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Abstract
Multi-view data involves various data forms, such
as multi-feature, multi-sequence and multimodal
data, providing rich semantic information for
downstream tasks. The inherent challenge of in-
complete multi-view missing multi-label learning
lies in how to effectively utilize limited supervi-
sion and insufficient data to learn discriminative
representation. Starting from the sufficiency of
multi-view shared information for downstream
tasks, we argue that the existing contrastive learn-
ing paradigms on missing multi-view data show
limited consistency representation learning ability,
leading to the bottleneck in extracting multi-view
shared information. In response, we propose to
minimize task-independent redundant informa-
tion by pursuing the maximization of cross-view
mutual information. Additionally, to alleviate the
hindrance caused by missing labels, we develop
a dual-branch soft pseudo-label cross-imputation
strategy to improve classification performance.
Extensive experiments on multiple benchmarks
validate our advantages and demonstrate strong
compatibility with both missing and complete
data.

1. Introduction
Multimodal learning aims to integrate data from different
modalities (such as images, text, speech, etc.) to enhance
the model’s understanding and decision-making capabilities.
This approach has shown significant potential in fields such
as medical diagnosis (Qiu et al., 2022; Luo et al., 2023; Lin
et al., 2025), wearable devices (Wen et al., 2022; Fang et al.,
2024), sentiment analysis (Soleymani et al., 2017; Zhang
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et al., 2023), and multimedia information retrieval (Fang
et al., 2022). Not only does multimodal data with significant
differences exhibit rich representational power, but multi-
feature data from the same sample also holds substantial
representational capabilities. The learning paradigm for
performing machine learning or data analysis tasks based on
such multimodal or multi-feature data is unified within the
theoretical framework of multi-view learning (Zhang et al.,
2019). And the success of this framework in downstream
tasks is largely attributed to extracting and leveraging multi-
view consistent semantic information (Hwang et al., 2021;
Zeng et al., 2023; Fang et al., 2023).

In traditional single-label classification tasks, it is typically
assumed that each sample corresponds to a unique label.
However, in real-world applications, almost all samples
may be associated with multiple labels. For example, in
autonomous driving tasks, images captured by cameras may
contain multiple entities and be associated with several la-
bels. Multi-Label Learning (MLL) tasks have attracted
increasing attention due to their strong practical significance
(Zhou et al., 2012), which aims to predict all possible rele-
vant labels for an unlabeled example. Recent extensive re-
search has witnessed significant progress of MLL in various
practical applications, e.g., document classification (Fallah
et al., 2023), emotion recognition (Zhang et al., 2021; Ameer
et al., 2022), and image annotation (Chen et al., 2019).

Combining the characteristics of the two tasks mentioned
above, multi-view multi-label classification (MVMLC)
methods (Wu et al., 2019; Zhang et al., 2020) aims to
leverage multi-view semantic information of samples as
much as possible to enhance the performance of multi-label
classification. However, in real-world data collection pro-
cesses, failures often occur inevitably due to various rea-
sons. For example, in medical diagnosis, missing diagnostic
reports often occur due to privacy concerns or economic
factors. Additionally, manual annotation of labels may lead
to incomplete tagging. This leads to the necessity of in-
complete Multi-view Missing Multi-Label Classification
(iM3C), which focuses on scenarios where some views and
labels are missing.

Considering the incomplete multi-view problem, Zhao et
al. proposed a method named CDMM (Zhao et al., 2021),
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which explores multi-view consistency and diversity while
employing an ensemble learning strategy to obtain the final
results. To alleviate insufficient available label information,
Zhao et al. proposed a method named LVSL based on the
structural consistency between the view and the label space
(Zhao et al., 2022). Li et al. approached the problem from
the perspective of incomplete multi-label learning, leverag-
ing the prediction matrix to capture global and local label
structures to address the issue of incomplete labels (Ma &
Chen, 2021). The above three methods have made signif-
icant contributions to the fields of multi-view learning or
multi-label classification. However, they are unable to fully
address the iM3C problem. Therefore, Tan et al. proposed
a method named iMVWL, which can simultaneously learn
a shared subspace from incomplete views with missing la-
bels (Tan et al., 2018). Li et al. proposed a method named
NAIM3L, which constructs a composite index matrix involv-
ing available views and known label information to mitigate
negative impacts (Li & Chen, 2021). In recent years, deep
learning has achieved significant development (Yang et al.,
2023b). In addition to above traditional methods, Liu et al.
introduce deep incomplete instance-level contrastive learn-
ing in the iM3C task to extract multi-view features (Liu
et al., 2023). To further leverage supervised information,
Xie et al. applied dual graph constraints to view-level and
label-level embeddings, to generate missing labels through
uncertainty-aware strategies (Xie et al., 2024b). Consider-
ing the coupling between multi-view consistency and multi-
label classification tasks, a method named SIP is proposed
to construct label prototypes in a data-driven manner, which
further extracts task-relevant information via the informa-
tion bottleneck approach (Liu et al., 2024).

The success of these methods is closely tied to the extrac-
tion and learning of multi-view consistency information (i.e.,
shared information). To take it a step further, we assume
that almost all the information relevant to downstream clas-
sification tasks is shared among views (Federici et al., 2020;
Tsai et al., 2020). Despite the significant progress made by
existing contrastive learning based methods in extracting
consistent semantic features, we observe that the effect of
contrastive learning in aggregating multi-view latent fea-
tures remains limited on incomplete data, showing the inad-
equacy of contrastive learning in dealing with incomplete
multi-view data. Therefore, in this paper, we propose a mu-
tual information enhancement strategy based on a Mixture
of Experts (MoE) framework, which compresses the shared
information in cross-view joint representations by maximiz-
ing cross-view mutual information between shared represen-
tations and the raw data. In addition, the insufficient of weak
supervisory information in missing multi-label data also hin-
ders the further improvement of multi-label classification
performance. In response to this, we adopt a dual-branch
soft pseudo-label cross-imputation strategy to alleviate the

negative impact of missing supervisory information.

Overall, for iM3C task, we propose a novel consistent
semantic representation learning framework, named as
COME. Compared to existing methods, our contributions
can be summarized as follows:

• We propose a multi-view semantic consistency en-
hancement strategy to learn compact multi-view shared
information, which effectively alleviates the perfor-
mance degradation caused by incomplete contrastive
learning.

• Compared to existing works, we adopt a dual-branch
co-training approach, dynamically generating soft
pseudo-labels for missing multi-label imputation.

• Our COME shows good adaptability to arbitrary view
and label incompleteness. Extensive experimental re-
sults, both in complete and incomplete cases, demon-
strate the superiority and robustness of our method.

2. Preliminary and Motivation
2.1. Problem Definition

For the iM3C task, we define variable set {x(v)}mv=1 as
any sample with m observations, where x

(v)
i ∈ Rdv is i-th

sampling of variable x(v) and dv denotes the dimensionality
of v-th view. And we define y ∈ {0, 1}c as the incomplete
label set, where c is the number of categories. Taking into
account the impact of missing views and missing labels,
we define V , with |V| ≤ m, as the set of available views.
Specifically, {x(v)}v∈V (XV for short) denotes the views
that can be observed. Similarly, we also define G, with
|G| ≤ c, to denote the set of known categories. We define
n as the number of samples. Our goal is to learn the multi-
view joint representation z from XV which contains all
the semantic consistency information that can be used to
accurately predict the corresponding categories.

2.2. Sufficiency of Multi-View Shared Representation

Suppose for each sample we just have two views, and
z(1), z(2) are latent representations of x(1),x(2), and we
introduce a variable T to represent the classification-related
information. Since we suppose all the task-relevant informa-
tion contained by multi-view shared representation, inspired
by (Federici et al., 2020; Tsai et al., 2020), we introduce the
following redundancy assumption:

Assumption 2.1. x(1) and x(2) share the same semantic
information, which is sufficient for prediction: I(x(1);T ) =
I(x(2);T ). That is to say, if z(1) satisfy I(x(1);x(2)|z(1)) =
0, then z(1) contains all the task-relevant information for
prediction: I({x(1),x(2)};T ) = I(x(1);T ) = I(z(1);T ).
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In multi-view applications, the representations of all views
are combined to fully leverage the shared semantic informa-
tion. Furthermore, we introduce the semantic sufficiency
proposition for the multi-view joint representation z:

Proposition 2.2. If z contains all the shared information
among views, z is sufficient for prediction.

From Proposition 2.2, we have I(z;T ) = I(x(1);T ) =
I(x(2);T ). It should be noted that if z contains all the in-
formation from x(1) and x(2), it inherently includes all the
information required for downstream tasks. However, in
practical applications, the redundant information contained
in z will lead to performance degradation. Thus, we should
compress the non-shared information within the joint rep-
resentation as much as possible, i.e., pursuing the minimal
sufficient shared representation cross all view:

Definition 2.3. (Minimal and Sufficient Shared Represen-
tation) The joint representation z is minimal and sufficient
for x(1) and x(2) if and only if I(x(1),x(2)) = I(z,x(1)) =
I(z,x(2)).

2.3. Insufficient Multi-view Contrastive Learning

Empirical evidence shows that self-supervised learning
(SSL) methods, even without utilizing any downstream su-
pervisory information during training, can still learn em-
beddings that generalize well to a wide range of down-
stream tasks. For example, SimCLR (Chen et al., 2020)
defines a contrastive loss and uses augmented images as
self-supervised signals, allowing the trained model to per-
form effectively on various tasks. In previous frameworks,
self-supervised signals were often generated through data
augmentation techniques, such as word masking (Devlin,
2018) or image rotation (Gidaris et al., 2018). In multi-view
contrastive learning, we consider that variables belonging
to the same sample but from different views should share
semantic consistency information, while variables from dif-
ferent samples may not (Tian et al., 2020; Pan & Kang,
2021; Liu et al., 2023).

Existing studies have demonstrated the positive correlation
between contrastive learning and the maximization of inter-
view mutual information (Tsai et al., 2020; Wang et al.,
2022). That is to say, the objective of contrastive learn-
ing is equal to max I(z(1); z(2)). From multi-view data
{x(1),x(2)} and their latent representations {z(1), z(2)},
based on the Data Processing Inequality (Thomas & Joy,
2006) and Markov chain, we have:

I(x(1),x(2)) ≥ I(z(1),x(2)) ≥ I(z(1), z(2)) (1)

The gap between I(x(1),x(2)) and I(z(1), z(2)) will be
small enough when the model capacity is sufficient and
the training data is sufficient. Ideally, contrastive learn-
ing can compress non-shared information and maximize

the proportion of shared information in the representation.
However, we observed that shared representations learned
through contrastive learning on incomplete data are insuf-
ficient. As shown in Fig. 1, we perform experiments on
two popular multi-view multi-label datasets Corel5k and
Pascal07 to illustrate the performance degradation of in-
adequate contrastive learning. The ratio of missing views
is set to 50% and the missing instances do not participate
in the construction of positive-negative pairs in contrastive
learning loss. We can observe that, compared to the case
of complete views, the contrastive learning running on in-
complete data leads to a worse classification performance.
As we know, the core idea of contrastive learning is pull to-
gether the positive sample pairs and push apart the negative
samples (Khosla et al., 2020). In the case of missing views,
the contrastive learning is less effective in pushing negative
pairs away and pulling positive pairs closer. To address
the inadequacy of contrastive learning under missing multi-
view data, we propose a MoE-based mutual information
enhancement framework, which aims to learn the minimal
sufficient representation of multi-view data by compressing
redundant information and maximizing cross-view mutual
information.
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Figure 1. Impact of contrastive loss on Average Precision (AP) in
Corel5k and Pascal07 datasets under incomplete and complete
multi-view data.

2.4. Pseudo Label Learning

In the iM3C task, labels are also incomplete and previous
methods leverage incomplete label indicator to mask the
missing part in the training process. To reduce the negative
impact of missing labels, inspired by some SSL methods
(Lee et al., 2013; Berthelot et al., 2019; Sohn et al., 2020;
Xu et al., 2021), an intuitive strategy is to assign pseudo-
labels to samples with missing labels. Pseudo-labeling is
originally proposed for the semi-supervised training of deep
neural networks (Lee et al., 2013). Some methods (Berthelot
et al., 2019; Sohn et al., 2020) combine consistency regular-
ization or entropy regularization to improve the quality of
pseudo-labels. A common SSL method named FixMatch
(Sohn et al., 2020) aims to select the most probable label
as the pseudo-label, known as Top-1 strategy. However,
even without considering correctness, it is obvious that this
method will neglect multiple true labels. In Fig. 2 (a), for
the Pascal07 dataset, the pseudo-labels generated using the
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Figure 2. (a) Top-1 pseudo-labels and missing ground-truth labels
at Pascal07 dataset. (b) Label count distribution across samples in
Pascal07 dataset.

above Top-1 generation strategy are less than the actual
number of missing labels. An alternative choice is to select
the Top-k probable labels as pseudo-labels, but in practice it
is difficult to set k. As shown in Fig. 2 (b), the number of
true positive labels of samples in Pascal07 dataset is not a
constant number. The label count distribution across sam-
ples for other datasets can be found in Appendix E. Based
on this, the simple label generation strategy will inevitably
introduce false positive labels or neglect true positive labels.

Furthermore, considering the class-imbalance gap between
different classes (Yang et al., 2021; Fang et al., 2025),
some studies propose to generate pseudo-label through com-
plex methods, including the class-aware method (Xie et al.,
2024a), the class-threshold based method (Xiao et al., 2024),
and the label prototype-based method (Yang et al., 2023a).
These methods directly use the generated hard pseudo-labels
to train the model, treating the generated pseudo-labels as
ground-truth. Since pseudo-labels are not entirely accu-
rate, the use of hard pseudo-labels may cause the model to
deviate, further amplifying errors and leading to a vicious
cycle. To address this problem, we propose a dual-branch
soft pseudo-label cross-imputation strategy to reduce the
hindering effect of multi-label missing on the multi-label
classification.

3. Method
In this section, we introduce our method in three parts: in-
complete multi-view contrastive learning; compact shared
information representation learning based on mutual infor-
mation maximum; dual-branch soft pseudo-label generation
and multi-label classification.

3.1. Incomplete Multi-view Contrastive Learning

According to the analysis in Section 2, we first establish
an optimization objective to maximize mutual information
between views, thereby promoting multi-view consistent
semantic representation learning. Given any two views, the
optimization objective can be expressed as:

max
∑
v∈V

∑
t ̸=v

I(z(v); z(t)) (2)

For achieving the maximization in Eq. (2), we adopt the in-
complete multi-view contrastive learning method proposed
by (Liu et al., 2023), then we have following contrastive
loss:

LCTR = −
∑
v∈V

∑
t̸=v

log
exp(f(z

(v)
i , z

(t)
i ))

exp(f(z
(v)
i , z

(t)
i )) + Sneg

(3)

where Sneg =
∑

r=v,t

∑n
j=1,j ̸=i exp(f(z

(v)
i , z

(r)
j )), z(v)i

means the sampling from distribution of z(v), and f is a
function to measure the cosine similarity between sample-
pairs. To do this, we adopt the view-specific stochastic
encoder to approximate the distribution p(z(v)|x(v)). Simi-
lar to previous work (Shi et al., 2019; Wen et al., 2020), we
also propose to factorise the joint variational posterior as a
combination of unimodal posteriors, using a MoE to model
p(z|XV), therefore we have:

p(z|XV) =
∑
v∈V

1

|V|
p(z(v)|x(v)) (4)

3.2. Compact Shared Representation Learning

Reviewing the analysis in Section 2.3, we know that opti-
mizing learning objective (2) with multi-view contrastive
learning alone is insufficient for compression of shared in-
formation. Moreover, we also need to avoid the damage of
over-compression for information validity, i.e., the learned
joint representation z lacks sufficient information for pre-
diction. Based on this, we propose to maximize the mutual
information between the original data and the joint repre-
sentation:

max I(XV ; z) (5)

Obviously, Eq. (5) requires that the cross-view joint repre-
sentation maintains mutual information maximization with
the original data of all views. It ensures that the cross-view
joint representation z further learns the shared information
across all available views.

For mutual information I(XV ; z) in Eq. (5), we can obtain
the variational lower bound as follows:

I(XV ; z)

=

∫ ∫
p(XV , z) log

p(XV |z)
p(XV)

dXVdz

≥ EXV∼p(XV)[

∫
p(z|XV) log q(XV |z)dz]

(6)

where q(XV |z) is an additional distribution introduced
to approximate p(XV |z). And then, based on the multi-
view conditional independence assumption, conditional dis-
tribution q(XV |z) can be decomposed into q(XV |z) =∏

v∈V q(x(v)|z). Combined with Eq. (4), we can rewrite
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Figure 3. Our main framework of COME, consists of incomplete multi-view contrastive learning, multi-view mutual information
enhancement, and dynamic soft pseudo-label generation.

the variational lower bound in Eq. (5) as follows:

EXV∼p(XV)[

∫
p(z|XV) log q(XV |z)dz]

=
1

|V|
∑
v∈V

Ex(v)∼p(x(v))[

∫
p(z|x(v)) log q(x(v)|z)dz]

+
1

|V|
∑
v∈V

∑
u∈V,u̸=v

Ex(v)∼p(x(v))[

∫
p(z|x(v)) log q(x(u)|z)dz]

(7)

The full derivation of Eq. (6) and Eq. (7) is given in Ap-
pendix A. Here, we use q(x(v)|z) as an approximation of
p(x(v)|z), which is implemented by a stochastic decoder
with constant standard deviation as 1. Specifically, we set
q(x(v)|z) = N (x(v)|µ(v)(z), I), where µ(v) is the mean
mapping function. Combined with the characteristics of
Gaussian distribution, we have the equivalent of the op-
timization objective: maxEp(z|x(v))[log q(x

(v)|z)] ⇐⇒
max−Ep(z|x(v))[∥x(v) − µ(v)(z)∥22]. Thus, it is easy to get
the following reconstruction loss for maximizing Eq. (7):

LRE = λ1

∑
v∈V

∥x(v) − µ(v)(z(v))∥22 +

λ2

∑
v∈V

∑
u∈V,u ̸=v

∥x(u) − µ(u)(z(v))∥22

= λ1LRE1 + λ2LRE2

(8)

where λ1 and λ2 are trade-off coefficients. Then, we com-
bine the reconstruction loss and the contrastive loss to
achieve the goal of minimal sufficient representation learn-

ing:

LMSR = λ1LRE1 + λ2LRE2 + βLCTR (9)

where β is the penalty coefficients for contrastive loss.

3.3. Dual-Branch Soft Pseudo-label Generation and
Multi-Label Classification

Previous works directly use the pseudo-labels generated
by the model as supervision for training in the next epoch.
However, we argue that using the current network’s high-
confidence predictions as ground truth provides limited ben-
efit to the network. It may also lead to overfitting on simple
samples, as the model’s performance bottleneck does not lie
in the classification of easily distinguishable samples. More-
over, this method of using pseudo-labels amplifies the mis-
leading effect of incorrect pseudo-labels, and errors will con-
tinue to accumulate during training. To address this, we pro-
pose a dual-branch soft pseudo-label cross-imputation strat-
egy to efficiently generate reliable pseudo-labels, thereby
further enhancing classification performance.

Specifically, we first use a dual-branch model to gen-
erate and utilize pseudo-labels, employing two indepen-
dent but structurally identical models, A and B, i.e., A:
{x(v)}mv=1 −→ z −→ pA, B: {x(v)}mv=1 −→ z −→ pB, where
pA and pB are the predicted logic scores by model A and
B. By doing this, we build two independent prediction
models as two branches. In light of the limitation of the
pseudo-label self-generation strategy in Section 2.4, we pro-
pose to leverage the external pseudo-label to improve the
optimization of the model. Briefly, our core motivation is
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to have two branches generate pseudo-labels for each other
for the next round of iteration. To be specific, pseudo-label
generation process from model A is as follows:

ŷA =


None, if c /∈ G and pA

c < τ

pA
c , if c /∈ G and pA

c ≥ τ

yc, if c ∈ G
(10)

where ŷA denotes the pseudo-label from model A. In addi-
tion, we need to incorporate the generated soft pseudo-labels
into the known label set and adjust the known label set G
corresponding to ŷA and ŷB to get ĜA and ĜB, respec-
tively. To enhance the reliability soft pseudo-labels, we
propose to build a dynamic threshold adjustment strategy.
During the initial phases of training, a more stringent thresh-
old is employed to ensure the high quality of pseudo-labels,
thereby minimizing the risk of introducing noise. As the
training progresses, the threshold is gradually relaxed to ex-
tend the range of generated pseudo-labels, striking a balance
between accuracy and error:

τ = max(τl, τh − e× θ) (11)

where τl denotes the lower bound of the threshold range and
τh represents the initial largest threshold, θ is the threshold
decay rate and e denotes the e-th epoch. With the two
generated soft pseudo-labels ŷA and ŷB, we simply swap
them as the supervised signal for the next training epoch of
the other branch. For model A, the cross-entropy loss is as
following:

LCE =
1

|ĜB|

∑
j∈ĜB

[(1− ŷB
j ) log(1− pA

j )

+ŷB
j logpA

j ] (12)

Our two-branch networks generate pseudo-labels for each
other, and for each one, this strategy helps it to obtain ex-
tra supervisory information from outside. The training ap-
proach and parameter update strategy for both branches
are same but independent. Since the structure of the two
branches is the same, we simply take the prediction of model
A as the final result. Finally, we simply sum the objective
functions of each component to obtain the following overall
optimization objective:

L = λ1LRE1 + λ2LRE2 + βLCTR + LCE (13)

where λ1, λ2 and β are hyper-parameters. For ease of un-
derstanding, we provide the training process of model A in
Algorithm 1.

4. Experiments
4.1. Experimental Settings

Datasets: In line with previous works (Tan et al., 2018; Liu
et al., 2023), we conduct experiments on five multi-view

Algorithm 1 Training process of COME
1: Input: Incomplete multi-view data {x(v)}mv=1, known

view set V , incomplete multi-label y ∈ {0, 1}c, known
label set G.

2: Output: Trained parameters of model A.
3: Initialization: Initialize the parameters of the model

A and set hyper-parameters (λ1, λ2, β, and training
epochs E)

4: for e = 1, . . . , E do
5: Compute samples latent representation {z(v)}mv=1 on

each available view by encoders.
6: Reconstruct available views by decoders.
7: Calculate the incomplete multi-view contrastive loss,

inter-view reconstruction loss and intra-view recon-
struction loss by Eq. (9), and then obtain LMSR.

8: Fusion multi-view representation of samples by
Eq. (4) and get multi-view joint representation z.

9: Obtain ŷB from model B by Eq. (10), and obtain the
corresponding new known label set ĜB.

10: Calculate the classification loss LCE of model A by
Eq. (12), and compute total loss of model A: L =
LCE + LMSR

11: Update the parameters of model A with L.
12: end for

multi-label datasets, i.e., Corel5k (Duygulu et al., 2002),
Pascal07 (Everingham et al., 2010), ESPGame (Von Ahn &
Dabbish, 2004), IAPRTC12 (Grubinger et al., 2006), and
Mirflickr (Huiskes & Lew, 2008). Each dataset comprises
six distinct feature types: GIST, HSV, DenseHue, Dens-
eSIFT, RGB, and LAB. The detailed information about the
five datasets and the data masking schemes that used to em-
ulate real-word scenarios can be found in the Appendix B.

Comparison methods: In our experiments, we select eight
popular methods for comparison with our COME. The se-
lected methods include: CDMM (Zhao et al., 2021), DM2L
(Ma & Chen, 2021), LVSL (Zhao et al., 2022), iMVWL
(Tan et al., 2018), NAIM3L (Li & Chen, 2021), DICNet (Liu
et al., 2023), UPDGD-Net (Xie et al., 2024b), SIP (Liu et al.,
2024). However, not all methods are capable of handling
incomplete views and labels, necessitating modifications
to certain approaches. We applied specific modifications
to different models, and further technical specifics can be
found in Appendix C.

Evaluation metrics: To ensure consistency with previous
work, we employed six popular performance metrics: Av-
erage Precision (AP), Hamming Loss (HL), Ranking Loss
(RL), Area Under the ROC Curve (AUC), OneError (OE),
and Coverage (Cov). To better present the results, we use
1-RL, 1-HL, 1-OE, 1-Cov as the final result for demonstra-
tion ensuring that higher values indicate better performance
across all six metrics.
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Table 1. Experimenntal results of nine methods on five datasets with 50% missing-view rate and 50% missing-label rate (the bottom right
digit is the standard deviation).

Data Metric CDMM DM2L LVSL iMVWL NAIM3L DICNet UPDGD-Net SIP COME

C
or

el
5K

AP 0.3540.004 0.2620.005 0.3420.004 0.2830.008 0.3090.004 0.3810.004 0.4130.004 0.4180.009 0.4320.009
1-HL 0.9870.000 0.9870.000 0.9870.000 0.9780.000 0.9870.000 0.9880.000 0.9870.000 0.9880.000 0.9880.000
1-RL 0.8840.003 0.8430.002 0.8810.003 0.8650.005 0.8780.002 0.8820.004 0.9030.003 0.9110.003 0.9170.003
AUC 0.8880.003 0.8450.002 0.8840.003 0.8680.005 0.8810.002 0.8840.004 0.9050.004 0.9130.003 0.9190.002
1-OE 0.4100.007 0.2950.014 0.3910.009 0.3110.015 0.3500.009 0.4680.007 0.4800.002 0.4890.016 0.5030.020
1-COV 0.7230.007 0.6470.005 0.7180.006 0.7020.008 0.7250.005 0.7270.011 0.7770.008 0.7870.009 0.8040.006

Pa
sc

al
07

AP 0.5080.005 0.4710.008 0.5040.005 0.4370.018 0.4880.003 0.5050.012 0.5520.003 0.5550.010 0.5900.008
1-HL 0.9310.001 0.9280.001 0.9300.000 0.8820.004 0.9280.001 0.9290.001 0.9330.007 0.9310.001 0.9350.001
1-RL 0.8120.004 0.7610.005 0.8060.003 0.7360.015 0.7830.001 0.7830.008 0.8320.007 0.8300.004 0.8550.004
AUC 0.8380.003 0.7790.004 0.8320.002 0.7670.015 0.8110.001 0.8090.006 0.8530.003 0.8500.005 0.8730.004
1-OE 0.4190.008 0.4200.011 0.4190.008 0.3620.023 0.4210.006 0.4270.015 0.4610.007 0.4640.018 0.5000.010
1-COV 0.7590.003 0.6920.004 0.7510.003 0.6770.015 0.7270.002 0.7310.006 0.7850.009 0.7830.006 0.8050.004

E
SP

G
am

e

AP 0.2890.003 0.2120.002 0.2850.003 0.2440.005 0.2460.002 0.2970.002 0.3120.004 0.3110.004 0.3190.004
1-HL 0.9830.000 0.9820.000 0.9830.000 0.9720.000 0.9830.000 0.9830.000 0.9830.000 0.9830.000 0.9830.000
1-RL 0.8320.001 0.7810.001 0.8290.001 0.8080.002 0.8180.002 0.8320.001 0.8470.002 0.8490.002 0.8570.002
AUC 0.8360.001 0.7850.001 0.8330.002 0.8130.002 0.8240.002 0.8360.001 0.8520.002 0.8530.002 0.8610.002
1-OE 0.3960.005 0.2940.006 0.3890.004 0.3430.013 0.3390.003 0.4390.007 0.4610.010 0.4550.007 0.4600.010
1-COV 0.5740.004 0.4880.003 0.5670.005 0.5480.004 0.5710.003 0.5930.003 0.6280.005 0.6280.005 0.6470.004

IA
PR

T
C

12

AP 0.3050.004 0.2340.003 0.3040.004 0.2370.003 0.2610.001 0.3230.001 0.3390.003 0.3310.006 0.3510.005
1-HL 0.9810.000 0.9800.000 0.9810.000 0.9690.000 0.9800.000 0.9810.000 0.9800.000 0.9800.000 0.9810.000
1-RL 0.8620.002 0.8230.002 0.8610.002 0.8330.002 0.8480.001 0.8730.001 0.8860.002 0.8850.003 0.8950.003
AUC 0.8640.002 0.8250.001 0.8630.001 0.8350.001 0.8500.001 0.8740.000 0.8880.004 0.8860.002 0.8960.002
1-OE 0.4320.008 0.3400.006 0.4290.009 0.3520.008 0.3900.005 0.4680.002 0.4630.002 0.4630.009 0.4860.008
1-COV 0.5970.004 0.5290.004 0.5970.004 0.5640.005 0.5920.004 0.6490.001 0.6880.007 0.6750.007 0.7000.006

M
ir

fli
ck

r

AP 0.5700.002 0.5140.006 0.5530.002 0.4900.012 0.5510.002 0.5890.005 0.6110.002 0.6140.004 0.6330.004
1-HL 0.8860.001 0.8780.001 0.8850.001 0.8390.002 0.8820.001 0.8880.002 0.8910.001 0.8910.001 0.8950.001
1-RL 0.8560.001 0.8310.003 0.8560.001 0.8030.008 0.8440.001 0.8630.004 0.8750.001 0.8770.002 0.8880.002
AUC 0.8460.001 0.8280.003 0.8440.001 0.7870.012 0.8370.001 0.8490.004 0.8620.001 0.8600.003 0.8740.002
1-OE 0.6310.004 0.5100.008 0.6070.004 0.5110.022 0.5850.003 0.6370.007 0.6620.006 0.6620.008 0.6830.008
1-COV 0.6400.001 0.6040.005 0.6360.001 0.5720.013 0.6310.002 0.6520.007 0.6810.003 0.6780.003 0.6940.003

4.2. Experimental Results and Analysis

In this section, we compare our method with other eight pop-
ular algorithms on the five datasets mentioned above and the
experimental results under 50% missing-view rate and 50%
missing-label rate of the six evaluation metrics are shown in
Table 1, and we can have the following observations:

• Compare to other eight popular methods on the five
datasets, our COME achieves the best performance on
all metrics which fully verifies the effectiveness of our
method on iM3C task.

• Compared to models that only consider single missing
data, models that address the dual missing problem
exhibit better performance and robustness. These find-
ings offer valuable insights for guiding the design of
models for iM3C tasks in the future.

To further investigate the impact of different missing view
and missing label ratios on classification performance, we
conducted tests on the Pascal07 dataset. The results are
shown in Fig. 4. It can be observed that, under the same
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Figure 4. The four metrics value on Pascal07 dataset with (a) dif-
ferent missing-view rates and 50% missing-label rate and (b) 50%
missing-view rate and different missing-label rates.

missing rate, view missing has a more severe impact on
performance improvement compared to label missing.

To further validate the adaptability of our model, we con-
ducted experiments using datasets without any missing
views and labels. The results on the five dataset are illus-
trated in the form of a radar chart, as shown in Fig. 5 (refer
to Appendix F for more results on other databases). It can
be observed that our COME achieves superior performance
across six metrics compared to other methods, including
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AP
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Figure 5. The experimental results of nine methods on the complete Corel5k, Pascal07, and Mirflickr dataset. In this visualization, the
worst results are positioned at the center, while the best results correspond to the vertices, based on six evaluation metrics.

those designed for ideal complete cases. This demonstrates
the excellent generalization capability of our model.

4.3. Shared Information Compression v.s. Information
Reconstruction

As we know, contrastive learning is a typical information
compression strategy, while our proposed mutual informa-
tion enhancement strategy based on MoE emphasizes the
maintenance of effective shared information. That is to say,
the learned shared information remains relevant to the origi-
nal data to prevent information collapse. In this section, we
study the equilibrium relationship between LRE1 + LRE2

and LCTR by changing the value of parameter β. As shown
in Fig. 6, when the value of β is 0.1 and 1 for Corel5k and
Pascal07 datasets, respectively, information compression
and effective information reconstruction reach a balanced
state, and the model achieves the optimal performance. If
we continue to increase β, we can find that AP value de-
creases sharply, which indicates that excessive information
compression caused by contrastive learning makes it dif-
ficult for the model to learn meaningful information for
downstream prediction.
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Figure 6. Information balance study: AP and losses v.s. β on
Corel5k and Pascal07 datasets with 50% view and label missing
rates.

Table 2. The ablation experimental results on the Corel5K and
Pascal07 datasets, and all datasets are with 50% missing views,
50% missing labels and 70% training samples.

Backbone LRE1 LRE2 LCE
Corel5k Pascal07

AP AUC AP AUC

✓ 0.390 0.883 0.535 0.846
✓ ✓ 0.399 0.908 0.581 0.868
✓ ✓ 0.402 0.910 0.562 0.862
✓ ✓ 0.390 0.903 0.538 0.847
✓ ✓ ✓ 0.427 0.918 0.586 0.872
✓ ✓ ✓ 0.406 0.912 0.584 0.871
✓ ✓ ✓ 0.404 0.910 0.565 0.863
✓ ✓ ✓ ✓ 0.432 0.919 0.590 0.873

4.4. Ablation Study

The ablation experiments are conducted on Corel5k and Pas-
cal07 datasets, in which the missing-view rate and missing-
label rate are both 50%. Our objective function consists
of two parts: the minimal sufficient shared representation
learning loss LMSR and classification loss LCE . Next, we
will decompose the loss and conduct ablation experiments
from three perspectives: examining the effects of intra-view
mutual information enhancement, multi-view mutual infor-
mation enhancement, and pseudo-labels. The corresponding
loss of these three parts are LRE1, LRE2, and LCE . It is
worth noting that when pseudo-labels are not used, the su-
pervisory information for the model comes from the original
labels that are not missing. The results presented in Table 2,
and it can be observed that each component of our COME
is crucial and contributes positively. It is worth noting that
the multi-view mutual information enhancement module
plays a crucial role in improving performance.

5. Conclusion
In this paper, we assume that the consistent semantic infor-
mation shared among views is sufficient for downstream
tasks. Based on this, we propose a compact semantic learn-
ing framework, named COME, for iM3C task. Our moti-
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vation to this issue consists of two parts: compact shared
representation learning and soft pseudo-label generation.
On the one hand, we alleviate the limitations of contrastive
learning in handling incomplete data by maximizing mu-
tual information between original data and cross-view joint
representation, striving to learn the compact shared repre-
sentation. On the other hand, we propose a dual-branch
soft pseudo-label cross-imputation strategy to mitigate the
impact of missing supervisory information. Finally, we con-
ducted extensive experiments to validate the effectiveness
of our method and its strong generalization capability.

Acknowledgments
This work was supported in part by Shenzhen Sci-
ence and Technology Program under Grant No.
JCYJ20240813105135047; in part by Guangdong
Basic and Applied Basic Research Foundation under Grant
2024A1515030213; and in part by National Natural Science
Foundation of China under Grant 62372136.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ameer, I., Sidorov, G., Gomez-Adorno, H., and Nawab, R.

M. A. Multi-label emotion classification on code-mixed
text: Data and methods. IEEE Access, 10:8779–8789,
2022.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. Mixmatch: A holistic ap-
proach to semi-supervised learning. Advances in neural
information processing systems, 32, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, Z.-M., Wei, X.-S., Wang, P., and Guo, Y. Multi-label
image recognition with graph convolutional networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5177–5186, 2019.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Duygulu, P., Barnard, K., de Freitas, J. F., and Forsyth,
D. A. Object recognition as machine translation: Learn-

ing a lexicon for a fixed image vocabulary. In Computer
Vision—ECCV 2002: 7th European Conference on Com-
puter Vision Copenhagen, Denmark, May 28–31, 2002
Proceedings, Part IV 7, pp. 97–112. Springer, 2002.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. The pascal visual object classes (voc)
challenge. International journal of computer vision, 88:
303–338, 2010.

Fallah, H., Bruno, E., Bellot, P., and Murisasco, E. Exploit-
ing label dependencies for multi-label document classi-
fication using transformers. In Proceedings of the ACM
Symposium on Document Engineering 2023, pp. 1–4,
2023.

Fang, C., Sandino, C., Mahasseni, B., Minxha, J.,
Pouransari, H., Azemi, E., Moin, A., and Zippi, E. Pro-
moting cross-modal representations to improve multi-
modal foundation models for physiological signals. arXiv
preprint arXiv:2410.16424, 2024.

Fang, X., Liu, D., Zhou, P., and Hu, Y. Multi-modal cross-
domain alignment network for video moment retrieval.
IEEE Transactions on Multimedia, 25:7517–7532, 2022.

Fang, X., Liu, D., Zhou, P., Xu, Z., and Li, R. Hierarchical
local-global transformer for temporal sentence grounding.
IEEE Transactions on Multimedia, 26:3263–3277, 2023.

Fang, X., Easwaran, A., Genest, B., and Suganthan, P. N.
Your data is not perfect: Towards cross-domain out-of-
distribution detection in class-imbalanced data. Expert
Systems with Applications, 267:126031, 2025.

Federici, M., Dutta, A., Forré, P., Kushman, N., and Akata,
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A. Complete Derivation of Shared Representation Learning
Based on the analysis in Section 3.2, we propose to maximize the mutual information between the original data and the joint
representation:

max I(XV ; z) (14)

For mutual information I(XV ; z) in Eq. (14), we can obtain the variational lower bound as follows:

I(XV ; z)

=

∫ ∫
p(XV , z) log

p(XV |z)
p(XV)

dXVdz

≥
∫

p(XV)

∫
p(z|XV) log p(XV |z)dXVdz

=

∫
p(XV)

∫
p(z|XV) log q(XV |z)dXVdz +∫

p(XV)

∫
p(z|XV) log

p(XV |z)
q(XV |z)

dXVdz

≥ EXV∼p(XV)[

∫
p(z|XV) log q(XV |z)dz]

(15)

Similar to previous work(Shi et al., 2019), we propose to factorise the joint variational posterior as a combination of
unimodal posteriors, using a Mixture Of Experts (MOE) to model p(z|XV), therefore we have:

p(z|XV) =
∑
v∈V

1

|V|
p(z(v)|x(v)) (16)

Combined with Eq. (16), we can rewrite the variational lower bound in Eq. (15) as follows:

EXV∼p(XV)[

∫
p(z|XV) log q(XV |z)dz]

=EXV∼p(XV)[

∫
p(z|XV) log

∏
v∈V

q(x(v)|z)dz]

=EXV∼p(XV)[

∫
(
∑
v∈V

1

|V|
p(z(v)|x(v))) log

∏
v∈V

q(x(v)|z)dz]

=
1

|V|
∑
v∈V

Ex(v)∼p(x(v))[

∫
p(z|x(v)) log q(x(v)|z)dz]

+
1

|V|
∑
v∈V

∑
u∈V,u ̸=v

Ex(v)∼p(x(v))[

∫
p(z|x(v)) log q(x(u)|z)dz]

(17)

For better clarity, we will use two views as an example for the subsequent derivation. We have the joint posterior probability
p(z|{x(1),x(2)}). And the variational lower bound can be rewrite as follows:

EXV∼p(XV)[

∫
p(z|XV) log q(XV |z)dz]

=
1

2
EXV∼p(XV)[

∫
(p(z|x(1)) + (p(z|x(2))) log q({x(1),x(2)}|z)dz]

=
1

2
EXV∼p(XV)[

∫
(p(z|x(1)) + (p(z|x(2))) log[q(x(1)|z)q(x(2)|z)]dz]

=
1

2
EXV∼p(XV)[

∫
p(z|x(1)) log q(x(1)|z)dz+

∫
p(z|x(1)) log q(x(2)|z)dz

+

∫
p(z|x(2)) log q(x(1)|z)dz+

∫
p(z|x(2)) log q(x(2)|z)dz] (18)
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Table 3. Detailed information about five multi-view multi-label datasets in our expriments.

Dataset # Sample # Label # View # Label/#Sample

Corel5k 4999 260 6 3.40
IAPRTC12 19627 291 6 5.72
ESPGame 20770 268 6 4.69
Pascal07 9963 20 6 1.47
Mirflickr 25000 38 6 4.72

Table 4. The concise summary of comparative methods, highlighting their capabilities: The attributes ’Multi-view’ and ’Incomplete-view’
indicate a method’s ability to handle multi-view and incomplete multi-view scenarios, respectively, while the attribute ’Missing-label’
reflects its capability to address incomplete multi-label classification tasks.

Method Sources Multi-view Incomplete-view Missing-label

CDMM KBS’20 ✓ × ×
DM2L PR’21 × × ✓
LVSL TMM’22 ✓ × ×
iMVWL IJCAI’18 ✓ ✓ ✓
NAIM3L TPAMI’21 ✓ ✓ ✓
DICNet AAAI’23 ✓ ✓ ✓
UPDGD-Net ACM MM’24 ✓ ✓ ✓
SIP ICML’24 ✓ ✓ ✓

B. Statistics for Five Datasets and Data Masking Schemes
In this section, we provide detailed information about the five datasets used in the experiments, as summarized in Table 3.
To emulate real-world scenarios involving missing views and partial labels, we generate incomplete multi-view partial
multi-label data through the following steps: (1) Missing views: For each view, 50% of the samples are randomly masked,
while ensuring that each sample retains at least one available view. (2) Missing labels: For each category, 50% of the positive
and negative labels are randomly removed. (3) Dataset Splitting: Subsequently, 70% of the resulting samples are randomly
selected as the training set.

C. Statistics for Eight Competitors
In this section, we present detailed information about the eight comparison methods, as summarized in Table 4. Specifically,
DM2L can only deal with single-view partial multi-label case, so we record results of each view and select the best results.
CDMM and LVSL cannot deal with missing view, so we handle missing instances by imputing them with the mean values
of the corresponding view’s available instances. And the rest five methods have the capability to handle both incomplete
views and partial labels.

D. Sensitivity Studies of Hyper-parameters
We discussed enhancing the performance of learned representations through two approaches: increasing intra-modal mutual
information and inter-modal mutual information. Additionally, we use two trade-off coefficients λ1 and λ2 to maintain a
balance. We explore the sensitivity of these two hyperparameters on different datasets with 50% missing view, 50% missing
label and 70% training samples. As shown in Fig. 7, based on experiments, it can be observed that the model’s performance
is not significantly affected by changes in the values of λ1 and λ2, highlighting the model’s inherent robustness.

E. Label Count Distribution across Samples in Other Datasets.
In this section, we present the label count distribution information for other datasets. This further demonstrates that the
number of labels corresponding to each sample is not fixed, making Top-1 or Top-k pseudo-label generation strategies
difficult to apply.
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(a) Corel5k (b) Pascal07 (c) IAPRTC12

Figure 7. Hyper-parameters analysis regarding λ1 and λ2 on the Corel5k and Pascal07 databases; All datasets are setting to 50% views
and labels missing rates.
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(c) IAPRTC12
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(d) Mirflickr

Figure 8. Label count distribution across samples in other four datasets.

F. Extra Experimental Results on Five Full Datasets
In this section, we present the value of six metrics of nine methods in four datasets without any missing views or labels in
the form of radar charts, as shown in Fig. 9.

AP
[0.251, 0.391]

1-HL
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1-AUC
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1-Cov
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(a) ESPGame

AP
[0.250, 0.424]

1-HL
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1-RL
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1-AUC
[0.843, 0.923]
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[0.581, 0.763]

iaprtc12

(b) IAPRTC12

Figure 9. The experimental results on the rest two dataset without any missing views and labels. The worst results are indicated at the
center of the radar chart, while the best results are represented by the vertices, based on six evaluation metrics.
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