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ABSTRACT

Learning robust driving policy from logged data is challenging due to the distribu-
tion shift between open-loop training and closed-loop deployment. We propose
ABC-RL, a hybrid framework that integrates Anchor-guided Behavior Cloning
(ABC) with offline Reinforcement Learning (RL) under a single-step world model
to address this issue. A key innovation of our method is anchor-based behavior
cloning, which introduces dynamics-aware intermediate trajectory targets. These
anchor points normalize trajectories across different speeds and driving styles,
enabling more accurate trajectory prediction and improving generalization to di-
verse driving scenarios. In addition, we leverage a learned world model to support
offline RL: given the current state and action, the world model predicts the next
state, which is then encoded to estimate the reward, allowing effective policy
learning without environmental interaction. This model-assisted training process
enhances learning efficiency and stability under offline settings. To evaluate the
effectiveness of ABC-RL, we perform open-loop assessments and develop a closed-
loop simulation benchmark using the nuScenes dataset, enabling a comprehensive
evaluation of planning stability and safety. Our method achieves state-of-the-art
performance, significantly outperforming behavior cloning baselines in both open-
loop and closed-loop evaluations. Notably, ABC-RL reduces open-loop trajectory
error from 0.29 m to 0.22 m and reduces closed-loop collision rates by over 57%,
demonstrating the practical benefits of integrating trajectory-level supervision with
model-assisted offline policy refinement. Our findings highlight the potential of
ABC-RL under learned world models, offering a scalable and robust solution for
real-world autonomous driving.

1 INTRODUCTION

Learning a scalable end-to-end driving policy from offline datasets significantly appeals to au-
tonomous vehicles. Imitation Learning (IL) (Codevilla et al., 2018; Zhang et al., 2021; Vitelli et al.,
2022; Bojarski et al., 2016) is a popular strategy that leverages human driving logs to train policies.
Behavior Cloning (BC), a specific approach within this paradigm, is widely adopted for its simplicity
in implementation. However, this method often suffers from compounding errors when deployed, as
minor deviations from the expert trajectory can accumulate and lead the policy into out-of-distribution
states. A well-known challenge in BC is the discrepancy between open-loop training (evaluation on
logged data) and closed-loop deployment (autonomous rollout) (Duc et al., 2021; Ross et al., 2011;
Ng & Russell, 2000). Pure BC can achieve high open-loop accuracy, especially in common-case
scenarios. Still, it lacks robustness in closed-loop driving, where the vehicle must recover from
its mistakes (Zhang et al., 2024). On the other hand, Reinforcement Learning (RL) can improve
robustness by optimizing long-term rewards. Still, online RL requires interactive environments or
simulators and can produce unnatural behaviors if not carefully constrained (Kiran et al., 2022). Re-
cent work (Gao et al., 2025) has shown that building photorealistic simulators (e.g., with 3D Gaussian
Splatting (Kerbl et al., 2023) ) enables closed-loop RL training for driving, often combining a BC
objective to maintain human-like behavior. However, such approaches require complex infrastructure
and still face challenges with stability and efficiency (Ljungbergh et al., 2024).
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This motivates the need for a practical framework that gains the benefits of RL without expensive
online interaction while preserving the safe driving behavior of BC. This paper proposes a novel
anchor-guided BC with an offline RL framework to address these challenges. We integrate BC
and offline RL into a unified framework, using a single-step world model to simulate environment
transitions from logged data (Wang et al., 2025). The core innovation is a dynamics-aware anchor
point representing the vehicle’s future trajectory. Instead of directly predicting raw future positions,
our policy predicts anchor points normalized by the ego dynamics, serving as a temporally adaptive
goal (Li et al., 2021). By conditioning on speed, the network learns a trajectory representation
invariant to velocity scaling – effectively normalizing trajectory prediction across different driving
speeds. This makes learning easier and yields significantly better accuracy in matching expert
trajectories. Moreover, the learned world model allows us to incorporate an offline reinforcement
learning (RL) objective. By combining the learned transition dynamics with a reward prediction
head, we can refine the policy beyond mere behavioral cloning. The RL component leverages the
fixed offline dataset to gently guide the policy toward higher cumulative returns—such as smoother
and safer driving maneuvers—without needing online environment interaction. Importantly, our
approach maintains the reliability of imitating familiar behaviors while enhancing robustness in novel
or unfamiliar scenarios through value-based feedback.

We evaluate our approach on the nuScenes dataset (Caesar et al., 2020), which provides real-world
driving logs with complex traffic scenarios. Empirical results show that our hybrid method achieves
state-of-the-art open-loop performance, outperforming strong BC baselines in accuracy by a large
margin. More importantly, when evaluating in closed-loop simulations, our learned policy exhibits
substantially enhanced stability and safety: collision rates are notably reduced compared to policies
trained with BC alone. For example, our method reduces the average L2 trajectory error from 0.29 m
to 0.22 m(mean Euclidean distance between the predicted and ground-truth future trajectory). At
the same time, it lowers closed-loop collision events by over 57% compared to a pure BC baseline,
demonstrating significantly improved safety during deployment. These gains underscore the practical
impact of combining BC and offline RL – our policy not only mimics the expert more faithfully but
also handles out-of-distribution events more properly. Our work is the first to successfully unify
BC and offline RL in an end-to-end driving context with a learned world model, demonstrating a
viable path toward accurate and robust autonomous driving without resorting to online data collection.
We hope our approach contributes to bridging the gap between research and reliable real-world
deployment of learned driving policies.

Our main contributions are summarized as follows:

1. We propose a unified ABC-RL framework that combines BC with offline RL under a single-
step world model. This framework enables reward-guided policy optimization using logged
data and supports closed-loop training on the nuScenes dataset.

2. We introduce an anchor-based BC method that leverages constant-velocity anchor points
as intermediate targets for predicting 3-second future trajectories, improving temporal
consistency and prediction accuracy.

3. Our method achieves strong experimental metrics, reducing open-loop L2 prediction error
from 0.29 m to 0.22 m and significantly reducing closed-loop collision rates by over 57%.

2 RELATED WORK

Behavior Cloning for Autonomous Driving

Researchers have widely adopted Behavior Cloning (BC) for autonomous driving, where end-to-end
models learn to map sensor inputs to future trajectories or control commands by mimicking expert
demonstrations. Recent advances in BC incorporate increasingly structured scene understanding. For
example, UniAD (Hu et al., 2023) proposes a unified framework that integrates perception, prediction,
and planning, while TCP (Wu et al., 2022) scores candidate trajectories to improve decision-making.
VAD (Jiang et al., 2023) further introduces a vectorized bird’s-eye view (BEV) representation that
encodes rich scene geometry, enhancing the model’s ability to capture complex traffic scenarios.
Surprisingly, a later study AD-MLP (Zhai et al., 2023) demonstrated that even a simple multi-layer
perceptron (MLP) model using only ego-vehicle motion (e.g., velocity, acceleration) can achieve
strong performance on the nuScenes open-loop benchmark. Another recent study (Li et al., 2024)
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highlights the need for more diverse and challenging evaluation protocols to reflect real-world
complexity and generalization requirements better.

Despite their success in open-loop evaluations, BC methods often suffer from distribution shift
during closed-loop deployment, where small prediction errors can accumulate and lead the agent
into unfamiliar states. These out-of-distribution scenarios are rarely encountered in training data,
making pure BC policies fragile when required to recover from their own mistakes. Additionally, BC
lacks a mechanism to reason about long-term consequences or trade-offs, limiting its effectiveness in
complex or ambiguous driving situations.

Our work builds on the VAD framework’s scene encoding capabilities and addresses the above
limitations by integrating offline reinforcement learning. This hybrid approach enhances closed-loop
robustness by leveraging a learned world model to simulate future outcomes and refine the policy
under distribution shift.

Reinforcement Learning in Driving

Reinforcement Learning (RL) optimizes long-term rewards and can handle rare events beyond the
training distribution. RAD (Gao et al., 2025) employs online RL with a 3D Gaussian Splatting-based
simulator (Kerbl et al., 2023) to train recovery behaviors, combining BC for human-likeness (Hester
et al., 2018; Rajeswaran et al., 2018; Vecerik et al., 2018). Other methods explore real-vehicle safe
RL (Wen et al., 2020) and crash severity prediction for reward shaping (Holen et al., 2024). Despite
effectiveness, online RL demands heavy computation and complex reward design (Knox et al., 2024;
Pan et al., 2017; Liang et al., 2018; Volodymyr et al., 2015).

Offline RL improves policies from fixed logs without requiring simulators (Kostrikov et al., 2022;
Kumar et al., 2020), but suffers from distributional shift due to limited state-action coverage (An
et al., 2021; Yeom et al., 2024; Fujimoto et al., 2019). Recent efforts such as (Lee & Kwon, 2025)
combine offline RL with episodic future thinking to enhance adaptivity.

Our method belongs to this family but introduces a key distinction: we leverage a learned world
model trained on nuScenes to simulate state transitions. This allows the policy to explore novel
actions and observe their outcomes beyond what is directly available in the offline data.

World Models and Latent Policy Learning

World models aim to simulate environment dynamics in a compact latent space, enabling agents
to learn policies without interacting with the real environment or simulator during training. This
idea underpins model-based RL frameworks like DreamerV3 (Hafner et al., 2025), which learn
latent dynamics and train policies entirely within a learned world, achieving strong performance in
continuous control tasks.

This paradigm has been extended in autonomous driving to address partial observability and semantic
complexity. Doe-1 (Zheng et al., 2024) constructs a recurrent latent dynamics model conditioned
on visual inputs to support closed-loop planning from camera observations. OccLLaMA (Wei et al.,
2024) develops a generative occupancy-based world model enriched by language and multimodal
priors. Yang et al. (Yang et al., 2024) propose a vision-centric world model that forecasts occupancy
grids for downstream planning.

These approaches demonstrate the feasibility of long-horizon policy learning under uncertainty
through expressive latent dynamics. However, they often require significant model complexity and
training costs.

3 METHOD

We propose Anchor-guided Behavior Cloning with offline Reinforcement Learning (ABC-RL). This
hybrid framework (Fujimoto & Gu, 2021) combines anchor-guided BC and offline RL (Fujimoto et al.,
2018) within a single-step world model to train robust driving policies from offline data. In broad
strokes, this integrated approach uses anchor-guided BC to initialize the policy, leverages a learned
world model to simulate diverse environment dynamics for enhanced generalization, and applies
offline RL (TD3 (Fujimoto et al., 2018) +BC) to refine the policy under static dataset constraints.
Together, these components form a cohesive training pipeline that capitalizes on the complementary
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Figure 1: Overall architecture of the ABC-RL framework. The ABC-RL framework combines
an anchor-guided BC module initialized via BC, a single-step world model simulating environment
transitions with BEV features and Transformer-based spatiotemporal fusion, and an offline RL
pipeline using TD3+BC with conservative constraints to refine policies through synthetic world
model rollouts while maintaining behavioral fidelity.

strengths of BC and reinforcement learning, and the following subsections detail each element of our
method in Figure 1.

3.1 ANCHOR-GUIDED BEHAVIOR CLONING
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Figure 2: Anchor-guided behavior cloning module. The policy predicts velocity-normalized
trajectory offsets relative to constant-velocity anchors initialized by BC. The BC module reconstructs
future trajectories as x̂k = xanc

k +∆x̂k and ŷk = yanck +∆ŷk

We first train a policy via BC using anchor-guided trajectory prediction, as shown in Figure 2. The
anchor trajectory is constructed by assuming the ego vehicle continues with its current velocity
(vx, vy) in the ego-centric coordinate frame. For a planning horizon of H steps with time interval ∆t,
the anchor trajectory (xanc

k , yanck ) is defined as:
xanc
k = x0 + vx k∆t, yanck = y0 + vy k∆t, (1)

for k = 1, 2, . . . , H , where (x0, y0) is the current position and (vx, vy) is the current velocity of the
ego vehicle in the ego-centric frame.

We define the trajectory offset between the ground-truth future trajectory (xgt
k , ygtk ) and the anchor as:

∆xk = xgt
k − xanc

k , ∆yk = ygtk − yanck . (2)
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The policy πθ is trained to predict these offsets based on the current state, simplifying the learning
problem by normalizing for ego-motion. For each training sample, the predicted future trajectory is
reconstructed as follows:

x̂k = xanc
k +∆x̂k, ŷk = yanck +∆ŷk, for k = 1, . . . , H. (3)

The BC loss minimizes the mean squared error between the predicted and ground-truth trajectories:

LBC(θ) =
1

H

H∑
k=1

[
(x̂k − xgt

k )2 + (ŷk − ygtk )2
]
. (4)

This anchor-guided formulation provides a motion-normalized prediction target, making trajectory
learning more stable and generalizable across varying speeds.

3.2 WORLD MODEL

We also train a world model to simulate the environment’s dynamics. The world model (typically
a neural network) learns to predict state transitions and rewards from the offline data, defined as
fϕ : (St, at) 7→ (st+1, rt), where St is the set of historical BEV features, at represents the ego’s
actions at time t, st+1 is the BEV features at time t+ 1, and rt is the reward obtained when the RL
agent takes action at at time t. The world model operates through three key stages: BEV feature
encoding, Spatiotemporal fusion via Transformer (Vaswani et al., 2017), and future state decoding.

Inputs and Preprocessing of World Models: Given N historical trajectories Aprev = {at, at−1,
at−2, . . . , at−N} and historical BEV features sprev = {st, st−1, st−2, . . . , st−N}, the historical
BEV features are mapped to the current BEV feature st via coordinate transformation. Then the input
St ∈ Rhisframes×h×w×c of the world model is obtained. Subsequently, historical feature fusion is
conducted through the convolutional layer.

BEV Feature Encoding: The fused historical BEV features are downsampled by an encoder
equipped with a Convolutional Block Attention Module (CBAM) (Woo et al., 2018) to generate a
compact latent representation Ft, which retains spatial relationships and semantic features.

ActionSpatial Fusion via Transformer: The action of the RL agent at is encoded into an action
embedding At ∈ Rc via an embedding layer, projected into the latent space through a linear layer
and concatenated with flattened BEV features along the spatial dimension. The combined features
are denoted as F̂t ∈ R(h/4×w/4)×c. Then, a 3-layer Transformer encoder with an 8-head attention
mechanism is used to model temporal evolution and spatial interactions. Positional encodings are
added to preserve the spatial coordinates of BEV features. The Transformer computes cross-attention
between BEV cells and action embeddings, enabling the model to explain how specific actions affect
different spatial regions.

Future State Decoding: The Transformer output is reshaped back to h/4 × w/4 resolution and
processed through two convolution blocks with CBAM attention. Each block upsamples the spatial
resolution by 4× while reducing channels, predicting future BEV states st+1.

Reward Head: To estimate rewards from predicted BEV states st+1, we employ a lightweight
reward head comprising three convolutional blocks and a spatial attention mechanism. The attended
features are globally pooled and passed through an MLP to produce 2D reward logits indicating
positive (goal-directed) or harmful (unsafe) outcomes. This module is trained using supervised reward
labels and supports value learning under the world model’s dynamics.

Integration with Planning System: The world model can generate plausible future trajectories
given a sequence of actions by encoding states into a latent space and learning the environment’s
transition function. We leverage the world model as a surrogate environment for planning and
evaluation in the offline setting. In essence, the world model enables policy rollouts and value
estimation without additional real environment interactions, providing a safe and efficient way to
assess and improve policies using only the logged data.
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3.3 OFFLINE REINFORCEMENT LEARNING
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Figure 3: Offline reinforcement learning fine-tuning with world model and BC constraints. Initially
initialized by BC, the policy is refined using TD3+BC with conservative constraints. Synthetic
trajectories generated by the world model enable offline evaluation of candidate actions while
maintaining proximity to the behavioral policy.

As illustrated in Figure 3, we refine the policy network (initialized by the anchor-guided BC model)
using an offline reinforcement learning approach. The agent learns from a fixed dataset without
additional environment interactions in this stage. To enable temporal-difference updates from static
data, we leverage a learned one-step world model M to simulate the environment dynamics. Instead
of a standard TD update, we adopt the Twin Delayed DDPG (TD3) algorithm (Fujimoto et al., 2018),
which provides several stability benefits: (i) twin Q-networks with a minimum-value target to mitigate
overestimation, (ii) target policy smoothing by injecting noise into target actions, and (iii) delayed
policy (actor) updates. We integrate these TD3 components into our offline RL framework with a
behavior cloning regularizer (TD3+BC (Fujimoto & Gu, 2021)) to constrain the policy toward offline
data distribution.

Concretely, we maintain two critic networks Q1(s, a) and Q2(s, a) with parameters θ1, θ2, along
with corresponding target networks Q′

1, Q
′
2. Each critic takes as input the current BEV state s and

a candidate ego-action a, then uses the world model M to predict the next state and reward, i.e.,
(ŝ′, r) = M(s, a). The predicted reward r reflects future outcomes such as goal achievement or
potential collisions. The critic networks are trained using the TD3 loss, where the target value is
computed with the more conservative of the two target Q networks. Specifically, the target is given
by:

y = r + γ min
i=1,2

Q′
i(ŝ

′, π′(ŝ′)), (5)

where π′ is the delayed target policy and γ is the discount factor. This formulation allows the
Q-networks to learn from imagined transitions provided by the world model, enabling policy im-
provement without real environment interaction.

y(s, a) = r(ŝ′) + γ min
i∈{1,2}

Q′
i

(
ŝ′, π′(ŝ′) + ϵ

)
, (6)

where π′ is the target policy (actor) network and ϵ ∼ N (0, σ) is a slight clipped noise added to the
target action (target policy smoothing). The critic parameters θi are then updated by minimizing the
mean-squared Bellman error:

E(s,a)∼D

[
(Qi(s, a)− y(s, a))

2
]
, for i ∈ {1, 2}. (7)

Using the minimum Q′ in Eq. equation 7 (twin-Q min) guards against overestimated value targets,
while the injected noise ϵ smooths the target policy to prevent exploiting narrow peaks in Q estimates.

The policy (actor) network πϕ is updated in a delayed fashion relative to the critics (e.g., one
policy update for every two critic updates) to improve training stability. The actor is optimized to
maximize the Q-value of its actions while remaining close to the behavior policy that generated
the offline data. In practice, we employ the TD3+BC strategy, augmenting the deterministic policy
gradient objective with a behavior cloning term that penalizes deviation from the dataset actions.
Specifically, letting (s, a) be sampled from the offline dataset D, the policy update aims to maximize
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λQ1(s, πϕ(s)) − ∥πϕ(s) − a∥22, where a is the logged expert action for state s and λ controls the
trade-off between RL and imitation. Equivalently, the actor loss to minimize is given by:

Lactor(ϕ) = −λEs∼D
[
Q1(s, πϕ(s))

]
+ E(s,a)∼D

[
∥πϕ(s)− a∥22

]
, (8)

This loss combines the standard deterministic policy gradient (first term, using Q1 as the critic for
gradient computation) with a behavioral cloning error (second term) that keeps the refined policy
anchored to the demonstrator behavior. By initializing πϕ from the anchor-guided BC model and
using a moderate regularization weight λ, our offline TD3+BC training (Figure 3) effectively improves
policy performance (via TD learning of the reward) without straying far outside the support of the
offline dataset. The result is a policy refined beyond pure imitation, guided by learned Q-value
estimates in the single-step simulated environment while maintaining the safety and generalization
benefits of the prior BC initialization.

4 EXPERIMENTS

We conduct extensive experiments on the nuScenes dataset to validate the effectiveness of our
proposed ABC-RL framework. Our evaluation is into three main parts: (1) open-loop evaluation
on logged nuScenes data to assess predictive accuracy and safety, (2) analysis of world model
fidelity and its ability to simulate causally consistent future states, and (3) closed-loop evaluation in
a realistic simulator built with 3D Gaussian Splatting (3DGS) to test the robustness of the learned
policy under interactive deployment. These experiments collectively verify that our method achieves
superior planning accuracy and safety compared to behavior cloning baselines and alternative offline
reinforcement learning setups.

4.1 OPEN-LOOP EVALUATION ON NUSCENES

We evaluate our policy on the nuScenes dataset under the standard open-loop protocol, where the
policy is given logged sensor data. We must predict a future trajectory for the ego vehicle without
interacting with the environment. We report two primary metrics from the nuScenes planning
benchmark: average L2 trajectory error (mean Euclidean distance between the predicted and ground-
truth future trajectory) and collision rate (percentage of predicted trajectories that would result in a
collision with any obstacles).

As shown in Table 1, our method (Anchor-BC) achieves the best overall performance, reducing
the average L2 trajectory error to 0.22 m while maintaining a competitive collision rate of 0.19%.
Compared to the BC only (AD-MLP, 0.29 m / 0.19%), this reflects substantial improvements in
accuracy with similar safety.

The ablated variant (No-Anchor-BC) removes the anchor-guided parameterization and adopts the
same direct supervision strategy as AD-MLP. Its comparable performance to AD-MLP indicates that,
without anchors, the model only fails to improve over BC. This result highlights the necessity of
incorporating constant-velocity anchor points for accurate trajectory prediction and demonstrates
their key role in enhancing planning fidelity.

Compared to vectorized models like VAD, which achieve the lowest collision rate (0.14%) but suffer
from higher average planning error (0.37 m), our method offers a better trade-off between precision
and safety in open-loop planning.

Table 1: Open-loop evaluation on nuScenes.

Method L2 Error (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

VAD 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14
AD-MLP 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
No-Anchor-BC 0.22 0.29 0.39 0.30 0.18 0.22 0.28 0.23
Anchor-BC 0.18 0.21 0.27 0.22 0.19 0.16 0.21 0.19
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4.2 WORLD MODEL EFFECTIVENESS VALIDATION

We validate the learned world model from two key aspects: feature-level fidelity and causal consis-
tency, focusing on its ability to produce accurate and action-sensitive BEV features for downstream
policy learning.

(1) Feature-level fidelity.
We evaluate how closely the predicted BEV features match those generated by a pre-trained VAD-Tiny
encoder. A shared decoder extracts object and lane predictions from both sources.

For object detection, we report mean Average Precision (mAP) and nuScenes Detection Score
(NDS). For lane evaluation, we measure the proportion of predicted lane instances whose average
distance to the corresponding ground-truth lane falls below fixed thresholds (e.g., 0.5 m and 1.0 m).

As shown in Table 2, the world model achieves 82.2% and 93.4% of the VAD-Tiny’s mAP and NDS
scores, respectively. It also maintains over 91% lane alignment accuracy across both thresholds.
These results demonstrate that the world model preserves a high degree of perceptual fidelity relative
to the original BEV encoder.

Table 2: Perception fidelity: evaluating world model predictions against VAD-Tiny outputs.

Source Bbox/mAP Bbox/NDS Lane/Th=0.5m Lane/Th=1.0m

VAD-Tiny 0.2698 0.3894 0.150 0.438
World Model 0.2217 0.3637 0.137 0.415
Retention 82.2% 93.4% 91.3% 94.7%

(2) Causal response.
We apply a +3m offset along the x-axis to assess action sensitivity and observe the resulting BEV
features. As shown in Figure 4, scene elements shift accordingly, appearing closer to the ego-vehicle,
confirming that the world model responds causally to action perturbations.

(a) Unperturbed (b) +3m X-offset

Figure 4: Scene shifts forward as expected under a +3m action perturbation.

These results demonstrate that our world model accurately reconstructs scene semantics and captures
causal dynamics, supporting safe and generalizable policy learning.

4.3 CLOSED-LOOP EVALUATION IN 3DGS SIMULATION

We assess policy performance in a closed-loop setting using a realistic simulator constructed via
3DGS. The simulator reconstructs digital twins of real-world scenes, allowing interaction with other
agents in real-time. We report one key metric: collisions per episode (lower is better).

8
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As shown in Table 3, our method (ABC-RL) achieves the lowest collision rate of 0.3%, significantly
outperforming all other approaches, including the human policy (Oracle, 0.7%). This result indicates
superior safety and robustness in closed-loop driving.

Interestingly, BC methods—including AD-MLP, VAD, and our Anchor-BC—yield higher or compa-
rable collision rates to human policy. This result suggests a limitation of pure BC: since these models
strictly mimic the expert demonstrations, they cannot correct for suboptimal or unsafe behaviors in
the dataset.

Notably, VAD performs the worst among all methods. We
attribute this to its lack of yaw angle prediction—VAD only
predicts the (x, y) coordinates of the future trajectory with-
out modeling orientation changes. As a result, it struggles
with sharp turns or directional corrections, leading to more fre-
quent collisions in closed-loop rollouts. In contrast, ABC-RL
combines BC with offline RL, enabling the policy to reinforce
beneficial behaviors while suppressing risky ones. This method
leads to more stable, risk-aware decisions and substantially im-
proved closed-loop performance.

Table 3: Closed-loop evaluation in
3DGS simulator.

Method Collisions (%) ↓
Oracle 0.7
VAD 0.96
AD-MLP 0.73
Anchor-BC 0.75
ABC-RL 0.3

To further illustrate the improvement brought by our method, we present two representative scenarios
in Figure 5. In each case, the original action (represented by the red Ego Vehicle) collides with
a pedestrian or the curb. By contrast, our policy’s adjusted action (shown as the green New Ego
Vehicle) successfully avoids risky behavior, demonstrating enhanced safety and rule compliance.

(a) Collision with a pedestrian (b) Collision with the curb

Figure 5: Visualization results of our method on two representative scenes.

5 CONCLUSION

We proposed an anchor-guided offline reinforcement learning framework for autonomous driving that
combines behavior cloning with model-based reinforcement learning. The method consists of two
stages: (1) anchor-guided behavior cloning for policy initialization and (2) TD3+BC refinement within
a single-step learned world model. Experiments on nuScenes and 3DGS simulations demonstrate
improved planning accuracy and safety, outperforming behavior cloning and prior state-of-the-art
approaches.

Avoiding online exploration reduces deployment risks and costs in safety-critical settings like urban
driving. Our framework enables scalable policy learning from logged data and supports generalization
to diverse scenarios. However, ensuring unbiased training data and maintaining interpretability remain
essential for safe real-world deployment.

Future work includes (1) extending the world model to multi-step prediction, (2) exploring online
fine-tuning in simulation or reality, and (3) enriching training data with rare but critical events to boost
robustness (Lu et al., 2022; Zhou et al., 2022; Shalev-Shwartz et al., 2016). This study underscores
the promise of combining BC and offline RL for safe, scalable deployment without requiring online
interaction.
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A APPENDIX

We describe the training setup and architectural configurations for the three core components of our
system: Anchor-guided Behavior Cloning, the World Model, and Offline Reinforcement Learning.
All experiments are conducted using PyTorch on a machine with 8 NVIDIA RTX 4090 GPUs.

Anchor-guided Behavior Cloning
Our behavior cloning (BC) policy predicts velocity-normalized anchor points and heading angles
using multi-modal inputs, including BEV features, ego history, and control signals. Each input is
processed through a dedicated MLP, then fused into a shared representation.

The network architecture includes a 256-dimensional BEV encoder, two 32-dimensional MLP towers
for trajectory and control features, and a three-layer fusion MLP that outputs anchor positions and
angles in a multi-task setup.

Training uses a combined position and angle loss, with sine-cosine encoding for angular targets to
address periodicity. We adopt the Adam optimizer with mixed-precision training and cosine learning
rate scheduling. The model is trained for 50 epochs with a batch size of 128, and performance is
evaluated using L2 trajectory error across multiple time horizons.

World Model
Our model adopts an encoder–transformer–decoder architecture. The input BEV feature, optionally
downsampled via 1× 1 convolution if its channel dimension exceeds 256, is first processed by two
convolutional encoder blocks with residual connections and attention, reducing the spatial size from
100× 100 to 25× 25.

Flattened features are fused with a relative motion embedding and a learnable positional embedding
before being passed into a 3-layer Transformer encoder with 8 heads and GELU (Hendrycks &
Gimpel, 2016) activation. The output sequence is reshaped and upsampled via two decoder blocks
to recover spatial resolution. The final output is produced by a lightweight convolutional head and
optionally combined with the input BEV via residual addition.

We train the model for 100 epochs using AdamW (Loshchilov & Hutter, 2019) (learning rate 3e-4,
weight decay 0.01) with gradient accumulation (step size 4) and cosine learning rate scheduling with
warm-up. Mixed precision and multi-GPU support are enabled. A combined MSE and Smooth L1
loss is used to balance accuracy and robustness.

Offline Reinforcement Learning
We refine the policy initialized by anchor-guided BC using a TD3+BC strategy under a learned
one-step world model. The critics take BEV state s and ego-action a as input, then invoke the world
model M to predict the next state ŝ′ = M(s, a). The reward r = R(ŝ′) is derived from this predicted
state, e.g., via measuring goal progress or violation risk. Two critic networks Q1 and Q2 are trained
to minimize Bellman error using the minimum of the twin Q targets with target policy smoothing and
clipped Gaussian noise.

The actor network is updated every few steps using both a policy gradient (from Q1) and a behavior
cloning loss, weighted by λ. The final objective encourages the policy to maximize predicted returns
while staying close to the offline demonstrations. Actions are normalized by estimated velocity
before critic evaluation. Training employs mixed-precision (AMP), Huber loss for stability, L2
regularization, gradient clipping (0.5), and soft target updates (τ = 0.005). Learning rates are
decayed every 10K steps by 0.5. We use Adam optimizers with initial learning rates of 1e−4 for
critics and 3e−4 for the policy. Critic and actor modules are fully decoupled, and all target networks
are initialized via hard copy at startup.
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