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A P P L I E D  P H Y S I C S

Rapid discovery of stable materials by coordinate-free 
coarse graining
Rhys E. A. Goodall1, Abhijith S. Parackal2, Felix A. Faber1, Rickard Armiento2*, Alpha A. Lee1*

A fundamental challenge in materials science pertains to elucidating the relationship between stoichiometry, 
stability, structure, and property. Recent advances have shown that machine learning can be used to learn such 
relationships, allowing the stability and functional properties of materials to be accurately predicted. However, 
most of these approaches use atomic coordinates as input and are thus bottlenecked by crystal structure identification 
when investigating previously unidentified materials. Our approach solves this bottleneck by coarse-graining the 
infinite search space of atomic coordinates into a combinatorially enumerable search space. The key idea is to use 
Wyckoff representations, coordinate-free sets of symmetry-related positions in a crystal, as the input to a machine 
learning model. Our model demonstrates exceptionally high precision in finding unknown theoretically stable 
materials, identifying 1569 materials that lie below the known convex hull of previously calculated materials from just 
5675 ab initio calculations. Our approach opens up fundamental advances in computational materials discovery.

INTRODUCTION
Finding a needle in a haystack is often used as an analogy for mate-
rials discovery. Only a small proportion of viable material compositions 
[believed to be of the order O(1010) (1)] will have thermodynamically 
stable polymorphs that are experimentally accessible. Most ap-
proaches to tackling this challenge focus on predictive models for 
materials properties, metaphorical sieves that filter out the hay. 
Here, we seek an alternative approach: Can we cut down the size of 
materials space by changing how we represent materials—making 
most of the hay disappear?

Our approach is motivated by a concept ubiquitous in science: 
coarse graining. Taking molecular chemistry, for example, chemists 
typically build intuitions about chemical properties using molecular 
graphs. Molecular graphs are a coarse-grained representation of 
molecules, with each graph corresponding to a unique ensemble of 
atomic coordinates. Searching in the enumerable space of molecu-
lar graphs, as opposed to the innumerable space of possible atomic 
coordinates, has enabled the development of powerful computa-
tional tools (2, 3) and efforts that exhaustively enumerate chemical 
space (4, 5).

In materials science, however, an analogous coarse-grained 
representation of crystal structures is missing. Thus, we are left con-
fronting the innumerable search space problem. Composition-based 
approaches can somewhat overcome this challenge (6–9) but do so 
at the cost of discarding all information about the crystal structures 
of the materials being considered. Hence, either extensive computa-
tional crystal structure searching or laboratory-based experiments 
are required to validate predictions.

One avenue to maneuver around this challenge has been to 
explore restricted classes of structure prototypes using novel de-
scriptors, e.g., perovskites (10–12), quaternary Heuslers (13), or 
elpasolites (14). Specifying the prototype avoids the need for crystal 
structure searching, empowering more extensive screening cam-
paigns as the computational cost of validation is greatly reduced.

Here, we introduce an approach that generalizes these prototype- 
restricted models by considering Wyckoff representations, coordinate- 
free sets of symmetry-related positions in a crystal. This framework 
allows us to develop accurate machine learning models for materi-
als discovery tasks where the relaxed crystal structure is a priori 
unknown.

We first test the ability of our model to identify previously 
unidentified stable materials across a diverse range of chemistries, 
showing that it has a precision ∼3 times larger than that of state-of-
the-art coordinate-free methods based on elemental substitutions 
(15, 16). We then evaluate the performance of our model in identifying 
stable structures within phase diagrams with diverse structures, showing 
that our model finds low-energy structures in the phase diagram 
with ∼5 times lower computational effort. Last, we develop a 
materials exploration pipeline that, starting from an initial nucleus of 
known materials, screens nearby materials space and allows the effi-
cient discovery of new stable materials. We identify 1569 hitherto 
unknown materials that are below the known convex hull of pre-
viously calculated materials from just 5675 ab initio calculations.

RESULTS
Wyckoff representation regression
Building an accurate machine learning model hinges on identifying 
model inputs that are sufficiently informative to allow the target 
variable to be predicted. However, for a machine learning model to 
be useful in practice, these inputs need to be significantly cheaper to 
obtain than the cost of labeling data. In the context of materials 
discovery, previous works have shown that virtual screening work-
flows based on Kohn-Sham density functional theory (DFT) can be 
used to identify novel functional materials (17, 18). Separately, it 
has been shown that accurate machine learning models can be built 
for the formation energies of inorganic crystals calculated via DFT 
using the DFT-relaxed crystal structure as the model input (19–22). 
Inference using these models is significantly cheaper than the 
DFT calculations they approximate, but sadly, their application 
to materials discovery is circular because arriving at a DFT-relaxed 
structure necessitates calculating the energy using DFT mul-
tiple times.
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Several groups have therefore proposed to use composition-based 
inputs (6–9), which avoid the upfront need for structure identifica-
tion. However, the composition is not expressive enough to differ-
entiate polymorphs. This is a significant shortcoming as different 
polymorphs can have radically different properties, most famously 
the example of diamond and graphite. Hence, we turn to model in-
puts that can distinguish polymorphs while also avoiding the cost of 
DFT. Such models can be used to triage which DFT calculations are 
carried out in materials discovery workflows, allowing for a more 
efficient use of computational resources.

In crystallography, one way to completely specify the crystal 
structure of a material is via a combination of (i) the space group of 
the structure, (ii) the dimensions of its unit cell, and (iii) a set of 
Wyckoff positions with the elements that sit on them. The Wyckoff 
positions describe sites that map onto equivalent sites under the 
symmetry transformations of the given space group (23). As a 
consequence, a single Wyckoff position can encode the positions of 
multiple atoms. To construct model inputs from sets of Wyckoff 
positions, we discard the information about the exact positions and 
lattice parameters. In the resulting coordinate-free representation, 
the Wyckoff representation, each Wyckoff position is simply labeled 
by a Wyckoff letter and the element at that position. Consequently, 
as the Wyckoff representation is discrete, it is possible to computa-
tionally enumerate Wyckoff representations that represent candi-
date materials for use in screening campaigns.

The procedure of obtaining the Wyckoff representation from a 
crystal structure can be viewed as a coarse-graining process that 
takes us from an unsymmetrized initial parameter space of size 
4N + 6, through the symmetrized Wyckoff position space of maximum 
size 5M + 6, to the much smaller coordinate-free space of Wyckoff 
representations with size 2M, where N is the number of sites in the 
unit cell, and the corresponding number of Wyckoff positions M 
satisfies M ≤ N. The back mapping from the coarse-grained Wyckoff 

representation to the full structure can often be satisfactorily obtained 
via a single symmetry-constrained DFT relaxation of a prototype 
structure (see Fig. 1).

To use the Wyckoff representation as the input for a machine 
learning model, we formulate the task of property prediction as a 
multiset regression problem. A message passing neural network 
architecture based on the Roost architecture (8) is used to do this; 
the Roost model performs materials property prediction via set re-
gression on the weighted set of elements in a material’s composition.

The principal idea behind the model architecture is to embed the 
coordinate-free Wyckoff positions of a given material into a vector 
space. The representations in this embedded space are then updated 
via message passing operations that consider all directed pairwise 
combinations of members in the multiset. The messages propagate 
contextual information between Wyckoff positions, leading to the 
emergence of material-specific representations. These message passing 
stages are repeated multiple times before a permutation invariant 
pooling operation is applied to the multiset to get a fixed-length 
representation. As the labeling of Wyckoff positions includes several 
choices of setting, we carry out on-the-fly augmentation of equivalent 
Wyckoff representations. We then average the fixed-length representa-
tions for these equivalent inputs to ensure invariance to this choice. 
These averaged fixed-length representations are then fed into a feed- 
forward output neural network that returns the model predictions.

This work focuses primarily on models that predict the forma-
tion energy of inorganic crystalline materials, although the pro-
posed framework and inputs are applicable to any material property. 
We call the proposed model Wren (Wyckoff Representation regres-
sioN). Throughout this work, we train deep ensembles consisting of 
10 Wren models starting from different random initializations (24), 
allowing us to estimate the model’s uncertainty and providing 
better point estimates. Details of the Wren architecture and the 
hyperparameters used are given in the Supplementary Materials.

Ef = Wren

...

Enumerate Wyckoff 
representations of

novel materials

Predict formation energy from 
Wyckoff representation using 

machine learning model

∆Ehull 
 < 0  

∆Ehull 
 > 0  

  

  
  

  

Generate initial structures for 
materials predicted to be stable

Relax structures with symmetry 
constraints to validate predictions

...

Proposed discovery workflow

Compare predicted 
energies against known 
convex hull of stability 

Fig. 1. Coarse-graining materials space using Wyckoff representations enables efficient data-driven materials discovery. A machine learning–powered materials 
discovery workflow that takes advantage of the benefits of the proposed Wyckoff representation. The workflow uses a machine learning model to predict formation 
energies for candidate materials in an enumerated library of Wyckoff representations (shapes are used to denote different Wyckoff positions and colors to denote different 
element types). These predicted formation energies are then compared against the known convex hull of stability. Structures satisfying the required symmetries are then 
generated and relaxed for materials predicted to be stable. The calculated energies of the relaxed structures can then be compared against the known convex hull to 
confirm whether the candidate is stable.
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Selecting stable materials from diverse chemical space
To accelerate the screening of materials space for novel stable mate-
rials, a model must reduce the expected number of calculations 
needed to find a candidate below the known convex hull [here taken 
to be the convex hull of the Materials Project (MP) dataset before 
cleaning]. We first assess the ability of the model to generalize across 
materials space to unseen combinations of elements.

To do this, we consider two datasets. (i) The MP database (25) is 
a highly curated database of high-throughput DFT calculations. At 
the time of access, the MP database contains approximately 140,000 
crystal structures. We apply a canonicalization and cleaning treat-
ment (see Materials and Methods) that leaves a final MP dataset 
containing approximately 105,000 distinct materials. (ii) The data-
set of Wang, Botti, and Marques (WBM), obtained from (16), con-
tains calculated energies and properties of a large number of crystal 
structures that were generated through the substitution of elements 
in known crystal structures from MP with chemically similar ele-
ments (26). Hence, the WBM dataset chemically extrapolates from 
the MP dataset. After deduplication and cleaning, the WBM dataset 
contains approximately 215,000 materials.

We make predictions for the formation energies of the materials 
contained in the WBM dataset using a Wren model trained on the 
MP dataset. We then assess how well the Wren model selects poten-
tially stable materials from the WBM dataset. The relevant metrics 
are the following: the prevalence, the proportion of materials below 
the known convex hull (actual positives); the precision, how many 
of the predictions of potentially stable materials are correct (i.e., the 
ratio of true predicted positives to the total predicted positives); and 
the recall, how many of the actual materials below the known con-
vex hull are found (i.e., the ratio of true predicted positives to actual 
positives). In this setup, the ratio of the precision and the prevalence 
gives the enrichment factor or degree of acceleration. Enrichment 
factors are frequently reported for virtual screening campaigns in 
drug discovery applications (27, 28).

The precision using the Wren model to triage calculations is 
38%. Consequently, given that the prevalence of theoretically stable 
materials in the WBM dataset is 15%, using Wren leads to an 
enrichment factor of 2.5. As enrichment here is computed with 
respect to the active search strategy of (16), this translates into a 
significant improvement in efficiency over random or exhaustive 
search strategies as our improvements compound multiplicatively 
with theirs. Consequently, triaging screening workflows based on 
Wren should enable more materials below the known hull to be 
identified with limited computational resources. We also observe a 
high recall of 76%, meaning that Wren misses relatively few poten-
tially stable materials.

The screening performance of the model can be tuned by adjust-
ing our triage criteria. For example, an alternative triage criterion 
would be to require that     ̂  E    Hull−Pred   +  ̂    < 0 , where     ̂  E    Hull−Pred    is 
the predicted distance of a candidate material from the known 
convex hull and   ̂     is the predictive uncertainty of the model. This 
uncertainty-adjusted criterion encourages the model to suggest 
candidates that it is more certain about, leading to an increased pre-
cision of 53%. The enrichment factor for the uncertainty-adjusted 
criterion is 3.5. Consequently, the choice of triage criteria should 
depend on the aims of a given workflow: the expected opportunity 
cost of false negatives versus false positives, the availability of exper-
imental or computational resources, and how easy it is to expand 
the candidate pool.

The strong performance of Wren can be explained by looking at 
how the mean absolute error changes as a function of the distance 
from the known convex hull. Figure 2 shows that near to the stability 
threshold, EHull−MP = 0, Wren makes highly accurate predictions 
of the formation energy.

More significant errors are seen for materials far above and far 
below the hull. However, in these regions, the average error is less 
than the energy to the convex hull, meaning that the model’s classi-
fications are still reliable. The large errors far above the hull are due 
to the routine underestimation of the formation energy of unstable 
structures. This underestimation is a manifestation of a bias in the 
MP dataset toward structures with low formation energies. The bias 
arises from the fact that large numbers of the initial structures in the 
MP dataset are sourced from the Inorganic Crystal Structure Database 
(ICSD) (29). This result highlights the importance of negative exam-
ples for building generally applicable machine learning models (30–32).

Exploration of unseen tertiary phase diagrams
From an applications perspective, researchers are often interested 
in exploring a single or small number of chemical systems that have 
not previously been studied. Typical approaches for computationally 
mapping out the convex hull of novel chemical systems (33, 34) 
are highly expensive, often requiring thousands of structures to 
be relaxed.

To evaluate the ability of Wren to assist when mapping the phase 
diagrams of targeted chemical systems, we consider the dataset of 
Tholander, Andersson, Armiento, Tasnadi, and Alling (TAATA) 
(35), consisting of three highly sampled ab initio phase diagrams for 
the Hf-Zn-N, Ti-Zn-N, and Zr-Zn-N ternary systems. The ternary 
systems studied in the TAATA dataset were investigated for their 
potential in piezoelectric devices and energy harvesting applications. 

Fig. 2. Wren’s average error is below DFT error in the region around the stability 
threshold. Rolling mean absolute error (MAE) on the WBM dataset as the energy 
to the convex hull is varied for Wren model. A scale bar is shown for the windowing 
period of 40 meV per atom used when calculating the rolling average. The SEM is 
shaded around each curve. The highlighted V-shaped region shows the area in 
which the average absolute error is greater than the energy to the known convex 
hull; this is the region where the model is most at risk of misclassifying structures. 
In most of this region, Wren’s accuracy is well below the threshold of 100 meV per 
atom considered to be the accuracy of semilocal DFT across diverse chemistries 
(66) and comparable to the threshold of ∼50 meV per atom characteristic of fitted 
correction schemes (67–69).
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We focus on ternary systems due to the fact that while crystal struc-
ture prediction approaches such as those in (33, 34) work very well 
for unary and binary systems, there has been less work applying 
these methods to ternary systems (36–38) because of the combina-
torial explosion in the number of candidates that need to be relaxed 
per phase diagram to obtain reliable results—often in excess of 
10,000 relaxations need to be carried out for each chemical system.

The TAATA dataset contains a diverse range of stable and un-
stable structures for each composition [full details about the con-
struction of the TAATA dataset are given in the Supplementary 
Materials and in (35)]. After applying a canonicalization and clean-
ing treatment (see Materials and Methods), we are left with 3104 
entries over 523 compositions in the Ti-Zn-N phase diagram, 
2711 entries over 453 compositions in the Zr-Zn-N phase dia-
gram, and 3381 entries over 596 compositions in the Hf-Zn-N 
phase diagram.

We trained Wren on the MP dataset but excluded all the tertiary 
compounds from the Ti-Zn-N, Zr-Zn-N, and Hf-Zn-N chemical 
systems. This model was then used to predict the energies of tertiary 
compounds in the TAATA dataset. These formation energy predic-
tions were then used to construct hypothetical convex hulls for the 
Ti-Zn-N, Zr-Zn-N, and Hf-Zn-N chemical systems (see the Supple-
mentary Materials). Figure 3 shows how selecting which relaxations 
to carry out on the basis of the predicted distances to the hypothetical 
convex hulls constructed using the Wren model’s predictions can 
accelerate phase diagram exploration. To quantify this effect, we 
look at the enrichment factor as a function of the number of calcu-
lations. The enrichment factor describes the ratio between the num-
ber of candidates found satisfying a target criterion when using a 
given virtual screening strategy and the number of positive candi-
dates that hypothetically would have been found if the candidates 
were screened randomly. Considering materials within 20 meV per 
atom of the DFT-calculated convex hull as our target criteria, we see 
that after 250 calculations, we have a high enrichment factor of 
5.4 in the Ti-Zn-N chemical system, 5.1 for the Zr-Zn-N chemical 
system, and 4.5 for the Hf-Zn-N chemical system when using the 
Wren model, i.e., we are saving 4.5 to 5.4 times the computational 
resource compared to a random search.

Computational prospecting for previously unidentified 
stable materials
Having established the promise of Wren in predicting the stability 
of unseen materials, we deploy Wren on the prospective challenge 
of finding unknown theoretically stable materials. For this stage, we 
trained Wren on the union of the MP and WBM datasets. This 
combined dataset contains approximately 322,000 materials after 
canonicalization and cleaning. We randomly sampled 5% of the 
dataset to use as a test set and trained on the remaining 95%. The 
resulting model has a mean absolute error of 31 meV per atom on 
this test set, which is below the commonly quoted chemical accura-
cy level of 1 kcal/mol (43 meV per atom) (39). The model’s accuracy 
as a function of training set size follows a power-law relationship 
(see the Supplementary Materials). Reassuringly, the model does not 
appear to saturate in performance, suggesting that the representa-
tion is rich enough, and further increases in model performance can 
be unlocked given more data (40–42).

While the coarse-grained space of Wyckoff representations is 
computably enumerable and far smaller than the infinite space of 
atomic coordinates, attempting materials discovery by exhaustively 
screening all possible Wyckoff representations for general chemis-
tries is computationally inefficient as the prevalence of stable mate-
rials remains vanishingly low even in the coarse-grained space. To 
effectively tackle the task of materials discovery in general chemis-
tries, it is necessary to first construct a design space with a higher 
expected prevalence (13). To do this, we draw inspiration from pre-
vious work (15, 16) and generate candidates for screening by making 
elemental substitutions in crystal structures that are near to the 
known convex hull. Focusing on the use of machine learning to 
accelerate workflows tackling general chemistries is particularly 
compelling as false-positive and false-negative data produced in such 
workflows can subsequently be used to retrain the model. Inclusion 
of a diverse range of negative examples in the training data is key 
to improving performance in targeted exhaustive workflows, such 
as in Section C, where design space enrichment is not applicable.

To obtain our substitution probabilities, we extracted 39,164 
ordered structures from the ICSD (29, 43) and binned them according 
to their Wyckoff representations. Within each prototype, all pairs of 

Fig. 3. Wren accelerates the recovery of low-energy structures in unseen chemical systems. The figures show how the enrichment factor varies as we use Wren to 
direct the exploration of the Ti-Zn-N, Zr-Zn-N, and Hf-Zn-N chemical systems. The enrichment factor is the ratio of candidates found satisfying a given triage criterion to 
the number we would expect to find via a random search. The enrichment factor is plotted for candidates within 10, 20, and 30 meV per atom from the convex hull of the 
full explored system. A light-gray guideline is included to show the performance expected from a random model, an enrichment factor of 1. The plots demonstrate that 
using Wren leads to a significant degree of early enrichment of low-energy structures.
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structures are compared, and we count which element substitutions 
(including self-substitutions) would be needed to change one struc-
ture into the other (26). We only consider substitutions where all 
Wyckoff positions sharing one element type are changed simulta-
neously and not per position substitutions. Once normalized, the 
rows of the count matrix can be interpreted as substitution proba-
bilities for each element.

Using these data-mined probabilities, we generated a screening 
library of materials by substituting different elements into struc-
tures taken from the MP dataset. We only consider initial structures 
from the MP dataset with energies above the convex hull less than 
100 meV per atom. This choice of this threshold means that we 
should be including most metastable structures within the MP 
dataset. We consider 10 different substitutions for each initial struc-
ture. Candidates that have the same composition as materials already 
present in the union of the MP and WBM datasets are removed 
from the library. Lanthanide- and actinide-based materials and 
materials containing noble elements were also excluded. This work-
flow produced a screening library of approximately 415,000 candidates. 
The size of the screening library can be readily increased by consid-
ering more elemental substitutions per structure.

Despite constraining our screening set to be close to known 
materials, it is likely that we are still asking the model to make pre-
dictions in areas of materials space where it lacks support from the 
training data. As shown on the WBM dataset, uncertainty estima-
tion allows us to reduce the risk in our materials screening process 
by factoring our model’s uncertainty into our triage criterion. For 
simplicity, we use the same simple uncertainty-adjusted criterion 
considered previously;      ̂  E    Hull−Pred   +  ̂    < 0 . In total, 5675 candidates 
satisfied this screening criterion (see Fig. 4).

Validation with DFT resulted in 4721 completed calculations 
across 4464 unique compositions. Of these, 1569 structures were 
confirmed to be below the convex hull of the MP dataset and 1369 
below the convex hull of the union of the MP and WBM datasets. 
Therefore, the precision for the completed calculations was 33% 
with respect to the MP convex hull, confirming the workflow’s ability 
to accelerate materials discovery. Although direct comparisons are 
not strictly permissible, as previous prospective searches using 
machine learning have been restricted to single prototypes, the 
Wyckoff representation–based approach presented significantly 
surpasses previously reported precisions of 4% (14) and 13% (22). 
Another key consideration for materials discovery is whether the 
model is able to generalize and make novel discoveries or simply 
interpolate current knowledge. Of the 4721 completed calculations, 
269 were assigned to canonicalized prototypes for which there were 
no isopointal prototypes in the training set [see materials and 
methods for description of canonicalization and cleaning approach]. 
Of these, 78 were confirmed to be below the convex hull of the 
union of the MP and WBM datasets. Developing workflows to 
directly target the discovery of structures for which no isopointal 
prototypes exist remains a key challenge for future work.

DISCUSSION
In this work, we introduced the concept of using coarse graining 
to accelerate materials discovery. We developed the framework of 
Wyckoff representation regression, Wren, and applied it to predict 
the formation energy of materials. Wren collapses an infinite search 
space of atomic coordinates into a combinatorially enumerable 
search space, enabling efficient data- driven exploration of materials 
space. On a set of challenging tasks curated from the literature, we 
find that our approach can accurately map the phase diagrams of 
unseen chemical systems and is ∼3 times better at finding stable 
materials than current methods based on elemental substitutions.

We developed a materials prospecting pipeline using Wren. As a 
proof of concept, we identified 1558 new materials below the known 
convex hull from just 5675 calculations. These results demonstrate that 
leveraging Wren allows for more efficient and extensive expansion of 
computational material science databases. Such efforts are crucial to ex-
pedite the search for a wide variety of industrially desirable materials 
required for the transition to a low-carbon economy, e.g., thermoelec-
trics (44), piezoelectrics (35), fast-ion conductors (45), high-voltage 
multivalent cathode materials (46), and caloric materials (47).

MATERIALS AND METHODS
Wren model architecture
The bulk of the Wren architecture directly mimics that of Roost (8), 
and we refer the readers there for an in-depth description of how 
the message passing is formulated. The principle difference between 

Fig. 4. Wren enables automated computational prospecting of previously 
unidentified stable materials. Data-mined substitution probabilities are used to 
generate candidates for screening. A heatmap of the data-mined log substitution 
probabilities for the first 36 main group elements is shown in the top left. The matrix 
captures known chemical trends, for example, that halogens can often be substituted 
for each other in crystal structures. Using the Wren allows far more unrelaxed can-
didates to be considered than possible in conventional DFT-led high-throughput 
workflows. The funnel diagram shows the number of unrelaxed candidates that pass 
the different stability criteria when filtering based on the predictions of the Wren model. 
In total, 4721 of 5675 validation calculations completed. Of these, 1569 were below 
the known convex hull, giving a precision of 33% among the completed calculations.

D
ow

nloaded from
 https://w

w
w

.science.org on January 21, 2025



Goodall et al., Sci. Adv. 8, eabn4117 (2022)     27 July 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 9

the two architectures comes in that the nodes on the dense graph 
now represent the different Wyckoff positions rather than the dif-
ferent elemental species (see Fig. 5). The elemental information is 
encoded using the “matscholar” embedding from (48), which has a 
dimensionality of del = 200. The remainder of the node embedding 
comprises the Wyckoff position embedding (described below) plus 
the fractional multiplicity of that Wyckoff position within the unit 
cell. The combined dimensionality of the Wyckoff proportion of 
the embedding is dwyk = 445.

To reduce the total dimension of the node embeddings, we project 
both the elemental and Wyckoff embeddings into lower-dimensional 
spaces using learnt affine transformations. The low-dimensional 
embeddings are then concatenated to give the node embeddings. In 
this work, we chose   d el   *   = 32  and   d wyk  *   = 32 , giving a total dimen-
sionality of d = 64 for the node embeddings.

We use three message passing layers, each with a single attention 
head. We chose single–hidden layer neural networks with 256 hidden 
units and LeakyReLU activation functions for both parts of the soft- 
attention mechanism. The output network consists of a feed-forward 
neural network with skip connections and ReLU activation func-
tions. The output network used has four hidden layers containing 
256, 256, 128, and 64 hidden units, respectively.

Wyckoff position embedding
In total, across the 230 crystallographic space groups in 3D, there 
are 1731 different Wyckoff positions. The embedding we use is 
made up of three parts: a one-hot encoding of the crystal system 
(of which there are six), a one-hot encoding of the Bravais lattice 
centering (of which there are five), and an encoding constructed 
from the sum of multi-hot encodings of the equivalent sites within 
a given Wyckoff position (see Fig. 5). To construct the multi-hot 
encodings, we first collate all the sites within all the allowed Wyckoff 
positions as recorded on the Bilbao crystallographic server (49). 
Each site can be broken apart into its offset and algebraic terms 
(whether the position corresponds to a line, a plane, etc.), e.g.

   
(− x + y + 1 / 4, y, z + 3 / 4 ) = (1 / 4, 0, 3 / 4 ) +

   
(− x + y, y, z)

    (1)

From this, we construct separate one-hot encodings for the 
unique algebraic and unique offset positions. We end up with 185 
unique algebraic positions and 248 unique offset positions. A 
Wyckoff position is then represented by a sum of the embeddings of 
all the allowed sites. The resulting embedding has a dimensionality 
of 444 with the 1731 Wyckoff positions being encoded into 1038 
unique embeddings. This embedding is designed to try and expose 
as many possible correlations as possible that might exist between 
different Wyckoff positions. As an illustrative example, the embed-
dings for the f Wyckoff position of Fm3 (no. 202), F432 (no. 209), 
and Fm3m (no. 225) are all the same. This arises as they are all 
face-centered cubic lattices that describe the positions of 32 atoms 
within the unit cell at [(0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 
0)] ⊕ [(x, x, x), (−x, −x, x), (−x, x, −x), (x, −x, −x), (−x, −x, −x), 
(x, x, −x), (x, −x, x), (−x, x, x)], where x is a free coordinate of the 
Wyckoff positions. The embedding vector has 4’s in the positions 
corresponding to the (x, x, x), (−x, −x, x), (−x, x, −x), (x, −x, −x), 
(−x, −x, −x), (x, x, −x), (x, −x, x), (−x, x, x) algebraic terms and 8’s 
in the positions corresponding to the (0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 
1/2), (1/2, 1/2, 0) offset terms. In principle, further engineering of 
this embedding could be carried out to encode more prior knowl-
edge; however, for the sizes of dataset considered in this work, the 
benefit of doing so is likely to be marginal.

Invariance to equivalent Wyckoff representations
The categorization of Wyckoff positions depends on a choice of or-
igin (50). Hence, there is not a unique mapping between the crystal 
structure and the Wyckoff representation. To ensure that the model 
is invariant to the choice of origin, we perform on-the-fly augmen-
tation of Wyckoff positions with respect to this choice of origin (see 
Fig. 6). The augmented representations are averaged at the end of the 
message passing stage to provide a single representation of equiva-
lent Wyckoff representations to the output network. By pooling at 
this point, we ensure that the model is invariant and that its training 
is not biased toward materials for which many equivalent Wyckoff 
representations exist.

Fig. 6. On-the-fly augmentation of equivalent Wyckoff representations en-
sures invariance to equivalent descriptions. The labeling of Wyckoff positions 
includes a choice of setting; to ensure that our model is invariant to these choices, 
we perform on-the-fly augmentation of all equivalent Wyckoff representations 
and then average the augmented embeddings before they are fed into the 
output network.

Fig. 5. Breakdown of different components of the Wyckoff position embeddings. 
The Wyckoff position embeddings are made up of two parts: first, the Wyckoff 
proportion of the embedding that is composed of three subsections encoding the crystal 
system, Bravais centering, and equivalent sites in the Wyckoff positions; second, 
the elemental embedding for which we take the matscholar embedding from (48).
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Evaluation of Wyckoff positions
For this work, we primarily make use of spglib (51) to determine the 
space group and Wyckoff positions for the structures in the data-
sets. We set the tolerance thresholds as 0.1 Å̊ for positions and 5° for 
angles (note that these are the same tolerances as used in MP to 
calculate the space group). In real materials, we often observe some 
degree of off-site relaxation away from high-symmetry sites. De-
pending on the level of anisotropy and the symmetry finder’s toler-
ance threshold, this might result in materials being classed as P1. As 
lower-symmetry Wyckoff representations encode less information 
about the structure, the symmetry finder tolerance is an important 
hyperparameter to bear in mind. However, preliminary investiga-
tions showed that varying the tolerance threshold between typical 
values of 0.01 and 0.1 Å̊ did not significantly affect model accuracy 
on the TAATA dataset. We note that as an alternative to manual 
selection of tolerance hyperparameters, symmetry finders with adap-
tive tolerances, such as aflow-sym (52), could be used for the iden-
tification of the space group and Wyckoff positions. However, given 
that we did not observe any appreciable improvement in accuracy 
using aflow-sym and adaptive schemes are typically associated with 
greater computational cost, spglib was picked over other sym-
metry finders because of its speed.

Model training
Throughout this work, we train deep ensembles of 10 models start-
ing from different random initializations for each data setup and 
architecture considered. All the models examined in this work were 
trained using the AdamW optimizer (53) with a fixed learning rate 
of 3 × 10−4. A mini-batch size of 128 and a weight decay parameter 
of 10−6 were used for all the experiments. The models were trained 
for 400 epochs (cycles through the training set).

Formally, deep ensembles require the use of a proper scoring 
rule for training. Therefore, we train all models to minimize the 
following robust L1 loss function, which is an example of a proper 
scoring rule for regression (54, 55)

  ℒ =  ∑ 
i
        √ 

_
 2   ─   ̂     a,  ( x  i  )

     ‖    y  i   −   ̂       ( x  i   )  ‖    1   + log(  ̂     a,  ( x  i   ) )  (2)

where    ̂       ( x  i  )  and    ̂     a,    ( x  i  )   2   are a predictive mean and predictive 
aleatoric variance outputted by the model and yi is the target label.

The expectations,    ̂  y  ( x  i  ) , and epistemic uncertainties,    ̂     a    ( x  i  )   2   
from the ensemble are calculated as

    ̂  y  ( x  i   ) =   1 ─ W    ∑ 
w

  
W

      ̂        w    ( x  i  )  (3)

    ̂    e  
2 ( x  i   ) =   1 ─ W    ∑ 

w
  

W
     (  ̂  y  ( x  i   ) −   ̂        w    ( x  i   ) )   2   (4)

where the index w runs over the W members of the ensemble. The 
total uncertainty of the ensemble expectation is simply the sum of 
the epistemic contribution and the average of the aleatoric contri-
butions from each model in the ensemble

     ̂      2 ( x  i   ) =   ̂    e  
2 ( x  i   ) +   1 ─ W    ∑ 

w
  

W
      ̂    a,   w    

2  ( x  i  )  (5)

Canonicalization and cleaning
All the data used to train models in this work went through a ca-
nonicalization and cleaning process. Tables 1 to 3 show how much 
data are discarded at each stage.

The canonicalization stage removes higher-energy structures 
that have equivalent Wyckoff representations to other structures in 
the dataset. We adopt the same canonicalization scheme as used 
by the AFLOW prototype encyclopedia (56, 57). Most structures 
removed by canonicalization are triclinic, as the lack of symmetries 
in triclinic systems results in many distinct structures mapping to 
the same Wyckoff representation.

For the WBM dataset, we carried out cleaning based on the 
relaxed structures and relaxed Wyckoff representations. We removed 
elemental structures in the WBM dataset to ensure that our end 
points for calculating formation energies were consistent. The union 
of the MP and WBM datasets used to train the Wren model for the 

Table 1. Table showing the impact of cleaning criteria on the MP 
dataset.  

Filter Number

Full dataset 139,367

Lowest-energy canonical representations 129,190

Formation energy less than 5 eV per atom 129,176

Less than 16 Wyckoff positions 108,656

Less than 64 sites in crystal structure 105,057

Volume per site less than 500 Å̊3 104,878

Table 2. Table showing the impact of cleaning criteria on the WBM 
dataset.  

Filter Number

Full dataset 257,486

Lowest-energy canonical representations 224,498

After removal of duplicates found in MP 217,085

Excluding pure systems 216,877

Formation energy less than 5 eV per atom 216,859

Less than 16 Wyckoff positions 216,819

Less than 64 sites in crystal structure 216,807

Volume per site less than 500 Å̊3 216,806

Table 3. Table showing the impact of cleaning criteria on the TAATA 
dataset.  

Filter Number

Full dataset 12,815

Lowest-energy canonical representations 9688

Less than 16 Wyckoff positions 9490

Less than 64 sites in crystal structure 9190

Volume per site less than 500 Å̊3 9190
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prospective validation made use of an earlier canonicalization 
scheme, which led to it containing some duplicated Wyckoff rep-
resentations. In total, the union of MP and WBM used contained 
322,915 materials.

Prospective DFT settings
The validation of predictions in our materials prospecting pipeline 
was carried out using Kohn-Sham DFT with the plane-wave pseudo- 
potential code VASP (58, 59). Projector augmented wave–type 
pseudo-potentials (60, 61) were used with the Perdew-Burke- 
Ernzerhof generalized gradient approximation (GGA) exchange 
correlation functional (62). All calculations were done using a 520-eV 
plane-wave energy cutoff. The pseudo-potentials and Hubbard U values 
were selected to ensure compatibility with data contained in the 
MP. The MP MaterialsProjectCompatibility correction scheme im-
plemented in pymatgen was applied to allow the mixing of GGA 
and GGA  +  U calculations (63). We used the High-Throughput 
Toolkit (httk v1.0) introduced in (64) to manage the calculations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn4117
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