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ABSTRACT

Recently, numerous data partitioning methods for generative adversarial networks
has been developed for better distribution coverage on complex distribution. Most
of these approaches aims to build fine-grained overlapping clusters in data man-
ifold and condition both generator and discriminator with compressed represen-
tation about cluster. Although giving larger size of condition can be more infor-
mative, existing algorithms only utilize low dimension vector as condition due
to dependency on clustering algorithm and unsupervised / self-supervised learn-
ing methods. In this work, we take a step towards using richer representation for
cluster by utilizing diffusion based Gaussian mixture. Our analysis shows that
we can derive continuous representation of cluster with Gaussian mixture when
noise scale is given. Moreover, unlike other counterparts, we do not need exces-
sive computation for acquiring clustered representation. Experiments on multiple
datasets show that our model produces better results compared to recent GAN
models.

1 INTRODUCTION

Recently, generative adversarial networks (GAN)(Goodfellow et al., [ 2020) shows monumental suc-
cess in unconditional image generation(Sauer et al.| 2021} Karras et al) [2021). While they are
showing qualitative results, training GAN accompanies difficulties in optimization to avoid mode
collapse. Samples from collapsed generators would not obtain a full distribution coverage nor pro-
duce realistic images. Previous literatures have endeavored to solve this problem in various aspects
(Gulrajani et al., 2017 Mescheder et al., 2018; Zhao et al.,[2020). Among them, Class conditional
GANs(Mirza & Osinderol 2014; Brock et al.l 2018)) shows such difficulties can be mitigated by
learning partitioned data distribution. By exploiting given attributes per instance as a partition infor-
mation, they could guide the generator to only model subspace of target distribution. Despite their
superior results than unconditional GANSs, they are constrained to existence of label in datasets,
which may not exists or expensive to attain.

To alleviate requirement for labeled datasets, recent literatures proposed unsupervised / self-
supervised learning based data partitioning methods(Eghbal-zadeh et al, [2019; [Liu et al., |2020;
Casanova et al., 2021; |Armandpour et al., [2021). Most of them utilize either k-means clustering
in feature space or contrastive loss to form fine-grained overlapping cluster. Such well-designed
cluster enables generating high-quality samples without mode collapse. Although previous meth-
ods gain plausible data partition with k-means and contrastive loss, they can’t extend themselves to
utilize high dimensional condition. For those with clustering, high dimensional space will cause dis-
tant instance to belonging to same cluster. The others with contrastive loss suffers when dimension
increase due to excessive costs at computing similarity on the fly during training.

Recently, diffusion-based generative models (DM)(Ho et al., 2020; |Sohl-Dickstein et al.| 2015) are
showing state-of-the-art performance at unconditional image generation. They are a parameterized
Markov chain trained with a given fixed posterior called forward process which gradually adds
Gaussian noise to data according to time. Most interesting part of DM is JH: TBD

Inspired by aforementioned property of diffusion models, we introduce a new data partitioning ap-
proach for GAN, called diffused instance-conditioned GAN (DIC-GAN). DIC-GAN model a mix-
ture of local densities with diffusion based Gaussian mixture. Like previous works using partition
guidance, DIC-GAN trained to cover distribution of local neighborhood of data point. Such local
neighborhood distribution will be determined by sample probability within a diffusion based Gaus-
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(a) DIC-GAN samples (Art-painting) (b) DIC-GAN samples (Flowers)

sian mixture. Both generator and discriminator will be provided a noised representation extracted
from the data point and trained by using that data point as a target real.

JH: Have to change Unlike previous works, DIC-GAN can model a mixture of local data densities
with high dimension condition by utilizing diffusion based Gaussian mixture. Moreover, using this
diffusion based Gaussian mixture gives us opportunity to make our latent space friendly to diffusion
model. we use this advantage and train latent diffusion model which modeling target distribution
as features from encoder. Such methods enable unconditional image generation of our model. We
validate our approach on unconditional image generation task. Additionally, we show our result on
few-shot dataset which have discrete distribution and hard to train. Overall, we make the following
contributions:

* We propose Diffused instance-conditioned GAN (DIC-GAN), which utilize noised instance
feature as a condition for partitioned dataset.

* We validated our approach on unlabeled image generation tasks, showing consistent im-
provements over baseline.

2 DIFFUSED INSTANCE-CONDITIONED GAN

Our motivation for DIC-GAN is to utilize diffusion based Gaussian mixture for representing clusters
of datasets. Given an unlabeled dataset D = {xi}ij\il and noise scale o, each cluster is defined by
a noised representation h, which sampled by noising a data point x; in feature space. The data
distribution p(x) can be modeled by a mixture of conditional distributions p(x|h, o) where noised
representation h is sampled with probability of p(h|o).

Given a feature extractor f parameterized by v and noise scale o, we sample the noised represen-
tation by h = v/1 — 02 f(x;;¢) + o€, where € ~ N(0, I) is standard normal noise. The sampling
probability of p(h|o) can be expressed as follows.

M=

p(hlo) =} p(hlxi,o)p(x;) ey

i=1

N
— %ZN(h; \/1—02f(xi;1/1),021). 2)
i=1
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From Equation |2} we can derive p(x;|h, o) by applying bayes rule as follows.

p(xi, hlo)
p(x;|h, o) “phjo) (3)
_ N(h; V1—02fy(xi), 021) @

E?lef\f(h; V1— 02f¢(xj),021)'

Equation [4] shows which data point will be belonged to the cluster represented with h and its sam-
pling probability within the cluster. Figure [2aldescribes a sample x; and noised representation h.

Our GAN consists of a conditional generator G(z, h; #), conditional discriminator D(x, h; ¢), and
feature extractor f(x;) where 6, ¢, 1) are parameters for generator, discriminator, and feature ex-
tractor. We denote the internal discriminator feature layers as D .., and classification layers as
D, is 30 D = D¢j5 0 Dyeqi. The generator G(z, h; 0) trained to generate sample from a partitioned
distribution p(x|h, o) given a unit Gaussian prior z ~ N (0, I) and noised representation h. To get
better representation describing data distribution, we jointly train our feature extractor f(-; ) with
our generator. The generator, discriminator, and feature extractor are trained to optimize following
adversarial objective.

%ujr} mgx ]ExiNP(x),hNP(hlxi,U) llog D(x;,sg(h))] +

Ex, ~p(x),z~p(z),h~p(h]x;,0) [108(1 — D(G(z, h),sg(h)))].

(&)

Note that we train our feature extractor only through generator’s gradient by applying stop-gradient
operation (sg) when noised representation h given to discriminator. Also, although Equation [3] is
expressed only with h sampled from p(h|x;, o), such h can be sampled from different x; due to
Equation 4] Figure [2b]illustrate how generator and discriminator are trained with our objective.

Real

Xi
> — | Dgis(x, sg(h); @) <
XG

(a) Instance x; and noised representation h (b) Workflow of DIC-GAN

Fake

Figure 2: Overview of DIC-GAN. (a) Our data distribution is partitioned based on diffusion based
Gaussian mixture. Given noised representation h, generator trained to generate sample following
p(x;|h, o). Other two samples which have probability to sample h are depicted in the figure. (b)
Conditioned on noised representation h and sampled noise z, generator sample xs. Fake sample
x¢ and real sample x; are used to train the discriminator about distribution p(x;|h, ¢). Following
our baseline projected-GAN(Sauer et al., 2021), we use the pretrained network as Dy,;. Since our
Dyeqq is fixed, we use h as condition for discriminator by concatenating them to input of D 5. To
train our feature extractor f(-, 1)) with generator’s gradient only, we apply stop-gradient operation
when they are given to discriminator’s condition.

Introducing noised condition h to our generator cause two problems. The first problem is artifacts
introduced by additive noise. We utilized noise scale aware condition modulation to solve this
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problem. The second problem is unfeasibility of unconditional generation due to condition. During
training, our generator can sample with condition from training set. However, by conditioning
the generator on h, DIC-GAN are no longer available for unconditional generation. To generate
samples without condition from training set, we need an additional module to sample h from latent
distribution. Here, we introduce a latent diffusion model to the latent distribution of f(x;; ), x; ~
p(x). In the following section, we would like to describe about these problems more detail and
present methods to solve these problems.

2.1 NOISE SCALE AWARE CONDITION MODULATION.

Since we are using additive noise to sample h, naive usage of condition in the generator can cause
serious artifact to the generated sample. As shown in Figure ??, additive noise manifest themselves
as stochastic artifact in generated samples. To mitigate this problem, we designed noise scale aware
condition modulation and apply them where the generator receives the condition. Our generator
provided with noise scale ¢ and modulate given condition h proportional to given noise scale as
follows.

h=(h—0Gnoa(h,2))/(V1-02) (6)

This modulation was inspired by denoising process in diffusion model. As the condition h is noised
with additive Gaussian noise with scale o and the original signal has been reduced with scale
V1 — 02, we recover the original signal by applying the above modulation. Although we didn’t
train our generator directly to denoise condition h, our new design removes characteristic artifacts
introduced by additive noise.

2.2  UNCONDITIONAL IMAGE GENERATION WITH LATENT DIFFUSION MODEL.

When training DIC-GAN, we utilize data points in training set to generate noised condition h. This
formulation requires us additional mechanism to sample noised condition h at inference time for
unconditional image generation. We use latent diffusion model S(f(x;; )+, t;w) to sample from
our latent distribution f(x;;1),x; ~ p(x) where f(x;;v): = y/orf(xi;9): + /1 — oze and oy s
variance scheduling used in diffusion model and w is parameter for diffusion model. Training the
latent diffusion model is done by optimizing follow objective:

T
rrLin Z]Exwp(x)yetw/\f(o,z)[Hs(f(xi§ V), tiw) — ell,)- 7

t=1

As we use spatial dimension in latent space, we can employ our works to well established diffusion
model architecture such as U-Net structure without any modification. We empirically found that
naive employment of diffusion model in latent space usually works well when channel dimension is
not too large. Details about hyperparameter for training latent diffusion model are provided in 3]
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(a) Noise scale aware modulation . .
(b) Instance x; and noised representation h

Figure 3: Detailed parts of DIC-GAN.
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FID Imgs FID Imgs FID Imgs

2562 Art Painting Flowers Pokemon
STYLEGAN2-ADA 43.07 32M 21.66 3.8M 4038 34M
FASTGAN 4402 07M 2623 0.8M 81.86 25M
PROJECTED GAN 2796 08M 1386 1.8M 26.36 0.8M
DIC-GAN 2671 32M 1334 34M 2725 28M
DIC-GAN,..f 25.01 - 12.52 - 26.13 -

Table 2: Quantitative Results.
3 EXPERIMENTAL EVALUATION

In this section, we conduct a comprehensive analysis demonstrating the advantages of DIC-GAN
with respect to state-of-the-art models. Our experiments are structured into three sections: evalua-
tion of sample generated from noised condition from reference image (3.2)), and comparisons of un-
conditional image generation with latent diffusion model (3.1I)) on benchmark datasets. We evaluate
our model in unlabeled image genertion on art paintings from WikiArt (1000 images; wikiart.org),
Oxford Flowers (1360 images) and Pokemon (833 images; pokemon.com). JH: refs We only
evaluate on resolution 2562.

Evaluation Protocol. We measure image quality using the Fréchet Inception Distance (FID). We
report the FID between 50k generated and all real images. For baseline, we report results from JH:
ref . we also report other metrics that are less benchmarked in GAN literature: KID [3], SWAV-FID
[39], precision and recall [51]. JH: refs

Baseline For our conditional generator and conditional discriminator, we use Projected-GAN as
baselines. Projected-GAN is one of the strongest generative model on most datasets in terms of
sample quality, mode coverage and training speed. We implement these baselines and our DIC-
GANSs within the codebase provided by the authors of Projected gan. Following the implementation
in Projected-GAN, we ran differentiable data-augmetnation for our experiment. For all datasets,
we perform data amplification through x-flips. Unlike projected GAN, DIC-GANSs use the condi-
tional generator and discriminator architecture. Although we are using additional module compared
to baseline, we adjust training hyperparameters to be similar with baseline by changing channel
dimension per resolution. We use same learning rate and batch size for all experiments.

For latent diffusion model we use DDIM as baseline. DDIM is an efficient class of iterative implicit
probabilistic models with the same training procedure as DDPMs. They enable faster sampling than
DDPM without loss of quality of sample by using non-Markovian diffusion process. We changed
several hyperparameters for architecture to fit our latent space. Just like original DDIM implemen-
tation, we utilize 1000 training steps for training.

3.1 UNCONDITIONAL IMAGE GENERATION WITH LATENT DIFFUSION MODEL
3.2 SAMPLING FROM REFERENCE IMAGE

In this section we would like to

show several properties of DIC- Table 1: Results for Imagenet in unlabeled setting.
GAN given reference image and

demonstrate new capabilities such Method Res. |FID 1S

as cluster wise sampling and per

cluster sampling. Due to our de- Self-sup. GAN 64 19.2 16.5

sign in modulation with Z and Uncond. BigGAN' 64 169+ 0.0 14.6=+0.1
noised condition h, we can con- iggﬁg DA gi éoi4ﬁ:ioodl %;g i 8}
trol per cluster sampling. More _ + : . : :
over modulation from Z has differ- DIC-GAN + DA 64 92+0.0 235+0.1
ent size of effect per noise scale o. DIC-GAN,.; +DA 64  65+£00 235£0.1

To demonstrate
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4 RELATED WORK

Clustered GAN training. Clustering data distribution was largely applied for improving image
generation quality and diversity. These works can be classified in to two of kinds by how they
implemented clustering in their generation process. The first one use clustering techinques to data
manifold within feature space or data space. These approaches use pretrained feature network to
gain representation for instance and cluster them by applying k-means. Information about cluster
are given to either generator or discriminator to model fine-grained distribution. Instance condition
GAN belongs to these. The other ones use mixture models in their design, intrisically training par-
titioned distribution within their model. These approaches use multi agent for generator or latent
space for building such mixture distribution in latent space. Moreover, by conditioning discrimina-
tor with mixture distribution they utilized finegrained data distribution for image generation. These
methods use unsupervised training techines for generated images to let them clustered within mix-
ture distribution. Unlike these approaches, our model utilized dataset instance as condtion and build
diffusion based Gaussian mixture distribution for condtion. These approaches doesn’t need such
complex unsupervised training for training clustered distribution.

Latent diffusion model. Diffusion Models (DM) have shown impressive results in distribution cov-
erage as well as sample quality. Their sucess are stems from generative power of denoising process,
with naturally fitting Unet style Backbon. Recently, there are several approaches to use diffusion
model on latent space. Most of these are focussing on decreasing sampling cost by implementing
diffusion model on Autoencoder’s latent space. Although autoencoder’s latent space can be seman-
tic compression space, They can only model such with generator’s inductive bias. On the otherhand,
our model build such semantic compression with not only generator but also discriminator. By us-
ing destylized discriminator for such compression, we could gain better sample quality than these
counterparts.

Instancewise prior in GAN training. Recent approaches such as instance conditioned gan or data
instance priors utilized instance wise feature vector to transfer knowledge about data distribution.
These approaches requires rich source of pre-trained feature extractor and have to maintain subset of
instance wise feature vectors. Unlike these approaches, our model use latent diffusion model to gain
instance wise feature vector. Due to this difference we could use larger size of instance condition
unlike previous works.

5 DISCUSSION
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