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Fig. 1: 3D reconstruction with a low frame rate, sparse depth sensor. Run-
ning depth completion (a) on low FPS, sparse depth maps generate holes in the final
reconstruction. Adding a higher FPS color camera allows for obtaining depth from
Multi-View Stereo (b) or projecting depth to nearby color views and running comple-
tion (c), with unsatisfactory results. Our framework (d) performs temporal completion
using two views and one sparse depth frame, yielding denser and more accurate meshes.

Abstract. High frame rate and accurate depth estimation plays an im-
portant role in several tasks crucial to robotics and automotive percep-
tion. To date, this can be achieved through ToF and LiDAR devices for
indoor and outdoor applications, respectively. However, their applicabil-
ity is limited by low frame rate, energy consumption, and spatial sparsity.
Depth on Demand (DoD) allows for accurate temporal and spatial depth
densification achieved by exploiting a high frame rate RGB sensor cou-
pled with a potentially lower frame rate and sparse active depth sensor.
Our proposal jointly enables lower energy consumption and denser shape
reconstruction, by significantly reducing the streaming requirements on
the depth sensor thanks to its three core stages: i) multi-modal encoding,
ii) iterative multi-modal integration, and iii) depth decoding. We present
extended evidence assessing the effectiveness of DoD on indoor and out-
door video datasets, covering both environment scanning and automotive
perception use cases.
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1 Introduction

This abstract refers to an already published paper, “Depth on Demand: Streaming
Dense Depth from a Low Frame Rate Active Sensor” by the same authors [7],
to appear at ECCV 2024. The full paper is attached to this submission as sup-
plementary material.

RGB-D camera systems have become prominent in fields such as robotics,
automotive and augmented reality and are not available on handheld devices
such as the Apple Ipad. Among these sensors, Time-of-Flight (ToF) cameras infer
the distance by emitting modulated infrared light into the scene and measuring
irs return time [1, 2, 20]. On the other hand, Light Detection And Ranging
(LiDAR) sensors allow for long-range measurements up to hundreds of meters
with or without sunlight at much higher energy consumption and footprint.

ToF sensors – used mainly in mobile – can achieve a high frame rate but imply
high energy consumption and overheating. Usually, a drastic reduction of their
frame rate is applied to fit consumption with the limited available battery. On
the other hand, LiDAR sensors are bulky devices used in autonomous driving,
characterized by a low frame rate due to moving mechanical components. Finally,
both these technologies manifest spatial sparsity, generating predictions only for
specific spatial locations.

This paper proposes Depth on Demand (DoD), a framework addressing the
three major issues related to active depth sensors in streaming dense depth maps
– i.e. spatial sparsity, energy consumption, and limited frame rate. DoD allows
coupling together an active depth sensor and an RGB camera to stream dense
depth at the RGB camera frame rate, which may be much higher than the
former. On the one hand, it allows the adaptation of active depth sensor energy
consumption to the task specifications, thus meeting the energy constraints of
the ToF use case. On the other, it unlocks frame rates higher than the maximum
attainable by the active depth sensor itself, tackling effectively the LiDAR use
case. Decoupling frame rates benefits also 3D scene reconstruction as it reduces
energy consumption and allows for denser reconstructions. This is showcased in
Figure 1: by performing depth completion only at a low frame rate (a) several
holes appear in the mesh. Integrating information from a higher frame rate RGB
camera (b-d) produces denser meshes. A simple solution to achieve the latter
would be relying on Multi-View Stereo algorithms without using depth sensor
data (b), or performing depth completion by projecting previous sparse depth
points (c). Both these approaches introduce several artifacts as in the highlighted
boxes. DoD produces denser and more accurate reconstructions (d).

2 Depth on Demand

Our approach consists of exploiting the higher framerate of an RGB camera to
increase the temporal resolution of an active depth sensor. This is carried out
by leveraging multi-view geometry on the RGB video stream and estimating
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Fig. 2: Depth on Demand Framework Overview. We provide a high-level
overview of DoD, level-wise architectural details are provided in the supplementary
material. DoD embeds multi-view cues and monocular features in the Visual Cues
Integration, then integrates sparse depth updates in the Depth Cues Integration. To
properly exploit both these information these stages are applied iteratively in the form
of depth updates.

depth for any RGB frame, both those for which measurements from the active
sensor are available and those for which are not. To this aim, we make use of
the minimum amount of information needed to exploit geometry – i.e. for each
RGB view on which we seek to compute depth (the target view) we retain a
previously collected RGB frame (source view) and sparse depth points (source
depth). In this section we divide our framework into a set of three sequential
steps and provide a brief description of each, please refer to the full paper [7] for
further details.

Multi-Modal Encoding Our framework exploits information from differ-
ent modalities to perceive 3D structures – i.e., multi-view geometry, monocular
cues and sparse depth. We separately compute domain-appropriate features and
delegate integration to the next step. In figure 2 we specify the encoding of each
domain. A shared encoder [13] extracts features F t,Fs at 1

8 spatial resolution
from target and source views. Given the predicted depth at a specific coordi-
nate of the target view Dut,vt , camera intrinsic parameters K and relative pose
P , per-point correlation cues C can be computed by finding matching coordi-
nates (ut, vt) and (us, vs) as C = 1√

F

∑F
f=1 F t

utvtf
Fs

usvsf
. Moreover, we sample

a set of correlation patches along the epipolar line defined by Dut,vt
and rela-

tive pose P to increase the distinctiveness of each sampling. Monocular data is
important in all the areas not in the intersection between the target and source
views. Purposely, we integrate a monocular encoder exploiting the first layers of
a ResNet34 [13] to output multi-scale feature maps F̃ t

2, F̃ t
4 and F̃ t

8 at respec-
tively 1

2 , 1
4 , 1

8 resolution out of the target view alone. Finally, we assume the
availability of sparse depth data obtained from an active sensor captured at a
previous time instant. We project such sparse depth points onto the target view
using pose information, obtaining a coarse depth map D̃ that will be exploited
for both initialization and iterative multi-modal fusion. Since projecting at a
lower resolution may lead to inaccurate positioning when building the sparse
depth map, we propagate sub-pixel projection coordinates too. Unlike the depth
completion task, projected sparse depth is characterized by errors on moving ob-
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jects and occlusion, making it more difficult to exploit as a source. We delegate
their management to the integration phase, where the exploitation of multiple
modalities ameliorates such issues.

Multi-Modal Integration We employ a fusion module to combine encoded
cues into a target-aligned depth map, iteratively refined by a fixed number of
steps N . Our integration module is depicted in Figure 2 and can be logically
divided into two sequential components. The first stage extracts depth-related
features by visual cues only. We embed monocular and multi-view cues in the
hidden state (H)Ni of a Gated Recurrent Unit, where (·)Ni indicates a sequence
of tensors across a set of iterations from i = 0 to i = N − 1. We initialize (H)Ni=0

with a deep convolutional module fed with monocular features, specified in the
supplementary material. The second stage takes into account sparse depth data
availability. First, a branch predicts a depth update ∆Dc from the embedded
visual features Hi. Then, a sparse depth update ∆Dd is computed pixel-wise
versus the current prediction as

∆Dd =

{
D̃i,j −Di,j if D̃i,j > 0

0 otherwise
(1)

Finally, updates fusion is carried out by a further branch predicting ∆Df ,
used to update the current depth prediction. This allows for filtering the sparse
depth which is likely to contain outliers due to reprojection. It is worth noticing
that missing values can be integrated as zero updates, effectively dealing with
the varying sparsity problem often affecting depth completion methods [8]. The
previously described multi-modal updating strategy is applied multiple times,
generating at each iteration a refined depth map that is then used at the sub-
sequent iteration to improve the multi-view correlation samples and the sparse
depth update. Accordingly, an initial depth state is required: we choose to initial-
ize the depth for the first iteration with the sparse depth data, filling the missing
coordinates with the mean value of the valid ones. In case no projected sparse
depth points are available in the target view we initialize with a reasonable depth
value of 3 meters, if not otherwise specified.

Depth Decoding The multi-modal integration module outputs a sequence
of incrementally refined depth maps (D)Ni at 1

8 resolution. We exploit a learned
procedure inspired by convex upsampling [23] to perform upsampling. Given
the depth map at 1

8 resolution, we employ a set of three modules θs(·) s ∈
{2, 4, 8} performing a 2× resolution upsampling composed of two convolutional
layers with the aim to embed fine-grain monocular contextual information and
enforcing locally smooth and consistent depth propagation. Please refer to the
full paper [7] for further details.

3 Experiments

We evaluate our framework on indoor video sequences, aerial scenes and auto-
motive environments to evaluate its accuracy both in single domains, and gen-
eralization. To each target frame Ii we associate a buffer of previous N frames
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Table 1: Results on ScanNetV2. On top, (a) 2D and (b) 3D performance by DoD
and competing approaches. At the bottom, (c) 3D performance by DoD with low/high
temporal resolution. The best , second -best and third -best are highlighted.

Method Views 2D Metrics 3D Metrics

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑ Comp↓ Acc↓ Chamfer↓ Prec↑ Recall↑ F-Score↑

M
V

S

SimpleRecon [21] 8 0.093 0.151 0.047 0.016 0.717 0.062 0.056 0.059 0.702 0.646 0.671
PatchMatch-Net [24] 8 0.184 0.270 0.102 0.048 0.437 0.106 0.086 0.096 0.511 0.433 0.467
CAS-MVSNet [12] 8 0.170 0.254 0.091 0.044 0.507 0.086 0.082 0.084 0.545 0.498 0.519
UCS-Net [3] 8 0.167 0.252 0.088 0.042 0.512 0.084 0.082 0.083 0.547 0.502 0.522

M
V

S
+

D
ep

th

Guided PatchMatch-Net [24]+ [19] 8 0.183 0.267 0.102 0.048 0.437 0.106 0.085 0.095 0.512 0.432 0.467
Guided CAS-MVSNet [12]+ [19] 8 0.124 0.203 0.068 0.029 0.635 0.064 0.061 0.062 0.667 0.634 0.649
Guided UCS-Net [3]+ [19] 8 0.133 0.210 0.074 0.030 0.576 0.070 0.065 0.068 0.616 0.578 0.595

Guided PatchMatch-Net [24]+ [19] 2 0.291 0.384 0.160 0.096 0.284 0.135 0.125 0.130 0.406 0.315 0.353
Guided CAS-MVSNet [12]+ [19] 2 0.286 0.388 0.154 0.094 0.304 0.099 0.109 0.104 0.447 0.419 0.431
Guided UCS-Net [3]+ [19] 2 0.258 0.353 0.148 0.093 0.328 0.103 0.099 0.101 0.451 0.385 0.414

D
ep

th

SpAgNet [8] 1 0.069 0.138 0.039 0.016 0.824 0.046 0.037 0.042 0.836 0.789 0.810
NLSPN [18] 1 0.067 0.137 0.037 0.017 0.847 0.046 0.035 0.041 0.851 0.799 0.822
CompletionFormer [26] 1 0.075 0.149 0.041 0.019 0.829 0.047 0.037 0.042 0.846 0.795 0.818
DoD (ours) 2 0.041 0.103 0.022 0.008 0.899 0.039 0.025 0.032 0.904 0.845 0.871

(a) (b)

Method 3D Metrics

Comp↓ Acc↓ Chamfer↓ Prec↑ Recall↑ F-Score↑
DoD – Low Temporal Resolution 0.064 0.014 0.039 0.961 0.778 0.856
DoD – High Temporal Resolution 0.039 0.025 0.032 0.904 0.845 0.871

(c)

{(Ij , D̃j) : j ∈ [i−N, i− 1]}. Then – at training time – we randomly select a
frame from such buffer as the source one. For each sample, we collect a sequence
of progressively refined depth maps (D)Ni supervised using an exponentially de-
cayed ℓ1-loss, as described in Equation 2 with decaying factor ν = 0.8.

L =

N∑
i=1

νN−i||(D)Ni −Dgt||1 (2)

While testing, we suppose an RGB video stream with a higher frame rate
than the active depth sensor. Thus, given a sequence of RGB frames [I0, . . . , In]
only a few of them will be associated with a depth frame {D̃0, . . . , D̃m}. We
link each RGB view Ii to the immediately preceding RGB image coupled with
a depth frame (Ij , D̃j), j ≤ i and feed our and competing methods with such
data. We select a wide range of competitor methods and evaluate each one
in our setting. Concerning depth completion, we compare with state-of-the-art
frameworks [6,18,26] projecting sparse depth points from the source frame onto
the target view Ii. Concerning Multi-View Stereo methods, we select [19] as
a natural competitor since it enables standard MVS frameworks [3, 12, 24] to
exploit both sparse depth and multi-view data natively. Since Multi-View Stereo
methods usually exploit a large number of views, we train and evaluate with both
2 and 8 input views. To perform a fair comparison, we retrain each competitor
following the authors’ guidelines but applying the previously described training
protocol as the original authors’ pre-trained model performs worse in our setting.

3.1 Indoor Scenario

ToF sensors are mainly used for indoor applications, even though their low spa-
tial resoluyion and short working range. In this setting, temporal resolution
is limited to reduce power consumption and overheating. We train on Scan-
NetV2 [9] and test on ScanNetV2 and 7Scenes [11], randomly sampling 500
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Table 2: Results on 7Scenes. 2D performance by DoD and competing approaches
in generalization on 7Scenes. The best , second -best and third -best are highlighted.

Method Views 2D Metrics

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑

M
V

S

SimpleRecon [21] 8 0.121 0.169 0.068 0.021 0.536
PatchMatch-Net [24] 8 0.193 0.268 0.112 0.048 0.390
CAS-MVSNet [12] 8 0.177 0.251 0.101 0.041 0.421
UCS-Net [3] 8 0.176 0.250 0.099 0.040 0.428

M
V

S
+

D
ep

th

Guided PatchMatch-Net [24]+ [19] 8 0.191 0.264 0.112 0.047 0.391
Guided CAS-MVSNet [12]+ [19] 8 0.120 0.192 0.071 0.024 0.587
Guided UCS-Net [3]+ [19] 8 0.141 0.209 0.083 0.028 0.484

Guided PatchMatch-Net [24]+ [19] 2 0.267 0.345 0.158 0.080 0.268
Guided CAS-MVSNet [12]+ [19] 2 0.250 0.338 0.141 0.069 0.303
Guided UCS-Net [3]+ [19] 2 0.228 0.306 0.139 0.063 0.303

D
ep

th

SpAgNet [8] 1 0.068 0.139 0.040 0.014 0.806
NLSPN [18] 1 0.061 0.134 0.037 0.014 0.842
CompletionFormer [26] 1 0.067 0.144 0.039 0.015 0.827
DoD (ours) 2 0.043 0.106 0.025 0.008 0.896

Source View Target View NLSPN [18] SpAgNet [8] Depth on Demand

Fig. 3: Qualitative results on 7Scenes. From left to right: source view with sparse
depth points, the target view with projected sparse depth points, and predictions by
DoD and existing methods.

sparse depth points consistently with the depth completion literature [4,15,18].
For testing, we sparsify depth over time with 1 depth frame out of 5.

In Table 1 (a) we show the 2D performance on ScanNetV2 [9]. At the top,
we report the performance of RGB-only methods [3, 12, 21, 24] with 8 views in
input. Below, we show the performance of [19] with either 8 or 2 input views
and projected sparse depth. In such methods, integrating sparse depth in our
scenario provides a small improvement due to their specific design being poor
at processing sequential frames. On the contrary, depth completion methods
[8, 18, 26] relying only on the target view and projected sparse depth result in
being the most competitive solution for temporal depth stream densification
in the existing literature. Our framework indisputably outperforms completion
models on any metric. This superior accuracy translates also into more accurate,
dense 3D reconstructions shown in Table 1 (b). Table 1 (c), instead, highlights
the effect of increasing the temporal resolution at which depth is estimated. We
can notice how keeping a low temporal resolution – i.e., the same as the depth
sensors – yields slightly accurate reconstructed meshes, while a higher temporal
resolution trades accuracy to increase completeness. Nonetheless, maintaining a
high temporal resolution yields better F-Scores overall.

We assess the generalization capabilities on 7Scenes [22] testing the models
trained on ScanNetV2 [9]. Results are collected in Table 2, where our framework
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Table 3: Results on TartanAir. 2D performance of our and competing approaches
on TartanAir [25]. The best , second -best and third -best are highlighted.

Method Views 2D Metrics

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑

M
V

S
+

D
ep

th

Guided PatchMatch-Net [24]+ [19] 8 2.353 5.259 0.234 2.285 0.470
Guided CAS-MVSNet [12]+ [19] 8 1.296 3.753 0.126 1.270 0.647
Guided UCS-Net [3]+ [19] 8 1.231 3.624 0.115 1.106 0.675

Guided PatchMatch-Net [24]+ [19] 2 3.629 6.564 0.438 3.669 0.230
Guided CAS-MVSNet [12]+ [19] 2 1.985 4.845 0.185 1.794 0.492
Guided UCS-Net [3]+ [19] 2 1.804 4.513 0.177 1.526 0.486

D
ep

th

SpAgNet [8] 1 0.841 2.273 0.090 0.561 0.718
NLSPN [18] 1 0.941 2.327 0.113 0.623 0.613
CompletionFormer [26] 1 0.961 2.411 0.106 0.608 0.625
DoD (ours) 2 0.648 2.230 0.056 0.490 0.832

Source View Target View Prediction

Fig. 4: KITTI Setup. On KITTI, we project the 360° LiDAR point cloud over the
target point of view. If the camera is moving forward – as usually happens – the furthest
scan lines are used only, leading to noisy and spaced depth values on the target view.
However, the FoV of the target image is usually fully covered.

shows remarkable performance. In Figure 3 we provide a comparison of handling
erroneous sparse depth points due to occlusion where DoD can disregard outliers
by exploiting multi-view cues.

3.2 Outdoor Scenario

3D reconstruction in outdoor environments poses significantly challenges: larger
depth ranges and depth measurements scattering. We exploit TartanAir [25] and
KITTI [10] in this scenario. Table 3 shows our framework performance on Tar-
tanAir [25]. As for the indoor case, completion models largely outperform com-
petitor networks, confirming their limitations in dealing with our setup. Again,
our architecture shines in accuracy, achieving the lowest errors by a notable
margin. Table 4 shows the results achieved by our framework on KITTI [10], by
simulating different temporal sparsification levels – i.e. RGB camera at 10Hz and
the LiDAR sensor at respectively 1Hz and 0.5Hz. We exploit an off-the-shelf key-
point matcher [16], perspective-n-points [14], and locally-optimized RANSAC [5]
to estimate accurate pose, as already done in the depth completion literature [17].
Despite the more challenging setting, our framework still outperforms any exist-
ing alternative.

3.3 Temporal Sparsification Study

We study the sensitivity of our approach to different temporal densities, i.e.,
frame rate imbalances between the RGB and depth sensor (that is, τ = fD/fRGB).
In Figure 5(a) we report the Mean Absolute Error (MAE) on the 7Scenes test
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Table 4: Results on KITTI. 2D performance by DoD and competing approaches.
The best , second -best and third -best are highlighted.

Method Views 2D Metrics – LiDAR 1Hz 2D Metrics – LiDAR 0.5Hz

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑ MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑

M
V

S
+

D
ep

th

Guided PatchMatch-Net [24]+ [19] 8 2.649 5.149 0.216 3.090 0.453 2.809 5.353 0.232 3.330 0.416
Guided CAS-MVSNet [12]+ [19] 8 0.608 2.126 0.034 0.229 0.888 0.873 2.501 0.052 0.350 0.786
Guided UCS-Net [3]+ [19] 8 0.575 1.930 0.034 0.229 0.881 0.828 2.321 0.050 0.303 0.789

Guided PatchMatch-Net [24]+ [19] 2 1.898 4.165 0.117 0.863 0.496 2.282 4.564 0.145 1.154 0.404
Guided CAS-MVSNet [12]+ [19] 2 0.676 2.203 0.035 0.225 0.872 0.916 2.562 0.052 0.328 0.773
Guided UCS-Net [3]+ [19] 2 0.545 1.859 0.030 0.146 0.885 0.837 2.330 0.049 0.277 0.779

D
ep

th

SpAgNet [8] 1 0.532 1.626 0.027 0.095 0.879 0.687 1.865 0.037 0.133 0.808
NLSPN [18] 1 0.426 1.282 0.023 0.069 0.902 0.614 1.591 0.035 0.121 0.827
CompletionFormer [26] 1 0.348 1.299 0.019 0.085 0.939 0.555 1.695 0.031 0.150 0.868
DoD (ours) 2 0.347 1.288 0.017 0.061 0.944 0.492 1.544 0.025 0.094 0.890

0.2 0.4 0.6 0.8 1

0.05

0.10
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SpAgNet [8] NLSPN [18] CompletionFormer [26] Ours

Fig. 5: Memory and Time Study. We analyze time and memory footprint in eval-
uation on a single RTX 3090 GPU of our and competing methods 7Scenes.

split with the testing protocol described in Section 3, while varying the tempo-
ral sparsification τ from 0.1 – i.e. one out of ten frames – to 1. Actually, when
τ = 1 the source view always matches with the target view, and sparse points are
aligned with it. Thus, τ = 1 is equivalent to the well-studied depth completion
case. This may also occur in real use cases where the camera is static. We report
a sensitivity study to different spatial densities in the supplementary material.

3.4 Memory and Time Analysis

Figures 5 (b) and 5 (c) report the memory footprint and execution time of the
main methods involved in our experiments. We measure the peak memory and
computation time the model requires for inference when processing 640 × 480
inputs. All measurements are based on a single RTX 3090 GPU and 32-bit
floating-point precision. Our approach excels in terms of both.

4 Conclusion

In this paper, we faced the temporal sparsification of a video RGB-D stream
when temporally reducing the number of depth frames used for accurate 3D
reconstruction and we proposed an approach to integrate depth, monocular,
and multi-view cues in an effective framework, as confirmed by the extensive
validation over various datasets. We provide further details, experiments and
ablation studies in the full paper [7].
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