
Is Value Learning Really
the Main Bottleneck in Offline RL?

Seohong Park1 Kevin Frans1 Sergey Levine1 Aviral Kumar2
1University of California, Berkeley 2Google DeepMind

seohong@berkeley.edu

Abstract
While imitation learning requires access to high-quality data, offline reinforcement
learning (RL) should, in principle, perform similarly or better with substantially
lower data quality. However, current results indicate that offline RL often performs
worse than imitation learning, and it is often unclear what holds back the perfor-
mance of offline RL. In this work, we aim to understand bottlenecks in current
offline RL algorithms. While the worse performance of offline RL is typically at-
tributed to an imperfect value function, we ask: is the main bottleneck of offline RL
indeed in learning the value function, the policy, or something else? To answer this
question, we perform a systematic empirical study of (1) value learning, (2) policy
extraction, and (3) policy generalization in offline RL problems from the lens of
“data-scaling” properties of each component, analyzing how these components af-
fect performance. We make two surprising observations. First, the choice of a pol-
icy extraction algorithm affects the performance and scalability of offline RL sig-
nificantly, often more so than its underlying value learning objective. For instance,
widely used value-weighted regression objectives (e.g., AWR) are not able to fully
leverage the learned value function, and switching to behavior-regularized policy
gradient objectives (e.g., DDPG+BC) often leads to substantial improvements in
performance and scaling behaviors. Second, the suboptimal performance of offline
RL is often due to imperfect policy generalization on test-time states out of the sup-
port of the training data, rather than the policy accuracy on in-distribution states.
While most current offline RL algorithms do not explicitly address this, we show
that the use of suboptimal but high-coverage data or on-the-fly policy extraction
techniques can be effective in addressing the policy generalization issue in practice.

1 Introduction
Data-driven approaches that convert offline datasets of past experience into policies are a predomi-
nant approach for solving control problems in several domains [9, 46, 48]. Primarily, there are two
paradigms for learning policies from offline data: imitation learning and offline reinforcement learn-
ing (RL). While imitation requires access to high-quality demonstration data, offline RL loosens this
requirement and can learn effective policies even from suboptimal data, which makes offline RL
preferable to imitation learning in theory. However, recent results often show that tuning imitation
learning by collecting more expert data often outperforms offline RL even when provided with suffi-
cient data in practice [35, 45], and it is often unclear what holds back the performance of offline RL.

The primary difference between offline RL and imitation learning is the use of a value function, which
is absent in imitation learning. The value function drives the learning progress of offline RL methods,
enabling them to learn from suboptimal data. Value functions are typically trained via temporal-
difference (TD) learning, which presents convergence [37, 52] and representational [26, 28, 53]
pathologies. This has led to the conventional wisdom that the gap between offline RL and imitation is
a direct consequence of poor value learning [25, 32, 35]. Following up on this conventional wisdom,
much recent research in the community has been devoted towards improving the value function quality
of offline RL algorithms [1, 11, 14, 18, 24, 25]. While improving value functions will definitely
help improve performance, we question whether this is indeed the best way to maximally improve
the performance of offline RL, or if there is still headroom to get offline RL to perform better even
with current value learning techniques. More concretely, given an offline RL problem, we ask: is

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

the bottleneck in learning the value function, the policy, or something else? What is the best way to
improve performance given the bottleneck?

We answer these questions via an empirical study. By construction, there are three potential factors that
could bottleneck an offline RL algorithm: (B1) imperfect value function estimation, (B2) imperfect
policy extraction guided by the learned value function, and (B3) imperfect policy generalization to
states that it will visit during evaluation. While all of these contribute in some way to the performance
of offline RL, we wish to identify how each of these factors interact in a given scenario and develop
ways to improve them. To understand the effect of these factors, we use data size, quality, and
coverage as levers for systematically controlling their impacts, and study the “data-scaling” properties,
i.e., how data quality, coverage, and quantity affect these three aspects of the offline RL algorithm, for
three value learning methods and three policy extraction methods on diverse types of environments.

Through our analysis, we make two surprising observations, which naturally provide actionable
advice for both domain-specific practitioners and future algorithm development in offline RL. First,
even when value function learning is not perfect, we find that the choice of policy extraction algorithm
often has a larger impact on performance, despite the policy being subordinate to the value function
in theory. This is striking, given that policy extraction often tends to be an afterthought in the
design of value-based offline RL algorithms. Specifically, we find that behavior-regularized policy
gradient (e.g., DDPG+BC [14]) almost always leads to much better performance and favorable data
scaling than other widely used methods like value-weighted regression (e.g., AWR [43, 44, 55]).
This means that the policy extraction objective is often a significant bottleneck in offline RL, and
with an appropriate choice of a policy extraction objective, we observe a favorable and consistent
performance increase even for the same value function.

Second, we find that existing offline RL algorithms are often heavily bottlenecked by how well the
policy generalizes on test-time states, rather than how optimal the policy is on the dataset state distri-
bution. This provides a different perspective on offline RL, contrasting with the previous main focus
on pessimism and behavioral regularization. However, no amount of policy training on dataset states
or improvement to offline RL value learning objectives could address this in general, without addi-
tional assumptions. Nonetheless, we find that committing to using suboptimal but high-coverage data
or continually adapting the policy within the course of a test-time rollout can improve this generaliza-
tion bottleneck in practice. In particular, we develop two schemes for such test-time policy adaptation
and find them to both be performant. This means that training value functions on high-coverage
data can help improve the performance of offline RL methods at test time, and it can also be further
improved if value functions are utilized in conjunction with the policy during evaluation rollouts.

Our main contributions are an analysis of the bottlenecks in offline RL as evaluated via data-scaling
properties of various algorithmic choices. Contrary to the conventional belief that value learning is
the bottleneck of offline RL algorithms, we find that the performance is often limited by the choice of
policy extraction objective and the degree to which the policy generalizes at test time. This suggests
that, with an appropriate policy extraction procedure (i.e., regularized policy gradients and not value-
weighted imitation learning) and an appropriate recipe for handling policy generalization (e.g., test-
time training with the value function), collecting more high-coverage data to train a value function is
a universally better recipe to improve offline RL performance whenever the practitioner has access to
collecting some new data for learning. These results also imply that more research should be done in
developing policy learning recipes that can effectively translate improvements in value learning into
performant offline RL policies.

2 Related work
Offline reinforcement learning [30, 32] aims to learn a policy solely from previously collected data.
The central challenge of offline RL is to deal with the distributional shift in the state-action distri-
butions of the dataset and the learned policy, which could lead to catastrophic value overestimation
when not adequately addressed [32]. To prevent such failure, previous works in offline RL have
proposed a number of techniques to estimate value functions solely from offline data, based on con-
servatism [8, 25], out-of-distribution penalization [14, 50, 56], in-sample maximization [16, 24, 58],
uncertainty minimization [1, 18, 57], convex duality [31, 38, 47], or contrastive learning [11]. Then,
these methods train policies to maximize the learned value function, which is typically done by
behavior-regularized policy gradients (e.g., DDPG+BC) [14, 33], weighted behavioral cloning (e.g.,
AWR) [43, 44], or sampling-based action selection (e.g., SfBC) [7, 15, 20]. Depending on the al-
gorithm, these value learning and policy extraction stages can be either interleaved [14, 25, 39] or
decoupled [5, 11, 16, 24]. While numerous methods have been proposed so far, relatively few works

2

have aimed to analyze and understand the practical challenges in offline RL. Instead of proposing a
new algorithm, we mainly aim to understand the current bottlenecks in offline RL via a comprehen-
sive analysis of existing techniques.

Several prior works have analyzed individual components of offline RL or imitation learning algo-
rithms: value bootstrapping [14, 15], representation learning [26, 28, 59], data quality [4], differences
between RL and behavioral cloning (BC) [27], and performance [10, 22, 34, 35, 51]. Our goal is
distinct from this line of work: our goal is to analyze the bottlenecks in offline RL performance from
a holistic perspective, comparing value function learning, policy extraction, and generalization. That
is, our goal is not to diagnose pathologies with one of these components, but to understand how these
components interact with each other, and how a practitioner could extract the most by improving one
or more of them. Perhaps the closest study to ours is Fu et al. [13], which study whether representa-
tions, value accuracy, or policy accuracy can explain the performance of offline RL. They also find
that combining IQL [24] with a TD3+BC-style policy extraction objective [14] improves performance.
While this study makes insightful observations about the potential relationships between some met-
rics and performance, it is limited to D4RL locomotion tasks [12], and does not study data-scaling
properties nor policy generalization, which we find to be one of the most substantial yet overlooked
bottlenecks in offline RL. In contrast, we conduct a large-scale analysis on diverse environments (e.g.,
pixel-based, goal-conditioned, manipulation) and analyze the bottlenecks in offline RL with the aim
of providing actionable takeaways that can enhance the performance and scalability of offline RL.

3 Research hypothesis
Our primary goal is to understand when and how the performance of offline RL can be bottlenecked
in practice. As discussed earlier, there exist three potential factors that could bottleneck an offline
RL algorithm: (B1) imperfect value function estimation from data, (B2) imperfect policy extraction
from the learned value function, and (B3) imperfect policy generalization on the test-time states
that the policy visits at the evaluation time. We note that the bottleneck of an offline RL algorithm
under a certain dataset can always be attributed to one or some of these factors, since the policy
will attain optimal performance if both value learning and policy extraction are perfect, with perfect
generalization to test-time states.

Our main research hypothesis in this work is that, somewhat contrary to the prior belief that the
accuracy of the value function is the primary factor limiting performance of offline RL methods,
policy learning is often the main bottleneck of offline RL. In other words, while value function
accuracy is certainly important, how the policy is extracted from the value function (B2) and how
well the policy generalizes on states that it visits at the deployment time (B3) are often the main
factors that significantly affect both performance and scalability in many problems. To verify this
hypothesis, we conduct two main analyses in this paper. In Section 4, we compare the effects of
value learning and policy extraction on performance under various types of environments, datasets,
and algorithms (B1 and B2). In Section 5, we analyze the degree to which the policy generalizes on
test-time states affects performance (B3).

4 Empirical analysis 1: Is it the value or the policy? (B1 and B2)
We first perform controlled experiments to identify whether imperfect value functions (B1) or
imperfect policy extraction (B2) contribute more to holding back the performance of offline RL in
practice. To systematically compare value learning and policy extraction, we run different algorithms
while varying the the amounts of data for value function training and policy extraction, and draw
data-scaling matrices to visualize the aggregate results. Increasing the amount of data provides
a convenient lever to control the effect of each component, enabling us to draw conclusions about
whether the value or the policy serves as a bigger bottleneck in different regimes when different
amounts of training data are available, and to understand the differences between various algorithms.

To clearly dissect value learning from policy learning, in this section, we focus on offline RL methods
with decoupled value and policy training phases (e.g., One-step RL [5], IQL [24], CRL [11], etc.),
where policy learning does not affect value learning, i.e., methods that first train a value function
without involving policies, and then extract a policy from the learned value function with a separate
objective. While this might sound a bit restrictive, we surprisingly find that policy learning is often
the main bottleneck even in these decoupled methods, which attempt to solve a simple, single-step
optimization problem for extracting a policy given a static and stationary value function.

3

4.1 Analysis setup
We now introduce the value learning objectives, policy extraction objectives, and environments that
we study in our analysis (see Appendix B for preliminaries).

Value learning objectives. We consider three decoupled value learning objectives that fit value
functions without involving policy learning: (1) implicit Q-learning (IQL) [24], (2) SARSA [5], and
(3) contrastive RL (CRL) [11]. IQL fits an optimal Q function (Q∗) by approximating the Bellman
optimality operator with an expectile loss. SARSA fits a behavioral Q function (Qβ) using the Bellman
evaluation operator. In goal-conditioned tasks, we employ CRL instead of SARSA, which similarly
fits a behavioral Q function, but with a different contrastive learning-based objective that leads to better
performance. We refer to Appendix D.1 for detailed descriptions of these value learning methods.

Policy extraction objectives. Prior works in offline RL typically use one of the following objectives
to extract a policy from the value function. All of them are built upon the same principle: maximizing
values while being close to the behavioral policy, to avoid the exploitation of erroneous critic values.

• (1) Weighted behavioral cloning (e.g., AWR). Weighted behavioral cloning is one of the most
widely used offline policy extraction objectives for its simplicity [24, 39, 41, 43, 44, 55]. Among
weighted behavioral cloning methods, we consider advantage-weighted regression (AWR [43, 44])
in this work, which maximizes the following objective:

max
π
JAWR(π) = Es,a∼D[e

α(Q(s,a)−V (s)) log π(a | s)], (1)

where α is an (inverse) temperature hyperparameter. Intuitively, AWR assigns larger weights to
higher-advantage transitions when cloning behaviors, which makes the policy selectively copy
only good actions from the dataset.

• (2) Behavior-constrained policy gradient (e.g., DDPG+BC). Another popular policy extraction
objective is behavior-constrained policy gradient, which directly maximizes Q values while not de-
viating far away from the behavioral policy [1, 14, 18, 25, 56]. In this work, we consider the objec-
tive that combines deep deterministic policy gradients and behavioral cloning (DDPG+BC [14]):

max
π
JDDPG(π) = Es,a∼D[Q(s, µπ(s)) + α log π(a | s)], (2)

where µπ(s) = Ea∼π(·|s)[a] and α is a hyperparameter that controls the strength of the BC regu-
larizer. This objective is equivalent to Q maximization regularized by the forward KL divergence.

• (3) Sampling-based action selection (e.g., SfBC). Instead of learning an explicit policy, some
previous methods implicitly define a policy as the action with the highest value among action
samples from the behavioral policy [7, 15, 17, 20]. In this work, we consider the following
objective that selects the argmax action from behavioral candidates (SfBC [7]):

π(· | s) = argmax
a∈{a1,...,aN}

[Q(s, a)], (3)

where a1, . . . , aN are sampled from the learned BC policy πβ(a | s) [7, 20].

Environments and datasets. To understand how different value learning and policy extraction ob-
jectives affect performance and data scalability, we consider eight environments (Figure 9) across
state- and pixel-based, robotic locomotion and manipulation, and goal-conditioned and single-task
settings with varying levels of data suboptimality: (1) gc-antmaze-large, (2) antmaze-large, (3)
d4rl-hopper, (4) d4rl-walker2d, (5) exorl-walker, (6) exorl-cheetah, (7) kitchen, and
(8) gc-roboverse. We highlight some features of these tasks: exorl-{walker, cheetah} are
tasks with highly suboptimal, diverse datasets collected by exploratory policies, gc-antmaze-large
and gc-roboverse are goal-conditioned (‘gc-’) tasks, and gc-roboverse is a pixel-based robotic
manipulation task with a 48 × 48 × 3-dimensional observation space. For some tasks (e.g.,
gc-antmaze-large and kitchen), we additionally collect data to enhance dataset sizes to depict
scaling properties clearly. We refer to Appendix D.2 for the complete task descriptions.

4.2 Results
Figure 1 shows the data-scaling matrices of three policy extraction algorithms (AWR, DDPG+BC,
and SfBC) and three value learning algorithms (IQL and {SARSA or CRL}) on eight environments,
aggregated from a total of 7744 runs (4 seeds for each cell). In each matrix, we individually tune the
hyperparameter for policy extraction (α or N) for each entry. These matrices show how performance
varies with different amounts of data for the value and the policy. In our analysis, we specifically

4

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

22 28 27 30

55 57 58 63

55 54 64 67

59 57 64 62

IQL + AWR

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

55 57 56 56

55 59 58 60

50 56 64 66

55 68 64 57

IQL + DDPG

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

28 36 45 47

50 61 63 60

56 64 70 63

67 73 72 70

IQL + SfBC

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

1 1 0 1

35 41 38 42

46 48 57 58

53 58 58 78

CRL + AWR

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

3 6 19 39

52 53 55 77

62 73 78 85

73 83 88 88

CRL + DDPG

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 2 2 19

36 45 55 61

67 68 78 70

77 75 79 83

CRL + SfBC

gc-antmaze-large

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 1

5 10 17

10 25 40

IQL + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

4 10 28

2 14 49

0 5 53

IQL + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 28 23

4 29 48

2 50 42

IQL + SfBC

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 0

0 0 0

0 0 0

SARSA + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

SARSA + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

SARSA + SfBC

antmaze-large

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

50 53 54

52 56 56

53 53 54

IQL + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

50 49 51

53 53 51

60 53 51

IQL + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

42 42 43

43 40 40

43 42 48

IQL + SfBC

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

52 54 56

56 57 58

56 60 60

SARSA + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

56 57 60

65 61 66

57 61 67

SARSA + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

48 53 56

47 51 54

42 53 49

SARSA + SfBC

d4rl-hopper

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

66 68 74

71 74 77

73 76 78

IQL + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

76 80 82

80 79 85

79 80 85

IQL + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

60 66 78

58 69 80

59 68 79

IQL + SfBC

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

70 79 82

75 79 83

77 82 83

SARSA + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

80 84 85

83 84 85

81 86 85

SARSA + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

74 84 85

74 84 85

73 84 86

SARSA + SfBC

d4rl-walker2d

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

76 78 81 86

82 85 90 100

88 91 97 125

97 99 114 192

IQL + AWR

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 93 125 198

85 143 223 352

94 144 252 391

96 140 247 418

IQL + DDPG

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

75 76 83 96

85 89 115 252

88 95 138 338

88 97 154 366

IQL + SfBC

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

76 76 79 82

83 84 89 96

90 91 98 114

97 98 114 148

SARSA + AWR

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 95 183 260

86 157 242 302

94 149 255 346

98 128 266 348

SARSA + DDPG

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

75 77 87 105

85 90 122 194

87 96 144 242

89 101 156 258

SARSA + SfBC

exorl-walker

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

35 41 57 63

36 45 73 88

44 56 85 117

42 78 115 157

IQL + AWR

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

24 46 73 148

23 66 105 203

25 88 134 236

17 51 143 242

IQL + DDPG

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

32 35 43 62

38 48 71 136

41 51 104 187

36 57 109 200

IQL + SfBC

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

37 44 52 56

59 54 68 79

73 74 87 106

96 101 121 154

SARSA + AWR

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

73 52 88 157

88 102 128 183

95 128 150 222

99 127 162 251

SARSA + DDPG

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

38 40 44 62

50 58 75 118

71 79 108 186

78 83 113 218

SARSA + SfBC

exorl-cheetah

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

42 50 70

80 92 94

96 98 98

IQL + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

64 68 80

80 94 98

92 98 99

IQL + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

55 61 78

69 82 91

66 78 89

IQL + SfBC

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

40 48 68

77 94 95

97 97 99

SARSA + AWR

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

59 68 80

72 94 97

82 99 97

SARSA + DDPG

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

54 62 76

70 80 93

64 74 91

SARSA + SfBC

kitchen

0.1M 1M
Value Data

0.1M

1M

P
o
li
cy

D
a
ta

17 14

30 27

IQL + AWR

0.1M 1M
Value Data

0.1M

1M

14 17

22 23

IQL + DDPG

0.1M 1M
Value Data

0.1M

1M

8 11

17 21

IQL + SfBC

0.1M 1M
Value Data

0.1M

1M

P
o
li
cy

D
a
ta

9 6

23 18

CRL + AWR

0.1M 1M
Value Data

0.1M

1M

9 7

22 25

CRL + DDPG

0.1M 1M
Value Data

0.1M

1M

9 8

22 22

CRL + SfBC

gc-roboverse

Figure 1: Data-scaling matrices of three policy extraction methods (AWR, DDPG+BC, and SfBC) and
three value learning methods (IQL and {SARSA or CRL}). To see whether the value or the policy imposes a
bigger bottleneck, we measure performance with varying amounts of data for the value and the policy. The color
gradients (, ,) of these matrices reveal how the performance of offline RL is bottlenecked in each setting.

focus on the color gradients of these matrices, which reveal how the performance of offline RL
is bottlenecked in each setting. Note that the color gradients are mostly either vertical, horizontal,
or diagonal. Vertical () color gradients (e.g., IQL+AWR on gc-antmaze-large) indicate that
the performance is most strongly affected by the amount of policy data, horizontal () gradients
(e.g., IQL+SfBC on d4rl-walker2d) indicate it is mostly affected by value data, and diagonal ()
gradients (e.g., IQL+DDPG+BC on exorl-walker) indicate both.

Side-by-side comparisons of the data-scaling matrices from different policy extraction methods in
Figure 1 suggest that, perhaps surprisingly, different policy extraction algorithms often lead to
significantly different performance and data-scaling behaviors, even though they extract policies
from the same value functions (recall that the use of decoupled algorithms allows us to train a single
value function, but use it for policy extraction in different ways). For example, on exorl-walker and
exorl-cheetah, AWR performs remarkably poorly compared to DDPG+BC or SfBC on both value
learning algorithms. Such a performance gap between policy extraction algorithms exists even when
the value function is far from perfect, as can be seen in the low-data regimes in gc-antmaze-large
and kitchen. In general, we find that the choice of policy extraction procedure affects performance
often more than the choice of value learning objective except antmaze-large, where the value
function must be learned from sparse-reward, suboptimal datasets with long-horizon trajectories.

Among policy extraction algorithms, we find that DDPG+BC almost always achieves the best
performance and scaling behaviors across the board, followed by SfBC, and the performance of
AWR falls significantly behind the other two extraction algorithms in many cases. Notably, the data-
scaling matrices of AWR always have vertical () or diagonal () color gradients, implicitly implying
that it does not fully utilize the value function (see Section 4.3 for clearer evidence). In other words, a
non-careful choice of the policy extraction algorithm (e.g., weighted behavioral cloning) hinders the
use of learned value functions, imposing an unnecessary bottleneck on the performance of offline RL.

4.3 Deep dive 1: How different are the scaling properties of AWR and DDPG+BC?
To gain further insights into the difference between value-weighted behavioral cloning (e.g., AWR)
and behavior-regularized policy gradients (e.g., DDPG+BC), we draw data-scaling matrices with

5

BC RL

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

1 1 1 1

36 36 31 30

26 38 41 32

49 56 54 38

AWR (Æ = 0.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

10 8 4 9

44 46 42 39

37 42 38 35

42 26 31 34

AWR (Æ = 1.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

22 28 27 30

52 57 52 54

55 54 64 67

59 55 64 62

AWR (Æ = 3.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

17 21 26 27

55 52 58 63

55 52 62 63

50 57 63 52

AWR (Æ = 10.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

25 17 18 16

54 49 53 60

35 39 42 45

55 68 52 50

DDPG (Æ = 3.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

55 57 56 56

55 59 58 59

50 56 54 66

54 64 64 57

DDPG (Æ = 1.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

17 34 49 52

13 50 54 38

16 49 64 48

13 51 54 53

DDPG (Æ = 0.3)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 12 10 2

0 7 9 5

0 9 14 9

0 6 14 11

DDPG (Æ = 0.1)

gc-antmaze-large (IQL)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

73 73 73 73

81 82 80 82

87 88 87 87

89 89 88 89

AWR (Æ = 0.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

73 73 73 74

82 82 83 84

88 90 91 96

94 99 108 112

AWR (Æ = 1.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 78 81 86

82 85 90 100

88 90 97 125

97 98 114 192

AWR (Æ = 10.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 76 80 83

82 84 89 96

88 91 97 119

94 99 112 170

AWR (Æ = 100.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

76 77 83 81

85 92 102 103

94 106 134 153

96 113 206 266

DDPG (Æ = 1.0)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

60 65 79 94

75 100 138 243

77 118 210 367

65 123 247 390

DDPG (Æ = 0.1)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

57 76 106 143

76 119 168 283

75 127 227 391

53 123 240 418

DDPG (Æ = 0.01)

0.1M 0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

69 93 125 198

82 143 223 352

86 144 252 381

75 140 235 399

DDPG (Æ = 0.0)

exorl-walker (IQL)

BC RL

Figure 2: Data-scaling matrices of AWR and DDPG+BC with different BC strengths (α). In
gc-antmaze-large, AWR is always policy-bounded (), but DDPG+BC has both policy-bounded () and
value-bounded () modes, depending on the value of α. Notably, an in-between value (α = 1.0) of DDPG+BC
leads to the best of both worlds (see the bottom left corner of gc-antmaze-large with 0.1M datasets)!

different values of α (in Equations (1) and (2)), a hyperparameter that interpolates between RL and BC.
Note that α = 0 corresponds to BC in AWR and α =∞ corresponds to BC in DDPG+BC. We recall
that the previous results (Figure 1) use the best temperature for each matrix entry (i.e., aggregated by
the maximum over temperatures), but here we show the full results with individual hyperparameters.

Figure 2 highlights the results on gc-antmaze-large and exorl-walker (see Appendix E for the
full results). The results on gc-antmaze-large show a clear difference in scaling matrices between
AWR and DDPG+BC. That is, AWR is always policy-bounded regardless of the BC strength α (i.e.,
vertical () color gradients), whereas DDPG+BC has two “modes”: it is policy-bounded () when α
is large, and value-bounded () and when α is small. Intriguingly, an in-between value of α = 1.0
in DDPG+BC enables having the best of both worlds, significantly boosting performances across
the entire matrix (note that it achieves very strong performance even with a 0.1M-sized dataset)!
This difference in scaling behaviors suggests that the use of the learned value function in weighted
behavioral cloning is limited. This becomes more evident in exorl-walker (Figure 2), where AWR
fails to achieve strong performance even with a very high temperature value (α = 100).

4.4 Deep dive 2: Why is DDPG+BC better than AWR?

−1 0 1
Dimension 1

−1

0

1

D
im

en
si

on
2

AWR

−1 0 1
Dimension 1

−1

0

1
DDPG+BC

Figure 3: AWR vs. DDPG actions.

0 500K 1M
0

10

P
ol

ic
y

L
os

s

AWR (Æ = 0.0)

0 500K 1M
0

50

AWR (Æ = 3.0)

0 500K 1M
Gradient Steps

0

50

P
ol

ic
y

L
os

s

DDPG (Æ = 3.0)

0 500K 1M
Gradient Steps

0

20

40

DDPG (Æ = 0.3)

°0.04 °0.02 0.00 0.02 0.04
x

°0.04

°0.02

0.00

0.02

0.04

y

Training Validation

Figure 4: AWR overfits.

We have so far seen several empirical results that suggest
DDPG+BC should be preferred to AWR in any cases. What
makes DDPG+BC so much better than AWR? There are three
potential reasons.

First, AWR only has a mode-covering weighted behavioral
cloning term, while DDPG+BC has both mode-seeking first-order
value maximization and mode-covering behavioral cloning terms.
As a result, actions learned by AWR always lie within the con-
vex hull of dataset actions, whereas DDPG+BC can “hillclimb”
the learned value function, even allowing extrapolation to some
degree while not deviating too far away from the mode. This not
only enables a better use of the value function but yields poten-
tially more optimal actions. To illustrate this, we plot test-time
action sampled from policies learned by AWR and DDPG+BC
on exorl-walker. Figure 3 shows that AWR actions are rela-
tively centered around the origin, while DDPG+BC actions are
more spread out and thus potentially have high optimality.

Second, value-weighted behavioral cloning uses a much smaller
number of effective samples than behavior-regularized policy
gradient methods, especially when the temperature (α) is large.
This is because a small number of high-advantage transitions can
potentially dominate the learning signals of AWR (e.g., a single
transition with a weight of e10 can dominate other transitions with smaller weights like e2). As a
result, AWR effectively uses only a fraction of datapoints for policy learning, being susceptible to
overfitting. On the other hand, DDPG+BC is based on first-order maximization of the value function
without any weighting, and thus is free from this issue. Figure 4 illustrates this, where we compare

6

the training and validation policy losses of AWR and DDPG+BC on gc-antmaze-large with the
smallest 0.1M dataset (8 seeds). The results show that AWR with a large temperature (α = 3.0)
causes severe overfitting. Indeed, Figure 1 shows DDPG+BC often achieves significantly better
performance than AWR in low-data regimes.

Third, AWR has a theoretical pathology in the regime with limited samples: since the coefficient in
front of log π(a | s) in the AWR objective (Equation (1)) is always positive, AWR can increase the
likelihood of all dataset actions, regardless of their optimality. If the training dataset has covered all
possible actions, then the condition for normalization of the probability density function of π(a | s)
would have alleviated this concern, but this condition is rarely achieved in practice. Under limited
data coverage, and especially when the policy network is highly expressive and dataset states are
unique (e.g., continuous control problems), AWR can in theory memorize all state-action pairs in the
dataset, potentially reverting to unweighted behavioral cloning.

Takeaway: Policy extraction can inhibit the complete use of the value function

Do not use value-weighted behavior cloning (e.g., AWR); always use behavior-constrained
policy gradient (e.g., DDPG+BC), regardless of the value learning objective. This enables
better scaling of performance with more data and better use of the value function.

5 Empirical analysis 2: Policy generalization (B3)
We now turn our focus to the third hypothesis, that policy generalization to states that the policy
visits at the evaluation time has a significant impact on performance. This is a unique bottleneck to
the offline RL problem setting, where the agent encounters new, potentially out-of-distribution states
at test time. To measure policy accuracy, we first define three key metrics quantifying a notion of
accuracy of the policy in terms of the mean squared error (MSE) against the optimal policy:

(Training MSE) = Es∼Dtrain
[(π(s)− π∗(s))2], (4)

(Validation MSE) = Es∼Dval
[(π(s)− π∗(s))2], (5)

(Evaluation MSE) = Es∼pπ(s) [(π(s)− π∗(s))2], (6)

where Dtrain and Dval respectively denote the training and validation datasets, π∗ denotes an optimal
policy, that we assume access to for evaluation and visualization purposes only. We assume that
the policies π, π∗ : S → A are deterministic for simplicity. Validation MSE measures the policy
accuracy on states sampled from the same dataset distribution as the training distribution (i.e., in-
distribution MSE), while evaluation MSE measures the policy accuracy on states the agent visits at
test time, which can potentially be very different from the dataset distribution (i.e., out-of-distribution
MSE). We note that, while these metrics might not always be perfectly indicative of policy accuracy
(see Appendix A for limitations), they often serve as convenient proxies to estimate policy accuracy
in many continuous-control domains in practice.

One way to measure the degree to which test-time policy generalization affects performance is to
see how various policy MSE metrics evolve and correlate with performance after further training the
agent on data sampled from the test-time distribution, which serves as one of the ideal distributions
to improve performance. Hence, we measure the three types of MSEs in the offline-to-online RL
setting, in which we observe how these MSEs improve over time with additional online interaction
data. Specifically, we train offline-to-online IQL agents on six D4RL [12] tasks (antmaze-{medium,
large}, kitchen, and adroit-{pen, hammer, door}), and measure the MSEs with pre-trained
expert policies that approximate π∗ (see Appendix D.4).

Results. Figure 5 shows the results (8 seeds with 95% confidence intervals), where we denote online
training steps in red. The results show that, perhaps surprisingly, in many environments offline-
to-online RL only improves evaluation MSEs, not training MSEs nor validation MSEs, and the
performance of offline RL is most strongly (inversely) correlated with the evaluation MSE among
the three metrics. What does this tell us? In a sense, online interaction data presents an “oracle”
data distribution that should improve policy accuracy across the state space, at least locally around
the states that the policy visits and are important for the task. However, in many environments, we
see such policy improvement is only happening in the policy’s own distribution (i.e., evaluation
MSE), while the other two dataset MSEs often remain completely flat. Of course, since we further
train the policy on its own interaction data, the evaluation MSE naturally gets more improvements

7

0 1M 2M
0

50

100

R
e
tu

rn

antmaze-medium

0 1M 2M
0

50

antmaze-large

0 1M 2M
0

50

kitchen-mixed

0 1M 2M
0

50

adroit-pen

0 1M 2M
0

5

10

adroit-hammer

0 1M 2M
0

5

adroit-door

0 1M 2M
0.0

0.1

0.2
E

v
a
l.

M
S

E

0 1M 2M
0.0

0.1

0.2

0 1M 2M
0.0

0.1

0.2

0.3

0 1M 2M
1.2

1.3

1.4

0 1M 2M

0.15

0.20

0 1M 2M
0.20

0.25

0.30

0.35

0 1M 2M
0.0

0.1

0.2

V
a
l.

M
S

E

0 1M 2M
0.0

0.1

0.2

0 1M 2M
0.0

0.1

0.2

0.3

0 1M 2M
1.2

1.3

1.4

0 1M 2M

0.15

0.20

0 1M 2M
0.20

0.25

0.30

0.35

0 1M 2M
Gradient Steps

0.0

0.1

0.2

T
ra

in
.

M
S

E

0 1M 2M
Gradient Steps

0.0

0.1

0.2

0 1M 2M
Gradient Steps

0.0

0.1

0.2

0.3

0 1M 2M
Gradient Steps

1.2

1.3

1.4

0 1M 2M
Gradient Steps

0.15

0.20

0 1M 2M
Gradient Steps

0.20

0.25

0.30

0.35

Figure 5: How do offline RL policies get improved with additional interaction data? In many environments,
offline-to-online RL only improves evaluation MSEs, while validation MSEs and training MSEs often remain
completely flat (see Section 5 for the definitions of these metrics). This suggests that current offline RL algorithms
may already be great at learning an effective policy on in-distribution states, and the performance of offline RL
is often determined by how well the policy generalizes on its own state distribution at test time.

than the other two metrics, but it is remarkable that (1) the dataset MSEs completely flatline in
many environments and (2) the performance is very strongly correlated with the evaluation MSE.
This indicates that, current offline RL methods may already be great at learning the best possible
policy within the distribution of states on the dataset, and the agent’s performance is often mainly
bottlenecked by how well it generalizes under its own state distribution at test time. This finding
somewhat contradicts prior beliefs: while algorithmic techniques in offline RL largely hillclimb on
improving policy optimality on in-distribution states (by addressing the issue with out-of-distribution
actions), our results suggest that modern offline RL algorithms may already saturate on this axis.
Further performance differences may simply be due to the effects of a given offline RL objective on
novel states, which very few methods explicitly control.

That said, controlling test-time generalization might also appear impossible: while offline RL methods
could hillclimb on validation accuracy via a combination of techniques that address statistical errors
such as regularization (e.g., Dropout [49], LayerNorm [3], etc.), improving test-time policy accuracy
requires generalization to a potentially very different distribution, which is theoretically impossible to
guarantee without additional coverage or structural assumptions, as the test-time state distribution can
be arbitrarily adversarial in the worst case. However, if we actively utilize the information available
at test time or have the freedom to design offline datasets, it is possible to improve test-time policy
accuracy in practice, and we discuss such solutions below (see Appendix C for further discussions).

Improve offline data coverage. If we have the freedom to control the data collection process, perhaps
the most straightforward way to improve test-time policy accuracy is to use a dataset that has as high
coverage as possible so that test-time states can be covered by the dataset distribution. However, at
the same time, high-coverage datasets often involve exploratory actions, which may compromise the
quality (optimality) of the dataset. This makes us wonder in practice: which is more important, high
coverage or high optimality?

To answer this question, we empirically compare the data-scaling matrices on datasets collected by
expert policies with different levels of action noises (σdata). Figure 6 shows the results of IQL agents
on gc-antmaze-large and adroit-pen (4 seeds each). The results suggest that the performance
of offline RL generally improves as the dataset has better state coverage, despite the increased
suboptimality. This is aligned with our findings in Figure 5, which indicate that the main challenge
of offline RL is often not on learning an effective policy from suboptimal data, but rather learning a
policy that generalizes well at test-time states. Also, the low-data regimes in gc-antmaze-large
further support the claim made in Section 4, which says weighted behavioral cloning (e.g., AWR)
inhibits the complete use of the value function. In summary, our results suggest practitioners prioritize
high coverage (particularly around the states that the optimal policy will likely visit) over high
optimally when collecting datasets for offline RL.

8

Low coverage
High optimality

0.1M 1M 10M
Value Data

0.1M

1M

10M

P
o
li
cy

D
a
ta

21 33 34

54 60 58

60 59 61

AWR (ædata = 0.0)

0.1M 1M 10M
Value Data

0.1M

1M

10M

21 25 19

66 73 70

67 80 74

AWR (ædata = 0.4)

0.1M 1M 10M
Value Data

0.1M

1M

10M

38 48 52

69 73 78

88 86 78

AWR (ædata = 0.7)

0.1M 1M 10M
Value Data

0.1M

1M

10M

2 5 8

47 52 63

94 89 93

AWR (ædata = 1.0)

0.1M 1M 10M
Value Data

0.1M

1M

10M

P
o
li
cy

D
a
ta

55 66 57

45 63 59

53 59 70

DDPG (ædata = 0.0)

0.1M 1M 10M
Value Data

0.1M

1M

10M

42 56 60

71 68 66

70 75 64

DDPG (ædata = 0.4)

0.1M 1M 10M
Value Data

0.1M

1M

10M

45 60 56

79 73 78

83 94 91

DDPG (ædata = 0.7)

0.1M 1M 10M
Value Data

0.1M

1M

10M

24 62 67

76 94 87

96 98 97

DDPG (ædata = 1.0)

gc-antmaze-large (IQL)

High coverage
Low optimality

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

116 114 112

113 115 115

115 113 114

AWR (ædata = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

116 121 118

120 124 122

118 122 124

AWR (ædata = 0.5)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

118 129 129

117 131 135

122 133 135

AWR (ædata = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

120 128 130

130 136 135

128 137 138

AWR (ædata = 1.5)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

118 121 115

111 120 118

116 125 121

DDPG (ædata = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

126 128 117

125 132 126

124 130 126

DDPG (ædata = 0.5)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

113 127 134

124 136 134

126 133 132

DDPG (ædata = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

124 130 138

124 138 138

126 142 143

DDPG (ædata = 1.5)

adroit-pen (IQL)

Low coverage
High optimality

High coverage
Low optimality

Figure 6: Should we use high-coverage or high-optimality datasets? The data-scaling matrices above show
that high-coverage datasets can be much more effective than high-optimality datasets. This is because high-
coverage datasets can improve test-time policy accuracy, one of the main bottlenecks of offline RL.

IQL SfBC OPEX TTT

40

60

R
et

u
rn

kitchen-partial

IQL SfBC OPEX TTT

40

50

60

kitchen-mixed

IQL SfBC OPEX TTT

60

80

R
et

u
rn

antmaze-medium

IQL SfBC OPEX TTT

20

40

60

antmaze-large

Figure 7: OPEX and TTT.

Test-time policy improvement. If we do not have control
over offline data collection, another way to improve test-time
policy accuracy is to on-the-fly train or steer the policy guided
by the learned value function on test-time states. Especially
given that imperfect policy extraction from the value function
is often a significant bottleneck in offline RL (Section 4), we
propose further distilling the information in the value function
into the policy by adjusting policy actions in the value gradient
direction at test time, i.e., a← a+ β · ∇aQ(s, a), where β is
the test-time “learning rate”. This way, we can further adjust
policy actions on unseen states to maximize values, while not
too much deviating from the learned policy. We call this on-
the-fly policy extraction (OPEX). Note that OPEX requires only a single line of additional code at
evaluation and does not change the training procedure at all. In our experiments, we also consider
another variant that further updates the parameters of the policy, in particular, by continuously
extracting the policy from the fixed value function on test-time states, as more rollouts are performed.
We call this test-time training (TTT). We refer to Appendix D.5 for the implementation details of
these test-time improvement schemes. Figure 7 compares the performances of vanilla IQL, SfBC
(Equation (3), another test-time policy extraction method that does not involve gradients), and our
test-time policy improvement strategies on four tasks (8 seeds each), showing that our gradient-based
test-time strategies improve performance over vanilla IQL in many tasks.

Takeaway: Improving test-time policy accuracy significantly boosts performance

Test-time policy generalization is one of the most significant bottlenecks of offline RL. Use
high-coverage datasets. Improve policy accuracy on test-time states with on-the-fly policy
improvement techniques.

6 Conclusion: What does our analysis tell us?
In this work, we empirically demonstrated that, contrary to the prior belief that improving the quality
of the value function is the primary bottleneck of offline RL, current offline RL methods are often
heavily limited by how faithfully the policy is extracted from the value function and how well this
policy generalizes on test-time states. For practitioners, our analysis suggests a clear empirical
recipe for effective offline RL: train a value function on as diverse data as possible, and allow
the policy to maximally utilize the value function, with the best policy extraction objective (e.g.,
DDPG+BC) and/or potential test-time policy improvement strategies, as discussed in this paper. For
future algorithms research, our analysis emphasizes two important open questions in offline RL:
(1) What is the best way to extract a policy from the learned value function? (2) How can we train a
policy in a way that it generalizes well on test-time states? The second question is particularly notable,
because it suggests a diametrically opposed viewpoint to the prevailing theme of pessimism in offline
RL, where only a few works have explicitly aimed to address this generalization aspect of offline RL.
We believe finding effective answers to these questions would lead to significant performance gains
in offline RL, substantially enhancing its applicability and scalability.

9

References
[1] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline reinforcement

learning with diversified q-ensemble. In Neural Information Processing Systems (NeurIPS), 2021.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Neural Information Processing Systems (NeurIPS), 2017.

[3] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450, 2016.

[4] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. In Neural Information
Processing Systems (NeurIPS), 2023.

[5] David Brandfonbrener, William F. Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. In Neural Information Processing Systems (NeurIPS), 2021.

[6] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations (ICLR), 2019.

[7] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via high-
fidelity generative behavior modeling. In International Conference on Learning Representations (ICLR),
2023.

[8] Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for
offline reinforcement learning. In International Conference on Machine Learning (ICML), 2022.

[9] Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta,
Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, Albert
Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew
Wang, Anikait Singh, Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin,
Archit Sharma, Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick,
Beomjoon Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le,
Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher Agia,
Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne Chen, Deepak
Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns,
Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Freek Stulp, Gaoyue Zhou, Gaurav S.
Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guanzhi
Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki
Furuta, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang,
Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jeannette Bohg,
Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo,
Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey
Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han,
Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang,
Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap
Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-
Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert,
Marius Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian
Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama,
Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko
Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer,
Osbert Bastani, Pannag R Sanketi, Patrick "Tree" Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael
Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose Hendrix,
Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian, Samuel
Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham
Sonawani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon
Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep
Dasari, Suneel Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta,
Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vincent Vanhoucke, Wei Zhan,
Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiaolong Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu,
Xu Liangwei, Xuanlin Li, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng
Zhu, Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui,
Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu Li,

10

Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang, and Zipeng Lin.
Open x-embodiment: Robotic learning datasets and rt-x models. In IEEE International Conference on
Robotics and Automation (ICRA), 2024.

[10] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for offline
rl via supervised learning? In International Conference on Learning Representations (ICLR), 2022.

[11] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning as
goal-conditioned reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2022.

[12] Justin Fu, Aviral Kumar, Ofir Nachum, G. Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning. ArXiv, abs/2004.07219, 2020.

[13] Yuwei Fu, Di Wu, and Benoît Boulet. A closer look at offline rl agents. In Neural Information Processing
Systems (NeurIPS), 2022.

[14] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In Neural
Information Processing Systems (NeurIPS), 2021.

[15] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning (ICML), 2019.

[16] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl without
entropy. In International Conference on Learning Representations (ICLR), 2023.

[17] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max
q-learning operator for simple yet effective offline and online rl. In International Conference on Machine
Learning (ICML), 2021.

[18] Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. In Neural Information
Processing Systems (NeurIPS), 2022.

[19] Dibya Ghosh. dibyaghosh/jaxrl_m, 2023. URL https://github.com/dibyaghosh/jaxrl_m.

[20] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine. Idql:
Implicit q-learning as an actor-critic method with diffusion policies. ArXiv, abs/2304.10573, 2023.

[21] Leslie Pack Kaelbling. Learning to achieve goals. In International Joint Conference on Artificial
Intelligence (IJCAI), 1993.

[22] Bingyi Kang, Xiao Ma, Yi-Ren Wang, Yang Yue, and Shuicheng Yan. Improving and benchmarking offline
reinforcement learning algorithms. ArXiv, abs/2306.00972, 2023.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

[24] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning.
In International Conference on Learning Representations (ICLR), 2022.

[25] Aviral Kumar, Aurick Zhou, G. Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. In Neural Information Processing Systems (NeurIPS), 2020.

[26] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. In International Conference on Learning Representations
(ICLR), 2021.

[27] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement learning
or behavioral cloning? In International Conference on Learning Representations (ICLR), 2021.

[28] Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron C. Courville, G. Tucker, and Sergey Levine. Dr3:
Value-based deep reinforcement learning requires explicit regularization. In International Conference on
Learning Representations (ICLR), 2022.

[29] Cassidy Laidlaw, Stuart J. Russell, and Anca D. Dragan. Bridging rl theory and practice with the effective
horizon. In Neural Information Processing Systems (NeurIPS), 2023.

[30] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pages 45–73. Springer, 2012.

11

https://github.com/dibyaghosh/jaxrl_m

[31] Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joëlle Pineau, and Kee-Eung Kim. Optidice: Offline policy
optimization via stationary distribution correction estimation. In International Conference on Machine
Learning (ICML), 2021.

[32] Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. ArXiv, abs/2005.01643, 2020.

[33] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations (ICLR), 2016.

[34] Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, and Yee Whye Teh.
Challenges and opportunities in offline reinforcement learning from visual observations. Transactions on
Machine Learning Research (TMLR), 2023.

[35] Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Mart’in-Mart’in. What matters in learning from offline human
demonstrations for robot manipulation. In Conference on Robot Learning (CoRL), 2021.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

[37] Rémi Munos. Error bounds for approximate policy iteration. In International Conference on Machine
Learning (ICML), 2003.

[38] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice: Policy
gradient from arbitrary experience. ArXiv, abs/1912.02074, 2019.

[39] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. ArXiv, abs/2006.09359, 2020.

[40] Whitney Newey and James L. Powell. Asymmetric least squares estimation and testing. Econometrica, 55:
819–847, 1987.

[41] Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned rl
with latent states as actions. In Neural Information Processing Systems (NeurIPS), 2023.

[42] Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations. In
International Conference on Machine Learning (ICML), 2024.

[43] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple
and scalable off-policy reinforcement learning. ArXiv, abs/1910.00177, 2019.

[44] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In International Conference on Machine Learning (ICML), 2007.

[45] Rafael Rafailov, Kyle Beltran Hatch, Anikait Singh, Aviral Kumar, Laura Smith, Ilya Kostrikov, Philippe
Hansen-Estruch, Victor Kolev, Philip J Ball, Jiajun Wu, et al. D5rl: Diverse datasets for data-driven deep
reinforcement learning. In Reinforcement Learning Conference (RLC), 2024.

[46] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov, Gabriel
Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist agent.
Transactions on Machine Learning Research (TMLR), 2022.

[47] Harshit S. Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new methods
for reinforcement and imitation learning. In International Conference on Learning Representations (ICLR),
2024.

[48] Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch, Thomas
Lampe, Philemon Brakel, Sarah Bechtle, Steven Kapturowski, Roland Hafner, Nicolas Manfred Otto
Heess, and Martin A. Riedmiller. Offline actor-critic reinforcement learning scales to large models. In
International Conference on Machine Learning (ICML), 2024.

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research (JMLR),
15(1):1929–1958, 2014.

[50] Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the minimalist
approach to offline reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2023.

12

[51] Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. In Neural Information Processing Systems
(NeurIPS), 2023.

[52] Ruosong Wang, Dean Phillips Foster, and Sham M. Kakade. What are the statistical limits of offline rl with
linear function approximation? In International Conference on Learning Representations (ICLR), 2021.

[53] Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham M. Kakade. Instabilities of offline rl with
pre-trained neural representation. In International Conference on Machine Learning (ICML), 2021.

[54] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforcement
learning via quasimetric learning. In International Conference on Machine Learning (ICML), 2023.

[55] Ziyun Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott E. Reed, Bobak Shahriari,
Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Manfred Otto Heess, and Nando de Freitas. Critic
regularized regression. In Neural Information Processing Systems (NeurIPS), 2020.

[56] Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
abs/1911.11361, 2019.

[57] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M. Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In International
Conference on Machine Learning (ICML), 2021.

[58] Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Chan, and Xianyuan Zhan.
Offline rl with no ood actions: In-sample learning via implicit value regularization. In International
Conference on Learning Representations (ICLR), 2023.

[59] Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential decision
making. In International Conference on Machine Learning (ICML), 2021.

[60] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, P. Abbeel, Alessandro Lazaric, and Lerrel
Pinto. Don’t change the algorithm, change the data: Exploratory data for offline reinforcement learning.
ArXiv, abs/2201.13425, 2022.

[61] Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang, Ruslan Salakhutdinov, and
Sergey Levine. Stabilizing contrastive rl: Techniques for offline goal reaching. ArXiv, abs/2306.03346,
2023.

13

Appendices
A Limitations

One limitation of our analysis is that the MSE metrics in Equations (4) to (6) are in some sense
“proxies” to measure the accuracy of the policy. For instance, if there exist multiple optimal actions
that are potentially very different from one another, or the expert policy used in practice is not
sufficiently optimal, the MSE metrics might not be highly indicative of the performance or accuracy
of the policy. Nonetheless, we empirically find that there is a strong correlation between the evaluation
MSE metric and performance, and we believe our analysis could further be refined with potentially
more sophisticated metrics (e.g., by considering E[Q∗(s, a)] instead of E[(π(s)− π∗(s))2]), which
we leave for future work.

B Preliminaries

We consider a Markov decision process (MDP) defined byM = (S,A, r, µ, p). S denotes the state
space,A denotes the action space, r : S×A → R denotes the reward function, µ ∈ ∆(S) denotes the
initial state distribution, and p : S×A → ∆(S) denotes the transition dynamics, where ∆(X) denotes
the set of probability distributions over a set X . We consider the offline RL problem, whose goal is to
find a policy π : S → ∆(A) that maximizes the discount return J(π) = Eτ∼pπ(τ)[

∑T
t=0 γ

tr(st, at)],
where pπ(τ) = pπ(s0, a0, s1, a1, . . . , sT) = µ(s0)π(a0 | s0)p(s1 | s0, a0) · · ·π(aT | sT) and γ
is a discount factor, solely from a static dataset D = {τi}i∈{1,2,...,N} without online interactions.
In some of our experiments, we consider offline goal-conditioned RL [2, 11, 21, 41, 54] as well,
where the policy and reward function are also conditioned on a goal state g, which is sampled from a
goal distribution pg ∈ ∆S. For goal-conditioned RL, we assume a sparse goal-conditioned reward
function, r(s, g) = 1(s = g), which does not require any prior knowledge about the state space, and
we assume that the episode ends upon goal-reaching [41, 42, 54].

C Policy generalization: Rethinking the role of state representations

0 500K 1M
0

50

Return

0 500K 1M

0.5

1.0

Evaluation MSE

0 500K 1M
Gradient Steps

0.5

1.0

Validation MSE

0 500K 1M
Gradient Steps

0.5

1.0

Training MSE

°0.04 °0.02 0.00 0.02 0.04
x

°0.04

°0.02

0.00

0.02

0.04

y

º(a | s, g) º(a | ¡(s), g)

Figure 8: A good state represen-
tation naturally enables test-time
generalization, leading to substan-
tially better performance.

In this section, we introduce another way to improve test-time
policy accuracy from the perspective of state representations.
Specifically, we claim that we can improve test-time policy ac-
curacy by using a “good” representation that naturally enables
out-of-distribution generalization. Since this might sound a bit
cryptic, we first show results to illustrate this point.

Figure 8 shows the performances of goal-conditioned BC1 on
gc-antmaze-large with two different homeomorphic represen-
tations: one with the original state representation s, and one with
a different representation ϕ(s) with a continuous, invertible ϕ
(specifically, ϕ transforms x-y coordinates with invertible tanh
kernels; see Appendix D.6). Hence, these two representations
contain the exactly same amount of information and are even
topologically homeomorphic (under the standard Euclidean topol-
ogy). However, they result in very different performances, and
the MSE plots in Figure 8 indicate that this difference is due to
nothing other than the better test-time, evaluation MSE (observe that their training and validation
MSEs are nearly identical)!

This result sheds light on an important perspective of state representations: a good state representa-
tion should be able to enable test-time generalization naturally. While designing such a good state
representation might require some knowledge or inductive biases about the task, our results suggest
that using such a representation is nonetheless very important in practice, since it affects the perfor-
mance of offline RL significantly by improving test-time policy generalization capability.

1Here, we use BC (not RL) to focus solely on state representations, obviating potential confounding factors
regarding the value function.

14

D Experimental details

We provide the full experimental details in this section.

D.1 Value learning objectives

One-step RL (SARSA). SARSA [5] is one of the simplest offline value learning algorithms. Instead
of fitting a Bellman optimal value function Q∗, SARSA aims to fit a behavioral value function Qβ

with TD-learning, without querying out-of-distribution actions. Concretely, SARSA optimizes

min
Q
LSARSA(Q) = E(s,a,s′,a′)∼D[(r(s, a) + γQ̄(s′, a′)−Q(s, a))2], (7)

where s′ and a′ denote the next state and action, respectively, and Q̄ denotes the target Q network [36].
Despite its apparent simplicity, extracting a policy by maximizing the value function learned by
SARSA is often a surprisingly strong baseline [5, 29].

Implicit Q-learning (IQL). Implicit Q-learning (IQL) [24] aims to fit a Bellman optimal value
function Q∗ by approximating the maximum operator in the Bellman optimal equation with an in-
sample expectile regression. IQL minimizes the following objectives:

min
Q
LQ
IQL(Q) = E(s,a,s′)∼D[(r(s, a) + γV (s′)−Q(s, a))2], (8)

min
V
LV
IQL(V) = E(s,a)∼D[ℓ

2
τ (Q̄(s, a)− V (s))], (9)

where ℓ2τ (x) = |τ − 1(x < 0)|x2 is the expectile loss [40] with an expectile parameter τ . Intuitively,
when τ > 0.5, the expectile loss in Equation (9) penalizes positive errors more than negative errors,
which makes V closer to the maximum value of Q̄. In this way, IQL approximates V ∗ and Q∗ only
with in-distribution dataset actions, without referring to the erroneous values at out-of-distribution
actions.

Contrastive RL (CRL). Contrastive RL (CRL) [11] is a value learning algorithm for offline goal-
conditioned RL based on contrastive learning. CRL maximizes the following objective:

max
f
JCRL(f) = Es,a∼D,g∼p+

D(·|s,a),g−∼p+
D(·)[log σ(f(s, a, g)) + log(1− σ(f(s, a, g−)))], (10)

where σ denotes the sigmoid function and p+D(· | s, a) denotes the geometric future state distribution
of the dataset D. Eysenbach et al. [11] show that the optimal solution of Equation (10) is given as
f∗(s, a, g) = log(p+D(g | s, a)/p+D(g)), which gives us the behavioral goal-conditioned Q function
as Qβ(s, a, g) = p+D(g | s, a) = p+D(g)e

f∗(s,a,g), where p+D(g) is a policy-independent constant.

D.2 Environments and datasets

We describe the environments and datasets we employ in our analysis in this section.

D.2.1 Data-scaling analysis

For the data-scaling analysis in Section 4, we employ the following environments and datasets
(Figure 9).

• antmaze-large and gc-antmaze-large are based on the antmaze-large-diverse-v2 envi-
ronment from the D4RL suite [12], where the agent must be able to manipulate a quadrupedal
robot to reach a given target goal (antmaze-large) or to reach any goal from any other state
(gc-antmaze-large) in a given maze. For the dataset for gc-antmaze-large in our data-
scaling analysis, we collect 10M transitions using a noisy expert policy that navigates through
the maze. We use the same policy and noise level (σdata = 0.2) as the one used to collect
antmaze-large-diverse-v2 in D4RL.

• d4rl-hopper and d4rl-walker2d are the hopper-medium-v2 and walker2d-medium-v2
tasks from the D4RL locomotion suite. We use the original 1M-sized datasets collected by par-
tially trained policies [12].

• exorl-walker and exorl-cheetah are the walker-run and cheetah-run tasks from the
ExORL benchmark [60]. We use the original 10M-sized datasets collected by RND agents [6].

15

gc-antmaze-large antmaze-large d4rl-hopper d4rl-walker2d kitchen gc-roboverseexorl-walker exorl-cheetah

Figure 9: Environments.

Since the datasets are collected by purely unsupervised exploratory policies, they feature high
suboptimality and high state-action diversity.

• kitchen is based on the kitchen-mixed-v0 task from the D4RL suite, where the goal is to
complete four manipulation tasks (e.g., opening the microwave, moving the kettle) with a robot
arm. Since the original dataset size is relatively small, for our data-scaling analysis, we collect
a large 1M-sized dataset with a noisy, biased expert policy, where we add noises sampled from
a zero-mean Gaussian distribution with a standard deviation of 0.2 in addition to a randomly
initialized policy’s actions to the expert policy’s actions.

• gc-roboverse is a pixel-based goal-conditioned robotic task, where the goal is to manipulate a
robot arm to rearrange objects to match a target image. The agent must be able to perform object
manipulation purely from 48× 48× 3 images. We use the 1M-sized dataset used by Park et al.
[41], Zheng et al. [61].

D.2.2 Policy generalization analysis

For the policy generalization analysis in Section 5, we use the antmaze-medium-diverse-v2,
antmaze-large-diverse-v2, kitchen-partial-v0, kitchen-mixed-v0, pen-cloned-v1,
hammer-cloned-v1, and door-cloned-v1 environments and datasets from the D4RL suite [12].

D.3 Data-scaling matrices

We train agents for 1M steps (500K steps for gc-roboverse) with each pair of value learning and
policy extraction algorithms. We evaluate the performance of the agent every 100K steps with 50
rollouts, and report the performance averaged over the last 3 evaluations and over 4 seeds. In Figures 1
and 6, we individually tune the policy extraction hyperparameter (α for AWR and DDPG+BC, and N
for SfBC) for each cell, and report the performance with the best hyperparameter. To save computation,
we extract multiple policies with different hyperparameters from the same value function (note that this
is possible because we use decoupled offline RL algorithms). To generate smaller-sized datasets from
the original full dataset, we randomly shuffle trajectories in the original dataset using a fixed random
seed, and take the first K trajectories such that smaller datasets are fully contained in larger datasets.

D.4 MSE metrics

We randomly split the trajectories in a dataset into a training set (95%) and a validation set (5%)
in our experiments. For the expert policies π∗ in the MSE metrics defined in Equations (4) to (6),
we use either the original expert policies from the D4RL suite (adroit-{pen, hammer, door}
and gc-antmaze-large) or policies pre-trained with offline-to-online RL until their performance
saturates (antmaze-{medium, large} and kitchen-mixed). To train “global” expert policies for
antmaze-{medium, large}, we reset the agent to arbitrary locations in the entire maze. This initial
state distribution is only used to train an expert policy; we use the original initial state distribution for
the other experiments.

D.5 Test-time policy improvement strategies

In Section 5, we introduce two test-time policy improvement strategies: OPEX and TTT.

On-the-fly policy extraction (OPEX). At test time, after sampling an action from the policy
a ∼ π(· | s), OPEX adjusts the action with the following formula:

a← a+ β · ∇aQ(s, a), (11)

16

where β is a hyperparameter that controls the test-time “learning rate”. Intuitively, OPEX updates the
action in the direction that maximally increases the learned Q function. In practice, we clip the action
to be within [−1, 1] after this adjustment.

Test-time training (TTT). TTT updates the parameters of (only) the offline RL policy with online
interaction data to further distill the information in the fixed, learned value function into the policy.
Specifically, TTT maximizes the following objective:

max
π
JTTT(π) = Es,a∼D[Q(s, µπ(s))− β ·DKL(π

off ∥ π)], (12)

where µπ(s) = Ea∼π(·|s)[a], πoff is the learned offline RL policy, and β is a hyperparameter that
controls the strength of the regularizer. Equation (12) only trains π with test-time interaction data,
while Q and πoff remain fixed. Intuitively, Equation (12) is a “parameter-updating” version of OPEX,
where we adjust the parameters of the policy to maximize the learned value function, while not
deviating too far away from the learned offline RL policy.

In Figure 7, for IQL, SfBC, and OPEX, we train IQL agents for 1M (antmaze) or 500K gradient
steps (kitchen). For TTT, we further train the policy up to 2M gradient steps. In antmaze, we
consider both deterministic evaluation and stochastic evaluation with a fixed standard deviation of
0.4 (which roughly matches the learned standard deviation of the BC policy), and report the best
performance of them for each method.

D.6 State representation experiments

We describe the state representation ϕ used in Appendix C. An antmaze state consists of a 2-D x-y
coordinates and 27-D proprioceptive information. We transform x and y individually with 32 tanh
kernels, i.e.,

x̃i = tanh

(
x− xi

δx

)
(13)

ỹi = tanh

(
y − yi
δx

)
, (14)

where i ∈ {1, 2, . . . , 32}, δx = x2 − x1, δy = y2 − y1, and x1, . . . , x32 and y1, . . . , y32 are de-
fined as numpy.linspace(-2, 38, 32) and numpy.linspace(-2, 26, 32), respectively. De-
noting the 27-D proprioceptive state as sproprio, ϕ(s) is defined as follows: ϕ([x, y; sproprio]) =
[x̃1, . . . , x̃32, ỹ1, . . . , ỹ32; sproprio], where ‘;’ denotes concatenation. Intuitively, ϕ is similar to the
discretization of the x-y dimensions with 32 bins, but with a continuous, invertible tanh transforma-
tion instead of binary discretization.

D.7 Implementation details

Our implementation is based on jaxrl_minimal [19] and the official implementation of HIQL [41]
(for offline goal-conditioned RL). We use an internal cluster consisting of A5000 GPUs to run our
experiments. Each experiment in our work takes no more than 18 hours.

D.7.1 Data-scaling analysis

Default hyperparameters. We mostly follow the original hyperparameters for IQL [24], goal-
conditioned IQL [41], and CRL [11]. Tables 1 and 2 list the common and environment-specific
hyperparameters, respectively. For SARSA, we use the same implementation as IQL, but with the
standard ℓ2 loss instead of an expectile loss. For pixel-based environments (i.e., gc-roboverse),
we use the same architecture and image augmentation as Park et al. [41]. In goal-conditioned
environments and the antmaze tasks, we subtract 1 from rewards, following previous works [24, 41].

Policy extraction methods. We use Gaussian distributions (without tanh squashing) to model action
distributions. We use a fixed standard deviation of 1 for AWR and DDPG+BC and a learnable
standard deviation for SfBC. For DDPG+BC, we clip actions to be within the range of [−1, 1] in
the deterministic policy gradient term in Equation (2). We empirically find that this is better than
tanh squashing [14] across the board, and is important to achieving strong performance in some
environments. We list the policy extraction hyperparameters we consider in our experiments in curly
brackets in Table 2.

17

Table 1: Common hyperparameters for data-scaling matrices.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam [23]
Target smoothing coefficient 0.005
Discount factor γ 0.99

Table 2: Environment-specific hyperparameters for data-scaling matrices.

Environment gc-antmaze-large antmaze-large d4rl-hopper d4rl-walker

gradient steps 106 106 106 106

Minibatch size 1024 256 256 256
MLP dimensions (512, 512, 512) (256, 256) (256, 256) (256, 256)
IQL expectile 0.9 0.9 0.7 0.7
LayerNorm [3] True False True True
AWR α (IQL) {0, 1, 3, 10} {0, 3, 10, 30} {0, 1, 3, 10} {0, 1, 3, 10}
AWR α (SARSA/CRL) {0, 10, 30, 100} {0, 3, 10, 30} {0, 1, 3, 10} {0, 1, 3, 10}
DDPG+BC α (IQL) {0.1, 0.3, 1, 3} {0.1, 0.3, 1, 3} {1, 3, 10, 30} {1, 3, 10, 30}
DDPG+BC α (SARSA/CRL) {0.1, 0.3, 1, 3} {0.1, 0.3, 1, 3} {1, 3, 10, 30} {1, 3, 10, 30}
SfBC N (IQL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}
SfBC N (SARSA/CRL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}
Environment exorl-walker exorl-cheetah kitchen gc-roboverse

gradient steps 106 106 106 5× 105

Minibatch size 1024 1024 1024 256
MLP dimensions (512, 512, 512) (512, 512, 512) (512, 512, 512) (512, 512, 512)
IQL expectile 0.9 0.9 0.7 0.7
LayerNorm [3] True True False True
AWR α (IQL) {0, 1, 10, 100} {0, 1, 10, 100} {0, 1, 3, 10} {0, 0.1, 1, 10}
AWR α (SARSA/CRL) {0, 1, 10, 100} {0, 1, 10, 100} {0, 1, 3, 10} {0, 1, 10, 100}
DDPG+BC α (IQL) {0, 0.01, 0.1, 1} {0, 0.01, 0.1, 1} {10, 30, 100, 300} {3, 10, 30, 100}
DDPG+BC α (SARSA/CRL) {0, 0.01, 0.1, 1} {0, 0.01, 0.1, 1} {10, 30, 100, 300} {3, 10, 30, 100}
SfBC N (IQL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}
SfBC N (SARSA/CRL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}

D.7.2 Policy generalization analysis

Hyperparameters. Table 3 lists the hyperparameters that we use in our offline-to-online RL and
test-time policy improvement experiments. In these experiments, we use Gaussian distributions with
learnable standard deviations for action distributions.

E Additional results

We provide the full data-scaling matrices with different policy extraction hyperparameters (α for
AWR and DDPG+BC, and N for SfBC) in Figure 10.

18

Table 3: Hyperparameters for policy generalization analysis.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam [23]
offline gradient steps 106 (antmaze), 5× 105 (kitchen, adroit)
total gradient steps 2× 106

gradient steps per environment step 1
Minibatch size 1024 (kitchen), 256 (antmaze, adroit)
MLP dimensions (512, 512, 512) (kitchen), (256, 256) (antmaze, adroit)
Target smoothing coefficient 0.005
Discount factor γ 0.99
LayerNorm [3] True (kitchen), False (antmaze, adroit)
IQL expectile 0.9 (antmaze), 0.7 (kitchen, adroit)
Policy extraction method AWR
AWR α 10 (antmaze), 0.5 (kitchen), 3 (adroit)
SfBC N 16
OPEX β 0.3 (antmaze), 0.0003 (kitchen)
TTT β 0.3 (antmaze), 5 (kitchen)

19

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

1 1 1 1

36 36 31 30

26 38 41 32

49 56 54 38

AWR (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

10 8 4 9

44 46 42 39

37 42 38 35

42 26 31 34

AWR (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

22 28 27 30

52 57 52 54

55 54 64 67

59 55 64 62

AWR (α = 3.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

17 21 26 27

55 52 58 63

55 52 62 63

50 57 63 52

AWR (α = 10.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

25 17 18 16

54 49 53 60

35 39 42 45

55 68 52 50

DDPG (α = 3.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

55 57 56 56

55 59 58 59

50 56 54 66

54 64 64 57

DDPG (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

17 34 49 52

13 50 54 38

16 49 64 48

13 51 54 53

DDPG (α = 0.3)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 12 10 2

0 7 9 5

0 9 14 9

0 6 14 11

DDPG (α = 0.1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

1 0 0 0

32 25 30 28

43 45 55 48

67 73 66 68

SfBC (N = 1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

18 30 36 33

50 61 63 60

56 64 70 63

63 70 72 70

SfBC (N = 16)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

28 36 45 47

46 59 61 54

50 60 57 56

51 70 69 66

SfBC (N = 64)

gc-antmaze-large (IQL)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li

cy
D

a
ta

1 1 0 1

35 41 37 33

33 28 32 31

53 58 48 60

AWR (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 0 0 0

21 39 30 42

46 48 57 56

36 53 58 78

AWR (α = 10.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 0 0 0

22 33 38 32

41 43 43 52

39 55 52 70

AWR (α = 30.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 0 0 0

22 36 29 34

46 38 44 58

45 47 40 67

AWR (α = 100.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li

cy
D

a
ta

3 4 1 2

43 46 43 36

34 50 46 41

67 58 60 70

DDPG (α = 3.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

3 6 12 20

52 53 55 59

62 73 60 74

73 83 80 85

DDPG (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

1 1 19 39

35 41 50 77

60 60 78 85

64 65 88 88

DDPG (α = 0.3)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 0 0 9

4 3 7 30

5 1 39 56

0 0 21 73

DDPG (α = 0.1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

0 0 0 1

28 29 29 27

54 51 53 46

64 73 64 78

SfBC (N = 1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 1 2 10

36 45 54 61

67 68 78 70

75 75 79 83

SfBC (N = 16)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

0 2 2 19

33 44 55 53

64 65 72 57

77 75 79 58

SfBC (N = 64)

gc-antmaze-large (CRL)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 0

0 0 0

0 0 0

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 1

5 8 16

10 24 22

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 1

2 10 14

3 25 40

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 1

2 5 17

2 16 39

AWR (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

4 0 0

2 14 18

0 5 12

DDPG (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 10 28

0 14 49

0 4 53

DDPG (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 1

0 0 1

DDPG (α = 0.3)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

DDPG (α = 0.1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 0

0 0 0

0 0 0

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 18 23

4 29 48

1 48 42

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 28 9

4 25 16

2 50 13

SfBC (N = 64)

antmaze-large (IQL)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 0

0 0 0

0 0 0

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

AWR (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 0

0 0 0

0 0 0

DDPG (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

DDPG (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

DDPG (α = 0.3)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

DDPG (α = 0.1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

0 0 0

0 0 0

0 0 0

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

0 0 0

0 0 0

0 0 0

SfBC (N = 64)

antmaze-large (SARSA)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

43 46 49

50 49 48

51 50 46

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

45 51 50

52 53 52

53 50 50

AWR (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

50 53 54

49 56 56

49 53 54

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

50 46 51

47 50 54

50 51 47

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

50 47 50

53 53 51

49 53 50

DDPG (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

50 48 51

50 52 48

52 53 51

DDPG (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

48 49 49

45 44 45

60 50 44

DDPG (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

35 37 35

36 47 44

38 39 45

DDPG (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

31 30 32

32 31 32

30 31 32

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

42 41 43

43 39 40

43 42 45

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

41 42 43

42 40 39

41 41 48

SfBC (N = 64)

d4rl-hopper (IQL)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

49 49 46

49 48 50

48 50 50

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

51 53 56

55 57 58

56 55 56

AWR (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

52 54 55

56 57 56

55 60 60

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

49 49 52

53 53 55

52 53 52

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

51 50 49

55 55 54

55 55 55

DDPG (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

54 55 52

59 61 61

57 61 62

DDPG (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

56 57 60

65 59 66

55 61 62

DDPG (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

30 44 46

43 57 56

52 57 67

DDPG (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

30 31 31

32 32 31

31 30 30

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

48 51 55

45 51 52

42 53 48

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

48 53 56

47 50 54

41 51 49

SfBC (N = 64)

d4rl-hopper (SARSA)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

64 61 65

68 70 70

69 67 70

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

66 68 74

71 74 76

73 76 78

AWR (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

56 68 71

60 66 77

65 70 76

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

51 55 60

60 60 64

65 64 66

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

74 76 76

77 77 77

77 78 79

DDPG (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

76 80 82

80 79 82

79 80 83

DDPG (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

38 75 81

50 79 85

44 80 85

DDPG (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

6 19 40

5 46 52

11 34 36

DDPG (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

56 56 58

58 61 60

59 58 55

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

60 66 77

58 69 79

58 68 79

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

55 65 78

56 68 80

54 67 77

SfBC (N = 64)

d4rl-walker2d (IQL)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

64 64 63

68 69 68

67 65 65

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

70 77 80

74 77 79

77 78 79

AWR (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

69 76 82

73 78 83

75 80 82

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

68 79 81

75 79 82

70 82 83

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

79 80 79

79 80 82

80 80 81

DDPG (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

80 81 83

83 83 84

81 84 85

DDPG (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

74 84 85

76 84 85

70 85 85

DDPG (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

18 77 74

37 83 85

18 86 85

DDPG (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li
cy

D
a
ta

57 56 57

59 59 60

59 59 58

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

74 83 85

74 83 85

73 83 85

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

72 84 85

74 84 85

72 84 86

SfBC (N = 64)

d4rl-walker2d (SARSA)

20

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li

cy
D

a
ta

73 73 73 73

81 82 80 82

87 88 87 87

89 89 88 89

AWR (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

73 73 73 74

82 82 83 84

88 90 91 96

94 99 108 112

AWR (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 78 81 86

82 85 90 100

88 90 97 125

97 98 114 192

AWR (α = 10.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 76 80 83

82 84 89 96

88 91 97 119

94 99 112 170

AWR (α = 100.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M
P

o
li

cy
D

a
ta

76 77 83 81

85 92 102 103

94 106 134 153

96 113 206 266

DDPG (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

60 65 79 94

75 100 138 243

77 118 210 367

65 123 247 390

DDPG (α = 0.1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

57 76 106 143

76 119 168 283

75 127 227 391

53 123 240 418

DDPG (α = 0.01)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

69 93 125 198

82 143 223 352

86 144 252 381

75 140 235 399

DDPG (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

73 72 73 73

79 78 79 79

80 80 80 79

79 78 78 78

SfBC (N = 1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

75 75 80 89

84 88 107 192

87 92 126 304

87 95 139 338

SfBC (N = 16)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

75 76 83 96

85 89 115 252

88 95 138 338

88 97 154 366

SfBC (N = 64)

exorl-walker (IQL)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li

cy
D

a
ta

73 72 73 73

81 82 81 81

88 86 87 87

89 88 88 89

AWR (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

74 73 74 73

83 82 82 83

90 89 88 91

95 97 99 99

AWR (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

75 76 79 82

82 84 89 96

88 91 98 114

97 98 114 148

AWR (α = 10.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 75 78 82

82 83 88 94

89 90 96 110

94 96 105 126

AWR (α = 100.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li

cy
D

a
ta

75 78 81 80

86 91 94 94

94 101 109 105

98 107 124 121

DDPG (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

62 78 109 117

78 111 153 158

80 132 194 214

84 128 215 249

DDPG (α = 0.1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

69 95 143 210

74 132 204 302

77 149 255 346

77 119 266 348

DDPG (α = 0.01)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

76 73 183 260

79 157 242 250

80 136 250 337

81 115 234 336

DDPG (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

73 73 73 74

79 78 78 78

80 79 80 80

79 79 80 80

SfBC (N = 1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

74 76 83 97

83 89 112 163

87 94 129 217

88 97 139 238

SfBC (N = 16)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

75 77 87 105

85 90 122 194

87 96 144 242

89 101 156 258

SfBC (N = 64)

exorl-walker (SARSA)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

31 32 34 33

34 36 36 34

44 38 39 45

38 41 38 38

AWR (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

33 40 48 51

36 43 58 61

39 56 79 87

40 77 103 121

AWR (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

35 41 57 63

36 43 73 88

37 55 84 117

42 75 115 157

AWR (α = 10.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

33 39 54 58

36 45 72 83

38 55 85 111

39 78 111 146

AWR (α = 100.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

6 42 65 67

9 60 86 98

21 85 118 127

15 46 134 162

DDPG (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

7 34 61 100

11 60 100 152

22 88 117 206

17 48 143 242

DDPG (α = 0.1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

8 41 73 140

14 65 98 181

25 84 125 215

17 51 142 228

DDPG (α = 0.01)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

24 46 72 148

23 66 105 203

24 73 134 236

12 47 135 232

DDPG (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li

cy
D

a
ta

32 32 32 33

38 37 37 36

41 39 42 42

36 34 35 34

SfBC (N = 1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

31 35 41 54

36 44 60 108

40 49 96 167

31 53 107 186

SfBC (N = 16)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

32 34 43 62

36 48 71 136

37 51 104 187

28 57 109 200

SfBC (N = 64)

exorl-cheetah (IQL)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

34 35 32 34

35 37 36 37

44 39 42 40

42 44 38 39

AWR (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

37 44 48 48

59 54 58 59

73 74 69 77

88 94 105 112

AWR (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

37 43 52 56

54 51 68 79

66 73 87 106

96 101 121 154

AWR (α = 10.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

36 39 49 51

50 46 59 71

63 69 80 98

90 96 112 143

AWR (α = 100.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

P
o
li
cy

D
a
ta

56 52 50 61

69 69 72 81

85 91 95 104

93 110 112 139

DDPG (α = 1.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

47 28 75 99

82 87 113 134

91 118 125 189

99 126 137 225

DDPG (α = 0.1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

51 40 86 135

72 98 125 180

95 120 139 221

98 124 155 251

DDPG (α = 0.01)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

73 51 88 157

88 102 128 183

86 128 150 222

90 127 162 246

DDPG (α = 0.0)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M
P

o
li

cy
D

a
ta

34 34 34 32

36 39 36 37

42 42 43 41

35 35 34 34

SfBC (N = 1)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

36 38 41 51

45 52 61 96

63 70 98 164

73 76 103 196

SfBC (N = 16)

0.1M0.3M 1M 10M
Value Data

0.1M

0.3M

1M

10M

38 40 44 62

50 58 75 118

71 79 108 186

78 83 113 218

SfBC (N = 64)

exorl-cheetah (SARSA)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li

cy
D

a
ta

40 33 36

46 40 39

38 37 37

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

41 50 70

61 72 85

95 98 96

AWR (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

38 43 51

77 83 84

95 98 98

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

42 50 59

80 92 94

96 98 95

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li

cy
D

a
ta

63 62 70

79 91 92

92 97 94

DDPG (α = 300.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

64 68 80

80 94 98

64 98 99

DDPG (α = 100.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

25 53 79

12 54 91

6 61 94

DDPG (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

3 17 50

3 10 55

0 7 66

DDPG (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li

cy
D

a
ta

24 28 25

27 27 25

24 26 24

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

55 61 78

69 82 91

66 78 89

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

54 61 78

64 74 88

63 71 79

SfBC (N = 64)

kitchen (IQL)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li

cy
D

a
ta

35 39 34

45 40 41

38 35 42

AWR (α = 0.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

30 43 68

56 71 81

94 95 95

AWR (α = 1.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

37 42 47

72 81 89

97 94 99

AWR (α = 3.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

40 48 52

77 94 95

95 97 97

AWR (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li

cy
D

a
ta

59 63 63

72 86 79

82 92 66

DDPG (α = 300.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

55 68 80

71 94 97

68 99 97

DDPG (α = 100.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

20 48 78

11 58 94

3 58 96

DDPG (α = 30.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

2 11 56

1 8 52

1 2 68

DDPG (α = 10.0)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

P
o
li

cy
D

a
ta

24 22 26

29 23 26

27 24 26

SfBC (N = 1)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

53 62 76

70 80 93

64 74 91

SfBC (N = 16)

0.1M 0.3M 1M
Value Data

0.1M

0.3M

1M

54 62 74

67 74 90

58 65 82

SfBC (N = 64)

kitchen (SARSA)

0.1M 1M
Value Data

0.1M

1M

P
o
li
cy

D
a
ta

12 7

15 20

AWR (α = 0.0)

0.1M 1M
Value Data

0.1M

1M

10 5

20 22

AWR (α = 0.1)

0.1M 1M
Value Data

0.1M

1M

13 10

24 23

AWR (α = 1.0)

0.1M 1M
Value Data

0.1M

1M

17 14

30 27

AWR (α = 10.0)

0.1M 1M
Value Data

0.1M

1M

P
o
li
cy

D
a
ta

11 12

21 23

DDPG (α = 100.0)

0.1M 1M
Value Data

0.1M

1M

13 13

22 23

DDPG (α = 30.0)

0.1M 1M
Value Data

0.1M

1M

14 16

19 23

DDPG (α = 10.0)

0.1M 1M
Value Data

0.1M

1M

14 17

10 12

DDPG (α = 3.0)

0.1M 1M
Value Data

0.1M

1M

P
o
li
cy

D
a
ta

8 9

17 21

SfBC (N = 1)

0.1M 1M
Value Data

0.1M

1M

8 11

15 18

SfBC (N = 16)

0.1M 1M
Value Data

0.1M

1M

7 11

14 16

SfBC (N = 64)

gc-roboverse (IQL)

0.1M 1M
Value Data

0.1M

1M

P
o
li
cy

D
a
ta

9 3

23 18

AWR (α = 0.0)

0.1M 1M
Value Data

0.1M

1M

9 6

20 13

AWR (α = 1.0)

0.1M 1M
Value Data

0.1M

1M

8 6

20 12

AWR (α = 10.0)

0.1M 1M
Value Data

0.1M

1M

7 6

19 13

AWR (α = 100.0)

0.1M 1M
Value Data

0.1M

1M

P
o
li

cy
D

a
ta

8 7

19 23

DDPG (α = 100.0)

0.1M 1M
Value Data

0.1M

1M

9 7

19 24

DDPG (α = 30.0)

0.1M 1M
Value Data

0.1M

1M

8 6

19 25

DDPG (α = 10.0)

0.1M 1M
Value Data

0.1M

1M

9 7

22 23

DDPG (α = 3.0)

0.1M 1M
Value Data

0.1M

1M

P
o
li

cy
D

a
ta

9 8

20 22

SfBC (N = 1)

0.1M 1M
Value Data

0.1M

1M

8 8

22 13

SfBC (N = 16)

0.1M 1M
Value Data

0.1M

1M

8 7

20 10

SfBC (N = 64)

gc-roboverse (CRL)

Figure 10: Full data-scaling matrices of AWR, DDPG+BC, and SfBC with different hyperparameters.

21

	Introduction
	Related work
	Research hypothesis
	Empirical analysis 1: Is it the value or the policy? (B1 and B2)
	Analysis setup
	Results
	Deep dive 1: How different are the scaling properties of AWR and DDPG+BC?
	Deep dive 2: Why is DDPG+BC better than AWR?

	Empirical analysis 2: Policy generalization (B3)
	Conclusion: What does our analysis tell us?
	Limitations
	Preliminaries
	Policy generalization: Rethinking the role of state representations
	Experimental details
	Value learning objectives
	Environments and datasets
	Data-scaling analysis
	Policy generalization analysis

	Data-scaling matrices
	MSE metrics
	Test-time policy improvement strategies
	State representation experiments
	Implementation details
	Data-scaling analysis
	Policy generalization analysis

	Additional results

