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Abstract

Adapting generative foundation models to opti-
mize rewards of interest (e.g., binding affinity)
while satisfying constraints (e.g., molecular
synthesizability) is of fundamental importance
to render them applicable in real-world discovery
campaigns such as molecular design or protein
engineering. While recent works have introduced
scalable methods for reward-guided fine-tuning
of diffusion and flow models, it remains an open
problem how to algorithmically trade-off property
maximization and constraint satisfaction in a
reliable and predictable manner. Towards tackling
this challenging problem, in this work, we first
present a rigorous formulation for constrained
generation. Then, we introduce Augmented
Lagrangian Flows Fine-tuning (ALF2), an aug-
mented Lagrangian method that renders possible
to arbitrarily control the aforementioned trade-off
between reward maximization and constraint
satisfaction. We provide convergence guarantees
for the proposed scheme. Ultimately, we present
an experimental evaluation on both synthetic,
yet illustrative, settings, and a molecular design
task optimizing molecular properties while
constraining energy.

1. Introduction
Recent advances in generative modeling, particularly the
advent of diffusion (Ho et al., 2020; Song et al., 2021;
2022) and flow models (Lipman et al., 2023), have led to
state-of-the-art performances in several biological tasks,
including generating protein structures (Wu et al., 2024),
drug-like molecules (Dunn & Koes, 2024), and DNA
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sequences (Stark et al., 2024) among others.

These foundation models excel at capturing complex data
distributions and generating realistic samples. However,
approximately sampling from the data distribution is
insufficient for most real-world discovery applications,
where one typically wishes to generate candidates maxi-
mizing task-specific properties, or rewards, such as binding
affinity or druglikeness in drug discovery. Recent works
have introduced scalable fine-tuning methods that adapt a
pre-trained flow or diffusion model to maximize a given
reward under KL-regularization from the pre-trained model,
using formulations from control theory or reinforcement
learning (e.g., Domingo-Enrich et al., 2025; Uehara et al.,
2024b; Tang, 2024). However, transporting the generative
model density towards a region of higher rewards can render
regularization insufficient to ensure validity constraints
are fulfilled (Uehara et al., 2024a). In chemistry and
biology, these constraints could, for example, constitute the
physical validity of generated docking poses (Buttenschoen
et al., 2024), toxicity, chemical synthesizability of drug
candidates (Ertl & Schuffenhauer, 2009; Neeser et al., 2024)
or sequence-driven aggregation risk (Fernandez-Escamilla
et al., 2004). Driven by this observation, we aim to answer
the following question in this work:

How can we fine-tune a pre-trained flow or diffusion model
to controllably trade-off reward optimization and

satisfiability of known constraints?

Our approach. In this work, we answer this question by
first formalizing the problem of constrained generation
via fine-tuning, extending current fine-tuning formulations
to the constrained case (Sec. 3). Next, we introduce
Augmented Lagrangian Flows Fine-tuning (ALF2), a fine-
tuning method based on the augmented Lagrangian (AL)
scheme (Birgin & Martı́nez, 2014), which progressively
adjusts the model to navigate the trade-off between reward
maximization and constraint fulfillment thus enabling
controllable and reliable sample generation (Sec. 4). The
proposed principled algorithm renders possible to transport
classic constrained optimization guarantees of the AL
method to generative model finetuning (Sec. 5). Ultimately,
we demonstrate the effectiveness of ALF2 on both synthetic,
yet illustrative, settings, and on a molecular design task.
In the latter case, we utilize ALF2 to generate molecular
structures with large molecular dipole moment (Minkin
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(a) Constrained generation via fine-tuning problem. In red, a high-cost area. (b) Adaptation to low-cost area within black line.

Figure 1. (1a) Pre-trained and fine-tuned policies inducing densities ppre1 and optimal density p∗1 w.r.t. reward r increasing downwards,
and red high-cost area. (1b) Pre-trained model ppre1 adapts into p∗1 to maximize r and stay within the low-cost area inside the black line.

et al., 1970) while satisfying energetic constraints (Sec. 6).

Our contributions. We present the following contributions:

• We present the constrained generation via fine-tuning
problem for flow and diffusion models (Sec. 3).

• We introduce Augmented Lagrangian Flows Fine-
tuning (ALF2), an augmented Lagrangian-based fine-
tuning method for flow and diffusion models (Sec. 4).

• We provide constrained optimization guarantees based
on the AL scheme for the proposed method (Sec. 5).

• We evaluate ALF2’s ability to controllably trade-off
reward maximization and constraint satisfaction in both
synthetic settings and a molecular design task (Sec. 6).

2. Background and Notation
Generative Flow Models. Flow generative models, aim
to approximately sample from a data distribution pdata, by
transforming samples X0 ∼ pinit from an initial distribution
into X1 ∼ pdata (Chen et al., 2018; Lipman et al., 2023).
A flow is a map ψ : [0, 1] × Rd → Rd denoted by ψt(x).
In particular, the flow ψ can be defined by a velocity field
u : [0, 1]× Rd → Rd, via the following flow ODE:

d
dtψt(x0) = ut(ψt(x0)) with ψ0(x0) = x0, (1)

A generative flow model is a continuous-time process
{Xt}0≤t≤1 induced by a flow ψ via X0 ∼ pinit as
Xt = ψt(X0), t ∈ [0, 1], such that X1 = ψ1(X0) ∼ pdata.
A flow model induces a probability path of marginal densi-
ties p = {pt}0≤t≤1 such that at time t: Xt = ψt(X0) ∼ pt.

Pre-trained Flow Models as an RL policy. We present
finite-horizon continuous-time reinforcement learning (RL)
(Wang et al., 2020; Treven et al., 2023; Zhao et al., 2024) as
a specific case of stochastic optimal control. Let X be a state
space and A an action space, with the transition dynamics
governed by the following ODE, where at ∈ A is a selected
action:

d
dtψt(x) = at(ψt(x)) (2)

We consider a state space X := Rd × [0, 1], and denote
by πt(Xt) := π(Xt, t) ∈ A the (Markovian) policy, which
is as mapping form a state (x, t) ∈ X to an action a ∈ A

such that at = π(Xt, t), and denote with pπt the marginal
density at time t induced by policy π.

A pre-trained flow model with velocity field upre can be
interpreted as an action process apret := upre(Xt, t), where
apret is determined by a continuous-time RL policy via
apret = πpre(Xt, t) (De Santi et al., 2025). Therefore, we
can express the flow ODE induced by a pre-trained flow
model by replacing at with apre in Eq. (2), and denote
the pre-trained model by its policy πpre, which induces a
marginal density ppre1 := pπ

pre

1 approximating pdata.

3. Problem Setting
In this work, we aim to fine-tune a pre-trained diffusion
model πpre to obtain a new model π∗, inducing a process:

d
dtψt(x) = afine

t (ψt(x)), with afine
t = π∗(xt, t) (3)

The fine-tuned model should induce a distribution p∗1 := pπ
∗

1

maximizing the expected value of a property of interest,
while preserving prior information from the pre-trained
model πpre, and satisfying arbitrary constraints violation.
This constrained generation via fine-tuning problem is
illustrated in Fig. 1, and formalized it in the following:

Constrained Generation via Fine-Tuning

argmax
π

Ex∼pπ
1
[r(x)]− αDKL(p

π
1 ||p

pre
1 )

s.t. Ex∼pπ
1
[c(x)] ≤ B

(4)

Where r : X → R and c : X → R are respectively scalar
reward and constraint functions, α ∈ R determines the KL-
regularization strength, and B ∈ R is a controllable param-
eter imposing the degree of permissible constraint violation.

Crucially, the constrained generation via fine-tuning prob-
lem in Eq. (4) renders possible to compute a fine-tuned flow
model that maximizes the given reward function r, while
attaining at most a constraint violation of arbitrary value B.

The trade-off between reward r and constraint c becomes
particularly important in challenging settings like the one
shown in Fig. 1b, where the reward-maximizing region
lies outside the set of valid data points. This is a common
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situation when leveraging learned reward functions as
property predictors (Uehara et al., 2024a). In such cases,
naive optimization may drive the model toward high-reward
samples that violate the constraint.

In the next section, we propose an algorithm that can tackle
the constrained generation problem in Eq. (4) by leveraging
as a subroutine any unconstrained fine-tuning method (e.g.,
Domingo-Enrich et al., 2025; Uehara et al., 2024b).

4. Algorithm
In the following, we present Augmented Lagrangian
Flows Fine-tuning (ALF2), see Alg. 1, which reduces the
constrained generation problem in Eq. (4) to sequentially
fine-tuning the pre-trained model πpre for a specific se-
quence of auxiliary objectives determined via an augmented
Lagrangian scheme (Rockafellar, 1976; Fortin, 1975).

At each iteration k ∈ {1, . . . ,K}, ALF2 first fine-tunes
πk−1 into πk to maximize an auxiliary Augmented La-
grangian objective fk. Then, it uses the current model
πk to estimate the AL objective fk+1 used at the next it-
eration. This renders possible to tackle the constrained
problem in Eq. (4) as a sequence of unconstrained subprob-
lems, which can be solved via established methods (e.g.,
Domingo-Enrich et al., 2025; Uehara et al., 2024b).

ALF2 requires as inputs a pre-trained model πpre, the number
of iterations K, a minimal Lagrange multiplier λmin < 0,
an initial penalty parameter ρ1 > 0, a growth rate η ≥ 1,
and a contraction value 0<τ <1. At each iteration, ALF2

performs four main steps. First, it computes the Augmented
Lagrangian objective fk according to the classic augmented
Lagrangian scheme for constrained optimization (Rockafel-
lar, 1976; Fortin, 1975) (Step 1). Then, it computes policy
πk by solving a classic KL-regularized fine-tuning problem:

argmax
π

Ex∼pπ
1
[fk(x)]− αDKL(p

π
1 ||p

pre
1 ) (5)

where the AL objective fk is the one computed at the
previous step (Step 2). This can be achieved by leveraging
established fine-tuning schemes such as Adjoint Matching
(AM) (Domingo-Enrich et al., 2025), of which we
report a possible implementation in Apx. B. Next, ALF2

computes a proposal λk+1 for the Lagrange multiplier via
a sample-based estimate of the expected infeasibility of
policy πk (Step 3). Lastly, ALF2 tests whether the penalty
parameter ρ should grow or not, by checking the progress in
terms of fulfillment of the constraint, and the new Lagrange
multiplier is set (Step 4). Ultimately, ALF2 returns the
fine-tuned model πK .

Nevertheless, it is still unclear whether ALF2 is guaranteed
to solve the constrained generation problem in Eq. (4),
which demands reward optimality and arbitrary constraint
satisfaction. In the next section, we provide an affirmative
answer by presenting an analysis based on the convergence
properties of the AL scheme (Birgin & Martı́nez, 2014).

Algorithm 1 Augmented Lagrangian Flows Fine-Tuning
1: Input: πpre: pre-trained model, K: number of iterations,

λmin < 0: min. Lagrange multiplier, ρ1 > 0: initial penalty
parameter, η ≥ 1: growth rate, 0 < τ < 1: contraction value

2: Init: Set initial Lagrange multiplier λ̄1 = 0
3: for k = 1, 2, . . . ,K do
4: Step 1: Update fine-tuning AL objective:

fk(x) := r(x)− ρk
2

[
max

(
0, c(x)−B − λ̄k

ρk

)]2

(6)

5: Step 2: Compute πk via fine-tuning:

πk ← FINETUNINGSOLVER(fk, πpre) (7)

6: Step 3: Compute Lagrange multiplier proposal:

λk+1←min
{
0, λ̄k−ρk

(
Ex∼p

πk
1

[c(x)]−B
)}

7: Step 4: Set

Vk=min
{
Ex∼p

πk
1

[c(x)]−B, −̄λk/ρk
}

(8)

and calculate new penalty and Lagrange multiplier:

ρk+1 =

{
ρk, if k = 1 or Vk ≤ τVk−1,

ηρk, otherwise
(9)

λ̄k+1 = max{λk+1, λmin} (10)

8: end for
9: Return: πK

5. Constrained Generation Guarantees
Before presenting convergence guarantees for ALF2,
we introduce the following realistic assumption for
FINETUNINGSOLVER in Alg. 1.

Assumption 5.1 (Solver). For all k ∈ N, the
FINETUNINGSOLVER returns πk such that:

Lρk
(πk, λ̄k) ≥ Lρk

(π, λ̄k)− εk ∀π (11)

where Lρk
(πk, λ̄k)=Ex∼pπ

1
[fk(x)]−αDKL(p

π
1 ||p

pre
1 ) and

the sequence {εk} ⊆ R+ is bounded.

This assumption is standard in the AL framework and cap-
tures the approximate nature of typical fine-tuning schemes,
along the lines of recent works (e.g., De Santi et al., 2025).

With this condition in place, we present two main results
that establish the convergence behavior of ALF2, with
proofs in Apx. D. Theorem 5.2 states that ALF2 finds a
policy that minimizes infeasibility, i.e.

⟨G(π)⟩+ =
〈
Ex∼pπ

1
[c(x)]−B

〉
+
≥ 0.

Theorem 5.2 (Feasibility of ALF2). Let {πk} be a sequence
generated by Alg. 1 under the oracle Assumption 5.1. Let π̄
be a limit of the sequence {πk}. Then, we have:

⟨G(π̄)⟩+ ≤ ⟨G(π)⟩+ ∀π (12)

where G(π) = Ex∼pπ
1
[c(x)]−B and ⟨·⟩+ := max{0, ·}.

Interestingly, by requiring a stronger condition on FINETUN-
INGSOLVER, namely that εk → 0, ALF2 not only ensures
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Figure 2. (top) Constrained generation via ALF2 for different thresholds B of constraint violation. (bottom) Constrained reward
maximization via ALF2 (left), and energy-constrained dipole moment maximization for molecular design (right).

constrained generation but also optimal reward maximiza-
tion, as stated in the following.

Theorem 5.3 (Optimality of ALF2). Let {πk} be a se-
quence generated by Alg. 1 under Assumption 5.1 and
limk→∞ εk = 0. Let π̄ be a limit of the sequence {πk}.
Suppose that ⟨G(π̄)⟩+ = 0, then π̄ is a global maximizer.

6. Experiments
We validate the ability of ALF2 to solve the constrained
generation problem in Eq. (4) via two type of experiments:
(1) a synthetic, yet illustrative, setting that enables visual
interpretability, and (2) a molecular design task demon-
strating ALF2 ’s relevance to real-world high-dimensional
problems. While our current molecular design experiments
focus on simplified constraints (e.g., energy), the framework
is general and can incorporate more realistic conditions,
such as ensuring candidates are synthesizable (Ertl &
Schuffenhauer, 2009) or non-toxic (Raies & Bajic, 2016).
Further experimental details are provided in Apx. C.

(1) Illustrative Settings. In this experiment, we consider
two cases. First, we consider a pre-trained model density
ppre
1 corresponding to a simple Gaussian (see Fig. 2a), and

evaluate the constrained generation capability of ALF2

without an additional reward r, and using a constraint c
that assigns positive costs outside the red triangle in Fig. 2a.
ALF2 can successfully steer the pre-trained model to fulfill
the constraint for varying bounds B ∈ {0.0, 1.0}, as shown
in Fig. 2b and 2c, respectively, where we report the fine-
tuned density pπ1 . Next, we consider the problem of reward
maximization under constraints, where ppre

1 is a mixture
of two non-overlapping Gaussians (see Figure 2e), and the
constraints c and reward r are illustrated via the color gra-
dients in Fig. Figure 2e and Fig. 2f, respectively. As shown
in Fig. 2f, ALF2 can move the prior density within valid
regions according to c, which is positive outside the red

triangles, while maximizing the reward function. Numerical
results for both experiments are reported in Fig. 2d.

(2) Molecular Design. We illustrate the potential of ALF2

for ensuring constraint satisfaction in molecular design on a
proof-of-principle task. To this end, we fine-tune FlowMol
(Dunn & Koes, 2024), a flow model pre-trained on QM9 (Ra-
makrishnan et al., 2014) data to generate small molecules,
and employ dxtb (Friede et al., 2024) to estimate differen-
tiable rewards and constraints. In particular, we aim to max-
imize the norm of the dipole moment (Minkin et al., 1970)
while constraining the total energy to remain below −18Eh.
As shown in Tab. 2h, the pre-trained model πpre violates
such constraint with 65 % of samples. On the contrary, the
model fine-tuned via ALF2 can successfully achieve zero
constraint violation (30 Monte Carlo samples, all below the
threshold) while increasing the average norm of the dipole
moment from 3.43±3.45 to 8.66±4.50, as shown in Fig 2g.
While we highlight the proof-of-principle nature of the opti-
mization setup, given the limited diversity of QM9 and per-
forming optimization on non-relaxed geometries, this setup
demonstrates the potential of ALF2 for more complex appli-
cations, such as drug discovery (Schneuing et al., 2024).

7. Conclusion
This work tackles the problem of constrained generation
via fine-tuning pre-trained flow and diffusion models, a
relevant and challenging task in discovery applications
such as molecular design and protein structure generation.
After proposing a constrained optimization formulation of
the problem, we introduced Augmented Lagrangian Flows
Fine-Tuning, a method that turns the constrained objective
into a sequence of fine-tuning steps and renders possible
to provide constrained generation guarantees via the classic
AL scheme. Empirical results on both illustrative settings
and a molecular design task confirm the ability of ALF2 to
steer models toward high-reward valid regions.

4



Constrained Molecular Generation via Sequential Flow Model Fine-Tuning

8. Impact Statement
This work presents research aimed at advancing the field of
generative modeling and molecular design. There are many
potential societal consequences of our work, none of which
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A. Related Works
Control-based fine-tuning of flow and diffusion models. Recent works have tackled fine-tuning of diffusion and flow
models to maximize rewards under KL regularization as an entropy-regularized optimal control problem (e.g., Uehara et al.,
2024b; Tang, 2024; Uehara et al., 2024c; Domingo-Enrich et al., 2025). These methods have been successfully applied
to real-world domains such as image generation (Domingo-Enrich et al., 2025), molecular design (Uehara et al., 2024c),
or protein engineering (Uehara et al., 2024c). In this work, we propose a principled extension of such formulations to
the case where known constraints are available (see Sec. 3) and one wishes to have constrained generation guarantees (see
Sec. 5). In particular, Augmented Lagrangian Flows Fine-Tuning (see Alg. 1) renders possible to tackle this more complex,
constrained setting, by leveraging as oracles the aforementioned control-based methods for unconstrained fine-tuning.

Molecular Design. Molecular design is the discovery of molecules with desired properties for a given problem in chemistry
and biology. In earlier works, quantum chemical methods were used to identify reactivity descriptors and rationally optimize
reactions (Brinck & Liljenberg, 2015). Genetic algorithms have shown strong performance on efficient exploration of
chemical space (Tripp & Hernández-Lobato, 2023). They have been applied for molecular materials design (Schaufelberger
et al., 2025), or optimizing logP values with a constraint for synthetic accessibility (Jensen, 2019). With the advent of
deep learning, RNN-based autoencoders that represent and explore the latent space were employed to optimize for drug-like
structures (Gómez-Bombarelli et al., 2018; Blaschke et al., 2018). Reinforcement learning techniques have also been applied
to SMILES strings (Olivecrona et al., 2017; Loeffler et al., 2024), while enforcing synthesizability constraints (Guo &
Schwaller, 2025). Diffusion and flow models can be adapted to sample molecules with targeted properties, which has been
used for a variety of single- and multi-objective optimization tasks (Weiss et al., 2023), for example, with online finetuning
(Uehara et al., 2024c). Recent work also incorporated synthesizability constraints into generative modeling by producing
synthetic pathways that ensure that candidates are synthetically tractable (Gao et al., 2024). Compared with previous work,
Augmented Lagrangian Flows Fine-Tuning renders possible to trade-off reward maximization and domain-specific constraint
fulfillment (e.g., non-toxicity, synthesizability) in a more controllable way supported by constrained generation guarantees.

Constrained Generative Modeling. Recent works increasingly focus on the challenge of embedding constraints into
generative models. These methods seek to ensure that generated samples not only reflect the learned data distribution but
also satisfy downstream constraints. Typically, constraints include linear (Graikos et al., 2025) and differentiable functions
(Khalafi et al., 2024). Kong et al. (2024) extend this by proposing a method able to satisfy black-box constraints. The
strategies for enforcing constraints range from dual optimization frameworks (Khalafi et al., 2024) to classifier-guided
sampling (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) and reward-weighted denoising (Kong et al., 2024). We extend
this line of work by tackling the constraint generation problem with an Augmented Lagrangian approach (in Alg. 1) that
does not need any dual information or time-dependent classifier. Future works include studying the problem of constraint
satisfaction at inference-time (Uehara et al., 2025; Graikos et al., 2025).
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B. Adjoint Matching (Domingo-Enrich et al., 2025) implementation of FINETUNINGSOLVER

To ensure completeness, below we provide pseudocode for one concrete realization of a FINETUNINGSOLVER as in Eq. (7).
We describe exactly the version employed in Sec. 6, which builds on the Adjoint Matching framework (Domingo-Enrich
et al., 2025), casting linear fine-tuning as a stochastic optimal control problem and tackling it via regression.

Let upre be the initial, pre-trained vector field, and ufinetuned its fine-tuned counterpart. We also use ᾱ to refer to the
accumulated noise schedule from (Ho et al., 2020), effectively following the flow models notation introduced by Adjoint
Matching (Domingo-Enrich et al., 2025, Sec. 5.2). The full procedure is in Algorithm 2.

Algorithm 2 FINETUNINGSOLVER (Adjoint Matching (Domingo-Enrich et al., 2025)) based implementation

input N : number of iterations, upre : pre-trained flow vector field, α regularization coefficient as in Eq. (4), ∇f : objective
function gradient, m batch size, h step size

1: Init: ufinetuned := upre with parameter θ
2: for n = 0, 1, 2, . . . , N − 1 do
3: Sample m trajectories {Xt}0≤t≤1 via a memoryless noise schedule σ(t) (Domingo-Enrich et al., 2025), e.g.,

sample εt ∼ N (0, I), X0 ∼ N (0, I), then: (13)

Xt+h = Xt + h

(
2ufinetuned

θ (Xt, t)−
ᾱt

αt
Xt

)
+

√
hσ(t)εt (14)

Use objective function gradient:

ã1 = − 1

α
∇f(X1)

For each trajectory, solve the lean adjoint ODE, see (Domingo-Enrich et al., 2025, Eq. 38-39), from t = 1 to 0:

ãt−h = ãt + hã⊤t ∇Xt

(
2upre(Xt, t)−

ᾱt

αt
Xt

)
(15)

Where Xt and ãt are computed without gradients, i.e., Xt = stopgrad(Xt), ãt = stopgrad(ãt). For each
trajectory, compute the Adjoint Matching objective (Domingo-Enrich et al., 2025, Eq. 37):

Lθ =
∑

t∈{0,h,...,1−h}

∥∥∥∥ 2

σ(t)

(
ufinetuned
θ (Xt, t)− upre(Xt, t)

)
+ σ(t)ãt

∥∥∥∥2 (16)

Compute the gradient ∇θL(θ) and update θ.
4: end for
5: output: Fine-tuned flow vector field ufinetuned

θ

For the molecular design task, we fine-tune FlowMol (Dunn & Koes, 2024). FlowMol models the molecules as graphs
g = (X,A,C,E), where X = {xi}Ni=1 ∈ RN×3 is the atom position matrix, A = {ai}Ni=1 ∈ RN×na are the atom types,
C = {ci}Ni=1 ∈ RN×nc denote the formal charges, and E = {eij | ∀i, j ∈ [N ]|i ̸= j} ∈ RN2−N×ne the bond order matrix.
Where na, nc, and ne are the number of possible atom types, charges, and bond orders, these are categorical variables
represented by one-hot vectors. We refer to (Dunn & Koes, 2024) for the sampling of categorical and initial values, we use
CTMC sampling in all our experiments.

The reward and constraint, building the objective function, are implemented in dxtb (Friede et al., 2024). dxtb provides
gradients with respect to the positions of each atom. Thus, the adjoint in Eq. (15) and loss in Eq. (16) are calculated for
atomic positions.

For further implementation details, we refer to (Domingo-Enrich et al., 2025, Appendix G).
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C. Parameter Augmented Lagrangian Flows Fine-Tuning for and Adjoint Matching
For the synthetic datasets present in Figure 2a and Figure 2e and the molecular design task, we used the following parameters:

Table 1. Hyperparameters for ALF2 and Adjoint Matching

Simple Gaussian Mixure of Gaussians Molecular Design

ALF2

Lagrangian Updates K 35 35 20
ρinit 0.5 0.5 2
η 1.25 1.25 1.1
τ 0.99 0.99 0.999

Adjoint Matching

(1/α) 1e5 1e6 1e2
Number of Iterations N 300 300 10
Effective Batch Size 512 512 40
Loss Clipping - - 1e5
Clip Grad Norm 0.7 0.7 0.5
Learning Rate 5e-6 5e-6 1e-4
Integration Steps 40 40 50

For the synthetic datasets, an MLP with 3 hidden layers, each with 256 nodes, is trained on 20k samples (80/20 train
validation split) for 500 epochs. For the molecular design task, we fine-tune FlowMol (Dunn & Koes, 2024), with CTMC
sampling for the discrete features.
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D. Proofs
Before we present a proof of the theorems in Section 5. We will transform the main problem in Eq. (4) to a simpler form.
First, we recall that the policy π is a vector field. It has been shown before that the ODE in Eq. (1) and a stochastic
differential equation (SDE) of the form

dXt = b(Xt, t)dt+ σ(t)dBt, X0 ∼ p0, (17)

with drift b : Rd × [0, 1] → Rd, diffusion coefficient σ : [0, 1] → R≥0 and Brownian motion Bt induce the same marginals
{pt}. For an exact definition of b and a proof of this statement, we refer to (Domingo-Enrich et al., 2025). Controlling this
SDE can be done by adjusting the drift as follows (Domingo-Enrich et al., 2025):

dXt = (b(Xt, t) + σ(t)u(Xt, t)) dt+ σ(t)dBt, X0 ∼ p0,

where u : Rd × [0, 1] → Rd is a control vector field, this means the pre-trained model is a controlled model with u ≡ 0.
With these notational changes, we reformulate the optimization problem in Eq. (4) in terms of the controlled diffusion
process Xu ∼ pu:

max
u∈U

EXu∼pu [r(X1)]− αDKL(p
u
1 (·)||p

pre
1 (·))

s.t. EXv∼pv [c(X1)] ≤ B
(18)

Eq. (18) may seem the same as Eq. (4), but it is in terms of a diffusion process. This way we can calculate the KL efficiently,
see (Eq. 18, Domingo-Enrich et al., 2025), by using Girsanov’s theorem, which gives the relationship between the control
process u and the KL-Divergence:

DKL(p
u(X|X0) || ppre(X|X0)) = EXu∼pu

[∫ 1

0

1

2
∥u(Xt, t)∥2 dBt

]
Meaning if both processes have the same initial valueX0, the KL divergence between the controlled and uncontrolled process
is equal to the expected value of the squared norm of the control u (Domingo-Enrich et al., 2025; Uehara et al., 2024b;
Tang, 2024). This dependence on the initial value can be dropped when using a specific noise schedule (Domingo-Enrich
et al., 2025). Recalling that marginals at time t are pt(x), i.e. Xt ∼ pt(x), then we can equivalently write the optimization
problem as:

max
u∈U

EXu∼pu [r(X1)]− αE
[∫ 1

0

1

2
∥u(Xu

t , t)∥2dt
]

s.t. EXu∼pu [r(X1)] ≤ B

Where the expectation is taken over the controlled process Xu. For numerical optimization, we now assume that the control
u is a parametric model, typically a neural network, with parameters θ. The resulting optimization problem is then:

max
θ∈Rm

F (θ) := Fr(θ)− αFKL(θ)

= Ex∼p
uθ
1
[r(x)]− αE

[∫ 1

0

1

2
∥uθ(Xt, t)∥2dt

]
s.t. G(θ) := Ex∼p

uθ
1
[c(x)]−B ≤ 0

(19)

For some function F : Rm → R and function G : Rm → R. This is finite-dimensional optimization over θ.

Next, we present a proof that Algorithm 1 can find a parameterized policy πθ, with θ ∈ Rm that minimizes the infeasibility
while maximizing the reward. The proof is mostly the same as in “Practical Augmented Lagrangian Methods for Constrained
Optimization” (Birgin & Martı́nez, 2014, Chapter 5).

The augmented Lagrangian objective in Eq. (5) becomes:

Lρ(θ, λ) = F (θ)− ρ

2

[
max

(
0, G(θ)− λ

ρ

)]2
(20)

where λ ∈ R≤0 is the Lagrange multiplier, ρ > 0 is a penalty parameter.

With this notation, the assumption on the solver becomes:
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Assumption D.1 (Solver). For all k ∈ N, we obtain u such that:

Lρk
(θk, λ̄k) ≥ Lρk

(θ, λ̄k)− εk ∀ θ ∈ Rm (21)

where the sequence {εk} ⊆ R+ is bounded.

This corresponds to Assumption 5.1 from (Birgin & Martı́nez, 2014). Assumption D.1 states that the solver can find an
approximate maximizer of the subproblem.

Next we state and prove the main result for the algorithm. Namely, in the limit, we obtain a minimizer of the infeasibility
measure.
Theorem D.2 (Feasibility of Augmented Lagrangian Flows Fine-Tuning). Let {θk} be a sequence generated by Algorithm 1
under the solver Assumption D.1. Let θ̄ be a limit of the sequence {θk}. Then, we have:〈

G(θ̄)
〉
+
≤ ⟨G(θ)⟩+ ∀θ ∈ Rm, (22)

where G(θ) := Ex∼p
uθ
1
[c(x)]−B ≤ 0 and ⟨·⟩+ := max{0, ·}.

Proof. By definition Rm is closed and θk ∈ Rm thus θ̄ ∈ Rm. We consider two cases: {ρk} bounded and ρk → ∞. First
we assume {ρk} is bounded, there exists k0 such that ρk = ρk0 for all k ≥ k0. Therefore, for all k ≥ k0, the upper bracket
of Eq. (8) holds. This implies that |Vk| → 0, so ⟨G(θk)⟩+ → 0. Thus, the limit point is feasible.

Now, assume that ρk → ∞. Let K ⊆ N be such that:

θk → θ̄ for k ∈ K and k → ∞

Assume by contradiction that there exists θ ∈ Rd such that〈
G(θ̄)

〉2
+
> ⟨G(θ)⟩2+

By the continuity of G, the boundedness of
{
λ̄k

}
, and the fact that ρk → ∞, there exists c > 0 and k0 ∈ N such that for all

k ∈ K, k ≥ k0: 〈
G(θk)−

λ̄k
ρk

〉2

+

>

〈
G(θ)− λ̄k

ρk

〉2

+

+ c

Therefore, for all k ∈ K, k ≥ k0:

F (θk)−
ρk
2

[〈
G(θk)−

λ̄k
ρk

〉2

+

]
< F (θ)− ρk

2

[〈
G(θ)− λ̄k

ρk

〉2

+

]
− ρkc

2
+ F (θk)− F (θ)

Since limk∈K θk = θ̄, the continuity of F , and the boundedness of {εk}, there exists k1 ≥ k0 such that, for k ∈ K k ≥ k1:
ρkc

2
− F (θk) + F (θ) > εk

Therefore,

F (θk)−
ρk
2

[〈
G(θk)−

λ̄k
ρk

〉2

+

]
< F (θ)− ρk

2

[〈
G(θ)− λ̄k

ρk

〉2

+

]
− εk

for k ∈ K, k ≥ k1. This contradicts Assumption D.1.

Theorem D.2 and its proof correspond to Birgin & Martı́nez (2014, Sec. 5.1). Theorem D.2 establishes that Algorithm 1,
under the iterates given in Assumption D.1, identifies minimizers of the infeasibility, i.e.,

⟨G(θ)⟩+ :=
〈
Ex∼p

uθ
1
[c(x)]−B ≤ 0

〉
+
.

Consequently, if the original optimization problem is feasible, then every limit point of the sequence produced by the
algorithm is also feasible.

Next, we will see that, assuming that εk tends to zero, it is possible to prove that, in the feasible case, the algorithm
asymptotically finds a global maximizer of the problem in Equation (4).
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Theorem D.3 (Optimality of Augmented Lagrangian Flows Fine-Tuning). Let {θk} ⊂ Rd be a sequence generated by
Algorithm 1 under Assumption D.1 and limk→∞ εk = 0. Let θ̄ ∈ Rm be a limit of the sequence {θk}. Suppose that
⟨G(θ)⟩+ = 0, then θ̄ is a global maximizer of Equation (4).

Proof. Let K ⊆ N be such that.
θk → θ̄ for k ∈ K and k → ∞

By assumption, the problem is feasible, thus, by Theorem D.2, we have that θ̄ is feasible. Let θ ∈ Rm be such that G(θ) ≤ 0.
By the definition of the algorithm, we have that

F (θk)−
ρk
2

[〈
G(θk)−

λ̄k
ρk

〉2

+

]
≥ F (θ)− ρk

2

[〈
G(θ)− λ̄k

ρk

〉2

+

]
− εk (23)

for all k ∈ N, as well as by assumption G(θ) ≤ 0, we have that〈
G(θ)− λ̄k

ρk

〉2

+

≤
(
λ̄k
ρk

)2

. (24)

We again consider the two cases: ρk → ∞ and {ρk} bounded.

In the first case, we assume ρk → ∞. By Equation (23) and Equation (24), we have

F (θk) ≥ F (θk)−
ρk
2

[〈
G(θk)−

λ̄k
ρk

〉2

+

]
≥ F (θ)− (λ̄k)

2

2ρk
− εk.

Taking limits for k ∈ K, and using that θk → θ̄, we have that limk∈K(λ̄k)
2/ρk = 0 and limk∈K εk = 0, by the continuity

of F and the convergence of θk, we get
F (θ̄) ≥ F (θ).

Since θ is an arbitrary feasible element of Rm, θ̄ is a global optimizer.

For the second case, we assume {ρk} is bounded, there exists k0 ∈ N such that ρk = ρk0
for all k ≥ k0. Therefore, by

Assumption D.1, Equation (23) holds for all k ≥ k0, and Equation (24) holds with ρ = ρk0
. Thus,

F (θk)−
ρk0

2

[〈
G(θk)−

λ̄k
ρk0

〉2

+

]
≥ F (θ)− (λ̄k)

2

2ρk0

− εk.

for all k ≥ k0. Let K1 ⊆ N and λ∗ ∈ R≤0 be such that: limk∈K1 λ̄k = λ∗. By the feasibility of θ̄, taking limits in the
inequality above for k ∈ K1, we get

F (θ̄)− ρk0

2

[〈
G(θ̄)− λ̄∗

ρk0

〉2

+

]
≥ F (θ)− (λ̄∗)2

2ρk0

− εk. (25)

Now, if G(θ̄) = 0, since λ∗/ρk0
≥ 0, we have that〈

G(θ̄)− λ̄∗

ρk0

〉2

+

=

(
λ̄∗

ρk0

)2

Therefore, by Equation (25),

F (θ̄)− ρk0

2

[〈
G(θ̄)− λ̄∗

ρk0

〉2

+

]
≥ F (θ)− (λ̄∗)2

2ρk0

. (26)

But, by Equation (8), limk→∞ min{G(θk),−λ̄∗/ρk0
} = 0. Therefore, if G(θ̄) < 0, we necessarily have that λ̄∗ = 0.

Therefore, Equation (26) implies that F (θ̄) ≥ F (θ). Since θ is an arbitrary feasible element of Rm, θ̄ is a global
optimizer.

We want to make two remarks about Theorem D.3: the first is that having access to such an solver is difficult and in practice
rarely the case. Secondly, we refer the reader to Birgin & Martı́nez (2014, Sec. 5.2) for a discussion about the sets K and
K1, how they are connected to the convexity of F and G, and the corresponding theorem and proof.
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