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ABSTRACT

Hyperbolic embeddings are a class of representation learning methods that offer
competitive performances when data can be abstracted as a tree-like graph. How-
ever, in practice, learning hyperbolic embeddings of hierarchical data is difficult
due to the different geometry between hyperbolic space and the Euclidean space.
To address such difficulties, we first categorize three kinds of illness that harm the
performance of the embeddings. Then, we develop a geometry-aware algorithm
using a dilation operation and a transitive closure regularization to tackle these
illnesses. We empirically validate these techniques and present a theoretical analy-
sis of the mechanism behind the dilation operation. Experiments on synthetic and
real-world datasets reveal superior performances of our algorithm.

1 INTRODUCTION

Learning data representation is important in machine learning as it provides a metric space that
reveals or preserves inherent data structure (Mikolov et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017; Hoff et al., 2002; Grover & Leskovec, 2016; Perozzi et al., 2014; Nickel et al., 2011;
Bordes et al., 2013; Riedel et al., 2013). Hyperbolic embeddings, a class of hierarchy representation
methods, have shown competitive performances when data can be abstracted as a graph (Chamberlain
et al., 2017; Davidson et al., 2018; Ganea et al., 2018a; Gu et al., 2018; Tifrea et al., 2018).
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In this work, we focus on the following embedding task. Let D be a dataset incorporated with a set of
hierarchical relations represented as edges in a tree-like graph G. The goal is to learn an embedding
Θ in the hyperbolic space by drawing positive and negative samples of edges from the graph such
that Θ preserves the edge relationships, which are reflected by the order of similarity between data
pairs. The formal problem statement is presented in Section 2.

Theoretically, hyperbolic space, such as the Poincaré Ball model, benefit from high representational
power due to their negative curvatures (Nickel & Kiela, 2017; Sala et al., 2018). This observation
has motivated research on solving real-world problems in hyperbolic space. For datasets with an
observed structure, hyperbolic space can embed the data and preserve the structure with arbitrarily
low distortion (Nickel & Kiela, 2017; Chamberlain et al., 2017; Nickel & Kiela, 2018; Ganea et al.,
2018b; Chami et al., 2019c). For datasets with a latent structure, especially those obeying the
power-law, hyperbolic space can provide a natural metric such that finer concepts are embedded into
areas allowing more subtlety (Tifrea et al., 2018; Leimeister & Wilson, 2018; Le et al., 2019).

Despite the theoretical advantages of hyperbolic embeddings, learning such representation in practice
is difficult. Specifically, the following fundamental difficulties have not been well-studied in the
literature. (1) Many properties of the Euclidean space do not transfer to hyperbolic space. For
example, the latter generally do not have the scale or shift-invariance in the sense of preserving
similarity orders. (2) Many nice properties exclusive to hyperbolic space may improve learning.
However, it is unclear how to design algorithms to effectively incorporate these properties. (3)
Optimization in hyperbolic space is (i) expensive due to a more sophisticated distance measure and
(ii) unstable because gradient descent is performed on hyperbolic manifolds.

In this paper, we analyze these difficulties and provide a set of solutions to them. First, we define
bad cases as improper relationship between nodes and edges. We then categorize them into capacity
illness, inter-subtree illness, and intra-subtree illness. Formal definitions and intuitive visualizations
are presented in Section 3. We present a theoretical analysis of local capacity, capacity illness,
and their relationship in Section 4. We then develop an algorithm that reduces these illness in
Section 5. The algorithm involves a dilation operation during the learning process, adding transitive
closure edges of data to positive samples, and a re-weighting strategy. We conduct experiments
on synthetic and real world datasets in Appendix 6. The results show that our algorithm achieves
superior performances under various evaluation metrics.

2 PRELIMINARIES

A hyperbolic space Hd is a d-dimensional Riemannian manifold with a constant negative sectional
curvature. In this paper, we focus on the Poincaré ball model. Let B = Bd denote the d-dimensional
Poincare ball. The distance between any two points B1, B2 ∈ Bd is defined as

d(B1, B2) = arcosh

(
1 + 2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
, (1)

where u and v are the Euclidean vectors of B1 and B2. In the rest of the paper, we denote the
Poincaré distance by d(·, ·) and the Euclidean distance by ‖·‖. Given a set of points V = {xi}ni=1
and the relation set E ⊂ [n]2, the goal is to learn an embedding f : V → B that preserves the inherent
structure. To achieve this goal, we define and minimize the following loss function L. For (i, j) ∈ E ,
define N (xi, xj) as the set of negative samples of (i, j). Let Θ = {θi}ni=1, where each θi ∈ Bd is
the embedding of xi. Define d(xi, xj) = d(θi, θj). Then, the loss function is defined as

L(Θ) = −
∑

(i,j)∈E

log
e−d(xi,xj)∑

x′∈N (xi,xj)∪{xj} e
−d(xi,x′)

= −
∑

(i,j)∈E

Li,j(Θ). (2)

This objective can be optimized via Riemannian gradient descent (Nickel & Kiela, 2017).

3 ILLNESS

In this section, we formally define illness that harms the performance of hyperbolic embeddings and
is hard to optimize. Let

−−→
AB be a ground-truth edge in G, and

−−→
AB′ be the inferred edge from the
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Algorithm 1 Geometry-Aware Algorithm

for i = 1 to Nepoch do
Compute local capacity according to equation 5
if local capacity is not sufficient then perform the dilation operation in equation 6
end if
if i ≤ Ntc then loss← Ltc(Θ) according to equation 7
else loss← L(Θ) according to equation 2
end if
Apply Riemannian gradient descent over loss

end for

hyperbolic embeddings, where B′ 6= B. We call this situation illness with respect to A. Let C be the
nearest common ancestor of B and B′. We categorize three kinds of illness according to the pairwise
relationships among B, B′, and C. Formally, we define capacity illness, intra-subtree illness, and
inter-subtree illness in Definition 1.

Definition 1 (Categories of Illness). We define the illness to be capacity illness if B is the parent of
B′. We define the illness to be an intra-subtree illness if B is the ancestor but not the parent of B′.
We define the illness to be an inter-subtree illness if C 6= B.

It is straightforward to see that the union of capacity illness and intra-subtree illness are exactly
situations where C = B. Therefore, the above three kinds of illness are a partition of all illness. We
visualize these three kinds of illness in Figure 3 in the appendix.

4 LOCAL CAPACITY

We define local capacity below and theoretically relate it to capacity illness.

Definition 2 (Local Capacity). Given a geodesic space (X , d) and a geodesic ball Sr centered at
A ∈ X with radius r. The local capacity of (A, r) is defined as

max {|C| : C ∈ Sr;∀C1, C2 ∈ C, C1 6= C2, d(C1, C2) > d(C1, A) ∨ d(C2, A)} . (3)

Given a geodesic space (X , d) and a geodesic ball Sr centered at A ∈ X with radius r. The local
capacity of (A, r) is defined as

max {|C| : C ∈ Sr;∀C1, C2 ∈ C, C1 6= C2, d(C1, C2) > d(C1, A) ∨ d(C2, A)} . (4)

For not very small r and large d we have the following bounds:

2de
dr
2 ' A(d, θr) '

√
2π log

2√
3
· d 3

2 · 21−de
d−1
2 r, (5)

where θr = arcsin (1/(2 cosh(r/2))). Full derivations are in Appendix B.

5 THE ALGORITHM

In this section, we build a geometry-aware algorithm (Algorithm 1) targeting the three categories of
illness by proposing the dilation operation and the transitive closure regularization.

Dilation. We define a mapping g : B → B as a k-dilation if for any A ∈ B:

d(O, g(A)) = k · d(O,A). (6)

Notably, g can be computed explicitly. For instance, a 2-dilation can be formulated as g(A) =
2

1+‖A‖2A. The dilation operation rescales the embedded structure so that each point is pushed to a
location with sufficient local capacity. Given A ∈ B with degree k, this operation helps increase the
distance between A and its k-nearest neighbor(rA), thus increase the local capacity of (A, rA).
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(a) The baseline Poincaré embedding algorithm (b) Our algorithm

Figure 1: Visualizations of two-dimensional embeddings of a synthetic balance tree (156 nodes, 155
edges) learned by the baseline Poincaré embedding algorithm in Nickel & Kiela (2017) and our
geometry-aware algorithm, respectively. Both algorithms are trained for 3000 epochs. The lines
refer to ground-truth edges and the points refer to the learned hyperbolic embeddings. The red lines
indicate bad cases where the embeddings fail to reconstruct these ground-truth edges.

Figure 2: Visualization of the learning process of two-dimensional Poincaré embeddings with (1) the
baseline algorithm in the upper row, and (2) the geometry-aware algorithm in the lower row. The
dataset, baseline model, and plotting settings are identical as in Figure 1. We plot intra-subtree and
inter-subtree illness consistently existing throughout the entire 3000 epochs.

Transitive closure regularization. It contains the following two operations.

Adding transitive closure edges. The transitive closure edges Etc are edges between nodes and their
non-parent ancestors. These edges are also considered as positive samples in addition to E in the
objective in equation 2. The purpose of adding these auxiliary edges is to push the subtrees apart so
they are less likely to overlap in the Poincaré ball.

Re-weighting. We modify the weights of transitive closure edges to prevent overfitting in early (the
first Ntc) epochs. Let ηtc be a real number between 0 and 1. Then, the objective becomes

Ltc(Θ) = L(Θ) + ηtc
∑

(i,j)∈Etc

Li,j(Θ). (7)

It is noteworthy that these operations are not admissible in the Euclidean space, where the local
capacity of any (A, r) ∈ Rd × R is a constant with respect to d.

6 EXPERIMENTS

We compare our algorithm to the baseline model (Nickel & Kiela, 2017) on the synthetic dataset
in Figure 1 and Figure 2. Our method not only achieves perfect MAP (0.998) but also yields better
reconstructed geometry. We do extensive experiments on multiple real-world datasets of various
scales and characteristics in Appendix D. Results show our algorithm consistently outperform the
baseline algorithms (Nickel & Kiela, 2017; 2018), especially on extremely bushy datasets.
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7 CONCLUSION

In this paper, we analyze three categories of illness and develop a geometry-aware algorithm that
targets at reducing these illnesses and improving performance. Our algorithm shows superior
performance over baseline models on both synthetic and real world datasets.
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A RELATED WORK

Learning in hyperbolic space is initially proposed by Nickel & Kiela (2017). It is the most related
work to our paper. Their method outperforms the Euclidean counterpart in low dimensions as to
the task of learning embeddings for edge reconstruction. However, since their algorithm is directly
adapted from the Euclidean space, it does not naturally leverage potentially useful geometrical
properties of hyperbolic space (see Section 2). As a consequence, there remain many bad cases even
after convergence (see Figure 1a).

A series of work directly incorporate properties of hyperbolic space via optimization (Wilson &
Leimeister, 2018; Bonnabel, 2013; Absil et al., 2009; Afsari et al., 2013). Specifically, Nickel &
Kiela (2018) conduct training in the Lorentz space with a closed-form expression of the geodesics
on the hyperbolic manifold. However, since the learning objective equation 2 is highly non-convex,
obtaining more accurate gradients does not completely solve the problem.

Another group of work either implement hyperbolic versions of commonly used neural network
modules (Ganea et al., 2018c; Gulcehre et al., 2018; Chami et al., 2019b), or design models specifically
tailored for hyperbolic space (Vulić & Mrkšić, 2017; Le et al., 2019; Cho et al., 2019; Leimeister &
Wilson, 2018; Weber et al., 2020; Chami et al., 2019a). These methods are task-specific and thus
expensive to deploy in downstream applications.

Apart from the above learning approaches, Sala et al. (2018) presents a combinatorial algorithm that
achieves better performance than Nickel & Kiela (2017; 2018) with even lower dimensions. The core
idea is to extend the 2-dimensional results of Sarkar (2011) to arbitrary dimensions. However, this
algorithm suffers from three vital weaknesses: (1) it requires complete information of the graph; (2)
it is sensitive to addition/removal of data; and (3) most critically, it involves discrete operations and
thus does not have gradients. Therefore, in scenarios where complete information is unavailable, the
graph dynamically changes, or joint learning is needed, this approach does not suffice.

In this paper, we endorse the importance of leveraging geometrical properties in learning unsupervised
hyperbolic embeddings. Based on this intention, we develop a geometry-aware algorithm that
improves embedding performances, which, to the best of our knowledge, is original.

B ILLNESS

B

A B1

B2

B3

Figure 3: Illustration of the three categories of illness. A is the source node and B is the ground-truth
target node. It is called (1) capacity illness if A connects to B1, (2) intra-subtree illness if A connects
to B2, and (3) inter-subtree illness if A connects to B3.

C LOCAL CAPACITY

According to Definition 2, for A ∈ V and a radius r, if |{C : C is a child of A, d(A,C) ≤ r}|
exceeds the local capacity of (A, r), then capacity illness must exist. To obtain bounds on local

8
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capacity, we first bound the r-packing number of a geodesic sphere centered at point A ∈ B with
radius r.

First, the packing number of the geodesic sphere centered at the origin O is the same as that of A. To
see why we use a result from Paupert (2016):

Isom(B) = Möb(B). (8)

That is, the group of isometries from B to itself coincide with the group of all Möbius transformations
preserving B. In the Poincaré ball model, Möb(B) is generated by inversions in generalized spheres
S ′ such that S ′⊥∂B, therefore once we extend

−→
OA to C with ‖OC‖2 − 1 = ‖OC‖ · ‖CA‖, then by

taking the restriction in B of the inversion in generalized sphere S ′ centered at C we get an isometry
from B to itself which maps A to O. Specifically, it is an isometry between any geodesic sphere
centered at A and the geodesic sphere centered at the origin O (with the same radius r).

Then, we compute the r-packing number of the geodesic sphere Sr centered at O with Poincaré
radius r. For B1, B2 ∈ Sr, let u =

−−→
OB1, v =

−−→
OB2 and r be the Poincaré norm of u. Then, as long

as the angle θ between u and v satisfies

θ ≥ θr = 2 arcsin

(
1

2 cosh(r/2)

)
, (9)

we have d(B1, B2) ≥ d(Bi, O), i = 1, 2. For not very small r, θr ≈ 2e−r/2. Then, the r-packing
problem is equivalent to evaluating the size of the largest spherical code of angle θr in dimension d,
defined as A(d, θr). According to Jenssen et al. (2018), we have

A(d, θ) ≥ (1 + o(1))
cθ · d
sd(θ)

, (10)

where c(θ) = log sin2(θ)√
(1−cos θ)2(1+2 cos θ)

≈ log 2√
3

for small θ, sd(θ) = (1 + o(1)) sind−1 θ√
2πd·cos θ . Specif-

ically, when d ≤ 16 with small θ, Shannon (1959) provides a better bound:

A(d, θ) ≥ 1

sd(θ)
= (1 + o(1))

√
2πd · cos θ

sind−1 θ
. (11)

To sum up, for not very small r we have the following lower bounds under different dimensions:

A(d, θr) '


πe

r
2 d = 2√

2πd · 21−de d−1
2 r 3 ≤ d ≤ 16√

2π log 2√
3
· d 3

2 · 21−de d−1
2 r d ≥ 17

. (12)

As for the upper bound, according to Kabatiansky & Levenshtein (1978),

A(d, θ) ≤ eφ(θ)d(1+o(1)), (13)

where φ(θ) > − log sin θ is a certain function. Therefore,

A(d, θr) /

{
πe

r
2 d = 2

2de
dr
2 d ≥ 3

. (14)

Note that by considering the extension of radius, one can define local capacity on geodesic balls
instead of spheres(4), which leads to the same conclusion.
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D EXPERIMENTAL SETTINGS AND OVERVIEW

We apply our algorithm to both a synthetic dataset and real-world datasets on the graph reconstruction
task. We evaluate the performance by mean average precision (MAP) and Mean Rank (MR) defined
below. For A ∈ V with degree deg(A) and neighborhood NA =

{
B1, ...Bdeg(A)

}
, let RA,Bi

be the
smallest subset of V containing Bi and all points closer to A than Bi. Then, the MAP is defined as

MAP(f) =
1

|V|
∑
A∈V

1

deg(A)

|NA|∑
i=1

|NA ∩RA,Bi
|

|RA,Bi
|

. (15)

and the MR is defined as

MR(f) =
1

|V|
∑
A∈V

|NA|∑
i=1

(|RA,Bi | − i) . (16)

In addition, we report the number of three kinds of illness defined in Definition 1 after the algorithm
converges.

We run baseline algorithms (Nickel & Kiela, 2017; 2018) and our algorithm on a synthetic dataset,
Yelp Challenge (Tree) (see Table 2), WordNet Verbs (Tree) (see Table 3), WordNet Nouns (Tree) (see
Table 4), Commodity Catalog (Tree) (see Table 5) and WordNet Nouns (Closure) (see Table 6). We
report the reconstruction Mean Rank, MAP, number of capacity errors, number of intra-subtree errors
and number of inter-subtree errors respectively.

A key point to notice is that we focus on tree datasets instead of general DAG or transitive closures of
trees. In terms of the objective (reducing MAP and MR), learning a tree structure is much harder
because the size of the neighborhood set is as few as one. Experiments validate this statement: we
apply the baseline algorithm (Nickel & Kiela, 2017) to the same WordNet Noun Hierarchy dataset
(Nickel & Kiela, 2017) where the transitive closure edges are removed. The performances in terms of
MAP and MR significantly drop compared to the numbers reported in (Nickel & Kiela, 2017) (See
Table 4).

10
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E SYNTHETIC DATASET EXPERIMENTS

0 200 400 600 800 1000 1200 1400
epochs

0

20

40

60

80

100

120

140
nu

m
be

r o
f c

as
es

 o
f i

lln
es

s
Base

tc=0.2
tc=1.0

(a) Capacity illness
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(b) Intra-subtree illness
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(c) Inter-subtree illness

Figure 4: Number of different kinds of illness under different ηtc. Base denotes the baseline algorithm.
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(a) Capacity illness
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(b) Intra-subtree illness
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(c) Inter-subtree illness
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(d) log MR
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Figure 5: Performances of our algorithm under different hyperparameter settings on the synthetic
tree. Base denotes the baseline algorithm, GA is our algorithm where DL is the dilation operation,
RW is the re-weighting strategy followed by the threshold epoch number Ntc.

We synthesize a balanced tree T of 5 layers including the root node. Each non-leaf node in T has 5
children. The edges are directed, pointing from children to parents. We illustrate our algorithm on
this synthetic dataset.

We compare our algorithm (Algorithm 1) to the baseline Poincaré embedding algorithm (Nickel &
Kiela, 2017). In both algorithms, we set the dimension to be 2, learning rate to be 0.5, batch size to
be 50, and the number of negative samples m to be 50.

The comparison between learning procedures is presented in Figure 2. As demonstrated, our algorithm
learns visually more balanced embeddings with less illness. Quantitative results of the comparison,
including the number of illness, MAP and MR, are presented in Figure 4 and Figure 5. We compare
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different Ntc in Figure 5 and different ηtc in Figure 4. Our algorithm produces less illness than the
baseline algorithm and achieves the highest MAP and MR.

Figure 4 shows our explorations on how to use transitive closure edges.They tend to increase the
overall effective gradient magnitude and draw vertices of a same subtree tightly together. Therefore,
this could help reduce capacity illness quickly (See Figure 4 (a)) and eliminate inter-subtree illness
(See Figure 4 (c)). However, it might also confuse the ground-truth tree edges with the added ones,
thus increasing intra-subtree illness (See Figure 4 (b)). When we assign weights to the transitive
closure edges, this side effect is mitigated: ηtc = 0.2 yields the best results.

Figure 5 shows our explorations on how to use dilation and reweighting. These two operations should
be applied after certain epochs of training so that 1) the subtrees are pushed relatively far from each
other 1 to ensure the dilation operation will push vertices in the appropriate directions, and 2) before
the vertices are already pushed to places with sufficient capacity. Empirically we find this threshold
epoch number Ntc = 300 yields the best results.

1A similar idea is shown in the burn-in stage of (Nickel & Kiela, 2017).
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F REAL-WORLD DATASET EXPERIMENTS

F.1 DATASET STATISTICS

Table 1 displays statistics of several datasets used in our experiments (including the Yelp Challenge
Dataset 2, the Commodity Catalog Dataset, and the WordNet dataset (Miller, 1998)). We report the
number of nodes |V|, the number of edges |E|, maximum degree, variance of all degrees, and tree
depths. We make subjective remarks to their size and characteristics.

Dataset |V| |E| Max deg Std of deg Depth Size Characteristics

Yelp Challenge (T) 1587 1586 194 7.9 4 small shallow
Commodity Catalog (T) 134812 134811 726 26.4 6 large shallow; bushy

WordNet Verbs (T) 13542 13541 361 9.1 12 medium deep
WordNet Nouns (T) 82115 82114 666 6.6 15 large deep
WordNet Nouns (C) 82115 769130 82114 913.6 15 large deep; dense

Table 1: Dataset statistics (T: Tree; C: Closure)

F.2 YELP CHALLENGE DATASET (TREE) RESULTS

The results for Yelp Challenge (Tree) are illustrated in Table 2. In all algorithms, we set the learning
rate to be 1.0, batch size to be 10, and the number of negative samples m to be 50.

Dim MR MAP Capacity Intra Inter

Y
E

L
P

C
H

A
L

L
E

N
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E
R

ec
on

st
ru

ct
io

n

Euclidean

2

27.612 0.107 1440 82 28
Nickel & Kiela (2017) 1.681 0.855 292 45 64
Nickel & Kiela (2018) 1.520 0.894 163 47 74

GA-DL (Ours) 1.351 0.926 86 65 47
GA-DL-RW (Ours) 1.202 0.914 162 54 37

Euclidean

5

11.320 0.326 1236 9 44
Nickel & Kiela (2017) 1.063 0.988 1 0 28
Nickel & Kiela (2018) 1.101 0.984 1 11 26

GA-DL (Ours) 1.062 0.987 3 9 20
GA-DL-RW (Ours) 1.030 0.989 3 9 18

Euclidean

10

1.528 0.910 183 1 14
Nickel & Kiela (2017) 1.042 0.990 0 0 25
Nickel & Kiela (2018) 1.064 0.987 0 9 23

GA-DL (Ours) 1.051 0.989 1 5 21
GA-DL-RW (Ours) 1.015 0.993 5 6 9

Table 2: Yelp Challenge Dataset

2https://www.yelp.com/dataset/documentation/main
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F.3 WORDNET VERBS DATASET (TREE) RESULTS

The results for WordNet Verbs (Tree) are illustrated in Table 3. In all algorithms, we set the learning
rate to be 1.0, batch size to be 10, and the number of negative samples m to be 50.

Dim MR MAP Capacity Intra Inter
W
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ec
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ct
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n
Euclidean

2

66.302 0.124 7366 3778 1879
Nickel & Kiela (2017) 8.088 0.521 4826 2582 1683
Nickel & Kiela (2018) 6.875 0.448 5459 1769 2812

GA-DL (Ours) 8.319 0.510 5023 2361 1908
GA-DL-RW (Ours) 3.559 0.563 4543 2741 1399

Euclidean

5

21.245 0.295 10383 1273 277
Nickel & Kiela (2017) 2.329 0.854 235 2321 454
Nickel & Kiela (2018) 2.389 0.853 285 2277 468

GA-DL (Ours) 2.195 0.878 211 1443 920
GA-DL-RW (Ours) 1.722 0.841 378 1306 1893

Euclidean

10

6.240 0.677 4205 1424 300
Nickel & Kiela (2017) 1.950 0.856 232 2322 457
Nickel & Kiela (2018) 1.945 0.855 257 2338 441

GA-DL (Ours) 1.654 0.884 184 1456 828
GA-DL-RW (Ours) 1.654 0.842 241 1255 2110

Table 3: WordNet Verbs

F.4 WORDNET VERBS NOUNS (TREE) RESULTS

The results for WordNet Nouns (Tree) are illustrated in Table 4. In all algorithms, we set the learning
rate to be 1.0, batch size to be 50, and the number of negative samples m to be 50.

Dim MR MAP Capacity Intra Inter
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Euclidean

5

151.321 0.235 46563 21942 2993
Nickel & Kiela (2017) 71.271 0.322 48844 17293 438
Nickel & Kiela (2018) 74.625 0.230 50950 18777 311

GA-DL (Ours) 19.313 0.481 35119 21158 444
GA-DL-RW (Ours) 2.869 0.697 13394 23907 27

Euclidean

10

23.113 0.278 23978 31018 15745
Nickel & Kiela (2017) 41.014 0.324 49152 17276 154
Nickel & Kiela (2018) 38.395 0.241 50986 18690 100

GA-DL (Ours) 7.900 0.754 10647 13547 5551
GA-DL-RW (Ours) 2.738 0.722 9483 24844 32

Table 4: WordNet Nouns
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F.5 COMMODITY CATALOG (TREE) RESULTS

The results for Commodity Catalog (Tree) are illustrated in Table 5. In all algorithms, we set the
learning rate to be 1.0, batch size to be 10, and the number of negative samples m to be 50.

Dim MR MAP Capacity Intra Inter
C
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n
Euclidean

5

163.044 0.024 132276 1480 700
Nickel & Kiela (2017) 86.759 0.063 130479 2001 174
Nickel & Kiela (2018) 50.393 0.082 127437 1968 238

GA-DL (Ours) 5.405 0.745 49837 1971 301
GA-DL-RW (Ours) 2.951 0.683 56922 7711 26

Euclidean

10

59.133 0.052 131806 1676 289
Nickel & Kiela (2017) 67.283 0.071 130212 1998 147
Nickel & Kiela (2018) 36.836 0.112 124366 1964 196

GA-DL (Ours) 2.167 0.978 1871 1861 390
GA-DL-RW (Ours) 2.015 0.881 19902 5525 26

Table 5: Commodity Catalog

The Commodity Catalog (Tree) dataset is generated from real-world e-commerce data. It is extremely
bushy. According to Sala et al. (2018) the hyperbolic space is capable to embed even extremely bushy
trees. However, we find the baseline algorithm in Nickel & Kiela (2017) can not fully exert such
capability. This is because a bushy tree requires large local capacity, but the baseline algorithm takes
very long time to reach such capacity and instead easily gets stuck at local optimum. Experimentally,
the baseline algorithm does not perform well on such bushy dataset, while our algorithm with simple
dilation yields significantly better results 3.

F.6 WORDNET NOUNS (CLOSURE) RESULTS

The results for WordNet Nouns (Closure) are illustrated in Table 6. In all algorithms, we set the
learning rate to be 1.0, batch size to be 50, and the number of negative samples m to be 50. 4

Dim MR MAP Capacity Intra Inter
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Nickel & Kiela (2017) 10 4.736 0.772 46192 151324 9942

GA-DL (Ours) 10 4.788 0.781 41756 144358 11987

GA-DL-RW (Ours) 10 4.270 0.797 38277 134541 12575

Table 6: WordNet Nouns Closure

3Noticeably, since the tree is bushy, adding transitive closure edges would largely increase intra-class illness,
which makes MAP drop.

4Results of Nickel & Kiela (2017) are based on their official implementation and hyperparameters in
https://github.com/facebookresearch/poincare-embeddings.
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