
Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Rui Xue 1 Tong Zhao 2 Neil Shah 2 Xiaorui Liu 3

Abstract
Graph neural networks (GNNs) have demon-
strated remarkable success in graph representa-
tion learning and various sampling approaches
have been proposed to scale GNNs to applica-
tions with large-scale graphs. A class of promis-
ing GNN training algorithms take advantage of
historical embeddings to reduce the computation
and memory cost while maintaining the model
expressiveness of GNNs. However, they incur
significant computation bias due to the stale fea-
ture history. In this paper, we provide a com-
prehensive analysis of their staleness and infe-
rior performance on large-scale problems. Mo-
tivated by our discoveries, we propose a simple
yet highly effective training algorithm (REST) to
effectively reduce feature staleness, which leads
to significantly improved performance and con-
vergence across varying batch sizes, especially
when staleness is predominant. The proposed al-
gorithm seamlessly integrates with existing solu-
tions, boasting easy implementation, while com-
prehensive experiments underscore its superior
performance and efficiency on large-scale bench-
marks. Specifically, our improvements to state-
of-the-art historical embedding methods result in
a 2.7% and 3.6% performance enhancement on
the ogbn-papers100M and ogbn-products dataset
respectively, accompanied by notably acceler-
ated convergence. The code can be found at
https://github.com/RXPHD/REST.

1. Introduction and Related Works
Graph neural networks (GNNs) have emerged as power-
ful tools for representation learning on graph-structured

1Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, US 2Snap Inc., Belle-
vue, US 3Department of Computer Science, North Carolina
State University, Raleigh, US. Correspondence to: Rui Xue
<rxue@ncsu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

data (Hamilton, 2020). They exhibit significant advantages
across various general graph learning tasks, including node
classification, link prediction, and graph classification (Kipf
& Welling, 2016; Gasteiger et al., 2019; Veličković et al.,
2017; Wu et al., 2019; Xue et al., 2023b). GNNs have also
proven to be highly effective in various applications, such as
recommendation systems, biological molecules, and trans-
portation (Tang et al., 2020; Sankar et al., 2021; Fout et al.,
2017; Wu et al., 2022; Zhang et al., 2024). However, scala-
bility becomes a dominant bottleneck when applying GNNs
to large-scale graphs. This is because the recursive feature
propagations in GNNs lead to the notorious neighborhood
explosion problem since the number of neighbors involved
in the mini-batch computation grows exponentially with the
number of GNN layers (Hamilton et al., 2017; Chen et al.,
2018; Han et al., 2023). This is particularly undesirable for
deeper GNNs that try to capture long-range dependency on
large graphs using more feature propagation layers. This
neighborhood explosion problem poses a significant chal-
lenge as it cannot be accommodated within the limited GPU
memory and computation resources during training and in-
ference, which hampers the expressive power of GNNs and
limits their applications to large-scale graphs.

Existing works have made significant contributions to ad-
dress this issue from various perspectives, such as sam-
pling, distributed computing, and pre-computing or post-
computing approaches. In this paper, we focus on the
most commonly used sampling approaches. In particular,
various sampling approaches have been proposed to mit-
igate the neighborhood explosion problem in large-scale
GNNs (Hamilton et al., 2017; Chen et al., 2018; Chiang
et al., 2019; Zeng et al., 2020). These sampling approaches
attempt to reduce the graph size by sampling nodes and
edges to lower the memory and computation costs in each
mini-batch iteration. However, they also introduce estima-
tion variance of embedding approximation in the sampling
process, and they inevitably lose accurate graph information.

Historical embedding methods have emerged as promising
solutions to address this issue, such as VR-GCN (Chen
et al., 2017), MVS-GCN (Cong et al., 2020), GAS (Fey
et al., 2021), and GraphFM (Yu et al., 2022). They propose
to reduce the estimation variance of sampling methods using
historical embeddings. Specifically, during each training
iteration, they preserve intermediate node embeddings at

1

https://github.com/RXPHD/REST

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

each GNN layer as historical embeddings, which are then
used to reduce estimation variance in future iterations. The
historical embeddings can be stored offline on CPU memory
or disk and will be used to fill in the inter-dependency from
nodes out of the current mini-batch. Therefore, it does
not ignore any nodes or edges, which reduces variance and
keeps the expressivity properties of the backbone GNNs
with strong scalability and efficiency. Please refer Appendix
M for a detailed summary of related works.

Despite their promising scalability and efficiency, in this pa-
per, we discover that all historical embedding methods can
not consistently outperform vanilla sampling methods such
as GraphSAGE which do not utilize historical embeddings,
especially on larger graph datasets. Moreover, their predic-
tion performance and convergence suffer from significant
degradation when the batch size decreases. Although some
existing works have attempted basic analyses (Huang et al.,
2023; Wang et al., 2024), these efforts are quite limited, and
the underlying reasons remain unclear. In this paper, we
provide the first and most comprehensive analysis, incorpo-
rating both theoretical and empirical studies, to reveal the
emergence of significant embedding staleness with these
methods and its severe negative impact on GNN training.
Our preliminary study reveals that the primary obstacle lies
in the fact that these stored historical embeddings are not
computed by the most recent model parameters, leading to
a phenomenon known as staleness. Staleness represents the
approximation error between the true embeddings computed
using the most recent model parameters and the stale embed-
dings cached in the memory. This issue is pervasive across
all historical embedding methods and significantly impacts
training convergence and model performance, particularly
when models undergo frequent updates—such as training
GNNs on large-scale graphs with smaller batch sizes. Due
to the substantial bias introduced by stale embeddings, these
approaches cannot fully realize their potential in perfor-
mance, despite their excellent efficiency and scalability.

Motivated by our findings and analysis, we propose a sim-
ple yet highly effective solution to reduce feature staleness
by decoupling the forward and backward phases and dy-
namically adjusts their execution frequencies, allowing the
memory table to be updated more frequently than the model
parameters. Our aim is to alleviate the current bottleneck
on performance and convergence while preserving excep-
tional efficiency. Our proposed framework is highly flex-
ible, orthogonal and compatible with any sampling meth-
ods, memory-based models, and various GNN backbones.
Comprehensive experiments demonstrate its effectiveness
in addressing the significant staleness issue present in large-
scale datasets, leading to superior prediction performance
and accelerated convergence while maintaining or even im-
proving running time and memory efficiency. Specifically,
our enhancements to state-of-the-art historical embedding

methods yield a 2.7% and 3.6% performance boost on the
ogbn-papers100m and ogbn-products dataset respectively.
Notably, these improvements are achieved with significantly
faster convergence times without sacrificing efficiency.

2. Preliminary Study
In this section, we illustrate that the staleness of historical
embeddings serves as the bottleneck for existing historical
embedding approaches when handling large-scale graphs.
We aim to support this claim with empirical studies on
prediction performance, training convergence, memory per-
sistence, and approximation errors.

2.1. Message Passing with Historical Embeddings

Formulations. Let hl
v represent the feature embedding of

the in-batch node v in l-th layer and f
(l)
θ denote the message

passing update in a l-th layer with parameter θ. The standard
sampling method for a mini-batch B ⊂ V can be expressed
as follows:

h(l+1)
v = f

(l+1)
θ (hl

v, [h
l
u]u∈N (v)∩B) (1)

where N (v) ∩ B is the in-batch 1-hop neighborhood of
in-batch node v. As discussed in the introduction, the
sampling methods (e.g., GraphSAGE, FastGCN) drop all
out-of-batch neighbors N (v)\B and cannot aggregate their
embeddings [hl

u]u∈N (v)\B , which results in high estima-
tion variance. To address this issue, historical embedding
methods use historical embeddings [h̄l

u]u∈N(v)\B to approx-
imate [hl

u]u∈N(v)\B . For example, the message passing in
GAS (Fey et al., 2021) can be denoted as:

h(l+1)
v = f

(l+1)
θ (hl

v, [h
l
u]u∈N (v)) (2)

= f
(l+1)
θ (hl

v, [h
l
u]u∈N (v)∩B︸ ︷︷ ︸

in-batch neighbors

∪ [hl
u]u∈N (v)\B︸ ︷︷ ︸

out-of-batch neighbors

)

(3)

≈ f
(l+1)
θ (hl

v, [h
l
u]u∈N (v)∩B︸ ︷︷ ︸

in-batch neighbors

∪ [h̄l
u]u∈N (v)\B)︸ ︷︷ ︸

historical embeddings

,

(4)

followed by feature memory update h̄l+1
v = hl+1

v . It is evi-
dent that historical embedding methods effectively reduce
the estimation variance of h(l+1)

v without further expansion
on the neighbor size. An illustrative example is presented
in Figure 1 to elaborate on these concepts. However, these
historical embedding methods also incur larger estimation
bias due to the approximation using historical embeddings.

2.2. Empirical Study

Inferior performance. While historical embedding meth-
ods exhibit both strong performance and scalability on small-

2

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 1: We sample a batch with a batch size of 2 (e.g.,
nodes 1 and 2), their direct one-hop neighbors are nodes 3
and 4. Nodes 1 and 2 are considered ”in-batch” nodes, as
they always use real-time updated embeddings and partici-
pate in model updates with gradient computation; Nodes 3
and 4 are considered ”direct one hop out-of-batch” nodes
(simply referred to as ”out-of-batch” nodes (Yu et al., 2022))
because they are approximated using historical embeddings
and their embeddings are not real-time updated; Node 5
is called ”other out-of-batch” node that is not used in the
current iteration.

scale and medium-scale graph datasets, they can not con-
sistently outperform simpler variants such as GraphSAGE,
Cluster-GCN, and GraphSAINT on larger datasets such as
Reddit and ogbn-products as shown in multiple works (Fey
et al., 2021; Yu et al., 2022; Xue et al., 2023a). The bitter
truth is that their prediction performance can be signifi-
cantly inferior in many cases even though they cost much
more offline memory to store hidden features in all inter-
mediate layers. For example, as one of the state-of-the-art
historical embedding methods, GAS (GCNII) achieves only
77.20% accuracy on ogbn-products while GraphSAGE and
GraphSAINT achieve 78.70% and 79.08%. The potential of
historical embedding methods is significantly limited. How-
ever, their fundamental limitations of inferior performance
are yet unclear. Next, we will provide a comprehensive
analysis from the feature staleness perspective.

Convergence analysis. We present a deeper empirical con-
vergence analysis to reveal the performance bottleneck of
historical embedding methods. To underscore this point,
we present convergence curves comparing GraphSAGE,
two representative historical embedding methods, GAS and
GraphFM with GCN as backbone. We explore the impact
of staleness on accuracy and convergence by using datasets
of different scales (ogbn-arxiv and ogbn-products)and ex-
perimenting with both small and large batch sizes. Compar-
isons are conducted under identical hyperparameter settings.
“Small” and “Large” denote the small and large batch sizes
settings, respectively. In particular, when using small batch
sizes or larger graphs, model updates occur more frequently
within a single epoch. Consequently, staleness becomes
significant and exerts a dominant influence on performance.

From Figure 2, when using the small ogbn-arxiv dataset
with a larger batch size (staleness is minor), GraphSAGE
exhibits slower convergence and poorer performance than

GAS; however, in all other cases (when staleness is large),
GraphSAGE converges more rapidly and achieves better
performance. Despite GraphFM’s utilization of current one
hop neighbors to mitigate staleness, its impact is limited.
This observation supports our earlier conclusion that histori-
cal embedding methods perform well when staleness is not
dominant but face limitations in realizing their full potential
under conditions of high staleness.

(a) GAS-ogbn-arxiv (b) GAS-ogbn-products

(c) FM-ogbn-arxiv (d) FM-ogbn-products

Figure 2: GAS and FM exhibit inferior performance and slower
convergence, especially on larger datasets (i.e., ogbn-products) or
small batch size (i.e., “Small”).

Memory persistence. To clearly illustrate staleness, we
introduce a new notation of “memory persistence” for each
node embedding, which quantifies the duration that a histor-
ical embedding remains in memory before being updated,
measured in the number of optimizer steps. A large memory
persistency means it has not been updated frequently, which
may lead to stronger feature staleness. We present the aver-
age memory persistence over all nodes in GAS (Fey et al.,
2021) on ogbn-arxiv and ogbn-products datasets with vary-
ing batch sizes in Figure 3. It can be observed that smaller
batch size incurs larger memory persistence. In particular,
when employing a batch size of 1024 on ogbn-products, the
model experiences around 2400 updates before updating
the historical embedding, which results in a considerable
persistence of stale features.

Embedding approximation errors. We present Figure 4 to
show the approximation error of the embeddings between
GAS and full batch ||h̃(L)

v − h
(L)
v || on ogbn-arxiv and ogbn-

products. Please refer Appendix J for GraphFM.

As shown in Figure 4, the embeddings in the final layer
gradually diverge from the true embeddings computed using
full-batch data as the model parameters are updated through
stochastic gradient descent. Consequently, the approxima-
tion errors accumulate and grow over epochs due to the
accumulated staleness of the historical embeddings. These
empirical analyses demonstrate that historical embedding

3

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 3: Embedding Memory persistence (GAS). Figure 4: Approx. Error on Arxiv(L) and Products(R).

methods such as GAS are significantly influenced by the
quality of the historical embeddings utilized for message
passing.

3. Methodology
In this section, we first elucidate the primary factor influ-
encing the final performance through theoretical analysis.
Subsequently, we introduce a simple yet novel and effec-
tive approach designed to mitigate staleness at its source,
thereby significantly enhancing performance. Furthermore,
we present an advanced version that takes into account the
importance of nodes, demonstrating improved robustness
and performance, particularly in scenarios where staleness
is pronounced.

3.1. Approximation Error Analysis

While a historical embedding approaches efficiently pre-
serve the expressive power of the original GNNs and reduce
variance, they introduce approximation errors between the
exact embeddings and historical embeddings. This limita-
tion becomes more pronounced, particularly in scenarios
with large graphs or when employing deep GNN models.
To illustrate this challenge and provide motivation for our
work, we first introduce a theory to demonstrates that the
approximation error of the gradient can be upper-bounded
by the accumulation of staleness in each layer. We adhere
to the assumptions used in existing works (Fey et al., 2021).

Theorem 3.1 (Gradient Approximation Error). Consider
a L-layers GNN f

(l)
θ (h) with Lipschitz constant α(l),

UPDATE(l)
θ function with Lipschitz constant β, l =1, . . . , L.

∇Lθ has Lipschitz constant ε. If ∀v ∈ V , ||h̄(l) − h(l)||
denotes the staleness between historical embeddings and
true embeddings from full batch aggregations, then the ap-
proximation error of gradients is bounded by:

||∇Lθ(h̃
(L)
v)−∇Lθ(h

(L)
v)|| (5)

≤ε
L∑

l=1

(
L∏

k=l+1

α(k)β|N (v)| ∗ ||L̃v,|| ∗ ||h̄(k−1) − h(k−1)||

)
.

The proof of the above theorem and the explanation of the
assumption can be found in Appendix A. We can conclude
that the gradient is influenced by the number of layers L, the
number of neighbors N (v), and the per-layer approxima-
tion error ||h̄(k−1) − h(k−1)||. If we effectively reduce the

approximation error, we can efficiently minimize this error
accumulation across layers and tighten the upper bound.

3.2. REST: REducing STaleness

As discussed in Appendix M, existing works such as
GAS (Fey et al., 2021), GraphFM-OB (Yu et al., 2022),
and ReFresh (Huang et al., 2023) endeavor to tackle stale-
ness from various angles, such as minimizing nodes inter-
connectivity, applying regularization techniques, employing
feature momentum by in-batch nodes, and expanding in-
batch neighbor size, to alleviate staleness. However, these
approaches can not control the staleness effectively and ef-
ficiently. Consequently, they typically yield only marginal
performance improvements. We attribute this to their inabil-
ity to resolve the staleness issue stemming from the disparity
in updating frequency of model parameters and the memory
tables for historical embeddings. Therefore, we propose a
simple yet novel approach to adjust the frequency of for-
ward and backward propagation, addressing this problem
at its root. Note that our model is orthogonal to all of the
existing techniques and can be seamlessly integrated.

In standard training procedures, forward and backward prop-
agation are typically interconnected. During forward prop-
agation, intermediate values are computed at each layer,
which are then used during backward propagation to com-
pute gradients and update the model parameters. This cou-
pling ensures that the gradients computed during backward
propagation accurately reflect the effect of the model param-
eters on the loss function, allowing for effective parameter
updates during optimization. Under these limitations, it is
natural to mitigate feature staleness by using larger batch
sizes, but it will cost higher memory and computation costs.

Effortless and Effective Staleness Reduction. In histor-
ical embedding methods, in addition to the computation
of intermediate values, forward propagation also plays a
role in updating the memory table by in-batch nodes. Con-
sequently, only the historical embeddings of the in-batch
nodes are updated during a single training iteration. Taking
GAS as an example, the entire table completes an update
after k = n

B training iterations, where n is the number of
nodes and B is the batch size. However, during this period,
model parameters undergo updates k times. The inability to
refresh historical embeddings using the most recent parame-
ters results in the approximation errors and it accumulates

4

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

at each training iteration. When retrieving the embedding
from memory, this error introduces significant bias to the
final representation, as illustrated in Figure 4. The root issue
lies in the fact that the frequency of updating the memory
table is too slow compared with the frequency of model up-
dates. The disparity between the frequency originates from
the forward and backward propagation are tightly coupled.

Building upon this analysis, we propose to simply decou-
ple the forward and backward propagations and adjust their
execution frequency. The process is illustrated in Figure 5
and outlined in Algorithm 1. Specifically, F times the for-
ward propagations on batch B1 . . .BF are initially executed
without requiring gradient (line 7). This process updates the
memory table at each layer using in-batch nodes exclusively.
Subsequently, another forward propagation with different
batch B̃j is executed with requiring gradients for the fol-
lowing model update by backward (line 10). The updated
embeddings from every forward propagation (line 11 and
line 8) are then cached in memory to facilitate the updat-
ing of embeddings and mitigate staleness issues. Hence,
our REST approach effectively reduces the gap in update
frequencies from k to k

F . The hyperparameter F directly
governs the staleness and allows for flexible adjustments
without increasing memory cost. Our experiments in Ap-
pendix D empirically demonstrate that employing F = 1
not only yields significantly improved performance com-
pared to baselines but also accelerates convergence than
baselines. This training process is very simple and flexi-
ble since forward passes are relatively cheap and trivially
parallelizable. For example, it can be further accelerated
by parallelizing the forward propagations (line 7 and line
10) on multiple GPUs. However, in this paper, we only use
single GPU for a fair comparison with the baselines.

Algorithm 1 REST Technique

1: Input: Input graph G = (V, E), GNN f(X,Θ0)
2: Output: Fine-tuned GNN f̃(X,Θ∗)
3: Begin
4: for each mini-batch B1 . . .BF ;
5: each mini-batch B̃j do
6: for i in updating frequency F do
7: H1 = f(Bi,Θ

k): offline forward propagation
8: Cache into memory M← H1[in-batch]
9: end for

10: H2 = f(B̃j,Θ
k): forward propagation with back-

ward
11: Cache into memory M← H2[in-batch]
12: Compute loss and gradient update
13: end for

Finally, we can prove that REST achieves a faster conver-
gence rate theoretically (Chen et al., 2017; Shi et al., 2023):

Theorem 3.2. Given the upper bound of the expectation
of gradients’ norm in the state-of-the-art historical embed-

dings methods such as GAS, LMC, and REST, which is

E[||∇θL(θR)||2]

≤
(
2(L(θ1)− L∗

θ +Gθ)

N
1
3

+
ϵGθ

N
2
3

+
Gθ

N(1−√ρ)

) 1
2

(6)

where Gθ is the upper bound of gradient approximation
error, N is the number of iterations, Ris chosen uniformly
from [N], ρ ∈ (0, 1). Based on Theorem 3.1, the upper
bound Gθof REST is tighter than that of existing historical
embedding methods. Consequently, the convergence speed
of REST surpasses that of existing works.

The detailed proof can be found in Appendix B. In addi-
tion to its simplicity, REST exhibits remarkable generality.
Notably, REST can also address staleness in backward by
maintaining a historical gradient cache and updating it at a
different frequency F̃ without updating model parameters
(see Bidirectional REST in Section 4.5). Furthermore, for
the application of REST to asynchronous updates, please
refer to Appendix P for the discussion.

3.3. REST: Sampling Strategy

It’s crucial to emphasize that our algorithm is versatile and
applicable to any historical embedding methods. Further-
more, this flexibility also extends to the sampling strategy
employed in forward propagation, encompassing various
techniques such as uniform sampling, importance sampling,
and any custom sampling method tailored to the specific re-
quirements of the task at hand. Here, we propose a feasible
option to further address the staleness issue by consider-
ing the varying significance of individual nodes within the
graph, termed REST-IS (Importance Sampling). Notably,
nodes with high degrees are more likely to serve as neighbor
nodes for the sampled nodes, making a more substantial
contribution to the final representation and carrying higher
importance. The staleness in these highly important node
embeddings makes a more detrimental impact on perfor-
mance compared to nodes with lower importance.

Motivated by this potential issue, rather than employing
conventional importance sampling techniques, we propose
a novel and efficient method for importance sampling. Our
method utilizes the neighbor nodes from batch (B̃j in Al-
gorithm 1) in the forward propagation for model updates
(line 10) and lets them serve as the in-batch nodes in batch
B = B1 ∪ B2 · · · ∪ BF for updating the memory table
(line 7). We are motivated by the fact that if one node is
frequently served as neighbor nodes by different batches,
it’s likely to holds higher importance than other nodes in the
graph. We summarize this approach by presenting formulas:

h(l+1)
v = f

(l+1)
θ (hl

v, [h
l
u]u∈N (v)) (7)

5

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 5: Training process for the proposed REST technique. (1) F mini-batches B1 . . .BF (blue ellipse) are executed without computing
gradients to update memory table (2) Another one mini-batch B̃ (yellow ellipse) is processed with gradient computation to update the
model parameters.

= f
(l+1)
θ (hl

v, [h
l
u]u∈N (v)∩B̃ ∪ [hl

u]u∈N (v)\B̃) (8)

≈ f
(l+1)
θ

(
hl
v, [h

l
u]u∈N (v)∩B̃

∪
[
f
(l+1)
θ (hl

w, [h
l
w]w∈N (u)∩B ∪ [h̄l

w]w∈N (u)\B︸ ︷︷ ︸
Historical

)
]
u∈N (v)\B̃

)
(9)

Similar to the initial approach, we employ historical em-
beddings [h̄l

w]w∈N (u)\B for these out-of-batch nodes. Sub-
sequently, we store both the in-batch nodes [hl

w]w∈N (u)∩B̃

and the in-batch nodes [hl
u]u∈N (v)∩B into memory for up-

dating historical embeddings, as they are all freshly com-
puted. As only neighbor nodes are chosen as in-batch nodes
during memory table update, this approach simply and ef-
ficiently accounts for the importance of each node. This
approach can be especially helpful when dealing with a high
staleness situation, as shown in our experiments.

4. Experiments
In this section, we conduct experiments to showcase the
superior ability of our proposed algorithms in improving the
performance while accelerating the convergence, especially
when staleness is predominant.

Experimental setting. We first provide a best perfor-
mance comparison with multiple major baselines includ-
ing GCN (Kipf & Welling, 2016), GraphSage (Hamilton
et al., 2017), FastGCN (Chen et al., 2018), LADIES (Zou
et al., 2019), Cluster- GCN (Chiang et al., 2019), Graph-
SAINT (Zeng et al., 2020), SGC (Wu et al., 2019), GN-
NAutoScale(GAS) (Fey et al., 2021), VR-GCN (Chen et al.,
2017), MVS-GCN (Cong et al., 2020) and GrpahFM (Yu
et al., 2022) on three widely used large-scale graph datasets
including REDDIT, ogbn-arxiv, and ogbn-products (Hu
et al., 2020). Based on our current computation resources,
we also include two larger datasets, ogbn-papers100m and
MAG240M, in Appendix E. For our model, we opt to use
GAS based approach for simplicity since it’s proven the
best (Fey et al., 2021). We provide comparison with recent
related baselines Refresh (Huang et al., 2023) and LMC
(Shi et al., 2023) in Appendix G. We also include compar-
isons with several minor baselines (Wang et al., 2024; Bai

et al., 2023) in Appendix O, which have not yet been of-
ficially published or do not have publicly available code,
ensuring that our results are as comprehensive as possible.
The hyperparameter tuning of baselines closely follows their
default settings (See Appendix R). Besides, we have chosen
to stick to the baseline settings (such as sampling methods)
in this work to maintain consistency across our baselines
although numerous sophisticated tricks could potentially
enhance performance. We emphasize that our proposed
method is orthogonal to them. For our model, we choose
a frequency of F = 1, as it has been proven to be effective
in ablation study. The performance is shown in Table 1. In
instances where performance metrics or hyperparameters
are not reported, we denote them with “—” to align with
the baseline papers. OOM stands for out-of-memory. Note
that, REST uses default uniform sampling while REST-IS
uses proposed importance sampling.

4.1. Performance

Table 1 showcases the accuracy comparison of REST and
REST-IS with state-of-the-art baseline methods across mul-
tiple backbones. We can observe the following:

• All historical embedding methods exhibit inferior per-
formance compared to simple models like GraphSAGE on
the large dataset, ogbn-products, aligning with our earlier
observations. Note that GraphFM uses in-batch nodes to
compensate for staleness to a certain extent. However, it
only achieves marginal improvement. This stems from their
inability to eliminate staleness at its source, as discussed in
the Section 3.2, whereas our approach can.

• Compare with all other baselines on large scale datasets,
our proposed algorithms outperform all baselines on ogbn-
arxiv and ogbn-products and reach comparable performance
on Reddit. Specifically, REST can achieve 73.2% on ogbn-
arixv and 80.5% on ogbn-products. Note that, it boosts
the performance of GAS by 3.6% when using APPNP as
GNN backbone. The only exceptions are that GraphSAINT
slightly outperforms our method. However, they require
complicated and time-consuming preprocessing.

6

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

•When combined with results from larger datasets such as
ogbn-products, ogbn-papers100M, and MAG240M, which
exhibit significant staleness, our model demonstrates a sub-
stantial performance boost compared to smaller datasets
(e.g., ogbn-arxiv) (see Appendix E). This clearly indicates
that our approach effectively addresses the staleness issue.
Given the increasing size of datasets in practical, these re-
sults highlight the potential and necessity of our work.

Table 1: Accuracy comparison (%) with major baselines.
Cyan denotes the best performance under a specific dataset.

nodes 230K 169K 2.4M
edges 11.6M 1.2M 61.9M

Framework GNNs REDDIT ARXIV PRODUCTS

Major GraphSAGE 95.4± 0.2 71.5± 0.2 78.7± 0.1
FastGCN 93.7± 0.1 — —
LADIES 92.8± 0.2 — —

Cluster-GCN 96.6± 0.1 — 79.0± 0.2
GraphSAINT 97.0± 0.1 — 79.1± 0.1

SGC 96.4± 0.1 — —
VR-GCN 94.1± 0.1 71.6± 0.1 76.4± 0.1

MVS-GNN 94.9± 0.1 71.6± 0.1 76.9± 0.1
Full Batch GCN 95.4± 0.2 71.6± 0.1 OOM

APPNP 96.1± 0.1 71.8± 0.1 OOM
GCNII 96.1± 0.1 72.8± 0.2 OOM

GAS GCN 95.4± 0.1 71.7± 0.2 76.7± 0.2
APPNP 96.0± 0.1 71.9± 0.2 76.9± 0.1
GCNII 96.7± 0.1 72.8± 0.1 77.2± 0.3

GraphFM GCN 95.4± 0.2 71.8± 0.2 76.8± 0.2
GCNII 96.8± 0.1 72.9± 0.1 77.4± 0.3

REST (Ours) GCN 95.6± 0.1 72.2± 0.2 79.6± 0.1
APPNP 96.4± 0.1 72.4± 0.1 80.0± 0.1
GCNII 96.8± 0.1 73.2± 0.1 79.8± 0.2

REST-IS (Our) GCN 95.7± 0.1 72.3± 0.1 78.6± 0.1
APPNP 96.5± 0.1 72.4± 0.2 80.5± 0.2
GCNII 96.8± 0.1 72.8± 0.2 79.6± 0.3

4.2. Improvement for Historical Embeddings

Experimental setting. According to our analysis in method-
ology, our proposed approach can efficiently reduce the
staleness in all of the memory-based algorithms, especially
when the batch size is small. Hence, we conduct further
experiments under different batch sizes to show the effec-
tiveness of our algorithm. We first present a comparison
with three representative historical embedding methods, GN-
NAutoScale (GAS) (Fey et al., 2021), VR-GCN (Chen et al.,
2017) and MVS-GCN (Cong et al., 2020). The results are
shown in Table 2 and Table 3. In these experiments, we
closely adhere to their settings, including the datasets they
utilized in their paper and official repositories.

In detail, both VR-GCN and MVS-GCN leverage neigh-
bor sampling, akin to the approach introduced by Graph-
SAGE (Hamilton et al., 2017), whereas GAS adopts a dif-
ferent strategy. GAS begins the process by employing the
METIS algorithm to partition the graph into distinct clusters.
Following this partitioning, one or more of these clusters are
thoughtfully selected to constitute a batch for computation
purposes. The total number of clusters is detailed in Table 2
under the name “parts”. The number under “BS” (batch
size) indicates the number of clusters included in one batch.
Performance Analysis. From results, we can observe:

Table 2: Accuracy (%) improvement for GAS. Cyan denotes
the best performance under a specific GNN model.

DATASET GNN PARTS BS GAS +REST +REST-IS

Products

GCN 70 5 75.6 ± 0.4 77.6 ± 0.2 77.9 ± 0.2
10 76.5 ± 0.2 79.4 ± 0.2 78.6 ± 0.1

APPNP 40 5 75.0 ± 0.4 79.7 ± 0.2 80.4 ± 0.1
10 76.8 ± 0.1 80.1 ± 0.1 80.4 ± 0.1

GCNII 150 5 74.8 ± 0.6 75.9 ± 0.3 76.2 ± 0.3
20 76.9 ± 0.3 79.8 ± 0.3 79.6 ± 0.2

Reddit

GCN 200 20 94.8 ± 0.2 95.3 ± 0.1 95.4 ± 0.1
100 95.4 ± 0.1 95.6 ± 0.1 95.7 ± 0.1

APPNP 200 20 92.6 ± 0.2 95.9 ± 0.1 96.1 ± 0.1
100 96.0 ± 0.1 96.4 ± 0.1 96.5 ± 0.1

GCNII 200 20 93.9 ± 0.1 95.7 ± 0.1 95.7 ± 0.1
100 96.7 ± 0.1 96.8 ± 0.1 96.8 ± 0.1

Arxiv

GCN 80

5 67.6 ± 0.6 71.1 ± 0.3 71.9 ± 0.1
10 69.5 ± 0.5 71.3 ± 0.2 72.1 ± 0.1
20 70.6 ± 0.2 71.5 ± 0.1 72.2 ± 0.2
40 71.5 ± 0.2 72.2 ± 0.1 72.3 ± 0.2

APPNP 40
5 69.3 ± 0.4 71.7 ± 0.2 72.3 ± 0.2

10 70.0 ± 0.3 72.1 ± 0.2 72.4 ± 0.1
20 71.6 ± 0.3 72.4 ± 0.1 72.3 ± 0.2

GCNII 40
5 70.0 ± 0.3 72.6 ± 0.3 72.7 ± 0.2

10 71.9 ± 0.2 72.7 ± 0.2 72.7 ± 0.1
20 72.5 ± 0.3 73.1 ± 0.1 72.8 ± 0.2

Table 3: Improvement (%) for VR-GCN and MVS-GCN.
Cyan and Magenta indicate the best performance for them.

Dataset Batch Size VR-GCN +REST +REST-IS

Products 10000 76.3 ± 0.3 77.4 ± 0.3 78.0 ± 0.2
50000 76.4 ± 0.1 77.5 ± 0.1 78.1 ± 0.2

Reddit
256 91.7 ± 0.2 93.8 ± 0.2 94.1 ± 0.1
512 93.0 ± 0.2 94.1 ± 0.2 94.2 ± 0.2

2048 94.1 ± 0.1 94.5 ± 0.1 94.3 ± 0.1

Arxiv

128 70.4 ± 0.3 71.7 ± 0.3 71.9 ± 0.1
512 71.5 ± 0.3 72.3 ± 0.2 72.4 ± 0.1

2048 71.5 ± 0.2 72.1 ± 0.2 72.1 ± 0.2
8192 71.6 ± 0.1 72.2 ± 0.1 72.1 ± 0.3

Batch Size MVS-GCN +REST +REST-IS

Products 10000 76.7 ± 0.2 77.9 ± 0.3 78.2 ± 0.3
50000 76.9 ± 0.1 78.1 ± 0.2 78.3 ± 0.3

Reddit
256 93.8 ± 0.2 94.5 ± 0.2 94.7 ± 0.1
512 94.2 ± 0.1 94.8 ± 0.1 95.0 ± 0.2

2048 94.9 ± 0.1 95.2 ± 0.1 95.2 ± 0.2

Arxiv

128 70.9 ± 0.2 71.9 ± 0.2 72.0 ± 0.3
512 71.4 ± 0.1 72.4 ± 0.1 72.5 ± 0.3

2048 71.5 ± 0.1 72.0 ± 0.1 72.1 ± 0.1
8192 71.6 ± 0.1 72.1 ± 0.1 72.0 ± 0.2

• Our algorithms outperform all the baselines by a substan-
tial margin, particularly in scenarios with significant
staleness, such as large datasets or small batch sizes. We
also show similar results of GraphFM in Appendix J. For
example, on the ogbn-arxiv dataset, we observe a perfor-
mance boost of 2.4% with REST and 3.0% with REST-IS
using a batch size of 5 and APPNP as backbone. Similarly,
on ogbn-products, our algorithms outperform GAS by 4.7%
with REST and 5.4% with REST-IS under the same batch
size setting. The similar phenomenon is noticeable when
our approach is implemented on VR-GCN and MVS-GCN.

• Our proposed algorithms exhibit exceptional adaptabil-

7

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 6: Convergence on ogbn-arxiv. Figure 7: Convergence on ogbn-products.

ity by seamlessly integrating with all historical embedding
methods and surpassing the performance of three promi-
nent historical embedding methods. This showcases the
flexibility and universality of our algorithms.

• It is important to note that our proposed methods
are designed to alleviate the staleness issues present in
those historical embedding-based baselines. Staleness
only becomes significant when dealing with large-scale
datasets, which explains why our model demonstrates sub-
stantially larger improvements on datasets such as ogbn-
products, ogbn-papers100M, and MAG240M compared to
other datasets (see Appendix E). These results clearly indi-
cate that our algorithm effectively mitigates staleness, and
substantial enhancements can be easily achieved with differ-
ent GNN backbones.

4.3. Efficiency Analysis

To verify the efficiency of our proposed approach, we pro-
vide empirical efficiency analysis compared with one scal-
able GNNs, GraphSAGE and two historical embedding
methods, VR-GCN and GAS in Table 4 and Table 5. Specif-
ically, we measure the memory usage, total running time
and the approximate number of epochs until convergence
for training process on the ogbn-arxiv and ogbn-products
under different batch sizes. Note that, the number under
“Batch Size” indicates the number of sampled clusters in
one batch in Table 4. We used a server, and all experiments
were run on a single NVIDIA A6000 GPU. To ensure a fair
comparison, we employ the same official implementations
for all baseline methods (Fey et al., 2021; Shi et al., 2023) as
well as our proposed method. For GAS, we use the APPNP
with 5 aggregation layers as the GNN backbone and keep all
other hyperparameters the same to make a fair comparison.
We also include the performance on the same table for the
convenience.

It’s important to note that GraphSAGE may still encounter
the neighbor explosion problem, leading to out-of-memory
(OOM) errors for ogbn-products and significantly higher
memory costs for ogbn-arxiv in our experiments. REST
demonstrates a comparable running time to GraphSAGE
while achieving superior performance and significantly
lower memory costs. Compared to GAS and VR-GCN,
our approach is designed to be compatible with any histori-

cal embedding model, addressing the staleness issue without
modifying the model architecture. As a result, it preserves
the memory efficiency of the original baselines while achiev-
ing better performance and expediting the training process.
This is attributed to REST’s faster convergence (see Theo-
rem 3.2), which requires substantially fewer epochs to con-
verge, despite a longer per-epoch runtime due to multiple
forward passes (see Figure 8, 9, 10 and 11 in Appendices).

4.4. Convergence Analysis

We present a comparison of convergence analysis by show-
ing test accuracy with respect to the running time for
both GAS and our algorithms on the ogbn-arxiv and ogbn-
products datasets with different batch sizes. Specifically, we
represent small and large batch sizes using 5 and 10 clus-
ters for both datasets. The convergence curves are shown
in Figures 6 and 7, respectively. The results illustrate that
our model not only achieves superior performance but also
converges faster. This advantage is more evident when there
is significant staleness, such as when smaller batch sizes are
used or with larger datasets as shown in the first subfigures
in Figures 6 and 7. Importantly, the convergence of GAS is
significantly influenced by staleness. However, our model’s
convergence speed only experiences a slight decrease as
staleness becomes larger, which supports the convergence
advantage discussed in introduction. Compared to REST,
REST-IS appears to be more stable after convergence. We
conclude that this is attributed to that we continually refresh
the embeddings of important nodes. All observations indi-
cate that our algorithm possesses advantages in convergence
beyond mere performance metrics. We also conducted sim-
ilar experiments demonstrating convergence over epochs
using GAS and VR-GCN in Appendix C. We can draw the
same conclusion that convergence is accurately achieved
by our algorithm, regardless of the historical embedding
methods used. Please also refer to Appendix K for SAGE.

4.5. Ablation Study

In this subsection, we present detailed ablation studies on
the impact of important hyperparameters and the generality
of our approach.

Forward batch size B for memory table update. In ad-
dition to the flexible adjustment of the updating frequency

8

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks
Table 4: Memory usage (MB), Total running time (seconds) and Epochs on ogbn-arxiv and ogbn-products.

Dataset Parts Batch Size MEMORY(MB) TOTAL TIME(S) / # EPOCHS ACCURACY
SAGE GAS REST REST-IS SAGE GAS REST REST-IS SAGE GAS REST REST-IS

ogbn-products 40 5 OOM 8913 9295 10059 N/A 2600 / 75 1170 / 20 1312 / 18 N/A 75.2 79.7 80.5
10 OOM 13406 13495 14753 N/A 1890 / 65 940 / 18 1200 / 18 N/A 76.9 80.0 80.4

ogbn-arxiv 40
5 3011 790 837 703 39.3 / 35 67.5 / 60 39 / 16 42 / 15 70.9 69.4 71.7 72.1
10 3156 997 1115 948 37.2 / 33 54.0 / 58 31.5 / 18 33 / 18 71.2 70.1 72.3 72.4
20 3323 1486 1505 1262 25.8 / 32 39.6 / 50 24.0 / 17 19.5 / 17 71.5 71.5 72.4 72.4

Table 5: Memory usage (MB), Total running time (seconds) and Epochs on ogbn-products.

Batch Size MEMORY(MB) TOTAL TIME(S)/ # EPOCHS ACCURACY(%)
VR-GCN REST REST-IS VR-GCN REST REST-IS VR-GCN REST REST-IS

10000 8730 8733 9119 2892 / 25 2616 / 12 2275 / 11 76.3 77.4 78.0
50000 15402 17585 16322 1104 / 21 936 / 11 920 / 10 76.4 77.5 78.1

f , our algorithm offers another advantage: the batch size
during the memory table updating process can also be rea-
sonably increased since it does not require significant mem-
ory for backward propagation. Please refer Appendix F for
all results. The presented results indicate that a larger batch
size used in updating the memory table has the potential to
further enhance performance by reducing staleness.

Forward computation frequency F . We also evaluate
the performance under different frequencies on the ogbn-
products dataset in Appendix D. We observe that the per-
formance gradually increases with the updating frequency
and higher frequencies tend to enhance convergence, vali-
dating the conclusion that staleness is a key factor affecting
performance and our algorithm demonstrates effectiveness
in addressing this issue.

Bidirectional REST. While existing historical embedding
methods like GAS and GraphFM consider all available
neighborhood information, they fail to aggregate gradient
information from these neighbors because they reside in
memory and are excluded from computation graphs. One
straightforward solution is to maintain an additional memory
per layer to store historical gradients, similar to the forward
pass in GAS. However, backward propagation encounters
the same bottleneck of staleness. We can leverage the idea
of REST to increase the frequency of gradient memory up-
dates, thereby reducing gradient staleness bidirectionally.

Specifically, we select a frequency F̃ where F̃ ≤ F , in-
dicating that we can easily choose F̃ out of F batches for
gradient computation during the execution of line 7 in Al-
gorithm 1, updating the historical gradient memory without
altering model parameters. Analogous to the forward pass,
we conduct backward propagation F̃ times to refresh the gra-
dient memory bank without updating any model parameters.
Subsequently, we execute a standard backward propagation
to update the model parameters (line 10 in Algorithm 1).
Because LMC is the only baseline that incorporates his-
torical gradients via momentum, we include LMC as our
only baseline and report its results in Table 6. We set F̃=1
and use GCN as backbone for simplicity. All LMC experi-

ments follow the settings provided in the authors’ official
repository. From the results, we observe that bidirectional
REST improves accuracy and accelerates training while
keeping memory cost comparable. In contrast, LMC per-
forms poorly because it cannot fundamentally resolve the
gradient staleness issue. Overall, these findings underscore
the versatility and benefits of our approach.
Table 6: Performance (%), Memory usage(MB) and Total
running time(seconds) of Bidirectional REST

Models OGBN-ARXIV OGBN-PRODUCTS
ACC MEMORY RUNNING TIME ACC MEMORY RUNNING TIME

LMC 71.4 558 66 77.5 10982 1520
LMC+REST 72.6 584 41 80.1 11139 925

Other Studies. We present the ablation study as follows
in Appendices: (1) Comparison with more baselines in Ap-
pendices G and O; (2) Performance and efficiency on more
large scale datasets in Appendix E ; (2) Memory persistence
and Embedding approximation errors of REST in Appendix
H; (3) Various aggregation layers in Appendix I; (4) Further
analyses with various baselines in Appendices J and K. (5)
Difference between REST and other techniques in Appen-
dices L, N and Q. (6) Broad impact and generalizability
analysis of REST in in Appendix P.

5. Conclusion
In this paper, we first conduct a highly comprehensive study
of existing historical embedding methods and conclude that
the primary reason for their inferior performance and slow
convergence originates from staleness. Instead of merely at-
tempting to control staleness, we aim to address this issue at
its source. Through both theoretical and empirical analyses,
we identify the root cause as the disparity in the frequency
of updating the memory table and model parameters. Then,
we propose a simple yet highly effective algorithm by de-
coupling forward and backward propagations and executing
them at different frequencies. Comprehensive experiments
demonstrate its superior ability to resolve the staleness issue,
leading to significantly improved prediction performance,
faster convergence, and greater flexibility on large-scale
graph datasets.

9

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Impact Statement
Graph Neural Networks (GNNs) have become essential for
learning on graph-structured data, yet scalability remains a
significant challenge due to memory limitations and com-
putational overhead. Historical embedding methods have
been widely adopted to improve scalability but suffer from
substantial bias caused by stale feature history. This paper
first provides the most comprehensive analysis, combining
theoretical and empirical studies to uncover the root causes
of staleness. To address this issue, we introduce REST, a
simple yet highly effective approach that reduces feature
staleness in historical embedding methods. By decoupling
forward and backward propagations and dynamically adjust-
ing their execution frequencies, REST effectively mitigates
the impact of stale embeddings, resulting in significantly
enhanced prediction accuracy and faster convergence across
large-scale graph datasets.

References
Bai, G., Yu, Z., Chai, Z., Cheng, Y., and Zhao, L. Staleness-

alleviated distributed gnn training via online dynamic-
embedding prediction. arXiv preprint arXiv:2308.13466,
2023.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. arXiv
preprint arXiv:1710.10568, 2017.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 257–266, 2019.

Cong, W., Forsati, R., Kandemir, M., and Mahdavi, M.
Minimal variance sampling with provable guarantees for
fast training of graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1393–1403,
2020.

Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. Gn-
nautoscale: Scalable and expressive graph neural net-
works via historical embeddings. In International Con-
ference on Machine Learning, pp. 3294–3304. PMLR,
2021.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Protein
interface prediction using graph convolutional networks.
Advances in neural information processing systems, 30,
2017.

Gasteiger, J., Bojchevski, A., and Günnemann, S. Com-
bining neural networks with personalized pagerank for
classification on graphs. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=H1gL-2A9Ym.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artifical Intelligence and Machine Learning,
14(3):1–159, 2020.

Han, X., Zhao, T., Liu, Y., Hu, X., and Shah, N. Mlpinit:
Embarrassingly simple gnn training acceleration with mlp
initialization. ICLR, 2023.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. Ogb-lsc: A large-scale challenge
for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Huang, K., Jiang, H., Wang, M., Xiao, G., Wipf, D., Song,
X., Gan, Q., Huang, Z., Zhai, J., and Zhang, Z. Refresh:
Reducing memory access from exploiting stable historical
embeddings for graph neural network training. arXiv
preprint arXiv:2301.07482, 2023.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adap-
tive sampling towards fast graph representation learning.
Advances in neural information processing systems, 31,
2018.

Jiang, H., Liu, R., Yan, X., Cai, Z., Wang, M., and Wipf,
D. Musegnn: Interpretable and convergent graph neural
network layers at scale. arXiv preprint arXiv:2310.12457,
2023.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Sankar, A., Liu, Y., Yu, J., and Shah, N. Graph neural net-
works for friend ranking in large-scale social platforms.
In Proceedings of the Web Conference 2021, pp. 2535–
2546, 2021.

Shi, Z., Liang, X., and Wang, J. Lmc: Fast training of gnns
via subgraph sampling with provable convergence. arXiv
preprint arXiv:2302.00924, 2023.

10

https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Tang, X., Liu, Y., Shah, N., Shi, X., Mitra, P., and Wang, S.
Knowing your fate: Friendship, action and temporal ex-
planations for user engagement prediction on social apps.
In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.
2269–2279, 2020.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, L., Zhang, S., Zeng, H., Wu, H., Hua, Z., Has-
sani, K., Malevich, A., Long, B., and Ji, S. Staleness-
based subgraph sampling for large-scale GNNs training,
2024. URL https://openreview.net/forum?
id=H7z1gHsaZ0.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

Wu, S., Sun, F., Zhang, W., Xie, X., and Cui, B. Graph
neural networks in recommender systems: a survey. ACM
Computing Surveys, 55(5):1–37, 2022.

Xue, R., Han, H., Torkamani, M., Pei, J., and Liu, X.
Lazygnn: large-scale graph neural networks via lazy
propagation. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org,
2023a.

Xue, R., Shen, X., Yu, R., and Liu, X. Efficient large
language models fine-tuning on graphs. arXiv preprint
arXiv:2312.04737, 2023b.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 974–983,
2018.

Yu, H., Wang, L., Wang, B., Liu, M., Yang, T., and Ji, S.
Graphfm: Improving large-scale gnn training via feature
momentum. In International Conference on Machine
Learning, pp. 25684–25701. PMLR, 2022.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based in-
ductive learning method. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=BJe8pkHFwS.

Zhang, J., Xue, R., Fan, W., Xu, X., Li, Q., Pei, J., and Liu,
X. Linear-time graph neural networks for scalable recom-
mendations. In Proceedings of the ACM Web Conference
2024, pp. 3533–3544, 2024.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. Advances in
neural information processing systems, 32, 2019.

11

https://openreview.net/forum?id=H7z1gHsaZ0
https://openreview.net/forum?id=H7z1gHsaZ0
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

A. Proof of Theorem 1
Theorem A.1 (Approximation Error). Consider a L-layers GNN f

(l)
θ (h) with Lipschitz constant α(l), UPDATE(l)

θ function
with Lipschitz constant β, l =1, . . . , L. ∇Lθ has Lipschitz constant ε. If ∀v ∈ V , ||h̄(l)

v − h
(l)
v || denotes the staleness

between the historical embeddings and the true embeddings from full batch aggregations,N (v) is the neighborhood set of v,
then the approximation error of gradients is bounded by:

||∇Lθ(h̃
(L)
v)−∇Lθ(h

(L)
v)|| ≤ ε

L∑
l=1

(

L∏
k=l+1

α(k)β|N (v)| ∗ ||L̃v,|| ∗ ||h̄(k−1) − h(k−1)||).

A.1. Detailed Proof:

Proof. Suppose f̃
(l)
θ is a historical embedding-based GNN with L-layers, then the whole GNN model can be defined as

h̃(L) = f̃
(L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f̃ (1)
θ , similarly, the full batch GNN can be defined as: h(L) = f

(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)
θ , then:

||h̃(L) − h(L)|| = ||f̃ (L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f̃ (1)
θ − f

(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)
θ || (10)

= ||f̃ (L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f̃ (1)
θ − f̃

(L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f (1)
θ (11)

+ f̃
(L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f̃ (2)
θ ◦ f (1)

θ − f̃
(L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f (2)
θ ◦ f (1)

θ − . . . (12)

+ f̃
(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)
θ − f

(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)
θ || (13)

≤ ||f̃ (L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f̃ (1)
θ − f̃

(L)
θ ◦ f̃ (L−1)

θ ◦ · · · ◦ f (1)
θ ||+ (14)

· · ·+ ||f̃ (L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)
θ − f

(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)
θ || (15)

=

L∑
k=1

(
L∏

l=k+1

α(l)||f̃ (k)
θ ◦ f (k−1)

θ ◦ · · · ◦ f (1)
θ − f

(k)
θ ◦ f (k−1)

θ ◦ · · · ◦ f (1)
θ ||

)
(16)

According to the rule of message passing, assuming update function, aggregation function and message passing function at
k-th layer is denoted by g

(k)
update, g(k)agg and g

(k)
msp, respectively, then:

||f̃ (k)
θ ◦ f (k−1)

θ ◦ · · · ◦ f (1)
θ − f

(k)
θ ◦ f (k−1)

θ ◦ · · · ◦ f (1)
θ || (17)

=||g(k)update

(
h(k−1)
v , g(k)agg

(
g(k)msp(h̄

(k−1))
))
− g

(k)
update

(
h(k−1)
v , g(k)agg

(
g(k)msp(h

(k−1))
))
|| (18)

≤β ∗ ||
∑
N (v)

L̃v,h̄
(k−1) −

∑
N (v)

L̃v,h
(k−1)|| (19)

≤β|N (v)| ∗ ||L̃v,h̄
(k−1) − L̃v,h

(k−1)|| (20)

≤β|N (v)| ∗ ||L̃v,|| ∗ ||h̄(k−1) − h(k−1)|| (21)

From ||∇Lθ(h̃
(L)
v)−∇Lθ(h

(L)
v)|| ≤ ε||h̃(L)

v − h
(L)
v ||, we can get final conclusion by combining all previous steps together:

||∇Lθ(h̃
(L)
v)−∇Lθ(h

(L)
v)|| ≤ ε

L∑
l=1

(

L∏
k=l+1

α(k)β|N (v)| ∗ ||L̃v,|| ∗ ||h̄(l−1) − h(l−1)||) (22)

A.2. Lipschitz Continuity Assumption:

Consider a GNN with L layers, where the embedding at layer ℓ is given by

h(ℓ) = f
(ℓ)
θ (h(ℓ−1)), (23)

12

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

with h(0) as the input features. A typical layer can be expressed as

h(ℓ+1)
v = UPDATE

(
h(ℓ)
v , AGG

(
{h(ℓ)

u : u ∈ N (v)}
))

. (24)

Then, the following assumptions usually hold in the literature (e.g., in GAS (Fey et al., 2021)):

• The aggregation function evaluated on the embeddings, AGG, is α-Lipschitz:

∥AGG(X)− AGG(Y)∥ ≤ α ∥X − Y ∥, (25)

where functions such as mean, sum, and max are all Lipschitz continuous.

• The update function evaluated on the embeddings, UPDATE, is β-Lipschitz:

∥UPDATE(X)− UPDATE(Y)∥ ≤ β(X − Y). (26)

Furthermore, commom activation functions and loss functions with respect to the predictions are also Lipschitz continuous.
When these components are composed to form the full GNN, the overall Lipschitz continuity is preserved, with the constant
being a function of the individual layer constants.

B. Proof of Theorem 2
Theorem B.1. Given the upper bound of the expectation of gradients’ norm in the state-of-the-art historical embeddings
methods such as GAS, LMC, and REST, which is

E[||∇θL(θR)||2] ≤
(
2(L(θ1)− L∗

θ +Gθ)

N
1
3

+
ϵGθ

N
2
3

+
Gθ

N(1−√ρ)

) 1
2

(27)

where Gθ is the upper bound of gradient approximation error, N is the number of iterations, R is chosen uniformly from
[N], ρ ∈ (0, 1). Based on Theorem 3.1, the upper bound Gθ of REST is tighter than that of existing historical embedding
methods. Consequently, the convergence speed of REST surpasses that of existing works.

Proof. Suppose that function L : Rn → R is continuously differentiable. Consider an optimization algorithm with any
bounded initialization x1 and an update rule in the form of

xk+1 = xk − η d(xk), (28)

where η > 0 is the learning rate and d(xk) is the estimated gradient that can be viewed as a stochastic vector depending on
xk. Let the estimation error of the gradient be

∆k = d(xk) − ∇L(xk). (29)

Suppose that (Chen et al., 2017; Shi et al., 2023):

1. The optimal value L∗ = infx L(x) is bounded;

2. The gradient of L is ϵ-Lipschitz, i.e.,

∥∇L(y) − ∇L(x)∥2 ≤ ϵ ∥ y − x ∥2, ∀x, y ∈ Rn; (30)

3. There exists Gθ > 0 (independent of η) such that [1]

E
[
∥∆k∥22

]
≤ Gθ, ∀ k ∈ N∗; (31)

4. There exist N ∈ N∗ and ρ ∈ (0, 1) (both independent of η) such that∣∣ E⟨∇L(xk), ∆k ⟩
∣∣ ≤ Gθ

(
η1/2 + ρk−1

2
+ 1

N1/3

)
, ∀ k ∈ N∗, (32)

where Gθ is the same constant as that in Condition 3. [1]

13

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Then by letting

η = min
{

1
ϵ ,

1
N2/3

}
, (33)

we have

E
[
∥∇L(xR)∥22

]
≤

2
(
L(x1) − L∗ + Gθ

)
N1/3

+
ϵGθ

N2/3
+

Gθ

N
(
1−√ρ

) , (34)

where R is chosen uniformly at random from {1, . . . , N}.

As the gradient of L is ϵ-Lipschitz, we have

L(y) = L(x) +

∫ y

x

∇L(z) dz = L(x) +

∫ 1

0

〈
∇L
(
x+ t(y − x)

)
, y − x

〉
dt. (35)

Hence,

L(y) = L(x) +
〈
∇L(x), y − x

〉
+

∫ 1

0

〈
∇L
(
x+ t(y − x)

)
− ∇L(x), y − x

〉
dt (36)

≤ L(x) + ⟨∇L(x), y − x⟩ +

∫ 1

0

∥∥∥∇L(x+ t(y − x)
)
− ∇L(x)

∥∥∥
2
∥ y − x∥2 dt (37)

≤ L(x) +
〈
∇L(x), y − x

〉
+

∫ 1

0

ϵ t ∥ y − x∥22 dt (38)

≤ L(x) + ⟨∇L(x), y − x⟩ +
ϵ

2
∥ y − x∥22. (39)

Now let xk+1 = xk − η d(xk) and ∆k = d(xk) − ∇L(xk). Then

L
(
xk+1

)
≤ L

(
xk

)
− η

〈
∇L(xk), d(xk)

〉
+

ϵ η2

2

∥∥ d(xk)
∥∥2
2
. (40)

Taking the total expectation on both sides and rearranging terms yields

E
[
L
(
xk+1

)]
≤ E

[
L
(
xk

)]
− η E

〈
∇L(xk), ∇L(xk) + ∆k

〉
+

ϵ η2

2
E
[
∥d(xk)∥22

]
(41)

= E
[
L
(
xk

)]
− η E

[
∥∇L(xk)∥22

]
− η E

[
⟨∇L(xk), ∆k⟩

]
+

ϵ η2

2
E
[
∥∇L(xk) + ∆k∥22

]
. (42)

Using ∥∇L(xk) + ∆k∥22 ≤ 2∥∇L(xk)∥22 + 2∥∆k∥22 and the assumption E
[
∥∆k∥22

]
≤ Gθ, we obtain

E
[
L(xk+1)

]
≤ E

[
L(xk)

]
− η E

[
∥∇L(xk)∥22

]
− η E

[
⟨∇L(xk), ∆k⟩

]
+ ϵ η2 E

[
∥∇L(xk)∥22

]
+ ϵ η2 E

[
∥∆k∥22

]
(43)

≤ E
[
L(xk)

]
− η

(
1− ϵ η

)
E
[
∥∇L(xk)∥22

]
− η E

[
⟨∇L(xk), ∆k⟩

]
+ ϵ η2 Gθ. (44)

Summing over k = 1, . . . , N , dividing by N , and rearranging imply

1

N

N∑
k=1

E
[
∥∇L(xk)∥22

]
≤

L(x1) − E
[
L(xN+1)

]
η
(
1− ϵ η

)
N

−
E
[∑N

k=1⟨∇L(xk), ∆k⟩
]

(1− ϵ η)N
+

ϵ η Gθ

1− ϵ η
. (45)

Since L∗ = infx L(x) is bounded and x1 is bounded, L(x1) − E[L(xN+1)] ≤ L(x1) − L∗. Also note that∣∣E⟨∇L(xk), ∆k⟩
∣∣ ≤ Gθ

(
η1/2 + ρ(k−1)/2 +N−1/3

)
by assumption. Hence,

14

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

1

N

N∑
k=1

E
[
∥∇L(xk)∥22

]
≤ L(x1)− L∗

N η (1− ϵ η)
+

ϵ η Gθ

1− ϵ η
+

1

N
(
1− ϵ η

) N∑
k=1

∣∣∣E⟨∇L(xk), ∆k⟩
∣∣∣ (46)

≤ L(x1)− L∗

N η (1− ϵ η)
+

ϵ η Gθ

1− ϵ η
+

Gθ(
1− ϵ η

)
N

N∑
k=1

(
η1/2 + ρ(k−1)/2 +N−1/3

)
. (47)

Since
∑N

k=1 ρ
k−1
2 ≤ 1

1−√
ρ , we then get

1

N

N∑
k=1

E
[
∥∇L(xk)∥22

]
≤ L(x1)− L∗

N η (1− ϵ η)
+

ϵ η Gθ

1− ϵ η
+

Gθ

N (1− ϵ η)

(
N η1/2 + 1

1−√
ρ + N2/3

)
. (48)

Note that

E
[
∥∇L(xR)∥22

]
= ER

[
∥∇L(xR)∥22

∣∣ R] = 1

N

N∑
k=1

E
[
∥∇L(xk)∥22

]
(49)

Finally choose η = min{ 1ϵ ,
1

N2/3 }, it follows that

E
[
∥∇L(xR)∥22

]
=

1

N

N∑
k=1

E
[
∥∇L(xk)∥22

]
≤

2
(
L(x1)− L∗ +Gθ

)
N1/3

+
ϵGθ

N2/3
+

Gθ

N (1−√ρ)
, (50)

which completes the proof.

C. Convergence
We replicated the convergence analysis outlined in our main paper (Figure 6 and Figure 7), using VR-GCN and GAS, but
with epochs as the x-axis. The results are shown in Figure 8 and 9 for GAS and Figure 10 and 11 for VR-GCN. GAS
settings remained consistent with those specified in the main paper. For VR-GCN, we experimented with batch sizes of
128 and 2048 for the ogbn-arxiv dataset, and 10000 and 50000 for ogbn-products. For GAS, our findings align with those
of the main paper: our algorithm not only achieves superior performance but also converges more rapidly with much less
epochs. For VR-GCN, when dealing with small datasets with large batch sizes, VR-GCN exhibits comparable convergence
to our approach, as staleness isn’t a significant factor. However, as the dataset size increases or the batch size decreases,
VR-GCN’s convergence deteriorates significantly, whereas our algorithm maintains robust convergence. Furthermore, after
convergence, REST-IS demonstrates greater resilience than REST in scenarios where staleness plays a significant role.

Figure 8: ogbn-arxiv Figure 9: ogbn-products

D. Forward computation frequency F

We evaluate the performance under different frequencies on the ogbn-products dataset. We select the case with 5 clusters (40
clusters in total) for APPNP and report the performance in Figure 12. We observe that the performance gradually increases

15

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 10: ogbn-arxiv Figure 11: ogbn-products

with the updating frequency, validating the conclusion that staleness is a key factor affecting performance and our algorithm
demonstrates effectiveness in addressing this issue.

Furthermore, we also present the efficiency analysis with different frequency F in Table 7, accompanied by convergence
curves corresponding to different frequencies in Figure 13 and 14. As observed from the results, higher frequencies tend to
enhance convergence, as shown in Figure 13 (epoch as unit). However, they also entail extra computation overhead. Hence,
the actual convergence time remains relatively consistent across different frequencies, as illustrated in Figure 14 (time as
unit). Nevertheless, all cases exhibit significant improvements compared to GAS.

Table 7: Memory usage (MB) and running time (seconds) with different frequency.

Dataset Freduency MEMORY(MB) TIME(S)

ogbn-products

2 9295 1053
3 9295 1188
4 9295 1200
5 9295 1204

Figure 12: Different Frequency F

E. Performance and Efficiency on Larger Datasets
In this section, we demonstrate the effectiveness on larger datasets, which typically exhibit more severe staleness problems.
Given our limited computational resources, we chose to add experiments on ogbn-papers100M and MAG240M, which
are significantly larger in scale compared to other commonly used datasets and are highly representative. Note that for
MAG240M, we follow the common practice of homogenizing it (Hu et al., 2021; Jiang et al., 2023). We report the
performance and efficiency in Table 8.

The larger size of the ogbn-papers100M and MAG240M dataset exacerbates the staleness issue for GAS, leading to

16

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 13: Convergence w.r.t epochs Figure 14: Convergence w.r.t time

decreased accuracy and slower convergence, as anticipated. In contrast, REST demonstrates significantly improved accuracy
and efficiency, along with accelerated convergence. This conclusion aligns with our main claim in the main paper that REST
has a strong ability to address the staleness issue.

Table 8: Memory usage (MB) and running time (seconds) on larger datasets.

Datasets Models Accuracy MEMORY(MB) TIME(S)

ogbn-papers100M GAS 64.9 15705 8840
GAS + REST 67.6 16808 4100

MAG240M GAS 61.2 31256 42603
GAS + REST 67.6 32062 25355

F. Forward batch size B for memory table update.
In addition to the flexible adjustment of the updating frequency F , our algorithm offers another advantage: the batch size
during the memory table updating process (line 7 in Algorithm 1) can also be reasonably increased since it does not require
significant memory for backward propagation. We explore the effect of varying batch size on the final performance using
GCN, APPNP, and GCNII as the backbone. We also include GAS for comparison. Specifically, we illustrate three scenarios
for the batch size: (1) Same: identical to the batch size used for updating the model (consistent with the setting in Table 2);
(2) Half : half batch (encompassing half of all clusters); and (3) Full: full batch (encompassing all clusters (whole graph)).
We use frequency F =1 for all cases. We show the results of three cases in Figure 15.

The presented results indicate that a larger batch size used in updating the memory table has the potential to further enhance
performance by reducing staleness. This is because a large batch size accelerates the memory table updates, which is
equivalent to using a higher frequency F . However, the improvement is marginal and comes with additional memory costs.
Consequently, we opt to maintain the same batch size to keep the memory efficiency of our proposed algorithm.

G. More Recent Baselines
Several historical embedding methods have been proposed recently, including LMC (Shi et al., 2023), which incorporates
a memory table for neighbors’ gradients, and Refresh (Huang et al., 2023), which utilizes staleness scores and gradient
changes as metrics to selectively update the memory table. However, as discussed in related works in Appendix M, these
methods still struggle to address the staleness issue at its source, and their techniques are orthogonal to ours. Therefore, to
provide a comprehensive analysis, we have included a performance comparison between REST, Refresh, and LMC in Table
9. We employ GCN as the GNN backbone model and include the GAS case in the table for convenience. From the results,
we observe that REST can be easily combined with existing works and significantly outperforms them. For example, it
achieves a 2.6% increase over LMC on the ogbn-products dataset.

17

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Figure 15: The impact of batch size (a) GCN, (b) APPNP, and (c) GCNII

Table 9: Performance Comparison on ogbn-arxiv and ogbn-products.

Models OGBN-ARXIV OGBN-PRODUCTS

Refresh 70.5 78.3
GAS 71.7 76.7

GAS+REST 72.2 79.6
LMC 71.4 77.5

LMC+REST 72.6 80.1

H. Memory persistence and embedding approximation errors of REST
We present two additional results on memory persistence and approximation error comparison, similar to those in our
preliminary study, between GAS and REST+GAS on the ogbn-arxiv dataset, as follows:

(1) Memory Persistence (Figure 16): It is evident that persistence continuously decreases with the increase in updating
frequency, regardless of the batch size used. This directly demonstrates that staleness is reduced by REST.

(2) Approximation Error (Figure 17): The decrease in error value is also noticeable when compared to the case where REST
is utilized. This provides another straightforward evidence showing the effectiveness of REST.

Figure 16: Left: GAS, Right: REST + GAS. Figure 17: Left: GAS, Right: REST + GAS

I. Various aggregation layers
We introduce an additional experiment conducted on the ogbn-arxiv dataset to evaluate the influence of the number of
aggregation layers on performance. For simplicity, we opt to employ the APPNP model as the GNN backbone and utilize
GAS as the baseline, given its proven superiority among all baselines. We keep all other hyperparameters consistent for a
fair comparison and only vary the number of propagation layers. To demonstrate the enhanced capability of our approach
in handling staleness, we specifically choose to use 5 clusters (out of a total of 40 clusters) for this ablation study, which
corresponds to a high staleness situation. From Table 10, we can readily observe that the performance of both GAS and our
algorithm drops after stacking more layers. This result verifies the conclusion in Theorem 3.1: the approximation error
between the historical embeddings and the full batch embeddings at each layer accumulates. However, the performance of

18

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

GAS deteriorates significantly when adding more layers. In contrast, our model is not impacted to the same extent since
we significantly reduce the approximation error at each layer. This demonstrates another advantage of our algorithm when
deeper GNNs are utilized.

Table 10: Prediction accuracy (%) with a varying number of propagation layers on ogbn-arxiv.

Layers GAS GAS+REST GAS+REST-IS

L=1 68.2 71.9 72.0
L=3 69.4 71.8 72.3
L=5 70.1 72.5 72.5
L=8 69.4 72.4 72.4
L=10 69.4 72.4 72.3

J. More analysis on GraphFM
Approximation errors In this section, we provide more comprehensive analysis on another important baseline, GraphFM.
Regarding approximation errors in Figure 18 and 19, GraphFM also experiences staleness accumulation between each layer.
While it can alleviate the approximation error introduced by staleness, it incurs additional approximation error by using
biased one-hop neighbors for the momentum combination. This occurs because these nodes lose aggregations from their
out-of-batch neighbors, exacerbating the overall approximation error.

Figure 18: ogbn-arxiv Figure 19: ogbn-products

Performance and frequency We provide in Table 11 for the performance of GraphFM+REST. Compared with GAS,
GraphFM shows a slight performance improvement by reducing staleness, but it still falls short of achieving superior
performance as it doesn’t fully address the staleness issue at its source, unlike REST. Conversely, our proposed method can
be seamlessly applied to GraphFM, yielding even better performance, underscoring the generality of REST. Furthermore,
the frequency analysis in Table 12 indicates that higher frequencies tend to enhance performance, consistent with our claim
in the main paper.

K. Additional results comparing with SAGE
Convergence To better illustrate that REST outperforms not only other historical embedding methods but also classical
sampling methods such as GraphSAGE, besides performance reported in Table 1, we further include Figures 20 and
21, showcasing convergence curves on ogbn-arxiv with both small and large batch sizes, utilizing time as the unit of
measurement. The results indicate that our model’s convergence is nearly equivalent to that of GraphSAGE. However, it’s
important to note that REST outperforms GraphSAGE in terms of performance and only requires a much smaller memory
cost. Hence, REST demonstrates its advantage over GraphSAGE.

19

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Table 11: Accuracy (%) improvement for GraphFM.

DATASET BACKBONE PARTS BATCH SIZE FM +REST +REST-IS

ogbn-products

GCN 70 5 76.3 77.9 78.0
10 76.9 79.9 78.8

APPNP 40 5 76.2 80.2 80.6
10 77.1 80.3 80.6

GCNII 150 5 75.3 76.2 76.6
20 77.4 80.2 80.0

ogbn-arxiv

GCN 80

5 68.5 71.8 72.0
10 70.5 72.0 72.4
20 70.9 72.2 72.5
40 71.8 72.5 72.7

APPNP 40
5 70.3 72.0 72.4

10 70.5 72.2 72.4
20 71.5 72.3 72.3

GCNII 40
5 70.6 72.7 72.8

10 72.0 72.7 72.8
20 73.1 73.2 73.1

Table 12: Frequency analysis of REST+GraphFM on ogbn-products.

Dataset Freduency ACC

ogbn-products

2 80.0
3 80.1
4 80.4
5 80.6

Figure 20: Small batch size Figure 21: Large batch size

L. Difference between REST and variation of learning rate
While there are some engineering techniques proposed to reduce feature staleness, such as adding regularization (Fey et al.,
2021) or reducing the learning rate, they often suffer from many potential issues during the training process. Taking reduced
learning rate as an example:

(1) Reduced convergence speed and increased training time: Lowering the learning rate can slow down convergence and
prolong training time significantly.

(2) Risk of getting stuck in local minima: Lower learning rates may cause the model to get trapped in local minima for
extended periods, hindering overall optimization.

(3) Sensitivity to other hyperparameters: The effectiveness of reduced learning rates can depend heavily on other hyperpa-

20

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

rameter choices, such as the optimizer used.

In contrast, REST does not encounter the optimization issues associated with engineering techniques like reducing the
learning rate. It involves only additional forward passes without changing the optimization process. Furthermore, REST is
highly versatile: it can utilize higher frequencies or larger batch sizes to refresh the memory bank more frequently, thereby
reducing staleness. Additionally, it can incorporate importance sampling to prioritize the refreshment of embeddings for
important nodes, such as REST-IS. It’s important to note that REST can achieve these outcomes that traditional engineering
techniques cannot accomplish.

To further support our stance, we provide a comparison between REST with different frequencies (F) and simply reducing
the learning rate by F. The original learning rate used in our experiment is 0.001. We provide performance, efficiency and
convergence curve in Table 13 and Figures 22, 23 to comprehensively support our claim. Upon examining the results, it’s
clear that when comparing F=2 with LR=0.0005 and F=5 with LR=0.0002, REST demonstrates superior performance and
faster convergence rates compared to solely reducing the learning rate.

Table 13: Memory usage (MB) and running time (seconds) ogbn-products.

ogbn-products hyperparameters ACCURACY TIME(S)

learning rate 0.0002 79.7 ± 0.15 2275
Frequency 5 80.5 ± 0.09 1204

learning rate 0.0005 79.7 ± 0.18 1950
Frequency 2 80.2 ± 0.11 1053

Figure 22: Convergence w.r.t epochs. Figure 23: Convergence w.r.t time.

M. Related Work
In this section, we summarize related works on the scalability of large-scale GNNs with a focus on sampling methods.

Vanilla sampling methods. Sampling methods involve dropping nodes and edges through the adoption of mini-batch
training strategies, effectively reducing computation and memory requirements. In node-wise sampling, a fixed number of
neighbors are sampled instead of considering all of them, such as GraphSAGE (Hamilton et al., 2017), PinSAGE (Ying
et al., 2018) and GraphFM-IB (Yu et al., 2022). However, these methods cannot eliminate but still grapple with the neighbor
explosion problem and introduce bias and variance.

Layer-wise sampling fixes the sampled neighbors per layer to avoid the neighbor explosion problem. For instance,
FastGCN (Chen et al., 2018) independently samples nodes in each GNN layer using importance sampling. LADIES (Zou
et al., 2019) onsiders the correlation between layers. ASGCN (Huang et al., 2018) further defines the sampling probability
of lower layers based on the upper ones. However, the layer-wise induced adjacency matrix is usually sparser than the others,
contributing to its sub-optimal performance.

Different from the previous methods, subgraph sampling involves sampling subgraphs from the entire graph as mini-batches
and then constructing a full GNN on those subgraphs. This approach can address the neighbor explosion problem, as
only the nodes within the subgraph participate in the computation. For example, ClusterGCN (Chiang et al., 2019) first

21

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

partitions the graph into clusters and then selects a subset of clusters to construct mini-batches. GraphSaint (Zeng et al.,
2020) proposes importance sampling to construct mini-batches through different samplers. However, this method may
introduce significant variance because the edges between subgraphs are ignored.

Historical embedding methods. Some advanced algorithms attempt to use historical embeddings as approximate embed-
dings instead of true embeddings from the full batch computation. This approach can reduce memory costs by decreasing
the number of sampled neighbors, either per hop (Chen et al., 2017) or in terms of the number of hops (Fey et al., 2021).
VR-GCN (Chen et al., 2017) first proposed this idea of restricting the number of sampled neighborhoods per hop and
using historical embeddings for out-of-batch nodes to reduce variance. MVS-GCN (Cong et al., 2020) simplified this
scheme into a one-shot sampling scenario, where nodes no longer need to recursively explore neighborhoods in each layer.
GNNAutoScale (Fey et al., 2021) further restricts the neighbors to their direct one-hop but without discarding any data,
enabling it to maintain constant GPU memory consumption. GraphFM-OB (Yu et al., 2022) employs feature momentum to
further improve performance.

Although these historical embedding approaches are promising because of their scalability and efficiency, they all suffer
from approximation errors originating from feature staleness. This issue has become a bottleneck, especially for large-scale
datasets, as demonstrated in our preliminary study in the main paper. Several works have proposed techniques to reduce
staleness. For instance, GAS (Fey et al., 2021) concludes the staleness is from the inter-connectivity between batches and uses
graph clustering to relieve it and also uses regularization to prevent model parameters change too much. GraphFM-OB (Yu
et al., 2022) uses feature momentum of in-batch and out-of-batch nodes for compensation. Refresh (Huang et al., 2023)
alleviates the staleness issue by establishing staleness criteria. However, these approaches fail to address the fundamental
issue, which is the discrepancy in updating frequency between memory tables and model parameters. Besides, their methods
are complementary to ours and can be seamlessly incorporated into our algorithm.

N. Differences between REST and Gradient Accumulation
REST aims to refresh the memory bank to reduce staleness, whereas gradient accumulation simulates the effect of increasing
the batch size. Hence, gradient accumulation introduces additional computation overhead. In terms of runtime, it prolongs
the time since every forward pass requires gradient computation. Regarding memory usage, gradients must be stored for
each forward pass until backward propagation is executed with accumulation. This accumulation of gradients across multiple
forward passes can result in increased memory consumption, particularly with large models or datasets. To demonstrate the
efficiency contrast between REST and gradient accumulation, we present the following Table 14, showcasing the difference
and superior efficiency of our design. Note that REST can also be combined with gradient accumulation since they are
orthogonal techniques. We leave this as a future work.

Table 14: Memory usage (MB) and running time (seconds) on ogbn-products.

MEMORY(MB) TIME/EPOCH(S)

REST 9295 33
Gradient Accumulation 14537 39

O. Minor Baselines
In addition to major baselines such as GAS, GraphFM, LMC, and Refresh, there are also several minor baselines that
address the issue of optimizing staleness. For example, S3 (Wang et al., 2024) uses staleness scores to guide the sampling
process, and SAT (Bai et al., 2023) alleviates staleness through distributed training. We use GCN as GNN backbone. The
results are shown in Table 15:

From the results, we can see that REST easily outperforms these baselines without requiring a complicated design. It is
important to note that their approaches are entirely orthogonal and can be combined with ours, given that our method is
quite general. However, since their code is not yet available, we only report the numbers from their respective papers for
comparison purposes.

22

Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Table 15: Performance Comparison with Minor Baselines.

Models OGBN-ARXIV OGBN-PRODUCTS

S3 72.1 77.2
SAT 72.0 78.9

REST 73.2 80.5

P. Broad Impact and Generalizability
Besides alleviating the staleness issue, REST also addresses the broader issue of staleness caused by asynchronous
updates—a common challenge in many settings. To highlight our contributions, we present several additional scenarios in
which REST can be applied:

• Distributed Training: Asynchronous updates often arise in distributed training due to communication overhead. Nodes
may operate on potentially stale global parameters from central servers, leading to parameter staleness. Applying
REST in this scenario means performing extra forward passes without gradient calculation asynchronously, which
refreshes local embeddings (or activation caches) more frequently. Consequently, when the node eventually computes
gradients or synchronizes with the central server, the resulting update is less affected by staleness, improving overall
convergence.

• Federated Learning: Federated learning suffers from parameter staleness due to infrequent client–server communica-
tions. REST’s decoupling strategy can be applied by letting the clients (or server) perform additional forward-only
steps between global synchronizations. These extra forward passes keep local representations up to date with the
client’s current model version, so that when the client finally computes gradients and communicates them back, the
cached embeddings are no longer heavily stale. These additional asynchronous forward updates serve as opportunities
for refreshing beyond global synchronization. This mitigates the mismatch arising from stale parameters and promotes
faster convergence in federated learning.

This broader applicability indicates REST is not merely a method specific to historical embeddings, but a generally beneficial
framework for addressing asynchronous update issues widely prevalent in machine learning training.

Q. Difference from Related Works
As emphasized in the main text, GAS and related methods are specialized, scalable historical-embedding techniques: they
apply a fixed training optimization to improve the scalability of GNN backbones (e.g., GCN) and reduce bias from traditional
sampling methods. In contrast, REST is a novel, general training framework that effectively alleviates the most notable
staleness issue at its root in all such approaches, offering a fundamentally new training optimization strategy to eliminate
the staleness introduced by GAS and similar approaches—thereby significantly boosting performance and accelerating
convergence. In GAS, the memory table updates only the embeddings of nodes that appear in the current batch. As a result,
most node embeddings remain stale because GAS and similar approaches inevitably suffer from a frequency mismatch
between cache updates and model parameter updates, leading to persistent staleness. Our work addresses this root cause by
proposing a general training framework that ensures more frequent—and more flexible—refreshing of historical embeddings
to eliminate staleness without changing the model architecture, aggregator, or sampling algorithm, rather than merely
designing a model that differs from GAS. Meanwhile, it can be seamlessly integrated with any historical embedding method.

R. Hyperparameters Searching Space
Our model’s hyperparameters are tuned from the following search space: (1) learning rate: {0.01, 0.001, 0.005}; (2) weight
decay: {0, 5e − 4, 5e − 5}; (3) dropout: {0.1, 0.3, 0.5, 0.7, 0.8}; (4) propagation layers : L ∈ {2, 3, 4}; (5) MLP layers:
{3, 4}; (6) MLP hidden units: {128, 256, 512}.

23

