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Abstract
While imitation learning requires access to high-quality data, offline reinforcement
learning (RL) should, in principle, perform similarly or better with substantially
lower data quality. However, current results indicate that offline RL often performs
worse than imitation learning, and it is often unclear what holds back the perfor-
mance of offline RL. In this work, we aim to understand bottlenecks in current
offline RL algorithms. While the worse performance of offline RL is typically at-
tributed to an imperfect value function, we ask: is the main bottleneck of offline RL
indeed in learning the value function, the policy, or something else? To answer this
question, we perform a systematic empirical study of (1) value learning, (2) policy
extraction, and (3) policy generalization in offline RL problems from the lens of
“data-scaling” properties of each component, analyzing how these components af-
fect performance. We make two surprising observations. First, the choice of a pol-
icy extraction algorithm affects the performance and scalability of offline RL sig-
nificantly, often more so than its underlying value learning objective. For instance,
widely used value-weighted regression objectives (e.g., AWR) are not able to fully
leverage the learned value function, and switching to behavior-regularized policy
gradient objectives (e.g., DDPG+BC) often leads to substantial improvements in
performance and scaling behaviors. Second, the suboptimal performance of offline
RL is often due to imperfect policy generalization on test-time states out of the sup-
port of the training data, rather than the policy accuracy on in-distribution states.
While most current offline RL algorithms do not explicitly address this, we show
that the use of suboptimal but high-coverage data or on-the-fly policy extraction
techniques can be effective in addressing the policy generalization issue in practice.

1 Introduction
Data-driven approaches that convert offline datasets of past experience into policies are a predomi-
nant approach for solving control problems in several domains [9, 46, 48]. Primarily, there are two
paradigms for learning policies from offline data: imitation learning and offline reinforcement learn-
ing (RL). While imitation requires access to high-quality demonstration data, offline RL loosens this
requirement and can learn effective policies even from suboptimal data, which makes offline RL
preferable to imitation learning in theory. However, recent results often show that tuning imitation
learning by collecting more expert data often outperforms offline RL even when provided with suffi-
cient data in practice [35, 45], and it is often unclear what holds back the performance of offline RL.

The primary difference between offline RL and imitation learning is the use of a value function, which
is absent in imitation learning. The value function drives the learning progress of offline RL methods,
enabling them to learn from suboptimal data. Value functions are typically trained via temporal-
difference (TD) learning, which presents convergence [37, 52] and representational [26, 28, 53]
pathologies. This has led to the conventional wisdom that the gap between offline RL and imitation is
a direct consequence of poor value learning [25, 32, 35]. Following up on this conventional wisdom,
much recent research in the community has been devoted towards improving the value function quality
of offline RL algorithms [1, 11, 14, 18, 24, 25]. While improving value functions will definitely
help improve performance, we question whether this is indeed the best way to maximally improve
the performance of offline RL, or if there is still headroom to get offline RL to perform better even
with current value learning techniques. More concretely, given an offline RL problem, we ask: is
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the bottleneck in learning the value function, the policy, or something else? What is the best way to
improve performance given the bottleneck?

We answer these questions via an empirical study. By construction, there are three potential factors that
could bottleneck an offline RL algorithm: (B1) imperfect value function estimation, (B2) imperfect
policy extraction guided by the learned value function, and (B3) imperfect policy generalization to
states that it will visit during evaluation. While all of these contribute in some way to the performance
of offline RL, we wish to identify how each of these factors interact in a given scenario and develop
ways to improve them. To understand the effect of these factors, we use data size, quality, and
coverage as levers for systematically controlling their impacts, and study the “data-scaling” properties,
i.e., how data quality, coverage, and quantity affect these three aspects of the offline RL algorithm, for
three value learning methods and three policy extraction methods on diverse types of environments.

Through our analysis, we make two surprising observations, which naturally provide actionable
advice for both domain-specific practitioners and future algorithm development in offline RL. First,
even when value function learning is not perfect, we find that the choice of policy extraction algorithm
often has a larger impact on performance, despite the policy being subordinate to the value function
in theory. This is striking, given that policy extraction often tends to be an afterthought in the
design of value-based offline RL algorithms. Specifically, we find that behavior-regularized policy
gradient (e.g., DDPG+BC [14]) almost always leads to much better performance and favorable data
scaling than other widely used methods like value-weighted regression (e.g., AWR [43, 44, 55]).
This means that the policy extraction objective is often a significant bottleneck in offline RL, and
with an appropriate choice of a policy extraction objective, we observe a favorable and consistent
performance increase even for the same value function.

Second, we find that existing offline RL algorithms are often heavily bottlenecked by how well the
policy generalizes on test-time states, rather than how optimal the policy is on the dataset state distri-
bution. This provides a different perspective on offline RL, contrasting with the previous main focus
on pessimism and behavioral regularization. However, no amount of policy training on dataset states
or improvement to offline RL value learning objectives could address this in general, without addi-
tional assumptions. Nonetheless, we find that committing to using suboptimal but high-coverage data
or continually adapting the policy within the course of a test-time rollout can improve this generaliza-
tion bottleneck in practice. In particular, we develop two schemes for such test-time policy adaptation
and find them to both be performant. This means that training value functions on high-coverage
data can help improve the performance of offline RL methods at test time, and it can also be further
improved if value functions are utilized in conjunction with the policy during evaluation rollouts.

Our main contributions are an analysis of the bottlenecks in offline RL as evaluated via data-scaling
properties of various algorithmic choices. Contrary to the conventional belief that value learning is
the bottleneck of offline RL algorithms, we find that the performance is often limited by the choice of
policy extraction objective and the degree to which the policy generalizes at test time. This suggests
that, with an appropriate policy extraction procedure (i.e., regularized policy gradients and not value-
weighted imitation learning) and an appropriate recipe for handling policy generalization (e.g., test-
time training with the value function), collecting more high-coverage data to train a value function is
a universally better recipe to improve offline RL performance whenever the practitioner has access to
collecting some new data for learning. These results also imply that more research should be done in
developing policy learning recipes that can effectively translate improvements in value learning into
performant offline RL policies.

2 Related work
Offline reinforcement learning [30, 32] aims to learn a policy solely from previously collected data.
The central challenge of offline RL is to deal with the distributional shift in the state-action distri-
butions of the dataset and the learned policy, which could lead to catastrophic value overestimation
when not adequately addressed [32]. To prevent such failure, previous works in offline RL have
proposed a number of techniques to estimate value functions solely from offline data, based on con-
servatism [8, 25], out-of-distribution penalization [14, 50, 56], in-sample maximization [16, 24, 58],
uncertainty minimization [1, 18, 57], convex duality [31, 38, 47], or contrastive learning [11]. Then,
these methods train policies to maximize the learned value function, which is typically done by
behavior-regularized policy gradients (e.g., DDPG+BC) [14, 33], weighted behavioral cloning (e.g.,
AWR) [43, 44], or sampling-based action selection (e.g., SfBC) [7, 15, 20]. Depending on the al-
gorithm, these value learning and policy extraction stages can be either interleaved [14, 25, 39] or
decoupled [5, 11, 16, 24]. While numerous methods have been proposed so far, relatively few works
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have aimed to analyze and understand the practical challenges in offline RL. Instead of proposing a
new algorithm, we mainly aim to understand the current bottlenecks in offline RL via a comprehen-
sive analysis of existing techniques.

Several prior works have analyzed individual components of offline RL or imitation learning algo-
rithms: value bootstrapping [14, 15], representation learning [26, 28, 59], data quality [4], differences
between RL and behavioral cloning (BC) [27], and performance [10, 22, 34, 35, 51]. Our goal is
distinct from this line of work: our goal is to analyze the bottlenecks in offline RL performance from
a holistic perspective, comparing value function learning, policy extraction, and generalization. That
is, our goal is not to diagnose pathologies with one of these components, but to understand how these
components interact with each other, and how a practitioner could extract the most by improving one
or more of them. Perhaps the closest study to ours is Fu et al. [13], which study whether representa-
tions, value accuracy, or policy accuracy can explain the performance of offline RL. They also find
that combining IQL [24] with a TD3+BC-style policy extraction objective [14] improves performance.
While this study makes insightful observations about the potential relationships between some met-
rics and performance, it is limited to D4RL locomotion tasks [12], and does not study data-scaling
properties nor policy generalization, which we find to be one of the most substantial yet overlooked
bottlenecks in offline RL. In contrast, we conduct a large-scale analysis on diverse environments (e.g.,
pixel-based, goal-conditioned, manipulation) and analyze the bottlenecks in offline RL with the aim
of providing actionable takeaways that can enhance the performance and scalability of offline RL.

3 Research hypothesis
Our primary goal is to understand when and how the performance of offline RL can be bottlenecked
in practice. As discussed earlier, there exist three potential factors that could bottleneck an offline
RL algorithm: (B1) imperfect value function estimation from data, (B2) imperfect policy extraction
from the learned value function, and (B3) imperfect policy generalization on the test-time states
that the policy visits at the evaluation time. We note that the bottleneck of an offline RL algorithm
under a certain dataset can always be attributed to one or some of these factors, since the policy
will attain optimal performance if both value learning and policy extraction are perfect, with perfect
generalization to test-time states.

Our main research hypothesis in this work is that, somewhat contrary to the prior belief that the
accuracy of the value function is the primary factor limiting performance of offline RL methods,
policy learning is often the main bottleneck of offline RL. In other words, while value function
accuracy is certainly important, how the policy is extracted from the value function (B2) and how
well the policy generalizes on states that it visits at the deployment time (B3) are often the main
factors that significantly affect both performance and scalability in many problems. To verify this
hypothesis, we conduct two main analyses in this paper. In Section 4, we compare the effects of
value learning and policy extraction on performance under various types of environments, datasets,
and algorithms (B1 and B2). In Section 5, we analyze the degree to which the policy generalizes on
test-time states affects performance (B3).

4 Empirical analysis 1: Is it the value or the policy? (B1 and B2)
We first perform controlled experiments to identify whether imperfect value functions (B1) or
imperfect policy extraction (B2) contribute more to holding back the performance of offline RL in
practice. To systematically compare value learning and policy extraction, we run different algorithms
while varying the the amounts of data for value function training and policy extraction, and draw
data-scaling matrices to visualize the aggregate results. Increasing the amount of data provides
a convenient lever to control the effect of each component, enabling us to draw conclusions about
whether the value or the policy serves as a bigger bottleneck in different regimes when different
amounts of training data are available, and to understand the differences between various algorithms.

To clearly dissect value learning from policy learning, in this section, we focus on offline RL methods
with decoupled value and policy training phases (e.g., One-step RL [5], IQL [24], CRL [11], etc.),
where policy learning does not affect value learning, i.e., methods that first train a value function
without involving policies, and then extract a policy from the learned value function with a separate
objective. While this might sound a bit restrictive, we surprisingly find that policy learning is often
the main bottleneck even in these decoupled methods, which attempt to solve a simple, single-step
optimization problem for extracting a policy given a static and stationary value function.
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4.1 Analysis setup
We now introduce the value learning objectives, policy extraction objectives, and environments that
we study in our analysis (see Appendix B for preliminaries).

Value learning objectives. We consider three decoupled value learning objectives that fit value
functions without involving policy learning: (1) implicit Q-learning (IQL) [24], (2) SARSA [5], and
(3) contrastive RL (CRL) [11]. IQL fits an optimal Q function (Q∗) by approximating the Bellman
optimality operator with an expectile loss. SARSA fits a behavioral Q function (Qβ) using the Bellman
evaluation operator. In goal-conditioned tasks, we employ CRL instead of SARSA, which similarly
fits a behavioral Q function, but with a different contrastive learning-based objective that leads to better
performance. We refer to Appendix D.1 for detailed descriptions of these value learning methods.

Policy extraction objectives. Prior works in offline RL typically use one of the following objectives
to extract a policy from the value function. All of them are built upon the same principle: maximizing
values while being close to the behavioral policy, to avoid the exploitation of erroneous critic values.

• (1) Weighted behavioral cloning (e.g., AWR). Weighted behavioral cloning is one of the most
widely used offline policy extraction objectives for its simplicity [24, 39, 41, 43, 44, 55]. Among
weighted behavioral cloning methods, we consider advantage-weighted regression (AWR [43, 44])
in this work, which maximizes the following objective:

max
π
JAWR(π) = Es,a∼D[e

α(Q(s,a)−V (s)) log π(a | s)], (1)

where α is an (inverse) temperature hyperparameter. Intuitively, AWR assigns larger weights to
higher-advantage transitions when cloning behaviors, which makes the policy selectively copy
only good actions from the dataset.

• (2) Behavior-constrained policy gradient (e.g., DDPG+BC). Another popular policy extraction
objective is behavior-constrained policy gradient, which directly maximizes Q values while not de-
viating far away from the behavioral policy [1, 14, 18, 25, 56]. In this work, we consider the objec-
tive that combines deep deterministic policy gradients and behavioral cloning (DDPG+BC [14]):

max
π
JDDPG(π) = Es,a∼D[Q(s, µπ(s)) + α log π(a | s)], (2)

where µπ(s) = Ea∼π(·|s)[a] and α is a hyperparameter that controls the strength of the BC regu-
larizer. This objective is equivalent to Q maximization regularized by the forward KL divergence.

• (3) Sampling-based action selection (e.g., SfBC). Instead of learning an explicit policy, some
previous methods implicitly define a policy as the action with the highest value among action
samples from the behavioral policy [7, 15, 17, 20]. In this work, we consider the following
objective that selects the argmax action from behavioral candidates (SfBC [7]):

π(· | s) = argmax
a∈{a1,...,aN}

[Q(s, a)], (3)

where a1, . . . , aN are sampled from the learned BC policy πβ(a | s) [7, 20].

Environments and datasets. To understand how different value learning and policy extraction ob-
jectives affect performance and data scalability, we consider eight environments (Figure 9) across
state- and pixel-based, robotic locomotion and manipulation, and goal-conditioned and single-task
settings with varying levels of data suboptimality: (1) gc-antmaze-large, (2) antmaze-large, (3)
d4rl-hopper, (4) d4rl-walker2d, (5) exorl-walker, (6) exorl-cheetah, (7) kitchen, and
(8) gc-roboverse. We highlight some features of these tasks: exorl-{walker, cheetah} are
tasks with highly suboptimal, diverse datasets collected by exploratory policies, gc-antmaze-large
and gc-roboverse are goal-conditioned (‘gc-’) tasks, and gc-roboverse is a pixel-based robotic
manipulation task with a 48 × 48 × 3-dimensional observation space. For some tasks (e.g.,
gc-antmaze-large and kitchen), we additionally collect data to enhance dataset sizes to depict
scaling properties clearly. We refer to Appendix D.2 for the complete task descriptions.

4.2 Results
Figure 1 shows the data-scaling matrices of three policy extraction algorithms (AWR, DDPG+BC,
and SfBC) and three value learning algorithms (IQL and {SARSA or CRL}) on eight environments,
aggregated from a total of 7744 runs (4 seeds for each cell). In each matrix, we individually tune the
hyperparameter for policy extraction (α or N ) for each entry. These matrices show how performance
varies with different amounts of data for the value and the policy. In our analysis, we specifically
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Figure 1: Data-scaling matrices of three policy extraction methods (AWR, DDPG+BC, and SfBC) and
three value learning methods (IQL and {SARSA or CRL}). To see whether the value or the policy imposes a
bigger bottleneck, we measure performance with varying amounts of data for the value and the policy. The color
gradients ( , , ) of these matrices reveal how the performance of offline RL is bottlenecked in each setting.

focus on the color gradients of these matrices, which reveal how the performance of offline RL
is bottlenecked in each setting. Note that the color gradients are mostly either vertical, horizontal,
or diagonal. Vertical ( ) color gradients (e.g., IQL+AWR on gc-antmaze-large) indicate that
the performance is most strongly affected by the amount of policy data, horizontal ( ) gradients
(e.g., IQL+SfBC on d4rl-walker2d) indicate it is mostly affected by value data, and diagonal ( )
gradients (e.g., IQL+DDPG+BC on exorl-walker) indicate both.

Side-by-side comparisons of the data-scaling matrices from different policy extraction methods in
Figure 1 suggest that, perhaps surprisingly, different policy extraction algorithms often lead to
significantly different performance and data-scaling behaviors, even though they extract policies
from the same value functions (recall that the use of decoupled algorithms allows us to train a single
value function, but use it for policy extraction in different ways). For example, on exorl-walker and
exorl-cheetah, AWR performs remarkably poorly compared to DDPG+BC or SfBC on both value
learning algorithms. Such a performance gap between policy extraction algorithms exists even when
the value function is far from perfect, as can be seen in the low-data regimes in gc-antmaze-large
and kitchen. In general, we find that the choice of policy extraction procedure affects performance
often more than the choice of value learning objective except antmaze-large, where the value
function must be learned from sparse-reward, suboptimal datasets with long-horizon trajectories.

Among policy extraction algorithms, we find that DDPG+BC almost always achieves the best
performance and scaling behaviors across the board, followed by SfBC, and the performance of
AWR falls significantly behind the other two extraction algorithms in many cases. Notably, the data-
scaling matrices of AWR always have vertical ( ) or diagonal ( ) color gradients, implicitly implying
that it does not fully utilize the value function (see Section 4.3 for clearer evidence). In other words, a
non-careful choice of the policy extraction algorithm (e.g., weighted behavioral cloning) hinders the
use of learned value functions, imposing an unnecessary bottleneck on the performance of offline RL.

4.3 Deep dive 1: How different are the scaling properties of AWR and DDPG+BC?
To gain further insights into the difference between value-weighted behavioral cloning (e.g., AWR)
and behavior-regularized policy gradients (e.g., DDPG+BC), we draw data-scaling matrices with
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Figure 2: Data-scaling matrices of AWR and DDPG+BC with different BC strengths (α). In
gc-antmaze-large, AWR is always policy-bounded ( ), but DDPG+BC has both policy-bounded ( ) and
value-bounded ( ) modes, depending on the value of α. Notably, an in-between value (α = 1.0) of DDPG+BC
leads to the best of both worlds (see the bottom left corner of gc-antmaze-large with 0.1M datasets)!

different values of α (in Equations (1) and (2)), a hyperparameter that interpolates between RL and BC.
Note that α = 0 corresponds to BC in AWR and α =∞ corresponds to BC in DDPG+BC. We recall
that the previous results (Figure 1) use the best temperature for each matrix entry (i.e., aggregated by
the maximum over temperatures), but here we show the full results with individual hyperparameters.

Figure 2 highlights the results on gc-antmaze-large and exorl-walker (see Appendix E for the
full results). The results on gc-antmaze-large show a clear difference in scaling matrices between
AWR and DDPG+BC. That is, AWR is always policy-bounded regardless of the BC strength α (i.e.,
vertical ( ) color gradients), whereas DDPG+BC has two “modes”: it is policy-bounded ( ) when α
is large, and value-bounded ( ) and when α is small. Intriguingly, an in-between value of α = 1.0
in DDPG+BC enables having the best of both worlds, significantly boosting performances across
the entire matrix (note that it achieves very strong performance even with a 0.1M-sized dataset)!
This difference in scaling behaviors suggests that the use of the learned value function in weighted
behavioral cloning is limited. This becomes more evident in exorl-walker (Figure 2), where AWR
fails to achieve strong performance even with a very high temperature value (α = 100).

4.4 Deep dive 2: Why is DDPG+BC better than AWR?
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Figure 3: AWR vs. DDPG actions.
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Figure 4: AWR overfits.

We have so far seen several empirical results that suggest
DDPG+BC should be preferred to AWR in any cases. What
makes DDPG+BC so much better than AWR? There are three
potential reasons.

First, AWR only has a mode-covering weighted behavioral
cloning term, while DDPG+BC has both mode-seeking first-order
value maximization and mode-covering behavioral cloning terms.
As a result, actions learned by AWR always lie within the con-
vex hull of dataset actions, whereas DDPG+BC can “hillclimb”
the learned value function, even allowing extrapolation to some
degree while not deviating too far away from the mode. This not
only enables a better use of the value function but yields poten-
tially more optimal actions. To illustrate this, we plot test-time
action sampled from policies learned by AWR and DDPG+BC
on exorl-walker. Figure 3 shows that AWR actions are rela-
tively centered around the origin, while DDPG+BC actions are
more spread out and thus potentially have high optimality.

Second, value-weighted behavioral cloning uses a much smaller
number of effective samples than behavior-regularized policy
gradient methods, especially when the temperature (α) is large.
This is because a small number of high-advantage transitions can
potentially dominate the learning signals of AWR (e.g., a single
transition with a weight of e10 can dominate other transitions with smaller weights like e2). As a
result, AWR effectively uses only a fraction of datapoints for policy learning, being susceptible to
overfitting. On the other hand, DDPG+BC is based on first-order maximization of the value function
without any weighting, and thus is free from this issue. Figure 4 illustrates this, where we compare
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the training and validation policy losses of AWR and DDPG+BC on gc-antmaze-large with the
smallest 0.1M dataset (8 seeds). The results show that AWR with a large temperature (α = 3.0)
causes severe overfitting. Indeed, Figure 1 shows DDPG+BC often achieves significantly better
performance than AWR in low-data regimes.

Third, AWR has a theoretical pathology in the regime with limited samples: since the coefficient in
front of log π(a | s) in the AWR objective (Equation (1)) is always positive, AWR can increase the
likelihood of all dataset actions, regardless of their optimality. If the training dataset has covered all
possible actions, then the condition for normalization of the probability density function of π(a | s)
would have alleviated this concern, but this condition is rarely achieved in practice. Under limited
data coverage, and especially when the policy network is highly expressive and dataset states are
unique (e.g., continuous control problems), AWR can in theory memorize all state-action pairs in the
dataset, potentially reverting to unweighted behavioral cloning.

Takeaway: Policy extraction can inhibit the complete use of the value function

Do not use value-weighted behavior cloning (e.g., AWR); always use behavior-constrained
policy gradient (e.g., DDPG+BC), regardless of the value learning objective. This enables
better scaling of performance with more data and better use of the value function.

5 Empirical analysis 2: Policy generalization (B3)
We now turn our focus to the third hypothesis, that policy generalization to states that the policy
visits at the evaluation time has a significant impact on performance. This is a unique bottleneck to
the offline RL problem setting, where the agent encounters new, potentially out-of-distribution states
at test time. To measure policy accuracy, we first define three key metrics quantifying a notion of
accuracy of the policy in terms of the mean squared error (MSE) against the optimal policy:

(Training MSE) = Es∼Dtrain
[(π(s)− π∗(s))2], (4)

(Validation MSE) = Es∼Dval
[(π(s)− π∗(s))2], (5)

(Evaluation MSE) = Es∼pπ(s) [(π(s)− π∗(s))2], (6)

where Dtrain and Dval respectively denote the training and validation datasets, π∗ denotes an optimal
policy, that we assume access to for evaluation and visualization purposes only. We assume that
the policies π, π∗ : S → A are deterministic for simplicity. Validation MSE measures the policy
accuracy on states sampled from the same dataset distribution as the training distribution (i.e., in-
distribution MSE), while evaluation MSE measures the policy accuracy on states the agent visits at
test time, which can potentially be very different from the dataset distribution (i.e., out-of-distribution
MSE). We note that, while these metrics might not always be perfectly indicative of policy accuracy
(see Appendix A for limitations), they often serve as convenient proxies to estimate policy accuracy
in many continuous-control domains in practice.

One way to measure the degree to which test-time policy generalization affects performance is to
see how various policy MSE metrics evolve and correlate with performance after further training the
agent on data sampled from the test-time distribution, which serves as one of the ideal distributions
to improve performance. Hence, we measure the three types of MSEs in the offline-to-online RL
setting, in which we observe how these MSEs improve over time with additional online interaction
data. Specifically, we train offline-to-online IQL agents on six D4RL [12] tasks (antmaze-{medium,
large}, kitchen, and adroit-{pen, hammer, door}), and measure the MSEs with pre-trained
expert policies that approximate π∗ (see Appendix D.4).

Results. Figure 5 shows the results (8 seeds with 95% confidence intervals), where we denote online
training steps in red. The results show that, perhaps surprisingly, in many environments offline-
to-online RL only improves evaluation MSEs, not training MSEs nor validation MSEs, and the
performance of offline RL is most strongly (inversely) correlated with the evaluation MSE among
the three metrics. What does this tell us? In a sense, online interaction data presents an “oracle”
data distribution that should improve policy accuracy across the state space, at least locally around
the states that the policy visits and are important for the task. However, in many environments, we
see such policy improvement is only happening in the policy’s own distribution (i.e., evaluation
MSE), while the other two dataset MSEs often remain completely flat. Of course, since we further
train the policy on its own interaction data, the evaluation MSE naturally gets more improvements
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Figure 5: How do offline RL policies get improved with additional interaction data? In many environments,
offline-to-online RL only improves evaluation MSEs, while validation MSEs and training MSEs often remain
completely flat (see Section 5 for the definitions of these metrics). This suggests that current offline RL algorithms
may already be great at learning an effective policy on in-distribution states, and the performance of offline RL
is often determined by how well the policy generalizes on its own state distribution at test time.

than the other two metrics, but it is remarkable that (1) the dataset MSEs completely flatline in
many environments and (2) the performance is very strongly correlated with the evaluation MSE.
This indicates that, current offline RL methods may already be great at learning the best possible
policy within the distribution of states on the dataset, and the agent’s performance is often mainly
bottlenecked by how well it generalizes under its own state distribution at test time. This finding
somewhat contradicts prior beliefs: while algorithmic techniques in offline RL largely hillclimb on
improving policy optimality on in-distribution states (by addressing the issue with out-of-distribution
actions), our results suggest that modern offline RL algorithms may already saturate on this axis.
Further performance differences may simply be due to the effects of a given offline RL objective on
novel states, which very few methods explicitly control.

That said, controlling test-time generalization might also appear impossible: while offline RL methods
could hillclimb on validation accuracy via a combination of techniques that address statistical errors
such as regularization (e.g., Dropout [49], LayerNorm [3], etc.), improving test-time policy accuracy
requires generalization to a potentially very different distribution, which is theoretically impossible to
guarantee without additional coverage or structural assumptions, as the test-time state distribution can
be arbitrarily adversarial in the worst case. However, if we actively utilize the information available
at test time or have the freedom to design offline datasets, it is possible to improve test-time policy
accuracy in practice, and we discuss such solutions below (see Appendix C for further discussions).

Improve offline data coverage. If we have the freedom to control the data collection process, perhaps
the most straightforward way to improve test-time policy accuracy is to use a dataset that has as high
coverage as possible so that test-time states can be covered by the dataset distribution. However, at
the same time, high-coverage datasets often involve exploratory actions, which may compromise the
quality (optimality) of the dataset. This makes us wonder in practice: which is more important, high
coverage or high optimality?

To answer this question, we empirically compare the data-scaling matrices on datasets collected by
expert policies with different levels of action noises (σdata). Figure 6 shows the results of IQL agents
on gc-antmaze-large and adroit-pen (4 seeds each). The results suggest that the performance
of offline RL generally improves as the dataset has better state coverage, despite the increased
suboptimality. This is aligned with our findings in Figure 5, which indicate that the main challenge
of offline RL is often not on learning an effective policy from suboptimal data, but rather learning a
policy that generalizes well at test-time states. Also, the low-data regimes in gc-antmaze-large
further support the claim made in Section 4, which says weighted behavioral cloning (e.g., AWR)
inhibits the complete use of the value function. In summary, our results suggest practitioners prioritize
high coverage (particularly around the states that the optimal policy will likely visit) over high
optimally when collecting datasets for offline RL.
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Figure 6: Should we use high-coverage or high-optimality datasets? The data-scaling matrices above show
that high-coverage datasets can be much more effective than high-optimality datasets. This is because high-
coverage datasets can improve test-time policy accuracy, one of the main bottlenecks of offline RL.
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Figure 7: OPEX and TTT.

Test-time policy improvement. If we do not have control
over offline data collection, another way to improve test-time
policy accuracy is to on-the-fly train or steer the policy guided
by the learned value function on test-time states. Especially
given that imperfect policy extraction from the value function
is often a significant bottleneck in offline RL (Section 4), we
propose further distilling the information in the value function
into the policy by adjusting policy actions in the value gradient
direction at test time, i.e., a← a+ β · ∇aQ(s, a), where β is
the test-time “learning rate”. This way, we can further adjust
policy actions on unseen states to maximize values, while not
too much deviating from the learned policy. We call this on-
the-fly policy extraction (OPEX). Note that OPEX requires only a single line of additional code at
evaluation and does not change the training procedure at all. In our experiments, we also consider
another variant that further updates the parameters of the policy, in particular, by continuously
extracting the policy from the fixed value function on test-time states, as more rollouts are performed.
We call this test-time training (TTT). We refer to Appendix D.5 for the implementation details of
these test-time improvement schemes. Figure 7 compares the performances of vanilla IQL, SfBC
(Equation (3), another test-time policy extraction method that does not involve gradients), and our
test-time policy improvement strategies on four tasks (8 seeds each), showing that our gradient-based
test-time strategies improve performance over vanilla IQL in many tasks.

Takeaway: Improving test-time policy accuracy significantly boosts performance

Test-time policy generalization is one of the most significant bottlenecks of offline RL. Use
high-coverage datasets. Improve policy accuracy on test-time states with on-the-fly policy
improvement techniques.

6 Conclusion: What does our analysis tell us?
In this work, we empirically demonstrated that, contrary to the prior belief that improving the quality
of the value function is the primary bottleneck of offline RL, current offline RL methods are often
heavily limited by how faithfully the policy is extracted from the value function and how well this
policy generalizes on test-time states. For practitioners, our analysis suggests a clear empirical
recipe for effective offline RL: train a value function on as diverse data as possible, and allow
the policy to maximally utilize the value function, with the best policy extraction objective (e.g.,
DDPG+BC) and/or potential test-time policy improvement strategies, as discussed in this paper. For
future algorithms research, our analysis emphasizes two important open questions in offline RL:
(1) What is the best way to extract a policy from the learned value function? (2) How can we train a
policy in a way that it generalizes well on test-time states? The second question is particularly notable,
because it suggests a diametrically opposed viewpoint to the prevailing theme of pessimism in offline
RL, where only a few works have explicitly aimed to address this generalization aspect of offline RL.
We believe finding effective answers to these questions would lead to significant performance gains
in offline RL, substantially enhancing its applicability and scalability.
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Appendices
A Limitations

One limitation of our analysis is that the MSE metrics in Equations (4) to (6) are in some sense
“proxies” to measure the accuracy of the policy. For instance, if there exist multiple optimal actions
that are potentially very different from one another, or the expert policy used in practice is not
sufficiently optimal, the MSE metrics might not be highly indicative of the performance or accuracy
of the policy. Nonetheless, we empirically find that there is a strong correlation between the evaluation
MSE metric and performance, and we believe our analysis could further be refined with potentially
more sophisticated metrics (e.g., by considering E[Q∗(s, a)] instead of E[(π(s)− π∗(s))2]), which
we leave for future work.

B Preliminaries

We consider a Markov decision process (MDP) defined byM = (S,A, r, µ, p). S denotes the state
space,A denotes the action space, r : S×A → R denotes the reward function, µ ∈ ∆(S) denotes the
initial state distribution, and p : S×A → ∆(S) denotes the transition dynamics, where ∆(X ) denotes
the set of probability distributions over a set X . We consider the offline RL problem, whose goal is to
find a policy π : S → ∆(A) that maximizes the discount return J(π) = Eτ∼pπ(τ)[

∑T
t=0 γ

tr(st, at)],
where pπ(τ) = pπ(s0, a0, s1, a1, . . . , sT ) = µ(s0)π(a0 | s0)p(s1 | s0, a0) · · ·π(aT | sT ) and γ
is a discount factor, solely from a static dataset D = {τi}i∈{1,2,...,N} without online interactions.
In some of our experiments, we consider offline goal-conditioned RL [2, 11, 21, 41, 54] as well,
where the policy and reward function are also conditioned on a goal state g, which is sampled from a
goal distribution pg ∈ ∆S. For goal-conditioned RL, we assume a sparse goal-conditioned reward
function, r(s, g) = 1(s = g), which does not require any prior knowledge about the state space, and
we assume that the episode ends upon goal-reaching [41, 42, 54].

C Policy generalization: Rethinking the role of state representations
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Figure 8: A good state represen-
tation naturally enables test-time
generalization, leading to substan-
tially better performance.

In this section, we introduce another way to improve test-time
policy accuracy from the perspective of state representations.
Specifically, we claim that we can improve test-time policy ac-
curacy by using a “good” representation that naturally enables
out-of-distribution generalization. Since this might sound a bit
cryptic, we first show results to illustrate this point.

Figure 8 shows the performances of goal-conditioned BC1 on
gc-antmaze-large with two different homeomorphic represen-
tations: one with the original state representation s, and one with
a different representation ϕ(s) with a continuous, invertible ϕ
(specifically, ϕ transforms x-y coordinates with invertible tanh
kernels; see Appendix D.6). Hence, these two representations
contain the exactly same amount of information and are even
topologically homeomorphic (under the standard Euclidean topol-
ogy). However, they result in very different performances, and
the MSE plots in Figure 8 indicate that this difference is due to
nothing other than the better test-time, evaluation MSE (observe that their training and validation
MSEs are nearly identical)!

This result sheds light on an important perspective of state representations: a good state representa-
tion should be able to enable test-time generalization naturally. While designing such a good state
representation might require some knowledge or inductive biases about the task, our results suggest
that using such a representation is nonetheless very important in practice, since it affects the perfor-
mance of offline RL significantly by improving test-time policy generalization capability.

1Here, we use BC (not RL) to focus solely on state representations, obviating potential confounding factors
regarding the value function.
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D Experimental details

We provide the full experimental details in this section.

D.1 Value learning objectives

One-step RL (SARSA). SARSA [5] is one of the simplest offline value learning algorithms. Instead
of fitting a Bellman optimal value function Q∗, SARSA aims to fit a behavioral value function Qβ

with TD-learning, without querying out-of-distribution actions. Concretely, SARSA optimizes

min
Q
LSARSA(Q) = E(s,a,s′,a′)∼D[(r(s, a) + γQ̄(s′, a′)−Q(s, a))2], (7)

where s′ and a′ denote the next state and action, respectively, and Q̄ denotes the target Q network [36].
Despite its apparent simplicity, extracting a policy by maximizing the value function learned by
SARSA is often a surprisingly strong baseline [5, 29].

Implicit Q-learning (IQL). Implicit Q-learning (IQL) [24] aims to fit a Bellman optimal value
function Q∗ by approximating the maximum operator in the Bellman optimal equation with an in-
sample expectile regression. IQL minimizes the following objectives:

min
Q
LQ
IQL(Q) = E(s,a,s′)∼D[(r(s, a) + γV (s′)−Q(s, a))2], (8)

min
V
LV
IQL(V ) = E(s,a)∼D[ℓ

2
τ (Q̄(s, a)− V (s))], (9)

where ℓ2τ (x) = |τ − 1(x < 0)|x2 is the expectile loss [40] with an expectile parameter τ . Intuitively,
when τ > 0.5, the expectile loss in Equation (9) penalizes positive errors more than negative errors,
which makes V closer to the maximum value of Q̄. In this way, IQL approximates V ∗ and Q∗ only
with in-distribution dataset actions, without referring to the erroneous values at out-of-distribution
actions.

Contrastive RL (CRL). Contrastive RL (CRL) [11] is a value learning algorithm for offline goal-
conditioned RL based on contrastive learning. CRL maximizes the following objective:

max
f
JCRL(f) = Es,a∼D,g∼p+

D(·|s,a),g−∼p+
D(·)[log σ(f(s, a, g)) + log(1− σ(f(s, a, g−)))], (10)

where σ denotes the sigmoid function and p+D(· | s, a) denotes the geometric future state distribution
of the dataset D. Eysenbach et al. [11] show that the optimal solution of Equation (10) is given as
f∗(s, a, g) = log(p+D(g | s, a)/p+D(g)), which gives us the behavioral goal-conditioned Q function
as Qβ(s, a, g) = p+D(g | s, a) = p+D(g)e

f∗(s,a,g), where p+D(g) is a policy-independent constant.

D.2 Environments and datasets

We describe the environments and datasets we employ in our analysis in this section.

D.2.1 Data-scaling analysis

For the data-scaling analysis in Section 4, we employ the following environments and datasets
(Figure 9).

• antmaze-large and gc-antmaze-large are based on the antmaze-large-diverse-v2 envi-
ronment from the D4RL suite [12], where the agent must be able to manipulate a quadrupedal
robot to reach a given target goal (antmaze-large) or to reach any goal from any other state
(gc-antmaze-large) in a given maze. For the dataset for gc-antmaze-large in our data-
scaling analysis, we collect 10M transitions using a noisy expert policy that navigates through
the maze. We use the same policy and noise level (σdata = 0.2) as the one used to collect
antmaze-large-diverse-v2 in D4RL.

• d4rl-hopper and d4rl-walker2d are the hopper-medium-v2 and walker2d-medium-v2
tasks from the D4RL locomotion suite. We use the original 1M-sized datasets collected by par-
tially trained policies [12].

• exorl-walker and exorl-cheetah are the walker-run and cheetah-run tasks from the
ExORL benchmark [60]. We use the original 10M-sized datasets collected by RND agents [6].
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Figure 9: Environments.

Since the datasets are collected by purely unsupervised exploratory policies, they feature high
suboptimality and high state-action diversity.

• kitchen is based on the kitchen-mixed-v0 task from the D4RL suite, where the goal is to
complete four manipulation tasks (e.g., opening the microwave, moving the kettle) with a robot
arm. Since the original dataset size is relatively small, for our data-scaling analysis, we collect
a large 1M-sized dataset with a noisy, biased expert policy, where we add noises sampled from
a zero-mean Gaussian distribution with a standard deviation of 0.2 in addition to a randomly
initialized policy’s actions to the expert policy’s actions.

• gc-roboverse is a pixel-based goal-conditioned robotic task, where the goal is to manipulate a
robot arm to rearrange objects to match a target image. The agent must be able to perform object
manipulation purely from 48× 48× 3 images. We use the 1M-sized dataset used by Park et al.
[41], Zheng et al. [61].

D.2.2 Policy generalization analysis

For the policy generalization analysis in Section 5, we use the antmaze-medium-diverse-v2,
antmaze-large-diverse-v2, kitchen-partial-v0, kitchen-mixed-v0, pen-cloned-v1,
hammer-cloned-v1, and door-cloned-v1 environments and datasets from the D4RL suite [12].

D.3 Data-scaling matrices

We train agents for 1M steps (500K steps for gc-roboverse) with each pair of value learning and
policy extraction algorithms. We evaluate the performance of the agent every 100K steps with 50
rollouts, and report the performance averaged over the last 3 evaluations and over 4 seeds. In Figures 1
and 6, we individually tune the policy extraction hyperparameter (α for AWR and DDPG+BC, and N
for SfBC) for each cell, and report the performance with the best hyperparameter. To save computation,
we extract multiple policies with different hyperparameters from the same value function (note that this
is possible because we use decoupled offline RL algorithms). To generate smaller-sized datasets from
the original full dataset, we randomly shuffle trajectories in the original dataset using a fixed random
seed, and take the first K trajectories such that smaller datasets are fully contained in larger datasets.

D.4 MSE metrics

We randomly split the trajectories in a dataset into a training set (95%) and a validation set (5%)
in our experiments. For the expert policies π∗ in the MSE metrics defined in Equations (4) to (6),
we use either the original expert policies from the D4RL suite (adroit-{pen, hammer, door}
and gc-antmaze-large) or policies pre-trained with offline-to-online RL until their performance
saturates (antmaze-{medium, large} and kitchen-mixed). To train “global” expert policies for
antmaze-{medium, large}, we reset the agent to arbitrary locations in the entire maze. This initial
state distribution is only used to train an expert policy; we use the original initial state distribution for
the other experiments.

D.5 Test-time policy improvement strategies

In Section 5, we introduce two test-time policy improvement strategies: OPEX and TTT.

On-the-fly policy extraction (OPEX). At test time, after sampling an action from the policy
a ∼ π(· | s), OPEX adjusts the action with the following formula:

a← a+ β · ∇aQ(s, a), (11)

16



where β is a hyperparameter that controls the test-time “learning rate”. Intuitively, OPEX updates the
action in the direction that maximally increases the learned Q function. In practice, we clip the action
to be within [−1, 1] after this adjustment.

Test-time training (TTT). TTT updates the parameters of (only) the offline RL policy with online
interaction data to further distill the information in the fixed, learned value function into the policy.
Specifically, TTT maximizes the following objective:

max
π
JTTT(π) = Es,a∼D[Q(s, µπ(s))− β ·DKL(π

off ∥ π)], (12)

where µπ(s) = Ea∼π(·|s)[a], πoff is the learned offline RL policy, and β is a hyperparameter that
controls the strength of the regularizer. Equation (12) only trains π with test-time interaction data,
while Q and πoff remain fixed. Intuitively, Equation (12) is a “parameter-updating” version of OPEX,
where we adjust the parameters of the policy to maximize the learned value function, while not
deviating too far away from the learned offline RL policy.

In Figure 7, for IQL, SfBC, and OPEX, we train IQL agents for 1M (antmaze) or 500K gradient
steps (kitchen). For TTT, we further train the policy up to 2M gradient steps. In antmaze, we
consider both deterministic evaluation and stochastic evaluation with a fixed standard deviation of
0.4 (which roughly matches the learned standard deviation of the BC policy), and report the best
performance of them for each method.

D.6 State representation experiments

We describe the state representation ϕ used in Appendix C. An antmaze state consists of a 2-D x-y
coordinates and 27-D proprioceptive information. We transform x and y individually with 32 tanh
kernels, i.e.,

x̃i = tanh

(
x− xi

δx

)
(13)

ỹi = tanh

(
y − yi
δx

)
, (14)

where i ∈ {1, 2, . . . , 32}, δx = x2 − x1, δy = y2 − y1, and x1, . . . , x32 and y1, . . . , y32 are de-
fined as numpy.linspace(-2, 38, 32) and numpy.linspace(-2, 26, 32), respectively. De-
noting the 27-D proprioceptive state as sproprio, ϕ(s) is defined as follows: ϕ([x, y; sproprio]) =
[x̃1, . . . , x̃32, ỹ1, . . . , ỹ32; sproprio], where ‘;’ denotes concatenation. Intuitively, ϕ is similar to the
discretization of the x-y dimensions with 32 bins, but with a continuous, invertible tanh transforma-
tion instead of binary discretization.

D.7 Implementation details

Our implementation is based on jaxrl_minimal [19] and the official implementation of HIQL [41]
(for offline goal-conditioned RL). We use an internal cluster consisting of A5000 GPUs to run our
experiments. Each experiment in our work takes no more than 18 hours.

D.7.1 Data-scaling analysis

Default hyperparameters. We mostly follow the original hyperparameters for IQL [24], goal-
conditioned IQL [41], and CRL [11]. Tables 1 and 2 list the common and environment-specific
hyperparameters, respectively. For SARSA, we use the same implementation as IQL, but with the
standard ℓ2 loss instead of an expectile loss. For pixel-based environments (i.e., gc-roboverse),
we use the same architecture and image augmentation as Park et al. [41]. In goal-conditioned
environments and the antmaze tasks, we subtract 1 from rewards, following previous works [24, 41].

Policy extraction methods. We use Gaussian distributions (without tanh squashing) to model action
distributions. We use a fixed standard deviation of 1 for AWR and DDPG+BC and a learnable
standard deviation for SfBC. For DDPG+BC, we clip actions to be within the range of [−1, 1] in
the deterministic policy gradient term in Equation (2). We empirically find that this is better than
tanh squashing [14] across the board, and is important to achieving strong performance in some
environments. We list the policy extraction hyperparameters we consider in our experiments in curly
brackets in Table 2.
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Table 1: Common hyperparameters for data-scaling matrices.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam [23]
Target smoothing coefficient 0.005
Discount factor γ 0.99

Table 2: Environment-specific hyperparameters for data-scaling matrices.

Environment gc-antmaze-large antmaze-large d4rl-hopper d4rl-walker

# gradient steps 106 106 106 106

Minibatch size 1024 256 256 256
MLP dimensions (512, 512, 512) (256, 256) (256, 256) (256, 256)
IQL expectile 0.9 0.9 0.7 0.7
LayerNorm [3] True False True True
AWR α (IQL) {0, 1, 3, 10} {0, 3, 10, 30} {0, 1, 3, 10} {0, 1, 3, 10}
AWR α (SARSA/CRL) {0, 10, 30, 100} {0, 3, 10, 30} {0, 1, 3, 10} {0, 1, 3, 10}
DDPG+BC α (IQL) {0.1, 0.3, 1, 3} {0.1, 0.3, 1, 3} {1, 3, 10, 30} {1, 3, 10, 30}
DDPG+BC α (SARSA/CRL) {0.1, 0.3, 1, 3} {0.1, 0.3, 1, 3} {1, 3, 10, 30} {1, 3, 10, 30}
SfBC N (IQL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}
SfBC N (SARSA/CRL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}
Environment exorl-walker exorl-cheetah kitchen gc-roboverse

# gradient steps 106 106 106 5× 105

Minibatch size 1024 1024 1024 256
MLP dimensions (512, 512, 512) (512, 512, 512) (512, 512, 512) (512, 512, 512)
IQL expectile 0.9 0.9 0.7 0.7
LayerNorm [3] True True False True
AWR α (IQL) {0, 1, 10, 100} {0, 1, 10, 100} {0, 1, 3, 10} {0, 0.1, 1, 10}
AWR α (SARSA/CRL) {0, 1, 10, 100} {0, 1, 10, 100} {0, 1, 3, 10} {0, 1, 10, 100}
DDPG+BC α (IQL) {0, 0.01, 0.1, 1} {0, 0.01, 0.1, 1} {10, 30, 100, 300} {3, 10, 30, 100}
DDPG+BC α (SARSA/CRL) {0, 0.01, 0.1, 1} {0, 0.01, 0.1, 1} {10, 30, 100, 300} {3, 10, 30, 100}
SfBC N (IQL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}
SfBC N (SARSA/CRL) {1, 16, 64} {1, 16, 64} {1, 16, 64} {1, 16, 64}

D.7.2 Policy generalization analysis

Hyperparameters. Table 3 lists the hyperparameters that we use in our offline-to-online RL and
test-time policy improvement experiments. In these experiments, we use Gaussian distributions with
learnable standard deviations for action distributions.

E Additional results

We provide the full data-scaling matrices with different policy extraction hyperparameters (α for
AWR and DDPG+BC, and N for SfBC) in Figure 10.
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Table 3: Hyperparameters for policy generalization analysis.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam [23]
# offline gradient steps 106 (antmaze), 5× 105 (kitchen, adroit)
# total gradient steps 2× 106

# gradient steps per environment step 1
Minibatch size 1024 (kitchen), 256 (antmaze, adroit)
MLP dimensions (512, 512, 512) (kitchen), (256, 256) (antmaze, adroit)
Target smoothing coefficient 0.005
Discount factor γ 0.99
LayerNorm [3] True (kitchen), False (antmaze, adroit)
IQL expectile 0.9 (antmaze), 0.7 (kitchen, adroit)
Policy extraction method AWR
AWR α 10 (antmaze), 0.5 (kitchen), 3 (adroit)
SfBC N 16
OPEX β 0.3 (antmaze), 0.0003 (kitchen)
TTT β 0.3 (antmaze), 5 (kitchen)
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Figure 10: Full data-scaling matrices of AWR, DDPG+BC, and SfBC with different hyperparameters.
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