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Abstract

Causal effect estimation from observational data is fundamental across various
applications. However, selecting an appropriate estimator from dozens of special-
ized methods demands substantial manual effort and domain expertise. We present
CausalPFN, a single transformer that amortizes this workflow: trained once on
a large library of simulated data-generating processes that satisfy ignorability, it
infers causal effects for new observational datasets out of the box. CausalPFN
combines ideas from Bayesian causal inference with the large-scale training proto-
col of prior-fitted networks (PFNs), learning to map raw observations directly to
causal effects without any task-specific adjustment. Our approach achieves superior
average performance on heterogeneous and average treatment effect estimation
benchmarks (IHDP, Lalonde, ACIC). Moreover, it shows competitive performance
for real-world policy making on uplift modeling tasks. CausalPFN provides cali-
brated uncertainty estimates to support reliable decision-making based on Bayesian
principles. This ready-to-use model requires no further training or tuning and takes
a step toward automated causal inference ( ).
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Figure 2: Traditional Causal Inference vs. CausalPFN. (Left): A domain expert manually builds or selects an
estimator for a DGP that they deem appropriate for the given data. (Right): The domain expert simulates diverse
DGPs for pre-training, and a transformer learns to amortize causal inference automatically.

(DML) [16, 29], and neural network approaches [ 104, , 19-221], among others [97, 56, 70, 65].
This large number of estimators creates practical challenges as domain expertise is required to select,
tune, or design the most appropriate estimator for each application [107, ,27,2,81,73].

The Bayesian paradigm offers an elegant framework to address these challenges [99, 46, 47, 40,
]; rather than manually designing or selecting the best estimator, one can: (1) parameterize an
appropriate prior distribution over plausible underlying causal mechanisms, i.e., the data-generating
processes (DGPs), (2) define the causal estimand as a functional of the DGP parameters, (3) compute a
posterior distribution over DGPs conditioned on observed data, and (4) derive the posterior predictive
distribution (PPD) of the causal estimand. However, the practical adoption of Bayesian methods
remains limited. Computing posterior distributions typically requires expensive sampling methods [84,
], which often leads researchers to make specific assumptions about the DGPs or priors that are not
necessarily reflective of the complexity of the downstream tasks [36, 62].

Meanwhile, an emerging area in deep in-context learning suggests using large models that can
approximate PPDs by taking the entire list of observations as context and amortize the expensive
process of posterior inference [32, 31, 54]. A successful example is the prior-fitted network (PFN)
[80] that achieved remarkable performance in tabular prediction tasks [42, 69, 37, 43, , 76, 66].
PFNs employ transformer architectures trained on large-scale simulated DGPs, representing a rich
prior, to perform posterior predictive inference via in-context learning; given a dataset of input-output
examples as context, they can predict outputs for new inputs. PFNs shift the computational burden
from inference time to (pre-)training, producing a single set of model parameters that can make fast
and accurate predictions on unseen datasets. However, they are only designed for regression and
classification, not for causal inference.

We propose to bridge the large-scale training of amortized models with Bayesian causal inference and
introduce CausalPFN, a transformer model for causal effect estimation via in-context learning. Our
framework leverages a general-purpose prior, based on the ignorability assumption, to generate a vast
collection of simulated DGPs. By training on these diverse DGPs, our method learns to infer the causal
estimands directly from observational data. While our approach requires an expensive pre-training
phase, once complete it is ready for inference on new datasets with no further training, fine-tuning,
or hyperparameter optimization. Hence, CausalPFN is easy-to-use, efficient for inference, and
shows remarkably strong performance as an estimator. Figure 1 illustrates the relative performance
and efficiency of our method compared to standard baselines. For inference on an unseen dataset,
CausalPFN requires only forward passes, whereas baseline methods have additional costs including
hyperparameter tuning or cross-validation. We therefore report the computational time for all of these
stages for the baselines to reflect the total costs of predicting on a new dataset.

We show CausalPFN’s workflow compared to traditional causal inference in Figure 2. Our key
contributions are: (i) To our knowledge, for the first time, we demonstrate that a single transformer-
based model trained on a diverse library of simulated DGPs can match or surpass specialized
estimators across multiple datasets without task-specific tuning. Specifically, CausalPFN achieves
the best average rank on CATE across IHDP, ACIC, and Lalonde, and competitive ATE performance,
without task-specific tuning. (i) We highlight CausalPFN’s competitive out-of-the-box performance
for real-world policy making on various uplift modeling tasks. (iif) We theoretically characterize the
assumptions under which CausalPFN’s estimates are asymptotically consistent. (iv) We develop a
principled uncertainty quantification framework for CausalPFN to produce finite-sample calibrated
credible intervals for the estimates. (v) Finally, we release our model’s weights with a user-friendly
API, streamlining the adoption of CausalPFN as a capable estimator. CausalPEN is fast, ready-to-use,
and does not require any further training or hyperparameter tuning.



2 Background

Causal Effect Estimation. We adopt the potential-outcomes framework for causal inference [100].
Let T' € T denote the treatment from a finite treatment set 7, and X € X the observed covariates.
For every t € T, Y; € R is the potential outcome under treatment ¢, while the observed (factual)
outcome is Y := Y. We call the joint distribution P(X, T, {Y; }+c7,Y) the data-generating process
(DGP), and denote by Pop,s the marginal distribution over observed triples (X, T, Y"). Given samples
from P}, a central goal is to recover the conditional expected potential outcomes (CEPOs):

pe(x) = E[Y; | X = x], VieT,xeX. (1)

For binary treatments, two common estimands, average treatment effect (ATE), and conditional
average treatment effect (CATE) follow directly from the CEPOs. We refer to CEPOs, CATE, and
ATE collectively as causal effects.

ATE: X :=E[Y; — Y] = E[p1(X) — po(X)], 2)

CATE: 7(x) =E[Y7 - Y | X =x] = pu1(x) — po(x). 3)

Estimating causal effects from observational data is impossible without further assumptions: different
DGPs can induce the same P, but have different causal effects [87, 39, 47]. We thus define:

Definition 1 (CEPO-Identifiability). For each ¢ € T, CEPO-identifiability holds when x; can be
written as a functional of the observational distribution Py,.

Throughout, we assume strong ignorability, a standard sufficient assumption that makes CEPOs
identifiable. Strong ignorability posits that, conditional on observed covariates, treatment assignment
has positive probability for all ¢ € 7 and is independent of all potential outcomes [98, 97, 89]:

Assumption 1 (Strong Ignorability). (i) Y; L T'| X for all t € 7 (Unconfoundedness), and (ii)
P(T =t|X)>0ae. forallt € T (Positivity).

Bayesian Causal Inference. A Bayesian formulation of causal inference considers an explicit
likelihood model for the DGP [99, 84, 62]. Let ¢ be the parameter that indexes the DGPs
PY(X,T,{Y:}te7,Y). A prior (1) encodes domain knowledge on parameters v. Given i.i.d.

observations Dops = { (x(), ¢, () }::1 coming from the observational distribution P;f)s, Bayes’

rule yields the posterior 7 (1) | Dops ). For any functional g(1)—for example g(1p) = EV[Y; — Y]
for ATE—the posterior predictive distribution (PPD)

7I(- | Dobs) = [B — /]I(g(i/)) € B) (%) | Dobs) A9 |, BeB, “4)

is induced by the posterior distribution 7(1) | Dobs) (B denotes the Borel o-algebra over R). Point
estimates (posterior means) and credible intervals therefore arise automatically from these induced
posteriors. Because the posterior is rarely available in closed form, one resorts to approximate
inference such as Markov-chain Monte-Carlo (MCMC) [40] or variational inference [68, 48]. Such
techniques have been applied with flexible priors including nonparametric BART models [40, 36],
Dirichlet processes [64] and Gaussian processes [3]. In summary, the Bayesian paradigm offers a uni-
fied framework for inference on causal estimands and provides automatic uncertainty quantification.

Amortizing Posterior Predictive Inference with Prior-Fitted Networks. Running a new posterior
inference for every dataset is computationally demanding, especially with high-dimensional covari-
ates [30, 62]. Recent work shows that in-context transformers can amortize Bayesian prediction:
instead of sampling from the posterior at test time, a single network is trained to map a context set
directly to the PPD [31, 32, 54, 80, 37]. PFNs instantiate this idea for supervised learning [42].

Consider a supervised dataset DS = {(x(™),4(™))}N_ and a prior 75" on parameters ¢ indexing

P?(X,Y). The Bayesian approach to predict the output for a new input X is to use the PPD
PPD(Y | X =x,D%) := /P¢(Y | X =x)m%(¢ | D) dg. )

Rather than approximating the posterior distribution 75" (¢ | DS) with MCMC or variational
inference [49, 4, 82], PFNs directly parameterize the PPD using a single transformer model
qo (Y | X, DSL) by minimizing the data-prior loss

o = Eprsi, porugx,yy~pe [~ 108 (Y | X, DSL)]' ©)



Crucially, training requires only prior samples (¢, DS); no posterior sampling is needed. With a
suitably rich prior, a single PFN can be applied off-the-shelf to diverse predictive problems [69, 43].

3 The Mathematical Framework of CausalPFN

Our primary estimands of interest are the CEPOs from (1). As shown in (2) and (3), CEPOs directly
enable estimation of both ATE and CATEs. Therefore, we focus on developing an estimator that can
accurately infer these quantities from the observational data. Specifically, we follow the Bayesian
paradigm for causal inference, as introduced in Section 2, and parameterize CEPOs as 1 (x ; ).
Given a suitably rich prior distribution 7 over the DGPs, which we will explicitly design in Section 4,
we define our target as the posterior predictive distribution of CEPOs:

Definition 2 (CEPO-PPD). For eacht € T and covariate vector x, the CEPO-PPD is

(| X, Dops) = {B — /H(ut(x; Y) € B)w(¢ | Dobs) dv |, BeB. @)

Consistent Estimation of CEPOs. The CEPO-PPD captures the epistemic uncertainty about the
CEPO encoded in the posterior. A concentrated distribution 7#* indicates that the observations Dgy,s
are informative and enough samples are available to accurately pin down the true CEPO, whereas a
high-variance distribution implies that the data is insufficient for estimation. With that in mind, we
now study under which conditions increasing the size of the observations D, allows us to accurately
recover the true CEPO from the CEPO-PPD. This is given through the following informal result
(re-stated and proven formally in Appendix B) which provides necessary and sufficient conditions on
the prior 7 under which the CEPO-PPDs enable consistent estimation of the CEPOs:

Proposition 1 (Informal). Under mild regularity assumptions, for almost all * ~ m and any set of
i.i.d. samples Dy ~ P;’i)s, we have that as |Dops| — 00,

Epiorrt (-5, Dons) 1] L5 (x5 YY), YVt €T, and almost all x € X, 8)

if and only if the prior = is CEPO-identifiable, that is for almost all ) ~ w, the CEPOs (- ; 1)
only depend on the observational distribution P;ﬁ;s (Definition 1).

(Proof sketch) We group all DGPs ) that share the same observational distribution P;ng into an
equivalence class and induce a prior obtained from 7 on the resulting quotient space. By Doob’s
theorem [26]—a classical result from Bayesian consistency theory—the posterior on this new prior
almost surely concentrates on the true equivalence class once asymptotically many observations are
given. Consequently, for any functional of the observations that is constant within each equivalence
class, its posterior predictive converges almost surely to its true value. Importantly, the causal
functional of interest, 1;, can be written as a functional of the observations if and only if the
corresponding DGP has identifiable CEPOs. Thus, identifiability is both necessary and sufficient to
ensure that p is constant throughout the equivalence class, and for the consistency result to hold.

(Remark 1) While the algorithms in our paper use strong ignorability, Proposition | itself is an entirely
general result and can be extended to DGPs that are not necessarily ignorable, but whose CEPOs
satisfy identifiability in Definition 1. Importantly for our practical setting, when the prior 7 enforces
strong ignorability, Proposition 1 suggests that the CEPO-PPDs consistently recover the true CEPO.

(Remark 2) Proposition | highlights two key design principles for the prior 7: (i) 7 must rule out
non-identifiable cases, and, once identifiability is secured, (i¢) broadening 7 increases the chance that
a particular ¥* lies within its support, thus enabling consistent recovery of the true CEPO for that ¢*.

Learning the CEPO-PPD. Having shown that CEPO-PPDs are useful for estimating the true CEPOs,
we now describe how to learn them. Inspired by PFNs, we train a single transformer gy to approximate
the full predictive distribution 7#¢. To fit this model, we introduce the following loss:

Definition 3 (Causal Data-Prior Loss). For any ¢t € 7, we define the causal data-prior loss as

Et(a) = Ewwﬂ—’ Dops U{x} ~ PO‘/;)D [_ IOg qo (ﬂt(X ; 1/}) | x,t, DObS)]' )

In Appendix C, we show that minimizing £;(6) also minimizes the KL-divergence between the true
CEPO-PPD and ¢y, leading to gy (- | X,t, Dobs) =~ 7 (- | X, Dops) for all ¢ € T. This entire training
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Figure 3: Causal Data-Prior Training. At each iteration an index v; ~  is sampled (/eft), yielding the DGP
PY(X,T,{Y:}teT,Y). From this DGP we simulate an observational context Db and a query (x, t) with its
true i+ (X ; 1);) (center). Passing (x, ¢, Dobs) through the transformer predicts the CEPO-PPD qg (- | X, ¢, Dobs)
(in yellow), which is derived from an implicit posterior 7(- | Dobs) that is never explicitly computed (right). We
train f to minimize the causal data-prior loss (bottom).

process shifts the computational burden from inference to pre-training: rather than evaluating the
posterior 7(¢ | Dops) at test time, the model learns to map observational data directly to the corre-
sponding predictive distribution. When the model is well-fitted, the prior satisfies the assumptions of
Proposition 1, and D,y is sufficiently large, the predicted gg accurately pins down the true CEPO.

Figure 3 visually illustrates optimizing the causal data-prior loss using stochastic gradient descent: at
each iteration, we sample a DGP 1; ~ m, generate an observational dataset D,y from this DGP, and
select a query point (x,t). We compute (simulate) the ground-truth CEPO i (x ; ;) and feed both
the observational data and query to the model. The model outputs a CEPO-PPD, and we update 6
using gradient descent to increase the probability assigned to the true CEPO value. Through training,
0 minimizes the data-prior loss and implicitly learns to perform posterior predictive inference, and
estimate the predictive distribution 7#¢, without ever explicitly computing the posterior.

Point & Distributional Estimation of Causal Effects. Given observational data D,,s from
an underlying v*, a natural point estimate for CEPOs is the mean of the predicted CEPO-PPD,
EHqu(_‘x,t’Dobs) (1] ~ Mt(?C ;). These. C;EPO estimates can also' foym point estimates for CATEs
using (3), and for ATEs using (2) by empirical averaging across units in Dgjs.

Beyond point estimation, the estimated CEPO-PPDs can also capture the epistemic uncertainty about
the causal effects. We can use ¢y to construct credible intervals around CEPOs, CATEs, and ATEs
via sampling from gy(- | X,¢t = 1, Dops) and gg(- | X,t = 0, Dops ). We can then use these intervals
to quantify the uncertainty of our estimated causal effects.

4 Implementing CausalPFN

While Section 3 presents the framework in general form
(arbitrary finite 7 and identifiability), for implementation
we focus on binary treatments 7 = {0, 1} under strong
ignorability. These assumptions reflect the most common
settings encountered by practitioners and serve as a natural
starting point. Extending the implementation and algorithms
to more general settings is left for future work.

Retrieve or Synthesize aoo
Base Tables

A Scalable Prior. Here, we focus on designing an appro-
priate prior m over DGPs that satisfies the theoretical re- *

quirements established in Proposition 1. This prior must random' pm'pensiltg

balance two factors: First, it should contain a rich set of  gjoyre 4: Prior construction. Sample di-
DGPs with sufficient coverage to approximate real-world  verse base tables (OpenML or synthetic
scenarios—similar to the priors used in successful tabular TabPFN), select covariates X, draw treat-
predictive models like TabPFEN [42, 43], TabDPT [69], and ment T" with a random propensity model,
TabICL [92]. Second, and uniquely for causal inference, all ~ select columns o, p1 and add zero-mean
DGPs in our prior must satisfy strong ignorability which noise to form Yo, Y1, and Y.

directly implies identifiability of the prior. Moreover, the generated DGPs must allow us to access the
ground-truth CEPOs, as required by the causal data-prior loss in Definition 3 for training.

To address these requirements, we develop a procedure that can transform any base table from
standard tabular priors into a valid causal dataset, illustrated by Figure 4: (i) retrieve a base table



with IV rows from either a large library of tabular data’ or synthesize it (details in Appendix D.1);
(ii) randomly select columns with a varying number of covariates as X; (@ii) pick two other columns,
relabel them as 11 (X), 11 (X); (iv) optionally add zero-mean noise to o (X) and 11 (X) to obtain Yg
and Y7, or simply set Yy = po(X) and Y7 = p1(X); these four steps simulate samples from the joint
distribution (X, Yy, Y7); (v) generate a random function f, leveraging similar synthetic functions
as in Hollmann et al. [42] to map covariates to their treatment logits; (vi) sample binary treatments
T ~ Bernoulli(Sigmoid( f(X))); (vii) finally, form the observed outcomes ¥ := Y7.

The procedure above “simulates” a collection {t("), x(™) ué"), ugn), y(”)}fyzl from an underlying

DGP that can be used to sample the observational data and obtain CEPOs necessary for training (recall
Figure 3). This approach guarantees strong ignorability by design: since treatment 7" is determined
solely from X, it is conditionally independent from the potential outcomes Yy, Y;. Additionally,
by applying the sigmoid function, we ensure 0 < P(T =1 | X) < 1, satisfying positivity. While
this procedure primarily targets binary treatments, it can naturally extend to finite discrete treatments.

For the diversity aspect of 7, we rely on the empirical success of existing tabular foundation models
and the deliberate design in our generation process. Sampling covariates directly from a mix of
real and synthetic tables yields data that is more likely to reflect the scenarios the model will
face at inference. We assume no distributional assumptions on covariates and potential outcomes.
Appendix D.1 details additional mechanisms for controlling treatment effect heterogeneity and
positivity in our synthetic DGPs, as well as the detailed configurations of the prior-generation process.

Model Architecture & Parallel Training. We model gy using a PEN-style transformer encoder
that receives a sequence of row tokens as context (i.e., Dops), where each token embeds a triplet
(™), x(™) (). At every iteration, we embed B batched query tokens (,x). We then apply 20
layers of self-attention and MLP layers, followed by a final projection layer to get go(- | X, ¢, Dobs)
for all the (¢, x) pairs in the batched query. The transformer uses the asymmetric masking used in
PFNs: both context and query tokens attend only to the context tokens, ensuring that the predicted
CEPO-PPDs are mutually independent.

To model each CEPO-PPD, we approximate it with a quantized histogram. We discretize the outcome
axis into L = 1024 bins and let the network project the query tokens into L logits. We then apply
SoftMax to turn the logits into a quantized distribution gy (- | X, ¢, Dobs)[€], V¢ € [L]. At each round
of gradient update, we place a Gaussian with a small ¢ at the true CEPO p;(x) and integrate it over
bins to obtain Gaussian quantized probabilities N (ut(x), 0?)[¢] and minimize the histogram loss:

HL {1 (%) || 0] = ZNM o)[0) - log ao[]. (10)

This loss is an approximation to the causal data-prior loss in (9); it coincides in the limit 0 — 0 and
L — oo. The histogram loss formulation affords a tractable proxy for the continuous CEPO-PPD.

A more detailed overview of the architecture and procedures for point and interval estimates is
illustrated in Figure 5; further details (e.g., parameter counts, compute, inference-time techniques,
number of prior datasets, scalability, and speed) are available in Appendices D.2, D.3, and D .4.

5 Experiments

Baseline Causal Effect Estimators. We compare to a broad suite of baselines. This includes double
machine learning (DML) [16, 7, 29], doubly robust learner (DR-Learner) [57, 52], as well as the T-,
S-, X-, and domain adaptation learner (DA-Learner), all part of the EconML package [ 1]. Moreover,
we include deep-learning—based methods such as TarNet [104], DragonNet [106], and RA-Net [20],
implemented via the CATENets library [19]. Finally, we compare to inverse propensity weighting
(IPW) [97], Bayesian regression trees (BART) [40, 15], and generalized random forests (GRF) [7].
All the baselines, except for IPW, provide both CATE and ATE estimates.

Importantly, we tune most of the baselines with cross-validation via grid search. The set of hyperpa-
rameter, along with the results with default hyperparameters are all detailed in Appendix D.5.

Benchmarks with Ground-Truth Effects. A handful of benchmarks provide ground-truth causal
effects, allowing us to directly measure estimation errors. Given a dataset of N units with covariates

*We use 337 OpenML tables [12], checked to avoid leakage, totaling over 10° feature values.
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Figure 5: Architecture, Training, and Inference Details. (Left): An observational data, and a batch of queries
along with their true CEPO values are sampled from the prior. Each observational row forms a context token,
while query tokens consist of only the treatment and covariates. (Middle): The context and query tokens are fed
into a transformer encoder with an asymmetric attention masking, where both context and query tokens attend
only to the context tokens. (Bottom-Right): The output tokens are projected into a 1024-dimensional logit vector
and softmaxed to form a discretized CEPO-PPD. Then, the true CEPO value corresponding to each output token
is smoothed by adding narrow-width Gaussian, and training is done by minimizing the cross-entropy (histogram)
loss. (Top-Right): At inference time, the CEPO-PPD mean is used as the point estimate.

Table 1: CATE & ATE results. Columns correspond to benchmark suites: IHDP, ACIC 2016, Lalonde cps/psip.
(left half) mean PEHE and the average rank when pooling all tasks. (right half) mean ATE relative error and its
average across all tasks. Lalonde PEHE is in thousands. The best and second best columns are highlighted.

Cells with “—” indicate that the method is not applicable.
Method Mean PEHE =+ Standard Error (| better) ‘ Mean ATE Relative Error + Standard Error (] better)
IHDP  ACIC 2016 Lalonde crs Lalonde rsio Avg. IHDP  ACIC 2016 Lalonde crs Lalonde rsio Avg.
(x10%) (x10%) Rank Rank
CausalPFN 0.58+0.07 0.92+0.11 8.96+0.02 14.40+0.20 2.30£0.10 |0.20+0.04 0.05+0.01 0.13+0.01 0.224+0.02 4.454+0.19
T-Learner 1.734+0.30  0.76+£0.07 9.22:£0.04 15.16+0.46 3.57+0.16 |0.21+£0.04 0.03+0.01 0.244+0.02 0.16-£0.03 4.31-£0.18
DA-Learner 2.07+£0.36 0.72+0.08 9.39+0.06 14.55+0.24 3.60+0.16 |0.23+0.04 0.03+0.01 0.27+0.02 0.20+0.03 4.83+0.19
DragonNet 2.16+0.25 2.11+0.19 10.93+£0.15 16.45+£0.29 5.99+0.18 | 0.20+0.04 0.06+0.02 0.55+0.03 0.47+0.03 6.26+0.17
IPW — — — — — 0.24+0.04 0.21£0.05 0.17+0.01 0.10+-0.01 4.41+0.21
RA-Net 2.35+0.19 2.35+0.25 11.74+0.09 18.33+0.43 7.15+0.16 | 0.20+0.04 0.07+0.03 0.74+0.02 0.50+0.04 6.78+0.17
X-Learner 3.31£0.51 0.60-0.08 12.15+0.15 20.28+0.49 7.46+0.19 |0.16+0.04 0.03+0.01 0.84+0.03 0.72+0.03 7.31+0.19
TarNet 1.824+0.14 2.20+0.21 12.88+0.02 19.19+0.18 8.38+0.14 |0.20+0.04 0.05+0.02 1.00+£0.00 0.78+0.01 8.83+0.15
S-Learner 2.57+£0.41 0.85+0.13 12.66+0.05 21.80+0.18 8.43+0.18 |0.20+0.04 0.03+0.01 0.97+0.01 0.90+0.02 8.85+0.18
BART 2.50+0.39 0.68+0.11 12.81£0.05 21.36+0.16 8.55+0.16 |0.44+0.09 0.04+0.01 0.99+0.01 0.86+0.01 8.99+0.18
GRF 3.67+£0.61 1.32+0.30 12.33+0.06 22.91+0.17 8.82+0.18 |0.18+0.03 0.07+£0.02 0.82+0.02 0.85+0.02 8.02+0.18
Forest DML 4.53+£0.73 1.48+0.31 12.954+0.04 22.99+0.15 9.83+0.17 [0.08-£0.01 0.05+£0.01 1.03+0.01 1.05+0.01 9.60+0.21
Forest DR Learner 4.024+0.67 1.34+0.29 15.98+0.68 22.78+0.54 10.0040.17 | 0.17+0.03 0.04+0.02 1.20+0.23 3.64+2.78 8.38+0.18

and ground-truth CATE values {(x(™, 7(x(™))}_, , and a ground-truth ATE ), we evaluate models
using the relative ATE error and the precision in estimation of heterogeneous effects (PEHE) [40]:

N N
RelativeError(\) = % PEHE(7) = % 37 (r(xm) = 7 (xm))? (11)
n=1

Here, 7 and \ denote the estimated CATE and ATE, respectively. Table 1 compares CausalPFN to
all baselines on four standard set of datasets: 100 realizations of IHDP [94, 40], 10 realizations of
ACIC 2016 [27], and the Lalonde cps and Lalonde psi> cohorts [58] with their causal effects provided
by RealCause (each with 100 realizations) [81]. Our model demonstrates superior performance on
both CATE and ATE tasks, remaining within the top models across most benchmarks. To assess
the overall performance of each method for CATE estimation, we calculate the average rank of
each method across all 310 realizations based on PEHE. For ATEs, we calculate the average rank
of each method based on relative errors. CausalPFN outperforms all baselines in terms of average
CATE rank, while being competitive for average ATE rank. Notably, our model is trained entirely on
simulated data and never sees the evaluation data during pre-training. While some baseline estimators
in Table 1 perform well on specific datasets, they underperform on others. In contrast, the consistent
performance of CausalPFN suggests that amortized approaches can potentially eliminate the manual
burden of task-specific estimator design.

Policy Evaluation on Marketing Randomized Trials. Ground-truth CATEs are only available for
synthetic or semi-synthetic datasets. However, if a randomized controlled trial (RCT) is available, we



Table 2: Normalized Qini scores (1 better). All datasets use 50k
stratified subsamples, except Hill™ and Hill'®, which use the full
64k rows. Columns are normalized to 1.0 for
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Figure 6: Hill'" & Hill®® Qini curves.

can still evaluate the quality of a CATE estimator by assessing the performance of policies derived
from it. A common tool for evaluating such policies is the Qini curve [93], which plots the cumulative
treatment effect when units are ranked in descending order of their predicted CATE.

Formally, let (y(™),¢+(™)N_, denote outcomes and binary treatments from an RCT, and let 7, be the
corresponding CATE estimates, ordered so that 77 > --- > 7. Define
A )y, (m)
n n 1—¢t(n n
Moy = Y (g7 - SEE), Q@ =g A/, 0<g<1 (1)

n=1

where r(q) = Lq}V ] ZTL;’NJ t(") is the empirical treatment rate for the first g-quantile of units. Because

the data comes from an RCT, A(g) unbiasedly estimates the ATE for the top g-quantile of units ranked
by predicted CATEs. Plotting ()(g) against the treated fraction ¢ yields the (normalized) Qini curve,
and the area under this curve is called the Qini score. A random ranking produces a baseline curve as
a straight line from (0, 0) to (1, 1). The higher the Qini curve lies above this line, the better the model
prioritizes high-impact units with larger CATE values, leading to greater lift and policy benefit.

We benchmark CausalPEN on five large marketing RCTs from the scikit-uplift library [74]. The
first dataset, Hillstrom [4 1], includes 64,000 customers randomly assigned to one of three treatments:
no e-mail, an e-mail advertising men’s merchandise, or an e-mail advertising women’s merchandise.
The outcome is whether a website visit occurred within two weeks (binary). We consider two
causal tasks: Hill() — Men’s-merchandise e-mail (treatment) vs. no e-mail (control), and Hill®
— Women’s-merchandise e-mail vs. no e-mail. We estimate CATEs using CausalPFN (five-fold
honest splitting) and X Learner. Figure 6 shows Qini curves where CausalPFN closely matches X
Learner across the targeting range. Notably, Hill(®) shows much greater gains, suggesting focusing
on women’s-merchandise ad campaigns, compared to men’s, can drive more gains in the number
of website visits. We also evaluate CausalPFN on four larger campaigns—Lenta, Retail Hero
(XS5), Megafon (Mega), and Criteo [01, 95, 78, ]—each with ~108 rows. For tractability, we
compute Qini scores on stratified 50k subsamples; Table 2 shows CausalPFN achieves the best mean
performance. However, when we run it on full tables (see Table 7 of Appendix D.6), we observe a
drop in performance, which aligns with known context-length limitations of PFN-style transformers
on large tables [109]. Still, the strong subsample results highlight the potential of scaling CausalPFN
to longer contexts, which remains an important future direction.

Uncertainty & Calibration. Recall from Section 3 that for each unit covariate x, CausalPFN can
produce both point estimates and credible intervals for the CATE and CEPOs. We do so by drawing
10,000 samples from the quantized distributions gy (- | X, ¢, Dops) and construct credible intervals at
any desired significance level «. Here, we evaluate these intervals, focusing on the model’s calibration.
We also assess a key assumption from Proposition 1—whether the inference-time DGP ¥* lies within
the support of the prior 7, and how the model behaves when this assumption is violated.

We define families of synthetic DGPs to simulate both in-distribution and out-of-distribution (OOD)
scenarios. Each DGP samples covariates x from a uniform distribution, defines a treatment logit func-
tion f and CEPO functions y for ¢ € {0, 1}, assigns treatment via 7' ~ Bernoulli(Sigmoid(f(x))),
and generates potential outcomes as y; = u¢(x) + €, where ¢; is drawn from a standard Uniform,
Gaussian, or Laplace. We consider two DGP families; Sinusoidal, where f and p; are functions with
sinusoidal components, and Polynomial, where the functions f and y; are polynomials of varying
degree (see Appendix D.7 for detailed configurations). CausalPFN is trained either on the same
family it is tested on, or on a different one (OOD).
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Figure 7: Calibration. (Left): CATE coverage vs. nominal credibility. In-distribution DGPs (blue) lie on or above
the diagonal (calibrated/conservative), while OOD DGPs (orange) fall below it (overconfident). (Middle): Across
model-DGP pairs, CATE ICE (x-axis) exceeds regression ICE (y-axis). (Right): Temperature scaling based on
regression ICE ensures the model is either calibrated or conservative for both in- and out-of-distribution DGPs.

For a unit with covariates x and significance level o, we say the true CATE is covered if 7(x)
lies within the predicted 100(1 — )% interval obtained using samples from gy. Plotting Bayesian
coverage against nominal levels of « yields the CATE calibration curve. As shown in Figure 7 (left),
CausalPFN is reliably calibrated under in-distribution settings but becomes severely overconfident
when evaluated on OOD DGPs (¢* +¢ 7). This aligns with prior observations that neural models
often exhibit pathological overconfidence under distribution shift [35, 86].

To correct this, we apply a temperature parameter 67 to the SoftMax that outputs the quantized
CEPO-PPD from the logits of the model. We aim to tune 7 to minimize the calibration error.
However, direct CATE calibration is impossible because 7(x) is never observed at test-time. Instead,
we introduce the regression calibration based on observational data: an observed triple (¢,x,y)
is covered by the predicted credible interval when y lies inside the model’s predicted interval for
the CEPO-PPD /i, (x ; ¢*). With that in mind, we let cov,(«) and cov,(«) denote the Bayesian
coverage at level « for the regression and CATE calibration curves, respectively, and define

1 1
ICE, = / (cov,(a) — ) dev, and ICE, = / (Cov,(a) — a) da, (13)
0 0

as the integrated coverage error (ICE) for regression and CATE (negative values = overconfidence).

Note that we do not expect cov,, to be calibrated: regression intervals combine epistemic uncertainty
of the CEPO with the irreducible (aleatoric) noise in Y, so ICE,, is biased. Still, it holds a useful
signal. Across all model-DGP pairs in Figure 7 (middle), we consistently observe ICE,, < ICE;:
the regression curve sits at or below the CATE curve. While ICE, is inaccessible without having
the true CATE, ICE,, is computable from observational data. Consequently, temperature-scaling the
logits to lift cov,, to the diagonal also calibrates the CATE intervals or makes them conservative. We
thus tune 07 by grid search to drive ICE,, to zero using a 5-fold calibration on the observational
data. The calibrated curves in Figure 7 (right) confirm that, after temperature scaling, CausalPFN’s
overconfidence on the OOD test-sets disappears. Additional synthetic train-/test-DGP pairs and
real-world data experiments appear in Appendix D.7.

Comparison to TabPFN. We also compare against the latest version of TabPFN [43], plugging
its regression output as a proxy for CEPO. As Table 3 shows, TabPFN is surprisingly competitive
without any causal tuning, yet CausalPFN outperforms it on every benchmark except ACIC 2016. To
isolate the benefit of training on a causal prior, compared to the predictive non-identifiable prior in
TabPFN, we fine-tune it on our prior for 48 hours on an H100 GPU. This causal fine-tuning boosts
the performance and confirms the added value of identifiable priors for causal effect estimation.

6 Related Work

Single-Dataset Estimators. Common methods for causal effect estimation are trained and applied
on a single dataset. Representative examples include the X-, S-, DR-, and RA-Learners, as well as
IPW and DML [11]. Alongside these approaches, several neural variants such as TARNet [104],
DragonNet [106], CEVAE [68], and NCMs [1 14, 115] have been proposed; however, all of them still
require per-dataset training and do not amortize across various datasets.



Table 3: TabPFN Comparison. PEHE (left half) alongside ATE relative error (right half). TabPFN™ is the latest
TabPFN model [43] tuned with our prior. Best numbers are

PEHE =+ Standard Error (| better) \ ATE Relative Error + Standard Error (| better)

Method
THDP ACIC 2016 Lalonde ces Lalonde psip THDP ACIC 2016 Lalonde ces Lalonde psip
(x10%) (x10%)
CausalPFN (Ours) 0.924+0.11 0.054+0.01
TabPFN* (Ours) 0.90+0.16 8.974+0.06 14.90+0.95 | 0.21+0.04 0.17+0.02  0.22+0.08
TabPFN 0.95+0.20 0.54+0.08 9.454+0.19 18.7+0.83 | 0.21+0.04 0.32+0.05  0.60+0.07

Amortized Causal Inference. Amortized methods train a single network that maps observational
data to causal quantities across multiple DGPs. Existing approaches fall into two groups: (i) methods
that first recover a causal graph from observational data and then compute interventions on that graph
[102, 72], following ideas from causal discovery [88, , 53, 67,51, 50]; and (ii) methods that infer
causal effects end-to-end [&3, , 14]. Amortization has also been explored in decision-making,
where the aim is to learn policies that generalize across environments or tasks [60, 59]. While
closely related, none of these methods provides a ready-to-use estimator that consistently surpasses
specialized single-dataset estimators on standard benchmarks. In contrast, our method is trained once
and produces causal effects without any access to or adaptation on the test-time DGPs. Through
large-scale training, CausalPFN delivers out-of-the-box performance that exceeds specialized single-
dataset estimators. Recently, concurrent work by Robertson et al. [96] also applies PFNs to causal
effect estimation but lacks a procedure to guarantee the identifiability of the prior data; additionally,
we observe relatively poor empirical performance compared to CausalPFN. For further discussion
and comparison with this method, refer to Appendix E.

Scaling In-Context Transformers. In-context learning with transformers has shown impressive
results across a range of domains [13, , 18, 25, ]. Although the underlying mechanisms
resp0n51ble for this success remain an active area of research [1, 23, 85, s , 8,90],
increasing model size and training data have consistently and undoubtedly led to stronger performance
This success has recently extended to tabular prediction with models such as TabPFN [42, 43],
TabDPT [69], and TabICL [92], which are trained on broad prior distributions and perform well on
real-world data without fine-tuning. CausalPFN complements these works, demonstrating that—with
sufficient scale and training—in-context learning can also be effectively adapted to causal inference.

7 Conclusions, Limitations, and Future Work

In this paper, we introduced a practical paradigm for amortized causal effect estimation that combines
Bayesian causal inference with large-scale tabular training. Despite learning solely from simulated
data, CausalPFN matches, and often outperforms, specialized causal estimators across diverse real-
world domains. Through amortization, we significantly reduce the burden of estimator selection at
inference time, and to foster adoption, we have open-sourced the code and presets.

That said, several important limitations remain: (i) Our approach fundamentally assumes strong
ignorability, which is an untestable assumption in practice. Without this condition, CausalPFN has no
guarantees of validity. Domain expertise still remains essential to determine whether this method is
appropriate or whether alternative approaches should be used. (ii) Our theoretical guarantees rely on
idealistic assumptions: a well-specified prior and asymptotically large datasets. We lack finite-sample
theory characterizing the estimator’s behavior in practical settings. Investigating robustness to prior
misspecification and developing finite-sample guarantees remain open problems. Recent work on
theory of valid adjustment sets [| 7] may offer promising directions for addressing these challenges.
(iii) Performance degradation is evident on the largest marketing tables (Table 7), reflective of the
known size-scalability trade-off inherent to PFN-style models [43]. (iv) While CausalPFN already
supports multi-arm discrete treatments with a finite set 7, we have only implemented it for the binary
T. Additionally, extending to the continuous treatment setting where 7 is not finite remains fully
unexplored. (v) Finally, our entire implementation relies on the strong ignorability or backdoor
assumption. Extending our framework to richer domain-informed priors like instrumental variables
can broaden the framework’s reach, although designing scalable priors for such cases is non-trivial.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provide a concrete summary of contributions at the end of the introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We summarize our limitations, alongside future durections, in Section 7. We
are also fully transparent in the limitations of our theory, and also some of the practical
limitations of our method detailed in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide all the assumptions and the complete proof for Proposition 1| in
Appendix B. We also provide a proof sketch in the main paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code, along with the model checkpoints and Jupyter Notebooks
to replicate all the experiments in the main paper and appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We publish CausalPFN as a standalone PyPI package (

), along with the instructions to reproduce all the results in the
paper. The training data is fully public and is sufficiently reproducible from the given
implementation details provided.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all of the important details in the main text, in addition to
extra details in Appendix D. Moreover, the package we release contains all of the necessary
hyperparameters used for inference.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the 1-sigma standard errors of the mean values in the CATE
& ATE results table, across different realizations of each benchmark dataset. We also
demonstrate error bars in the calibration plots, which show 1-sigma standard errors of the
mean calibration curves, across multiple samples of the synthetic datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use a single A100 GPU for 7 days to train the base CausalPFN. We also
use an H100 GPU for 2 days to produce the TabPFN fine-tuned results in Table 3. Apart
from that, all of the other experiments are run on either a desktop RTX6000, A100, or an
H100.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]

Justification: All the datasets used in the paper were either synthetically generated or publicly
available. The authors confirm that the research conducted in the paper complies with the
NeurIPS Code of Ethics, to the best of their knowledge.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: Causal effect estimation is a fundamental problem with many societal benefits
across public policy, healthcare, and economics. While we do not directly try to solve any
critical societal issues, by developing a strong causal estimator, we believe it may lead to
positive impact in the future.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe our model poses no such risks, as it is a method for causal effect
estimation for tabular observational datasets, with reliable credible intervals.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the project developers are authors in the paper and are properly credited
for their contribution.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We attach and release all of the assets and code related to this document. All
of the code is well-documented and transparent.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our research did not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our research did not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs for any important and original contributions in this
research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( )
for what should or should not be described.
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A Notation, Definitions, and Assumptions

Sample Space. Let B denote the Borel o-algebra on R. Let Z = (X, T,Y) collect the observed
variables, taking values in a standard Borel space (2, Bz). In particular, X € X, T' € T where

T is finite, and Y € R. To reason about cou~nterfactuals, define the augmented variable 7 =
(X, T,{Y;}+e7,Y) on a standard Borel space (Z,83).

Data—Generating Parameters. Let (U, By) be a standard Borel parameter space. For ¢ € U,
a data—generating process (DGP) is a probability measure P¥ on (Z,B5), which induces the

observational marginal P;és on (Z,Bz). We use ¢ to denote both the random parameter (when
distributed according to a prior) and its realized value, when clear from context.

We impose a mild regularity condition to ensure measurability of parameter—to—law maps. Let 73(2 )
and P(Z) denote the spaces of probability measures on Zand Z, respectively, endowed with the
Borel o-algebras generated by the weak topologies.

Assumption 2 (Measurability). The map ¢ — P¥ ¢ P(ZN’) is measurable, in the sense that
¢ — P¥(B) is By-measurable for each B € B 3. Similarly, ) — P;’Zfas € P(Z) is By-measurable
and its image set {P;’[{)S : ¢ € ¥} is a Borel subset of P(Z).

Prior and Posterior Distributions. Let 7 be a prior on (¥, By). Define the joint law P™ of
((Zi)izl, 1/)) by first sampling ¢ ~ 7 and then, conditional on v, sampling (Zi)zZl i.i.d. from P¥.
We use P to denote its marginal distribution on X.

Let DY = (Z1,Za,...,Zy,) denote the first n observed variables (the Z-marginals of the corre-

obs *

sponding Z;). We write 7(- | D'%.) for the posterior on ¥ induced by P".
Parametric CEPOs and CEPO Posterior Predictive. For each ¢ € 7 and 7-almost every 1, regular
conditional distributions for (Y; | X) exist because all relevant spaces are standard Borel. Thus, there

is a Borel version of the conditional expectation x — E¥’ ! [Y: | X = x]. We fix a version (- ; )
that is jointly measurable in (X, ) and call it the conditional expected potential outcome (CEPO):

pe(x 5 ) = EPU)[Y; | X =x], for Pg-almost every x. (14)
Assumption 3 (Integrability). For every ¢t € T and Pg-almost every x:
B [pe(x 5 )] < oo (15)

For any query (t,x) and dataset D7, , the CEPO posterior predictive distribution (CEPO-PPD), a

probability measure on R, is the pushforward of the posterior 7 (1) | D7 ) through ¢ — p:(x;):

obs

(B | x, D) = / Iu(x; ) € Byn(de | D), B € Bl (16)
)

Model. Given a query (¢,x) and context D7, ., a model with parameters 6 yields a predictive

distribution gy ( - | x,¢, D% ) on R for the CEPO values.

Observational Quotient Space. Standard consistency results such as Doob’s consistency theorem
[79] are concerned with the parameters of the observational distribution. To leverage such results, we
characterize the set of DGPs with the same observational distributions as follows:

Definition 4 (Observational Quotient Space). Let & := ¥/ ~ be the set of equivalence classes under:
Yy ~ 1y iff P = P% Let[] : U — & be the quotient map and equip ® with the quotient

obs obs*

o-algebra By .= {A C @ : [[|7}(A) € By }. We call (, By) the observational quotient space.

We write ¢ = [¢] to denote the equivalence class corresponding to the parameter ¢ and may

interchangeably use P[¥!, P?, or P:{)S to denote the corresponding observational distribution. Note

(®, Bg) is also standard Borel. Indeed, identify ® with the image R = {PC')‘/{)S 2 € U CP(2)

via the measurable bijection [¢)] P;/fas. By Assumption 2, R is a Borel subset of the standard
Borel space P(Z) (the space of probability measures on Z with the weak topology is standard Borel
whenever (Z, Bz) is), hence R and thus  are standard Borel [108].
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Identifiability. Finally, we re-state the definition of identifiability from Section 2 more formally.
This will be a necessary condition to prove our results in the next sections.

Definition 1 (CEPO-Identifiability). We call a prior 7 on (¥, By ) CEPO-identifiable, if for each
value of t € T, there exists amap f; : X x & — R, such that for w-almost all parameters ) and
PZ-almost all values of x, the CEPO value 1, (x ; ) = fi(x, [¢/]).

Note that the above definition is compatible with the standard identifiability in the literature [89],
since there is a bijection between each equivalence class [¢)] and the observational distribution Pf{as.

B Consistency Result

B.1 Re-Statement of Proposition 1

Proposition 1 (Formal). Under Assumptions 2 and 3, there exist sets Xy C X and ¥* C U with
PZ(Xo) = 1and m(¥*) = 1, such that for allt € T,x € Xy, and y* € O*, if Z1,Zs, ... ~ Pis
i.id., then

: _ . >

lim E ('|X’fobs)[u] = w(x; %) P .-a.s., 17

nooo MTHE

if and only if the prior 7 is CEPO-identifiable.

B.2 Preliminaries for the Proof of Proposition 1

Here, we introduce some concepts to simplify the statement of the proof. We start by presenting a
corollary of Doob’s consistency theorem without proof (Corollary 2.3 of Miller [79]), which we will
heavily leverage for the proof of Proposition 1. The result is re-stated to match our parallel notation:

Theorem 2 (Corollary of Doob’s Consistency Theorem). Suppose (Z,8Bz) and (®,Bs) are two
standard Borel spaces. Let v be a probability measure on (®,Bg). For each ¢ € ®, let P? be a
probability measure on (Z,Bz). Consider a measurable map g : ® — R and assume:

(i) Measurability. ¢ — P?(B) is measurable for every B € Bz.
(ii) No Redundancy. ¢ #+ ¢/ —> P?¢ + P9,
(iii) Integrability. E"[|g(9)|] < oo.

Moreover, define the extended joint probability measure vy, on ((Z1, Zs, . ..), ¢) by first drawing
¢ ~ v, and then, conditioned on ¢, sampling Z,, Z, . . . i.i.d. from P?. Then, there exists ®q C ®
with v(®g) = 1, such that for any ¢o € ®g and Zy, Zs, ... ~ P? i.i.d., we have

lim E"[g(¢) | Z1,...,Zn] = g(do) P%-as. (18)

n—oo

The ~Joint Measure II. For technical convenience, we define a joint measure II on variables
¥, (Z;)i>1, [¢], and (Z;);>1 , as the pushforward measure of P™ by the following map:

(¥ (Z)iz1) = (4, (221, [, (Z)i21). (19

In particular, we have the following equalities:
T((Zi)is1 | 9, [0]) = Pano((Zi)iz1) = PPN (Zi)iz1) = TH((Z)iz1 | [), (20)

which results in the conditional independence
(Zi)iz1 L ¢ | []. 2D

Since all spaces involved are standard Borel, regular conditional distributions exist; hence the above
conditional laws are well defined [91].

(Notation Remark) We remove the superscript I in expectations and simply write E when we take
expectations w.r.t. IT. Also, we reuse the symbol II for the joint measure and for any of its marginals
or conditionals; the intended meaning will be clear from context.
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B.3 Proof of Proposition 1

For any given ¢ and x, define the expected CEPOs under observational equivalence class ¢ € ® as’

g91(x5 ¢) = Elpi (x5 ) | 4]. (22)
We can use Theorem 2 to establish a consistency result connecting the CEPO-PPDs and the functions
gt defined in (22):
Lemma 3. Under Assumptions 2 and 3, there exist sets Xy C X and Uy C U with PE(Xy) = 1 and
7(Wo) = 1, such that for all t € T,x € Xo, and g € Vo, if Z1, Za, ... ~ P2 ii.d., then

on )] = 90(x 5 [ol) - Pi-as. (23)

obs

lim E

nooo Tt (

where [ denotes the identity map on R.

Proof. From Assumption 3, a subset Xy C X exists with PZ (X)) = 1, such that for all ¢t € 7 and
x € Xy, we have E"[|p¢(x ; )|] < oo. Fix a value of xg € Xy and ¢y € T. A similar integrability
statement can be made for g;,(xo ; ¢):

Ellge, (x0 5 @)[] = El[E[pe, (x0 5 ) | ¢]]] from (22)
< E[E[lpeo (x0 5 ) | 4] (Jensen’s inequality)
= E[| e, (%0 5 9)]] < 00. (total expectation) 24

Now, we use Theorem 2 to obtain the desired results for the function g, (xo ; ¢) by plugging in
(Z, Bz) directly from our notation and (®, Bg) from Definition 4. Moreover, we replace v and vy
by the marginals of II on the random variables ¢ and ((Z;);>1, ¢), respectively. Finally, it is easy to
see that all the required assumptions hold:

(i) Measurability. Follows from the measurability in Assumption 2.
(ii) No Redundancy. Follows from the definition of the quotient space in Definition 4.
(iii) Integrability. Follows from (24).

As a result of Theorem 2, there exists a set g C P with II(Pg) = 1, such that for any ¢y € Py and
71,25, ...~ P% iid., we have

nh_{I;OE[gto (XO 5 ¢) | ngs] = Gt (XO ; ¢0) P%-as. (25)
We can simplify the expectation in the L.H.S. of (25) as follows:
Elgto (%0 5 @) | Dos] = E[E[pe, (%0 5 ©) | 0] | Dol from (22)
= E[E[ut,(x0 5 ¥) | Dops: @] | Do) from (21)
= Elpey (x0 5 9) | Do (tower property)
YE Nz 26)

Mt L
o (|03,

where (%) follows from the fact that CEPO-PPD 7/t is the pushforward of the posterior IT(¢| D, ) =
7 (1| D) under the map ¢ — (%0 ; ¥).

We then define ¥ as the preimage of ®( under the quotient mapping. It is easy to verify that
m(Ug) = I(¥g) = II(Pg) = 1. For any ¢y € Uy, set o9 = [1)g]. Combining (25) and (26), and
repeating the entire argument for all ¢ € 7 and xo € X, concludes the proof. O

Lemma 3 establishes a consistency result between the CEPO-PPDs and functions g; we defined on
the quotient space. With the consistency proven in the observational quotient space, all that remains
is to connect the R.H.S. of (23) to the original CEPOs. This is where identifiability comes into play.
In what follows, fix ty € 7 and xg € Xj:

3Equivalently, g;(x ; ¢) = E[u:(x; ¥) | [¢] = ¢].
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CEPO-Identifiability = Consistency. Under CEPO-identifiability (Definition 1), there exists
U, C U with 7(¥;) = 1, where for all ¢, 9" € ¥ that [¢'] = [¢"], we have (%0 ; ¥') =
Lo (X0 5 ¥"). Define U* := ¥y N ¥y and note that 7(P*) = 1. Consequently, for any ¢* € U*, we
also have ¢* € ¥y, and
*1y (22) *

gio (%0 5 [W*]) = Eluge (%0 5 ) | ] = %] = pao (%0 5 9). (27
Combining (27) with Lemma 3 and repeating the argument for all ¢y € 7 and xy € A}y proves the
first side of Proposition 1.

Consistency = CEPO-Identifiability. When consistency holds, from (17), a set ¥* C W exists with
m(U*) = 1, where for all v* € U*,if Zy, Zs,... ~ PY" | then

obs?

Hm B, g (fgmm, ) 1) = Ha (X0 5 4%) Pl -as. (28)

n—oo KT

Moreover, according to Lemma 3, there exists a set U9 C ¥ with 7(¥() = 1, such that for all
Vo € Wo, if Z1, Zo,... ~ PY° then

obs?

lim E

n—oo KT

o (o, ) 1) = Gt (%0 5 [t]) - Piy-as. (29)
Using these two identities, we can define ¥ := ¥U* N ¥, where 7(¥;) = 1, and the following holds
for every ¢ € Uy

tto (X0 5 Y1) = gio (X0 5 [11])- (30

Hence, the prior 7 is indeed CEPO-identifiable, as we can use the functional g in place of f in
Definition 1. Repeating this process for all ¢y € 7 and xo € A} concludes the proof of Proposition 1.

C Validity of the Causal Data-Prior Loss

Here, we show that the causal data-prior loss is equivalent to the expected forward KL divergence
between the CEPO-PPDs and the parameterized distribution gg. For the theoretical justification, we
assume a fixed observation size n and define Dy, = D7}, . with a dropped superscript for simplicity.

Assumption 4 (Existence of Densities). We assume each CEPO-PPD 7/t (- | x, D7, ) admits a
density w.r.t. Lebesgue measure and use the same symbol for its density. Moreover, we assume
qo(- | x,t,D.,) is a probability measure with full support on R, which admits a density w.r.t.
Lebesgue measure. Similar to CEPO-PPDs, we use the same symbol for the measure and its density.
Definition 5. Let P’ _ be the marginal distribution of P™ on (Z;);>1. Then, the expected forward-KL

divergence between 7#* and ¢y is defined as
LE(0) = Ep,y.upx) ~ g, Dt (77 (- | %, Dobs) | g(- | %, Dobs))], (31)

where Dops U {x} ~ P7 _refers to first drawing ¢ ~ m, and then sampling Dops = (Z1,. .., Zy,)
iid. from PY

" bs and an independent query point X ~ P;é.

Proposition 4. Under Assumption 4, the causal data-prior loss from Definition 3 and the expected
forward-KL divergence in Definition 5 have the same optima. In other words, for allt € T,

arg min LK (9) = arg min £, (0). (32)

Proof. Fixat € T. We note that

(33)

obs

mh x, D,
LrY(0) =Ep,, ix) ~ Pr {Euww(,xy%s) {log (/‘|Obs)”

4o (,Uf ‘ X, tv Dobs)

From (16), we know that 7t (- | X, Dops) is the pushforward of the posterior 7 (- | Dobs) by the
function ¢ — p,(x ; ). Hence, for any measurable function b : R — R, we get

Euww“t(~\x,'Dobs)[h(M)] = E¢~7r(~|Dobs) [h(iu’t(x ; 1/)))] (34)
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7t (1], Do)

Setting h(p) = log o525

in (34) and combining with (33) yields

P (pe(x 5 ) | X, Dobs)
LKL(9) = E o | Epn. log — ’ ’ 35
0 = Ent < B o SR By || 09
it (Mt(x 5 ¢) ‘ XaDobs)
=K ~ PT pron(- 1 . 36
DobsU{x} ~ PJ_, ~7(:|Dobs) |:Og g0 (e (x5 ¥) | X, t, Dops) (36)
Next, we use the Bayes’ rule to derive
ngbs (Dobs) W(w | Dobs) = W(w) P:)/f)s (Dobs) . 37
—~—— ——
evidence posterior prior likelihood
Combining (36) and (37), we get
1247 . D S

Yo, DobsU{x} ~ P4 qo(pe(x ; ¥) | X, t, Dops)
=E, o DopUfx) ~ Py [—loggo(pe(x 5 ©) | X, Dobs)] + constant termin 6 (39)
= L,(0) + constant term in 6, (40)

which concludes the proof. O

(Remark 1) In general, the forward-KL divergence loss cannot be estimated without estimating the
true CEPO-PPD. However, with this identity established, we can justify the use of the equivalent
causal data-prior loss which is easily estimable.

(Remark 2) The theoretical equivalence is proved only for a fixed treatment ¢ € 7 and a fixed, finite
sample size n € {1,2,...}. In practice, the training loss is minimized while randomizing both
t and the sample size n. If the optimizer attains a near-optima of this randomized objective, the
approximation gg(- | X,t, Dobs) = 7t (- | X, Dops) can effectively extend to all the treatment values
and to almost every sample size we care about in practice.

D Experimental Details

D.1 Prior Generation & Simulating DGPs

As illustrated in Figure 4, our prior generation consists of retrieving or synthesizing a base table,
subsampling covariates X and CEPOs p and 1, synthesizing treatments 7", potential outcomes Y7,
and finally, observed outcomes Y. We break down each of the components:

Data Sources for the Base Tables. We draw the base tables from two sources: (i) real-world tables
from OpenML, and (ii) fully synthetic data.

(i) We use the OpenML collections used in Grinsztajn et al. [34], AMLB [33], and TabZilla [77],
all listed in Ma et al. [69]. To widen coverage, we also add tables from CTR23 [28] and
CC18 [12]. All OpenML IDs are in 4 Data leakage is ruled out as none of the
tables that share covariates or outcomes with our test sets (Lalonde, IHDP, ACIC, Criteo,
Megafon, Hillstrom, Lenta, X5) are included in training. Moreover, the propensities are
sampled purely synthetically, following the approach described below.

(i) For additional diversity, we generate synthetic tables using the random neural networks
used to train TabPFN v1, with the same hyperparameters described in Hollmann et al. [42].
Inputs, from a standard Gaussian distribution, are fed into the network, and a subset of the
outputs and hidden neurons are selected to construct the tabular data. Some columns are
discretized at random to produce categorical and ordinal variables to reflect the structure
of real-world tabular domains. While TabPFN v2 [43] is a newer and stronger model, its
training data is not publicly available, so we restrict ourselves to the v1 generator to ensure
transparent evaluation and leakage control.
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CEPOs with Heterogeneity Control. Once the base table is given, we randomly select two columns
and name them fi,y,0 and fir,y,1. However, in practice, we observe that directly using such columns
for CEPOs can result in large variances (heterogeneity) for CATEs. We therefore apply a light-weight
post-processing inspired by RealCause [81].

The post-processing requires a heterogeneity hyperparameter v, which we sample uniformly from
[0, 1] during prior generation. Then, for N units (rows) extracted from the base table, let Tr(aﬁ,) =

ur(;v)’l —ulr ))0 be the CATE for unit 7 € [N], and Aaw = & S0, 7m) the sample ATE. We draw

Y

iid. {a™}N_| ~ Unif[0, 1] and construct the final y-augmented CEPOs as

pf = ot 4 (1= ™)y + (=)0 = ™) (e g + Ar), (41
g = (1= a ™)+ @l il + (1= 7)™ (1) = Aw): (42)

A simple algebraic check shows

7 = ™ =l = )+ (1= ) Aaws Varlr | x] =92 Var[ray [x]. @3)

Hence, while preserving the average treatment effect, v = 0 yields a dataset with a zero variance
CATE (fully homogeneous), whereas v = 1 recovers the original heterogeneity.

Outcomes. After constructing the CEPO columns fo(x) and p4(x), we need to turn them into
potential outcomes by adding zero-mean noises. To avoid tying the data to a specific parametric noise
model, we introduce two additional nuisance columns, 79 (x) and 7, (x), sampled from the base table.
Let €; be random scalars, independent from x, with E[e;] = 0. We define the potential outcomes as

Y: = w(x) + m(x) e, teT. (44)

This construction preserves the conditional means, that is E[Y; | x] = p;(x). The input-dependent
scale factors 7;(x) allow for heteroscedastic noises and capture a richer family of outcome distribu-
tions than additive parametric noise models. For our training, we sample ¢; from a Gaussian with
a variance uniformly drawn from (0, Var(y)]. This choice of noise values ensures a similar noise
scale to the scale of CEPOs, resulting in training data with a more informative signal-to-noise ratio.

Propensities with Positivity Control. Given a covariate vector x, the strong ignorability assumption
requires the propensity values 0 < P(T =1 | X = x) < 1. Hence, due to the invertibility of
the sigmoid function, it is sufficient to generate treatment logits, through any function f : X — R,
and then apply a sigmoid function to get values within (0,1). To simulate different degrees of
confounding, we choose f by randomly selecting one of the following mechanisms:

(i) Randomized treatments (RCT). Treatments are independent of covariates, i.e., f is con-
stant. We sample ¢ ~ Logistic(0,1) and set f(x) = ¢ to get uniform propensities.

(ii) Linear logits. Draw the random vector w from a standard Gaussian and set f(x) = w ' x.

(iti) Non-linear logits. Feed x into a randomly initialized MLP, similar architecture to that of
Hollmann et al. [42], to get f(x).

Empirically, we observe that the above procedure yields an artificially high level of positivity, which
is not reflective of real-world scenarios. We therefore apply a light-weight post-processing transform,
inspired by RealCause [81], to better control the positivity level. Concretely, we sample a parameter
¢ €10, 1] and exacerbate extreme propensity scores to mimic poor positivity:

P(T=1|X=x) = &Sigmoid(f(x)) + (1 —¢&)I(f(x) > 0). (45)

Here, £ = 1 leaves the original positivity intact. However, for smaller ¢ values, the support of the
treated and control groups become increasingly disjoint, leading to low-positivity scenarios.

Treatment Assignment. Finally, each unit’s treatment is drawn as 7' ~ Bernoulli(Sigmoid(f(X))),
and the observed outcome Y is also derived by selecting the assigned potential outcome Y = Y.

Collectively, all of the steps above simulate different DGPs, with various levels of positivity and
heterogeneity, extracted from real and synthetic sources of tabular data. This procedure creates a
broad prior 7 for CausalPFN, which is necessary for the model to work well in practice.
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D.2 Model Details

Architecture & Training. We represent each context row (¢,x, y) and query row (¢,x) as single
tokens by summing up (1) a treatment embedding for ¢, (2) a covariate embedding for x (padded
to length F' = 100), and (3) an outcome embedding for y (only for context rows). We use linear
layers for embeddings and omit the positional encodings to preserve the permutation invariance of
the context set, similar to other PFN-style transformers.

All tokens—context and query—are passed into a 20-layer transformer, with a hidden size of 384,
QK-normalization (RMS)°, and a parallel SwiGLU-activated [105] feed-forward block.

The transformer’s query outputs are then projected to a 1024-dimensional logit vector, then softmaxed
at a fixed temperature of 7 = 1.0 to form a discrete CEPO posterior over the interval [—10, 10].
We then scale the interval to match the scale of the outcomes and clip the out-of-range values. At
inference time, we return the posterior mean as the point estimate and sample 10,000 times to estimate
credible intervals at any desired significance level .

The full model has approximately 20M parameters and is trained in two stages: (i) a predictive
phase that mimics standard predictive PFN training from Ma et al. [69], and (i) a causal phase that
optimizes the CEPO loss. We use AdamW [55] with warmup and cosine annealing for the predictive
phase, and switch to the schedule-free optimizer [24] in the causal phase. The model is trained with a
maximum context length of 16K in the first phase and 2,048 in the second. We use four A100 GPUs
trained for at most one week for the initial phase, and two days on an H100 for the second phase.

Finally, to enhance parallel training, we batch both the queries and the tables. That is, rather than
sampling only one DGP and one query token, each gradient update samples B, DGPs, draws B,
queries per DGP, and concatenates everything into a single tensor. The tensor is then passed through
the transformer to get B; B, CEPO-PPDs. The final loss is averaged over all the batches. See
Algorithm | for a detailed demonstration of CausalPFN’s training algorithm.

Algorithm 1 Parallel training of CausalPFN.

Require: Prior m, DGPs and CEPO values P;is, ue(+; 1), model go, DGP batch size By, query batch size Bg,
fixed feature length F', and histogram loss HL (10) [44].
while not converged do
: Sample ¢[1],...,¢[Be] ~
Sample Doys[i] ~ P4 v1 < i< B,

obs

1:

2

3

4 Randomly sample query treatments £ for1 < i< By, 1< j < By
5: Sample query covariates x (7 ~ Pj{)s [i]for1 <i< By, 1<j< By
6: Set ) (X“’j) ; wm)

7 Pad x*7) with zeros such that x#9) e RY

8 £ g 0, L [0 an(- [ x5, 109, Do )]

9

10:

: Update 6 using the gradients Vol
end while

Handling Large Tables at Inference Time. CausalPFN’s default maximum context length is
set to 4,096 at inference, but real-world tables may contain millions of rows. Training PFN-style
transformers on such long contexts can be challenging due to hardware or architectural constraints.
While some tabular foundation models such as TabICL [92] modify the architecture itself, Thomas
et al. [109] show that, retrieving a small relevant subset of rows for each query at inference time
allows a model with a short context length to better generalize to longer contexts.

We adopt this retrieval philosophy in CausalPFN to enable causal effect estimation on large tables.
First, we fit a lightweight gradient boosting regressor on the context data to produce weak CATE
estimates for each covariate. This regressor estimates CATE by regressing outcomes on the treatment
and covariates and then taking the difference in predicted outcomes between 7' = 1 and T' = 0. This
step is applied only when the table is too large to fit within the model’s maximum context window.
We then (i) sort both the context rows and the queries based on their weak CATE estimates, which

>Different from Henry et al. [38], we perform normalization affer the query and key projection.
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effectively stratifies the data; (ii) partition the ordered queries into consecutive mini-batches; and
(iii) for each query batch, use a fast bisection search to select a contiguous window of context rows
whose weak CATE estimate range most closely matches that of the batch. As a result, each batch is
exposed only to a neighborhood of rows with similar causal effects, allowing all CEPO predictions to
be computed with short forward passes.

D.3 Sensitivity to Dataset Size

During the causal phase of training, we consider sample sizes up to 2,048 and covariates up to 100.
However, during inference, CausalPFN can take up to 50,000 samples.

To assess the effect of context size and dimensionality on CausalPFN’s performance, we run additional
experiments on synthetic polynomial datasets. The test set size is fixed at 100 in all experiments. For
each (rows, covariates) configuration, we report mean =+ standard error over 50 datasets drawn from
the polynomial prior with different random seeds.

Effect of Sample Size. We consider the same DGPs while increasing the number of samples and
fixing the number of covariates to 10. Table 4 reports PEHE for CATE across baselines. CausalPFN
exhibits faster PEHE decay with increasing rows, with a slight plateau at very large contexts.

Table 4: Effect of sample size on PEHE (mean + SE). Covariates = 10; averages over 50 datasets.
Method Number of Rows
10 20 50 100 200 500 5,000 10,000

CausalPFN  1.34+0.02 1.2740.02 1.104+0.02 0.89£0.02 0.74£0.03 0.46+0.01 0.294+0.01 0.31£0.01
DA-Learner 1.33£0.02 1.30+0.02 1.16+0.01 1.00£0.01 0.91£0.03 0.85+£0.01 0.84+0.02 0.8240.02
S-Learner 1.4440.01 1.40£0.02 1.35+£0.02 1.21+0.02 1.1840.05 1.07£0.03 1.00£0.04 1.03+0.04
T-Learner 1.33£0.02 1.30£0.02 1.15+0.01 0.97+0.01 0.88+£0.02 0.81+£0.01 0.81+0.02 0.8140.02
X-Learner 1.3540.02 1.32£0.02 1.20£0.02 1.04+0.01 0.944+0.03 0.87£0.01 0.87+0.02 0.84%0.02

Effect of Covariate Size. Next, we fix the number of samples to 1,000 and vary the number of
covariates. Table 5 compares CausalPFN’s performance to other methods in terms of PEHE. Although
CausalPFN consistently outperforms the baselines, the performance gap narrows as the number of
covariates grows—Ilikely due to training exposure being limited to up to 100 dimensions, which could
be mitigated by training with higher-dimensional inputs.

Table 5: Effect of covariate size on PEHE (mean + SE). Samples = 1,000; averages over 50 datasets.
Method Number of Covariates
1 5 10 20 50 100 500 1,000

CausalPFN  0.08+0.00 0.17+0.01 0.404+0.01 0.67£0.01 0.87£0.02 1.01+0.02 1.284+0.02 1.324+0.02
DA-Learner 0.21£0.01 0.59+0.01 0.85+0.01 1.04+0.01 1.14£0.01 1.22+0.01 1.30+0.02 1.3240.02
S-Learner 0.54+0.04 0.83£0.02 1.09£0.02 1.17+0.02 1.214+0.02 1.23£0.01 1.30£0.02 1.33+0.02
T-Learner 0.27£0.01 0.60£0.01 0.83£0.01 0.984+0.01 1.094+0.01 1.18£0.01 1.28+0.02 1.324+0.02
X-Learner 0.29+0.01 0.64+£0.01 0.88+0.01 1.06+0.01 1.15+0.01 1.23£0.01 1.30£0.02 1.33+0.02

D.4 Discussion on Inference Speed

Many applied settings prioritize throughput and latency over marginal gains in asymptotic accuracy.
Real-time bidding must estimate incremental ad effects and decide bids within strict millisecond
budgets [119]. Likewise, e-commerce personalization depends on rapid uplift estimation within short
user sessions, where serving latency directly affects conversion [101].

Although CausalPFN requires substantial offline training, it is designed for zero-shot deployment on
new tables with no test-time fitting or adaptation. At inference, interventional queries reduce to a
small and fixed number of forward passes, and the computation parallelizes well across large batches
(e.g., using mixed precision, caching).

Accordingly, Figure 1 does not claim that CausalPFN is intrinsically faster than every baseline; rather,
it reflects practitioner-facing wall-clock time from data arrival to effects returned. Baselines that
require per-dataset refitting or tuning incur this cost at deployment, whereas CausalPFN does not.
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D.5 Baseline Hyperparameters and Results without Hyperparameter Tuning

No Hyperparameter Tuning. Table 6 summarizes the performance of all methods without hyperpa-
rameter tuning. CausalPFN attains the best (second-best) average rank on CATE (ATE).

EconML Hyperparameters. For the results without hyperparameter tuning in Table 6, we
ran the models with the recommended hyperparameters in the Jupyter notebooks from EconML
[11]. For the tuned results in Table 1, we performed hyperparameter tuning using the FLAML
(AutoML) library [113] on both the propensity and outcome models with (i) Time budget of
900 seconds, (ii) K-fold cross-validation with K = 3, (iii) Early stopping, and (iv) base esti-
mators ["lgbm", "xgboost", "xgb_limitdepth", "rf", "kneighbor", "extra_tree",
"1rli", "1r12"]. For Forest DR-Learner and Forest DML, we additionally expanded the co-
variates with cubic terms (polynomial degree 3), with an additional tuning of the final model.

CATE Nets. For the results without hyperparameter tuning in Table 6, we ran the models with the
default hyperparameters and a batch size of 512. For the tuned results in Table |, we perform a
grid search on the hyperparameters for the neural architecture: (i) Number of layers € {2, 3}, (ii)
Representation dimension € {128,256}, (iii) Number of hidden output layers € {1, 2}, and (iv)
Width of the hidden output layers € {128, 256}. The rest of the hyperaparameters are left unchanged.

BART & GREF. The GRF implementation includes an internal tune option. We enable this option
in Table 1 and disable it for the untuned experiment in Table 6. BART, on the other hand, offers no
comparable hyperparameter-tuning. Its only alternative, a full cross-fit, is prohibitively slow and uses
a rudimentary Bayesian routine. Thus, the BART scores appear unchanged in Tables 1 and 6.

Table 6: CATE & ATE results. PEHE (/eft half) alongside ATE relative error and its overall average (right half).
PEHE for Lalonde cps/psip is shown in thousands. Best numbers are in blue; second best are in purple. Cells

with “—” indicate that the method is not applicable.

Method Mean PEHE + Standard Error (| better) ‘ Mean ATE Relative Error + Standard Error (| better)

IHDP  ACIC 2016 Lalonde crs Lalonde esi Avg. IHDP  ACIC 2016 Lalonde ces Lalonde esiw Avg.

(x10%) (x10%) Rank Rank
CausalPFN 0.58420.07 0.92:£0.11 8.96:£0.02 14.404+0.20 2.17-20.09 |0.20£0.04 0.054+0.01 0.13:£0.01 0.224+0.02 4.26-+0.18
DA-Learner 2.98+0.51 1.88+£0.24 9.01-£0.02 13.96+0.19 3.64+0.18 |0.22+0.04 0.09+0.03 0.22+0.01 0.08+0.01 4.15+0.19
T-Learner 2944049 2.06+£0.20 9.29+0.02 13.9110.18 4.01+0.18 |0.22+0.04 0.114+0.03 0.40+0.01 0.07-£0.01 4.62+0.18
DragonNet 2.13+£0.24 2.23+0.20 10.831+0.15 16.40+0.27 5.624+0.17 |0.21£0.04 0.09£0.02 0.56+0.03 0.44+0.02 6.04+0.17
IPW — — — — — 0.23+0.04 0.244+0.05 0.22+-0.01 0.07-£0.01 4.334+0.20
TarNet 1.89+£0.15 2.26+0.20 12.004+0.04 18.714+0.16 6.87+0.11 | 0.21£0.04 0.06+0.02 0.90+0.01 0.724+0.01 7.54+0.14
X-Learner 3.70+£0.62 1.71+£0.31 12.284+0.03 21.724+0.16 8.13+0.16 |0.19+£0.03 0.074+0.02 0.83+£0.01 0.92+0.01 7.92+0.17
RA-Net 2.08+0.19 2.42+0.22 12.86+0.12 20.13+£0.41 8.184+0.16 |0.20£0.04 0.07£0.03 0.96+0.02 0.71+0.04 7.95+0.17
BART 2.50+0.39 0.68-0.11 12.814+0.05 21.36+0.16 8.2040.17 |0.44+0.09 0.04-£0.01 0.99+0.01 0.86+0.01 8.72+0.18
GRF 4.264+0.69 1.36+0.30 12.18+0.06 21.84+0.16 8.21+£0.17 |0.18+0.03 0.07+0.02 0.81+£0.02 0.85+£0.02 7.78+0.17
S-Learner 3.91+0.68 2.23+0.28 12.8840.02 22.68+0.13 9.294-0.18 |0.2840.05 0.12+£0.05 1.00+0.00 1.03+0.00 9.99+0.18
Forest DR Learner 3.90£0.66 1.68+0.35 26.08+4.96 22.55+0.25 9.5140.18 |0.194+0.04 0.08+£0.04 1.39+0.28 0.87+0.03 8.35+0.17
Forest DML 4.40+0.72 1474032 15.12+0.15 23.12+0.15 10.51+0.18 | 0.09--0.02 0.05+0.02 1.124£0.02 1.02+0.01 9.374+0.23

All inference, including baselines, performed on an 80 GB H100 GPU, 32 CPUs, and 256 GB RAM.

D.6 Marketing Experiments

Datasets. Apart from Hill() and Hill®®), which were explained in the main text. We also run
experiments on the following datasets:

1. Criteo. 25M ad-exposure records from Criteo’s online incrementality tests: a randomly
selected held-out audience is shielded from seeing an advert, while the treated audience is
shown the ad; the target is a post-impression conversion flag. We use a readily provided
2.5M stratified subset of this dataset from sklift.

2. Retail-Hero (X5). Transaction logs from the X5 Retail Group hackathon. Customers
are randomly offered personalized coupons (treatment); the outcome records whether the
customer subsequently purchased the promoted items.

3. Lenta. SMS-based promotion experiment run by the grocery chain Lenta. The treatment
group receives a marketing text, and the outcome is a visit after the campaign window.
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4. Megafon (Mega). Synthetic yet domain-faithful data released for the MegaFon Uplift
competition. Users are randomly offered a telecom upsell offer (treatment), and the outcome
indicates whether they accepted the offer.

Qini Evaluation. To build Qini curves we follow scikit-uplift’s recommended five-fold stratified
split based on the outcome and the treatment [74]. In each fold, we hold out 20% of the data as test
rows and train the baseline models on the remaining 80%. For CausalPFN we use that same 80% as
context tokens and treat the held-out 20% as queries. We then rank the rows based on their CATE
estimates to compute the Qini curves and the corresponding Qini scores.

Context Length Challenges. In all the marketing experiments, we have increased the model’s
maximum context length from the default 4,096 to 50,000 tokens. This context length is sufficient
for the subsampled datasets in Table 2. However, extending beyond 50K for the full-table runs is
not feasible in GPU memory. We thus use the retrieval approach explained in Appendix D.2 to
achieve CATE estimates for this setting. Table 7 shows CausalPFN’s performance (with the retrieval
approach) compared to the baselines on the full-table datasets. We conjecture that the relative
under-performance compared to Table 2 is due to this retrieval heuristic.

Table 7: Normalized Qini scores (1 better). Scores are normalized per dataset such that the top-performing
model achieves 1.0 (highlighted in ). All datasets use full stratified subsamples: Hill®) and Hill®® (64K
rows), Criteo (2.5M rows), X5 (200K rows), Lenta (687K rows), and Mega (600K rows).

Method Hill'Y Hill®® Criteo X5 Lenta Mega Avg.

S Learner 0.913
X Learner 0.975 0980 0.994 0.965 0.868 0.997 0.963
DA Learner 0985 0.964 0.955 0.969 0.903 0.963

T Learner 0991 0972 0902 0.953 0.833 0.987 0.940
CausalPFN  0.992 0968 0939 0.746 0.947 0.954 0.924

D.7 Calibration, Coverage, and Credible Intervals

The Synthetic DGPs. For the calibration results in Figure 7, we use two families of synthetic
DGPs, polynomials and sinusoidals. As a general recipe, each DGP defines a treatment logit function
f(x) € R and assigns treatments by sampling from the Bernoulli(Sigmoid(f(x))). Moreover,
each DGP specifies two CEPO functions g, 141 : & — R. It then samples the potential outcomes
by y: = pt(x) + € for t € {0,1}, where the noise terms ¢; ~ Normal(0, 1), Laplace(0, 1), or
Uniform(—1, 1) with equal probability. We now describe each DGP family in more detail:

(a) Polynomial. We first draw the number of features d ~ Unif{10,...,20} and sample covari-
ate vectors x ~ Unif[—2,2]%. We then fix a maximum degree deg € {1,2,3,4}, augment
covariates with powers Xex, = (71,...,%4,23,. .., :cjeg), sample weights w,,,, W, , W ~
Unif[—5, 5]?*dee +1 and define

f(X) = WiXex, (X)) = W/Lxext for t € {0,1}. (46)

Degrees 1, 2, 3, and 4 give the Linear, Quadratic, Cubic, and Quartic sub-families; each degree
adds new terms and is therefore a super-set of all lower degrees. We train on one degree family
and test on the others to probe generalization.

(b) Sinusoidal. We draw the number of features d ~ Unif{5, ..., 10} and sample covariate vectors
x ~ Unif[—3,5]¢. We then sample weight vectors w,,, W,,, wr ~ Unif[—10, 6]¢, and a
frequency w € R™. We define the treatment logit function and the CEPOs as

f(x) = sin(w{wrx})+wrx, p(x) = sin(w {w;tx})—&—w;tx for t € {0,1}. (47)

For training DGPs, we create three sub-families: Linear (w = 0), L1 (w € [0, 1]) and L2
(w € (1,2]). For test-time DPGs, we use the following: Linear (w = 0), L1 (w € [0.5,1]),
L2 (w € (1.5,2]), and L3 (w € (2.5, 3]). This allows us to measure extrapolation to unseen
frequencies. For example, an L2-trained model has seen DGPs from L1 and L2, but not L3.
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Figure 8: CATE and regression calibration curves for synthetic sinusoidal datasets, before calibration.
Models are trained on Linear/Sinusoidal (L1)/Sinusoidal (L2) datasets and tested on Linear/Sinusoidal
(L1)/Sinusoidal (L2)/Sinusoidal (L3) benchmarks.

Synthetic Experiments on Sinusoidal. Figure 8 shows both the regression curve ¢ov,, (orange) and
the CATE curve cov,. The model is overly confident in OOD scenarios (e.g., L2 tested on an L1
trained model) and either well-calibrated or conservative otherwise. The figure also shows that the
regression curve is always below the blue CATE curve. Once calibration is done on the regression
curve, as shown in Figure 9, the ICE,, becomes smaller, resulting in a well-calibrated or conservative
model, even on OOD scenarios.

Synthetic Experiments on Polynomial. Similar to the sinusoidal setting, the uncalibrated curves in
Figure 10 show that the model becomes overly confident when tested on OOD data (e.g., testing a
model trained on Quadratic data on Cubic DGP). However, applying the regression calibration results
in near-perfect CATE calibration, as shown in Figure 11.

Calibration of the Large-scale CausalPFN. We evaluate the calibration curves of the large-scale
pre-trained CausalPFN on both synthetic and standard benchmarks in Figures 12 to 14. The model
generally appears conservative. This may be attributed to the Gaussian smoothing used in the
histogram loss; yet, this smoothing is necessary to achieve stability in training. Regardless, across all
datasets, post-hoc regression calibration improves reliability: the calibrated (pink) curves adhere far
more closely to the diagonal than their uncalibrated (blue) counterparts. In Figures 12 and 13 the
improvement is almost perfect, while in Figure 14 it corrects the base model’s strong conservatism
on IHDP and ACIC 2016 and achieves near-ideal alignment on the Lalonde datasets.
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Figure 9: CATE and regression calibration curves for synthetic sinusoidal datasets, after calibration.
Models are trained on Linear/Sinusoidal (L1)/Sinusoidal (L2) datasets and tested on Linear/Sinusoidal
(L1)/Sinusoidal (L.2)/Sinusoidal (L3) benchmarks.
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Figure 10: CATE and regression calibration curves for synthetic polynomial datasets, before calibra-
tion. Models are trained on Quadratic/Cubic datasets and tested on Quadratic/Cubic/Quartic ones.
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Figure 11: CATE and regression calibration curves for synthetic polynomial datasets, after calibra-
tion. Models are trained on Quadratic/Cubic datasets and tested on Quadratic/Cubic/Quartic ones.
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Figure 12: CausalPFN’s CATE calibration on sinusoidal datasets, before and after calibration.
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Figure 13: CausalPFN’s CATE calibration on polynomial datasets, before and after calibration.
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Figure 14: CausalPFN’s CATE calibration on standard benchmarks, before and after calibration.
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E Concurrent Work on PFNs for Causal Inference

Do-PFEN [96] is a concurrent approach that extends TabPFN to interventional queries by learning
the interventional posterior predictive distribution, i.e., a distribution over Y; given (X, Dops). In
contrast, CausalPFN targets the expectation of the interventional distribution (e.g., E[Y; | X=x]),
thus removing outcome (aleatoric) noise from the prediction target. This is especially relevant for
uncertainty quantification, where we aim to isolate epistemic uncertainty about the causal effect.

More importantly, as described, Do-PFN does not explicitly enforce identifiability: the training
prior can include observationally equivalent DGPs (distinct processes with the same P (X, T,Y") but
different effects). As formalized in Proposition 1, if the training prior admits such cases, then any
learner that conditions only on observational data cannot, in general, have its posterior predictive
concentrate on the true effect, even with unlimited samples and model capacity. CausalPFN avoids this
by constructing a prior that satisfies the ignorability (identifiability) condition, ensuring that CEPOs
are functionals of F,¢ (one effect per observational law). Empirically, CausalPFN outperforms
Do-PEN on standard benchmarks in both PEHE and ATE relative error (Table 8).

Table 8: Head-to-head comparison on benchmarks (mean £ SE; | is better). For PEHE, Lalonde
CPS/PSID values are reported x 103,

IHDP ACIC 2016 Lalonde CPS Lalonde PSID

CausalPFN  0.58 £0.07 0.92+£0.11  8.96 £0.02 14.40 £0.20
Do-PFN 6.07+0.89 4.11+£0.52 12.01£0.03 20.91+0.14

CausalPFN  0.20£0.04 0.05+£0.01 0.13£0.01 0.22 £0.02
Do-PFN 0.57+0.10 0.67£0.04 0.87+0.01 0.92+0.01

PEHE ()

ATE Relative Error ()
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