either nodes or edges, transform them via an MLP with shared weights, pool,
and project to the GraphToken space.

A.5 DATASET STATISTICS

The graphs used in the experiments in this paper and the corresponding graph reasoning tasks are
taken from Fatemi et al. (2024). There are 1, 000 graphs in the train set and 500 graphs in the test set.
The graphs are generated randomly using Erdős-Rényi (ER) random graph model (Erdős & Rényi,
1959). Graph size ranges from 5 to 20 nodes.

Train set statistics.

• Average number of nodes: 11.90
• Average number of edges: 37.01
• Average node degree: 5.43

Test set statistics.

• Average number of nodes: 12.37
• Average number of edges: 39.79
• Average node degree: 5.70

To address dataset size limitations in the benchmark, we evaluate model generalization abilities on
an exhaustive collection of connected 8-node graphs. This allows us to test within-data-distribution
generalization to both unseen data and unseen tasks (e.g., bipartiteness in Table 5. To test out-
of-distribution generalization, we verify GraphToken works well on tree-structure graphs, again,
generated exhaustively. Note that for tree graphs, the number of edges is the lowest possible for a
connected graph, leading to more generalization challenges.

A.6 MOLECULAR PROPERTY PREDICTION WITH GRAPHTOKEN

Here we elaborate on the experimental settings from Section 4.2.

Datasets. The benchmarking datasets within ChemLLMBench (Guo et al., 2023b) are a collection
of datasets intended to test prediction of different molecular properties, with many of the property
prediction datasets originating from MoleculeNet (Wu et al., 2018). The Blood-Brain Barrier
Penetration (BBBP) dataset tests the ability of compounds to penetrate the blood-brain barrier. The
BACE dataset tests inhibition of human β-secretase 1, while the Tox21 dataset tests the toxicity of
compounds on 12 different nuclear receptor and stress receptor targets. The ClinTox dataset compares
FDA-approved drugs to failed drugs for toxicity. For all property prediction tasks, we evaluate the
accuracy of model predictions against ground truth molecular property labels.
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Processing. In this section, we overview the encoding method used for chemical molecules in the
ChemLLMBench (Guo et al., 2023b) datasets. At a high-level, a molecule is taken as input and
converted into a graph where nodes represent atoms connected by edges that represent atomic bonds.
The GNN encoder component encodes the graph and outputs tokens which are prepended to the LLM
input prompt, which the LLM can then reason over in chemistry tasks.

To encode structural information about chemical molecules, we follow a principled framework for
encoding node, edge, and graph-level features pertaining to input molecular graphs:

1. Node-level features comprise of atomic properties of atoms which are represented by nodes
in the input molecular graph. These node feature capture properties such as atomic number,
mass, and charge.

2. Edge-level features comprise of information about bonds which connect atoms together in
the molecular graph. Edge features give information about the type of bond linking atoms
together.

3. Graph-level features consist of molecular signatures, or fingerprints, of the molecule. These
features are obtained through standardized molecular fingerprint generators such as mor-
dred (Moriwaki et al., 2018), which have predefined molecular descriptors which capture
properties about input molecules such as the presence or count of certain subgroups.

Given this input feature space, we utilize a GNN encoder to perform message-passing over the
molecular graph, and perform a pooling readout operation across node tokens and the graph-level
molecular fingerprint features in order to produce the final readout tokens.

Baselines. We evaluate GraphToken against a suite of other parameter-efficient finetuning methods,
to isolate the performance improvement of GraphToken against other parameter-efficient methods
by virtue of efficiently encoding structure into the input tokens for the LLM. We compare against
LoRA (Hu et al., 2021), prompt tuning (Lester et al., 2021), and P tuning (Liu et al., 2023a), three
established methods for parameter-efficient tuning.

Results. The results of this experiment, summarized in Table 3, demonstrate that GraphToken
significantly outperforms existing parameter-efficient finetuning methods on molecular property
prediction tasks. GraphToken outperforms the next-closest parameter-efficient baseline, P Tuning
(Liu et al., 2023a), by up to 23% accuracy on molecular property prediction. Notably, GraphToken
does well on the highly imbalanced ClinTox dataset, where 80.8% of samples belong to the majority
class. Finally, we again see that GraphToken allows Gemma2-2B, to outperform a larger LLM
(Mistral-7B) even when it is also augmented with other parameter-efficient finetuning methods.

A.6.1 RUNNING TIME

It is instructive to also consider the running time of these various PeFT methods on the molecular
property prediction task. The timing of these results is available below:

Table 6: Molecular property prediction running times (measured by hours). GraphToken with
Gemma2-2B is the fastest method (in addition to the highest performing).

Trainable parameters BACE BBBP ClinTox

Gemma-2B + Prompt Tuning 40,960 1.55 2.14 1.49
Phi2-2.7B + Prompt Tuning 51,200 1.63 2.27 1.71
Mistral-7B v0.3 + Prompt Tuning 81,920 3.98 3.97 3.99

Gemma-2-2B + LoRA 516,096 0.30 0.47 0.28
Phi2-2.7B + LoRA 70,272 0.37 0.98 0.57
Mistral-7B v0.3 + LoRA 73,728 0.77 1.07 0.76

Gemma-2-2B + P Tuning 97,208 13.92 13.90 13.92
Phi2-2.7B + P Tuning 129,464 22.37 18.03 15.42
Mistral-7B v0.3 + P Tuning 172,472 23.95 23.89 23.87

Gemma-2-2B + GraphToken (MPNN) 299,520 0.13 0.27 0.19

These results show that GraphToken is not only the most performant model for the task, but also the
fastest.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 MULTI-TASK GRAPH ENCODERS

It is also interesting to study whether the representations learned by GraphToken can generalize to
new graph reasoning tasks at the LLM-level (beyond the embedding space investigation of §5.1).

In order to study this, we designed the following experiment. First, we trained a Multi-Task Graph-
Token model on 9 of the 10 GraphQA tasks using Gemma2-2B as the LLM backbone. The same
encoder is used for all tasks, and the graph encoder has no knowledge about the task while encoding.
We then evaluate this model on a withheld task – cycle check. It has never seen cycle check before
this eval.

Results: For context, we provide the single task performance (”SingleTask GraphToken”) on
Gemma2-2B as well as its text-only performance

MultiTask GraphToken SingleTask GraphToken Gemma2-2B (text only)
cycle check 88.4 98.8 60.0

Table 7: Graph Reasoning Generalization Experiment

We see that while there is a drop on performance (as might be expected) compared to optimizing a
task directly: (1) GraphToken can generalize to a unseen task, and the generalization outperforms
large models (e.g. PaLM-2-L with 83.3) on the task. (2) The generalization is much better than using
a text representation of the graph with the backbone LLM.

A.8 DOES GRAPH STRUCTURE MATTER?

It is interesting to study how graph structure might affect a GraphToken encoder’s performance on
downstream tasks. Are more complicated graphs harder? Do other structural patterns influence its
results?

Experiment design. We use the Gemma2-2B multi-task encoder from §A.7 which is trained on 9 out
of 10 GraphQA tasks. Then we calculated a number of graph properties that have been shown useful
for analyzing GNN performance (Palowitch et al., 2022), and examined the correlation between these
graph characteristics and whether the model was able to correctly answer its task (out of 10 GraphQA
tasks) on unseen graphs. The results are as follows:

Graph Property Pearson correlation
number nodes -0.146
number edges -0.0581
edge density 0.0732
degree gini -0.104

average degree -0.040
average clustering coefficient 0.0111

transitivity 0.0103
number of triangles 0.00012

connected component sizes -0.0344

Table 8: The correlation of structure with GraphToken’s performance on GraphQA tasks.

Interestingly, we find that most graph properties are uncorrelated with the downstream task’s per-
formance. We do see a weak negative correlation between the number of nodes in the graph and
correctly answering tasks. However this is expected – as the number of nodes grows, the graph has
the potential for more complexity.

These results support the strong generalization capabilities of GraphToken.
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A.9 GRAPH ENCODER GENERALIZATION

A.9.1 EXPERIMENT DESIGN

Setting: For the generalization experiment, we consider 9 tasks in total: total number of edges;
maximum node degree; graph diameter; number of triangles; average local clustering coefficient;
largest core number; average shortest path length; testing planarity; testing bipartiteness.

The evaluation goes as follows: First, we train an encoder on a task from GraphQA (e.g., cycle
check). Then, to evaluate the cross-task generalizability of the different encoders we train a kNN
classifier (or regressor) with k = 5 on the representations of (i) an exhaustive set of connected graphs
with 8 nodes (called graph8c in Balcilar et al. (2021)) and (ii) an exhaustive set of tree graphs with
15 nodes. We note that because we are generating a large set of graphs (e.g., there are 11117 graphs
of size 8) and only trained on GraphQATrain (1000 instances), the vast majority of the graphs we
are using here are unseen. As an illustration, a UMAP (McInnes et al., 2018) visualization of the
embeddings for all 8 node graphs using two GNN encoders is presented in Figure 6.

Figure 6: UMAP (McInnes et al., 2018) projection
of GraphToken embeddings produced by two dif-
ferent encoders, colored by the diameter of a graph.
We plot all 8-node graphs.

The graphs are generated by enumerating all
graphs of a given size exhaustively. We use
geng (McKay et al., 1981) to generate these
graphs.

A.9.2 ADDITIONAL RESULTS

We present additional results for graph encoder
analysis. Tables 9–19 present additional results
on more graph properties, as well as experiments
on tree-structured graphs of size 15. In general,
complete graph populations demonstrate signif-
icantly better performance than trees – we can
attribute that to the fact that GraphToken was
trained on diverse sets of data, and trees are somewhat out-of-distribution. Nevertheless, for all
considered cases the best overall encoder model achieved better results than naı̈ve set encodings.

Table 9: Average local clustering coefficient MSE measured on all connected graphs with 8 nodes.
We highlight the best performance per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 1.62 1.67 2.12 4.49 4.49 1.73 4.49 16.57 3.75

GIN 2.18 2.29 2.45 2.60 2.44 2.31 3.73 2.88 3.37
MPNN 1.03 0.95 1.38 0.81 1.50 1.34 1.68 1.87 1.47
HGT 2.63 2.25 2.08 1.23 2.49 2.17 1.90 1.62 2.52
MHA 2.69 1.01 1.23 0.96 1.56 1.25 2.08 1.59 1.29

L
in

ea
r Node Set 2.59 2.56 2.59 2.59 2.58 2.60 2.58 2.58 2.56

Edge Set 2.22 2.22 2.22 2.22 2.24 2.23 2.22 2.22 2.23

Table 10: Degree accuracy on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 57.46 56.65 52.46 40.09 40.09 57.42 40.09 15.73 40.26

GIN 56.86 56.30 54.55 48.75 55.59 57.56 40.14 50.81 44.83
MPNN 69.45 69.60 67.19 71.84 64.56 67.62 61.37 58.66 63.18
HGT 55.20 55.70 56.54 60.17 56.62 57.65 58.02 59.06 55.46
MHA 54.86 64.33 62.86 65.63 61.67 63.22 56.98 61.60 63.97

L
in

ea
r Node Set 54.66 54.91 54.98 55.06 54.78 54.64 54.50 54.94 54.72

Edge Set 63.48 63.37 63.07 63.55 63.08 63.37 63.47 63.06 63.44
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Table 11: Diameter Accuracy on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 66.86 67.81 66.70 37.37 37.37 68.91 37.37 52.13 55.13

GIN 66.06 64.87 63.97 61.09 64.98 66.43 37.80 60.65 54.82
MPNN 76.92 76.86 73.63 78.33 74.78 77.18 74.42 69.56 76.23
HGT 63.97 65.24 66.88 70.45 65.30 68.45 69.64 68.97 66.04
MHA 63.76 74.17 76.00 74.03 73.50 74.71 68.45 69.32 72.95

L
in

ea
r Node Set 67.28 67.24 67.01 66.97 66.81 67.19 67.09 66.87 66.79

Edge Set 66.99 66.51 66.63 66.83 66.65 67.02 66.60 66.93 66.90

Table 12: k-Core Accuracy on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 69.49 69.15 66.61 58.33 58.33 69.16 58.33 25.18 61.55

GIN 68.03 65.98 64.85 62.67 66.74 67.84 58.84 63.34 59.08
MPNN 87.42 87.54 81.81 88.63 80.30 83.48 80.08 71.01 82.05
HGT 63.92 65.29 67.00 70.01 65.44 67.32 68.35 70.08 65.13
MHA 64.30 80.80 73.49 80.81 76.98 78.83 69.43 74.21 75.92

L
in

ea
r Node Set 68.23 68.74 68.50 68.71 68.07 67.99 68.85 68.17 68.70

Edge Set 66.30 65.78 65.58 66.15 65.76 65.91 65.94 65.77 65.71

Table 13: #edges Accuracy on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 38.91 39.19 35.94 11.60 11.60 40.24 11.60 2.19 14.58

GIN 38.13 37.33 36.57 31.66 37.74 38.34 11.88 31.45 25.92
MPNN 86.58 86.72 53.15 84.56 52.12 66.01 50.70 41.96 59.95
HGT 35.63 37.45 38.23 40.39 37.14 37.80 39.68 39.74 36.86
MHA 35.85 55.32 45.04 53.52 47.89 49.44 39.69 42.84 46.17

L
in

ea
r Node Set 40.06 40.14 39.40 40.15 39.97 39.72 39.88 39.79 39.89

Edge Set 37.93 38.11 38.05 37.92 38.05 37.67 37.64 37.82 37.91

Table 14: Planarity AUC on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 74.18 73.76 72.61 50.00 50.00 74.74 50.00 50.00 49.44

GIN 77.35 73.00 72.06 69.37 74.86 75.85 50.73 68.97 61.58
MPNN 86.14 86.52 84.16 86.64 83.74 85.17 84.32 77.84 85.55
HGT 69.24 71.41 71.02 74.07 71.47 72.20 72.20 73.59 71.55
MHA 69.96 80.87 78.35 80.46 81.53 81.21 74.98 78.29 80.58

L
in

ea
r Node Set 78.41 78.76 78.86 78.82 78.18 78.54 78.72 78.76 78.78

Edge Set 72.17 71.64 72.06 72.20 71.93 72.11 72.01 72.27 72.01

Table 15: Shortest path MSE on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 2.27 2.24 2.31 6.07 6.07 2.06 6.07 11.09 3.75

GIN 2.57 2.77 2.83 2.93 2.52 2.54 4.84 3.09 3.61
MPNN 0.29 0.29 0.76 0.31 0.71 0.49 0.75 1.58 0.51
HGT 3.03 2.64 2.27 1.60 2.60 2.14 1.80 1.95 2.81
MHA 3.04 0.71 0.95 0.78 1.01 0.74 1.74 1.55 1.05

L
in

ea
r Node Set 2.35 2.35 2.35 2.36 2.36 2.35 2.34 2.36 2.34

Edge Set 2.99 2.99 2.99 2.99 2.97 2.97 2.99 2.99 2.99
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Table 16: # of triangles MSE on all connected graphs with 8 nodes. We highlight the best performance
per training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 132.94 129.03 164.53 316.07 316.07 127.17 316.07 690.03 293.53

GIN 152.13 168.35 182.95 201.64 169.71 156.16 251.23 200.45 251.65
MPNN 8.33 7.51 32.08 4.56 51.90 27.18 51.04 124.89 41.73
HGT 191.14 170.71 165.88 126.92 172.84 160.29 156.10 136.22 175.45
MHA 197.36 30.27 96.56 27.10 59.58 52.42 138.48 80.22 60.72

L
in

ea
r Node Set 167.81 168.72 167.33 167.40 167.90 167.96 168.57 169.38 166.13

Edge Set 181.44 181.21 181.18 181.32 180.86 179.44 181.08 181.68 181.40

Table 17: Degree Accuracy on all trees with 15 nodes. We highlight the best performance per training
task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 53.57 55.15 55.24 25.91 25.91 54.86 25.91 11.08 36.51

GIN 60.35 58.79 56.36 55.11 59.88 68.04 42.01 66.72 55.25
MPNN 79.37 78.36 59.18 72.35 62.38 65.90 57.37 57.33 58.45
HGT 54.88 55.33 55.34 58.65 54.33 58.84 57.27 57.43 55.34
MHA 59.17 61.61 60.38 57.18 54.99 61.00 52.29 58.56 53.95

L
in

ea
r Node Set 65.64 66.32 65.93 66.10 66.13 65.95 66.28 66.22 65.82

Edge Set 69.59 69.87 69.44 69.40 69.86 69.56 69.32 69.55 69.66

Table 18: Diameter Accuracy on all trees with 15 nodes. We highlight the best performance per
training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 50.77 50.36 49.54 25.97 25.97 50.01 25.97 6.77 26.64

GIN 58.29 54.44 52.24 49.41 51.47 59.62 24.11 58.77 46.27
MPNN 54.24 54.68 54.97 59.29 67.65 63.80 54.13 52.05 59.48
HGT 57.15 54.88 54.90 57.58 57.05 65.22 54.51 58.70 53.07
MHA 53.95 56.63 60.41 54.62 53.39 56.07 52.85 55.17 51.70

L
in

ea
r Node Set 61.89 62.68 62.74 62.36 61.99 61.93 62.34 62.49 62.40

Edge Set 56.57 56.19 56.27 56.83 56.25 56.53 56.31 56.72 56.84

Table 19: Shortest path MSE on all trees with 15 nodes. We highlight the best performance per
training task in columns.

Original GraphToken Encoder Training Task:

Method Node count Edge count Cycle check Triangle counting Node degree Connected nodes Reachability Edge existence Shortest path

N
on

-l
in

ea
r GCN 12.95 12.31 12.62 26.17 26.17 12.22 26.17 49.78 21.71

GIN 9.57 10.69 11.32 11.88 11.03 8.37 19.35 9.76 14.39
MPNN 4.19 4.54 9.82 4.92 6.87 6.10 11.06 12.10 11.01
HGT 10.57 10.96 11.65 9.09 12.56 8.17 10.76 9.26 10.98
MHA 10.49 9.88 9.51 11.22 12.75 10.52 13.31 10.09 12.78

L
in

ea
r Node Set 10.20 10.05 10.13 10.11 10.17 10.21 10.07 10.18 10.03

Edge Set 9.92 9.87 9.92 9.93 9.88 9.88 10.01 9.91 9.87
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