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ABSTRACT

State-of-the-art deep outlier detection methods map data into a latent space with
the aim of having outliers far away from inliers in this space. Unfortunately, this
is shown to often fail the divergence penalty they adopt pushes outliers into the
same high-probability regions as inliers. We propose a novel method, OP-DMA,
that successfully addresses the above problem. OP-DMA succeeds in mapping
outliers to low probability regions in the latent space by leveraging a novel Prior-
Weighted Loss (PWL) that utilizes the insight that outliers are likely to have a
higher reconstruction error than inliers. Building on this insight, explicitly encour-
ages outliers to be mapped to low-propbability regions of its latent by weighing
the reconstruction error of individual points by a multivariate Gaussian probabil-
ity density function evaluated at each point’s latent representation. We formally
prove that OP-DMA succeeds to map outliers to low-probability regions. Our ex-
perimental study demonstrates that OP-DMA consistently outperforms state-of-art
methods on a rich variety of outlier detection benchmark datasets.

1 INTRODUCTION

Background. Outlier detection, the task of discovering abnormal instances in a dataset, is critical for
applications from fraud detection, error measurement identification to system fault detection (Singh
& Upadhyaya, 2012). Given outliers are by definition rare, it is often infeasible to get enough
labeled outlier examples that are represetnative of all the forms the outliers could take. Consequently,
unsupervised outlier detection methods that do not require prior labeling of inliers or outliers are
frequently adopted (Chandola et al., 2009).

State-of-Art Deep Learning Methods for Outlier Detection. Deep learning methods for outlier
detection commonly utilize the reconstruction error of an autoencoder model as an outlier score for
outlier detection (Sakurada & Yairi, 2014; Vu et al., 2019). However, directly using the reconstruc-
tion error as the outlier score has a major flaw. As the learning process converges, both outliers and
inliers tend to converge to the average reconstruction error (to the same outlier score) – making them
indistinguishable (Beggel et al., 2019). This is demonstrated in Figure 1a, which shows that the ratio
of average reconstruction error for outliers converges to that of the inliers.

To overcome this shortcoming, recent work (Beggel et al., 2019; Perera et al., 2019) utilizes the
distribution-mapping capabilities of generative models that encourage data to follow a prior distri-
bution in the latent space. These cutting-edge methods assume that while the mapping of inlier
points will follow the target prior distribution, outliers will not due to their anomalous nature. In-
stead, outliers will be mapped to low-probability regions of the prior distribution, making it easy to
detect them as outliers (Beggel et al., 2019; Perera et al., 2019).

However, this widely held assumption has been shown to not hold in practice (Perera et al., 2019).
Unfortunately, as shown in Figure 1b, both inliers and outliers are still mapped to the same high
probability regions of the target prior distribution, making them difficult to distinguish.

Problem Definition. Given a given dataset X ∈ RM of multivariate observations, let f : RM →
RN , N ≤M , be a function from the multivariate feature space of X to a latent space f(x) ∈ RN
such that f(X) ∼ PZ , where PZ is a known and tractable prior probability density function. The
dataset X ∈ RM is composed as X = XO + XI , where XO and XI are a set of outlier and inlier
points, respectively. During training, it is unknown whether any given point x ∈ X is an outlier
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(a) Ablation study
(b) Inliers and outliers in latent space of leading
distribution-mappign method

Figure 1: Data Set used in (a) and (b) is Inliers taken from MNIST ”1”s while outliers are MNIST
”0”s, such that the outliers account for roughly 20% of the total data. (a) Left plot shows average
reconstruction error of outliers over average reconstruction error of inliers during the training of a
standard autoencoder. of the total data. As the plot shows, the ratio of errors for outliers to inliers
goes to 1, meaning outliers are difficult to distinguish from inliers after training. (b) The right plot
shows inliers and outliers in the 2-dimensional latent space of a Wasserstein Autoencoder (a popular
type of distribution mapping autoencoder). As seen, the outliers are in high-probability regions of
the latent space and are thus difficult to separate from the inliers.

or an inlier. Intuitively, our goal is to find a function f that maps instances of a dataset X into a
latent space S with a known distribution, such that outliers are mapped to low probability regions
and inliers to high probability regions. More formally, we define unsupervised distribution-mapping
outlier detection as the problem of finding a function f∗ with the aforementioned properties of f
such that we maximize the number of outliers xo ∈XO and inliers xi ∈XI for which PZ(f∗(xo)) <
PZ(f∗(xi)) holds.

Challenges. To address the open problem defined above, the following challenges exist:

1. Overpowering divergence penalty. Intuitively, distribution mapping methods utilize a
divergence penalty to achieve a latent space mapping of input data that has a high probabil-
ity of following a target prior distribution. While the data overall should follow this prior
distribution, a solution must be found to instead maps outliers to low-probability regions
of the prior. Having the data match the prior overall, while having outliers mapped to low
probability regions of the prior creates a conflict, as the two tasks are diametrically op-
posed. To achieve such a mapping requires overpowering the divergence penalty in order
to map outliers to low probability regions in the latent space.

2. Unknown outlier status. In unsupervised outlier detection, during training points do not
have any labels indicating whether they are outliers or inliers. This unsupervised scenario,
while common in practice (Singh & Upadhyaya, 2012), makes it challenging to design
strategies that explicitly coerce outliers to be mapped to low-probability regions.

Our OP-DMA Approach. In this work, we propose the Outlier Preserving Distribution Mapping
Autoencoder (OP-DMA). Our core idea is to propose a novel Prior Weighted Loss (PWL) function
that solves the two conflicting tasks of mapping the input data to a prior distribution while encourag-
ing outliers to be mapped to low probability regions of that prior. This PWL directly addresses the
shortcomings of the existing distribution mapping outlier detection methods (Vu et al., 2019; Perera
et al., 2019), and to the best of our knowledge is the first unsupervised cost function that explicitly
encourages outliers to be mapped to low probability regions.

We assume that outliers will have a high reconstruction error during the initial stages of training,
which causes the PWL to place them in low-probability (low PDF) regions in the latent space. This
way, PWL overcomes the challenge of overpowering the divergence penalty. It succeeds in mapping
outliers to low-probability regions (far from the mean of the latent distribution) even though each
input point’s outlier status is unknown. Our OP-DMA framework is pluggable, meaning off-the-
shelf distance-based outlier methods can be flexibly plugged in post-transformation.

Our key contributions are as follows:

2



Under review as a conference paper at ICLR 2021

1. Propose OP-DMA, a novel distribution-mapping autoencoder that effectively separates out-
liers from inliers in the latent space without knowing nor making assumptions on the orig-
inal distribution of the data in the feature space.

2. Design the Prior-Weighted Loss (PWL), which when coupled with a divergence penalty
encourages outliers to be mapped to low-probability regions while inliers are mapped to
high-probability regions of the latent space of an autoencoder.

3. Provide rigorous theoretical proof that the optimal solution for OP-DMA places outliers
further than inliers from the mean of the distribution of the data in the latent space.

4. Demonstrate experimentally that OP-DMA consistently outperforms other state-of-art out-
lier detection methods on a rich variety of real-world benchmark outlier datasets.

Significance: OP-DMA is a versatile outlier detection strategy as it can handle input data that has
arbitrary distributions in the feature space, while not making any distance or density assumptions
on the data. To the best of our knowledge, we are the first to propose a loss function that explicitly
encourages outliers to be mapped to low-probability regions while inliers are mapped to high proba-
bility regions. Our PWL approach is pluggable, and can easily be incorporated into alternate outlier
detectors. Our ideas could also spur further research into various prior weighted loss functions.

2 RELATED WORK

State-of-the-art deep outlier detection methods fall into one of three categories: 1) Autoencoders
coupled with classic outlier detectors (Erfani et al., 2016; Chalapathy et al., 2018), 2) Reconstruc-
tion error-based outlier detection methods (Zhou & Paffenroth, 2017; Chen et al., 2017; Sabokrou
et al., 2018; Xia et al., 2015), or 3) Generative outlier detection methods (Perera et al., 2019; Vu
et al., 2019; Liu et al., 2019).
1) Autoencoders coupled with classic outlier detectors project data into a lower dimensional latent
space before performing outlier detection on that latent representation. These methods make the
strict assumption that outliers in the original space will remain outliers in the latent space. Further,
they fail to explicitly encourage this in the mapping function.
2) Reconstruction error-based outlier detection methods utilize the reconstruction error of an au-
toencoder network to identify outliers. They typically use the reconstruction error directly as the
anomaly score (An & Cho, 2015). In more recent work, they try to separate outliers into a sepa-
rate low-rank matrix analogous to RPCA (Zhou & Paffenroth, 2017) or they introduce a separate
discriminator network (Sabokrou et al., 2018). However, as shown in (Beggel et al., 2019), for
autoencoders the reconstruction error of outliers often converges to that of inliers. This negatively
impacts the performance of such reconstruction error methods.
3) Generative outlier detection methods leverage deep generative models (Goodfellow et al., 2014;
Kingma & Welling, 2013) to generate the latent space such that the distribution of the latent space
is encouraged to match a known prior so that thereafter an appropriate outlier method for the prior
can be applied (Vu et al., 2019) to the latent space, or a discriminator can identify outliers in the
latent space (Vu et al., 2019) or both the latent space and reconstructed space (Perera et al., 2019).
However, as discussed in Section 1, in practice both inliers and outliers are both mapped to the prior
distribution as outliers that are mapped to low-probability regions will generally incur a high cost
from the divergence term which matches the latent distribution to the prior.
OP-DMA shares characteristics with each of these three categories. However, unlike the other meth-
ods in these categories, OP-DMA actively encourages outlier to be mapped to low-probability re-
gions instead of just assuming that this will be the case. OP-DMA is is a generative outlier method
that uses the reconstruction error to encourage outliers to be mapped to low-probability regions.
Further, it can flexibly be paired with nearly any classic outlier detector after distribution mapping.

3 PROPOSED APPROACH: OP-DMA

Overview of approach. OP-DMA consists of three main components:

1. A distribution mapping autoencoder (DMA) that OP-DMA utilizes to map a datasetX from
the feature space RM into a lower dimensional latent space RN , such that the distribution of
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the encoded data in the lower dimensional latent space has a known probability distribution
PZ . This step is crucial as it makes it easy for OP-DMA to easily identify low probability
regions of the latent space (outliers should be mapped here). This can be done because
after the distribution mapping, we can explicitly calculate the Probability Density Function
(PDF) of the latent space so long as we selected a prior distribution with a known PDF.

2. A novel Probability-Weighted Loss (PWL) function for distribution mapping that encour-
ages outliers to be mapped to low-probability regions of the latent space, solving both the
challenges of overpowering divergence penalty and unknown outlier status.

3. An traditional outlier detection method is used to identify outliers in the transformed la-
tent space. The choice of outlier detection method is flexible as long as it is amenable to
the prior distribution PZ selected in step 1 of OP-DMA. For instance, when a Gaussian
distribution is used for the prior, then OP-DMA utilizes a classical distance-based outlier
detection method for step 3. These steps are described in the following subsections and
illustrated in Figure 2.

3.1 DISTRIBUTION MAPPING AUTOENCODER (DMA)

In order to use prior-weighting to map outliers to low-probability regions of a known PDF in a latent
space, our distribution mapping method must meet two design requirements:

1. A one-to-one mapping between each original data point, its latent representation and the
reconstructed data point must be established so that each data point’s reconstructed data
point is unique and can be determined, and vice versa.

2. The divergence term must impose a cost based on how well a batch of latent data points
match the prior overall, rather than requiring individual data points to have a high proba-
bility of being a draw from the prior.

To meet these requirements, we select the Wasserstein AutoEncoder (WAE) (Tolstikhin et al., 2017)
as the foundation for our distribution mapping. WAEs are distribution-mapping autoencoders that
minimize the Wasserstein distance between the original data and its reconstruction, while mapping
the input data to a latent space with a known prior distribution. To see why we base our distribution-
mapping technique on this method, consider the WAE objective function for encoder networkQ and
decoder network G:

Wλ
c (X,Y ) =

Reconstruction Error︷ ︸︸ ︷
inf
Q

EPX
EQ(Z|X)[c(X,G(Z))] +

Divergence Penalty︷ ︸︸ ︷
λD(PQ, PZ) . (1)

The first term on the right hand side of Equation 1 corresponds to the reconstruction error between
the input data and reconstructed data for cost function c. The second term D is a divergence penalty
between the distribution of the latent space and the prior distribution, with λ a constant weight term
that determines how much that divergence is penalized. Let us deterministically produce the latent
representation Q(X) and output G(Q(X)|X) (by using Q(X) = δµ(X), where µ is some function

Figure 2: An overview of OP-DMA. Data is mapped to latent space with prior distribution using
a Prior-Weighted Loss (PWL), which encourages outliers to be mapped to low-probability regions.
This allows for distance-based outlier detection.
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mapping input data set X to Q(X), for instance). It is now clear why Wasserstein autoencoders are
an appropriate choice to model our distribution mapping method, as the reconstruction error term
EPX

EQ(Z|X)[c(X,G(Z))] in Equation 1 represents a one-to-one correspondence between input
data, its latent representation and the reconstructed output (meeting requirement 1). Additionally,
D is a batch-level cost term that would be incurred if the latent representation of a batch doesn’t
match the prior distribution but doesn’t require individual points to be mapped to a high probability
region of the prior (meeting requirement 2). However, we note that WAEs unfortunately do not
encourage outliers in the feature space to remain outliers in the latent space. Consider D to be a
discriminator network. Then D is likely to learn a boundary around the high probability region of
the prior distribution. Thus the encoder network Q will be penalized for mapping an outlier to a
low probability region outside of the boundary found by D as the discriminator D would correctly
identify it as a generated point.

3.2 PRIOR-WEIGHTED LOSS (PWL): NOVEL LOSS FUNCTION FOR OUTLIER COERCION

We now describe our novel Prior-Weighted Loss (PWL) that tackles the above challenge of WAEs
mapping outliers to high probability regions. The key idea is that outliers will initially have higher
reconstruction error than inliers during training. This core idea draws from the area of anomaly
detection using reconstruction probability (An & Cho, 2015). We thus propose the Prior Weighted
Loss (PWL), a novel cost term that weights each data point’s reconstruction error term in Equation
1 by the point’s latent likelihood, PZ(Q(x)). The latent likelihood is the PDF of the latent space’s
prior distribution evaluated at its corresponding latent representation.

The prior weighted loss c′ is defined as c′ := c(x,G(Q(x))) · PZ(Q(X))

As the latent likelihood is large in high probability regions and small in low probability regions
by definition, points with a high reconstruction error that are mapped to high-probability regions
will be penalized more than those with high reconstruction error that are mapped to low probability
regions. Since outliers are assumed to result in a high reconstruction error (at least during early
training epochs), by reducing the penalty to the network for poorly reconstructed points that have
been mapped to low-probability regions of the prior, the network is encouraged to map outliers to
these low-probability regions. We now introduce our OP-DMA objective Wλ

c′ as:

Wλ
c′ =

Prior weighted loss︷ ︸︸ ︷
inf

Q:PQ=PZ

EPX
EQ(Z|X)[c

′(X,G(Z))] +

Divergence penalty︷ ︸︸ ︷
λD(PQ, PZ) (2)

Since we have significantly modified the reconstruction error term in the Wasserstein autoencoder
loss function, a natural question is whether or not OP-DMA still corresponds to an autoencoder.
Specifically, will the decoder’s output still match the input data to the encoder? If this does not hold,
two issues could arise: 1) The latent features learned by the network might be unrelated to the input,
and hence useless in cases where it is desirable to use the latent representation in a downstream
task. 2) More importantly for our outlier detection task, if the network is no longer encouraged to
reconstruct the input, the crucial property that outliers will have a higher reconstruction error may
no longer hold. In such a case, the “reconstruction error” may be meaningless. Fortunately, we
can show that our OP-DMA loss function still corresponds to a Wasserstein divergence between the
input and reconstructed distributions (Theorem 1). For this, we must demonstrate that is that the
prior-weighted cost c′ meets the requirements of a Wasserstein divergence’s cost function, namely,
that c′(x1, x2) ≥ 0 (∀ x1, x2 ∈ supp(P )), (c′(x, x) = 0) (∀ x ∈ supp(P )), and Eγ [c′(x1, x2)] ≥
0 (∀ γ ∈ Γ[P, PZ ])

Theorem 1. Let Wc be a Wasserstein distance. Then Wc′ is a Wasserstein distance, with c’ the
prior-weighted c.

3.3 UNSUPERVISED STATISTICAL OUTLIER DETECTION METHOD

Intuitively, an ideal mapping would place all inliers within regions where the latent likelihood is
greater than some value V , and all outliers into some alternate regions where the latent likelihood is
less than that value V . The core result fundamental to our work is thus that this scenario is indeed
the optimal solution for the loss function of OP-DMA as stated in Theorem 2.
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Dataset # Features # Datapoints % Outliers Dataset # Features # Datapoints % Outliers
Satellite 36 6435 32% Lympho 18 148 4.1%

Pima 8 768 35% Musk 166 3062 3.2%
WBC 30 278 5.6% Thyroid 6 3772 2.5%

Arrythmia 274 452 15% Satimage-2 36 5803 1.2%
Breastw 9 638 35% Cover 10 286048 0.9%
Letter 32 1600 6.25% Fever 36 5293 0.2%
Cardio 21 1831 9.6% MNIST 784 6365 1%

Table 1: Description of real-world datasets’ dimensionality, size, and outlier percentage.Most
datasets taken from the standard ODDs database1, while RC Flu was taken from the Reality-
Commons Social Evolution database2. We also evaluate on the well-known MNIST3 dataset.

Theorem 2. Let Q be an encoder network such that D(PQ, PZ ,F) = 0, where D(A,B,F) is the
Maximum Mean Discrepancy between A and B, F is the set of bounded continuous functions and
PZ = N (0,Σ). Let us consider or dataset X as a centered random variable, X : Ω → Rn, X ∼
PX . Let X(A), A ⊂ Ω, be outliers and let H = Ω− A be the inliers, where

∫
X(A)

pX(x)dx = α.
Further, let c′(a,G(Q(a)) > c′(h,G(Q(h)) ∀ a ∈ X(A), h ∈ X(H). Then, the optimal solution of
OP-DMA is to map such that ‖Q(X(A))‖mahalanobis ≥ δ and ‖Q(X(H))‖mahalanobis < δ, where

δ =

√∫ 1−α

0

t−n/2−1e
1
2t

2
n
2 Γ(n2 )

dt (3)

This important result implies that after transformation with OP-DMA outliers can be separated
from inliers using a simple distance metric. This lays a solid foundation for a simple yet effec-
tive outlier detection scheme. Namely, we first transform the dataset X to a latent representation
with a multivariate Gaussian prior distribution, as justified by Theorem 2. Then, as Equation 3
states, outliers can be isolated using a simple distance-based approach. More specifically, any stan-
dard outlier detection method that finds outliers in Gaussian distributions (e.g. EllipticEnvelope
method (Rousseeuw & Driessen, 1999)) can be used to find outliers in the latent space.

3.4 PULLING IT ALL TOGETHER: UNSUPERVISED OUTLIER DETECTION USING OP-DMA

OP-DMA, our end-to-end outlier detection approach, is now summarized. First, the input data is
transformed to match a prior distribution with a distribution mapping autoencoder using our novel
Prior-Weighted Loss (PWL) (Equation 2). We chose this prior to be a multivariate Gaussian dis-
tribution with 0 mean and identity covariance, as justified by Theorem 2. Then, an Elliptic En-
velope (Rousseeuw & Driessen, 1999) is used to identify outliers. The outlier detection process is
outlined in Appendix A.3. We use the unbiased estimator of Maximum Mean Discrepency (MMD)
from (Gretton et al., 2012) for the divergence term. For the kernel k of MMD, we use the inverse
multiquadratics kernel as in (Tolstikhin et al., 2017) and Mean Squared Error (MSE) for c.

4 EXPERIMENTAL EVALUATION

Compared Methods. We compare OP-DMA to state-of-the-art distribution mapping outlier
detection methods. These include methods that perform outlier detection on the latent space of a
WAE (Tolstikhin et al., 2017), a VAE (Kingma & Welling, 2013), and an Adversarial Autoencoder
(AAE) (Makhzani et al., 2015) – all with a Gaussian prior but they do not integrate our PWL
idea. We test against MO-GAAL (Liu et al., 2019) and ALOCC (Sabokrou et al., 2018), two
state-of-the-art deep generative outlier detection models. We also test against LOF (Breunig et al.,
2000) and OC-SVM (Schölkopf et al., 2001), two popular state-of-the-art non-deep outlier detection
methods.

Data Sets. We evaluated on a rich variety of real-world data sets from the ODDs 1 benchmark
data store (Rayana, 2016). These datasets cover a wide range of dimensionality in the feature
space from 6 to 274, and also different outlier contamination percentages from 0.2% to 32%.

1http://odds.cs.stonybrook.edu/
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Datasets!Methods OP-DMA WAE VAE AAE MO-GAAL ALOCC LOF OC-SVM
Satellite 0.735 0.554 0.310 0.480 0.481 0.706 0.413 0.417

±0.012 ±0.009 ±0.007 ±0.008 ±0.001 ±0.008
Pima 0.625 0.520 0.23 0.497 0.518 0.517 0.456 0.440

±0.018 ±0.020 ±0.019 ±0.007 ±0.002 ±0.010
WBC 0.590 0.448 0.268 0.19 0.468 0.529 0.480 0.199

±0.011 ±0.013 ±0.011 ±0.018 ±0.060 ±0.007
Arrythmia 0.531 0.601 0.201 0.294 0.518 0.457 0.464 0.254

±0.017 ±0.015 ±0.010 ±0.010 ±0.011 ±0.020
Breastw 0.951 0.950 0.368 0.479 0.944 0.863 0.292 0.824

±0.014 ±0.011 ±0.009 ±0.007 ±0.014 ±0.062
Letter 0.182 0.091 0.048 0.10 0.159 0.165 0.488 0.208

±0.001 ±0.003 ±0.005 ±0.002 ±0.003 ±0.001
Cardio 0.590 0.290 0.221 0.204 0.542 0.432 0.208 0.323

±0.013 ±0.012 ±0.008 ±0.009 ±0.032 ±0.071
Lympho 0.585 0.443 0.341 0.310 0.719 0.958 0.833 0.150

±0.012 ±0.008 ±0.011 ±0.018 ±0.119 ±0.083
Musk 0.32 0.330 0.243 0.228 0.394 0.199 0.069 0.101

±0.007 ±0.010 ±0.009 ±0.025 ±0.090 ±0.160
Thyroid 0.29 0.173 0.130 0.170 0.225 0.084 0.200 0.090

±0.019 ±0.021 ±0.019 ±0.023 ±0.027 ±0.026
Satimage-2 0.860 0.176 0.148 0.535 0.814 0.818 0.122 0.019

±0.039 ±0.013 ±0.007 ±0.015 ±0.049 ±0.026
Cover 0.200 0.142 0.069 0.070 0.032 0.050 0.0227 0.1194

±0.002 ±0.001 ±0.004 ±0.001 ±0.009 ±0.003
Fever 0.854 0.786 0.274 0.485 0.560 0.720 0.459 0.568

±0.031 ±0.027 ±0.006 ±0.014 ±0.030 ±0.094
MNIST 0.684 0.532 0.614 0.599 0.469 0.571 0.491 0.610

±0.020 ±0.042 ±0.036 ±0.013 ±0.141 ±0.026

Table 2: Weighted F1 scores with 95% confidence interval for OP-DMA vs state-of-the-art methods
on benchmark outlier detection datasets. Best performing method in bold, second-best underlined.
No confidence intervals on LOG and OC-SVM as they are deterministic.

Table 1 breaks down the statistics of each dataset. We evaluate all methods on their ability to
detect subjects who have a fever from smartphone sensible data using the MIT Social Evolution
dataset (Madan et al., 2011) (RC Fever) 2 to demonstrate OP-DMA’s effectiveness for mobile
healthcare. Finally, we also evalue on the MNIST dataset 3. We used all MNIST images of
“7”s as inliers, and randomly sampled “0”s as outliers such that “0”s account for ∼ 1% of the
data. Since outlier detection is unsupervised without any supervised training phase, we perform
outlier detection in an unsupervised manner on the entire dataset instead of having to introduce
train/test splits. In each dataset, all points are labeled as either inlier or outlier as ground truth. We
emphasize that these ground truth labels are only used for evaluation but not for training all methods.

Metrics. Due to the large class imbalance inherent to outlier detection, we use the F1 score as
our performance metric (Lazarevic-McManus et al., 2008) as commonly used to evaluate outlier
detection methods (An & Cho, 2015; Zhou & Paffenroth, 2017; Zong et al., 2018).

Parameter Configurations of Methods. Encoders and decoders of all methods consist of 3-layer
neural networks, where the decoder in each pair mirrors the structure of its encoder. The number
of nodes in the hidden layer of each network is a hyperparameter from {5, 6, 9, 15, 18, 100}. The
number of nodes in the latent layer varies from {2, 3, 6, 9, 15}. The regularization parameter λ is
chosen such that the reconstruction error is on the same order of magnitude as the MMD error for
the first epoch. We use the standard parameters of MO-GAAL from the authors’ code 4. We also use
the standard configuration of ALOCC from the authors code 5, except we add an additional dense
layer at the beginning of each subnetwork. We do this as ALOCC assumes input to be images of a
certain shape. The additional dense layer transforms the input data from its original dimensionality

2http://realitycommons.media.mit.edu/socialevolution4.html
3http://yann.lecun.com/exdb/mnist/
4https://github.com/leibinghe/GAAL-based-outlier-detection
5https://github.com/khalooei/ALOCC-CVPR2018
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Figure 3: a) F1 score of OP-DMA for various values of the contamination parameter on the
Satimage-2 dataset. b) Outliers and inliers in OP-DMA’s latent space.

into the required shape. For these we use the standard parameters from Scikit-Learn.

Experiment 1: Versatile Anomaly Detection. We validate the versatility of our OP-DMA method
by showing that our method consistently outperforms state-of-the-art methods on a rich variety of
benchmark datasets. As shown in Table 2, OP-DMA outperforms the majority (9/13) of the other
methods on the benchmark datasets. We see that OP-DMA’s superior performance is not limited to
datasets with either a high or low percentage of outliers. OP-DMA is the best performing method on
the dataset with the largest ratio of outliers (Satellite) as well as that with the smallest ratio (Cover).

Experiment 2: Sensitivity to Contamination Parameter. The contamination parameter α is
used to fit the standard outlier method, Elliptic Envelope, plugged into our OP-DMA framework
on the encoded data after training. Thus, we test the sensitivity of EllipticEnvelope to the value
of the contamination parameter by evaluating the F1 score of outlier detection on the Satellite
dataset mapped by OP-DMA. The results (Figure 3 (a)) show that as long as this parameter is
not significantly underestimated, the F1-score is robust to different values of the contamination
parameter.

Experiment 3: Verifying that Outliers are Mapped To Low-Probability Regions. We trans-
formed data from a multi-modal distribution in R4 consisting of a mixture of two Gaussians centered
at (0,0,0,0) and (5,5,5,5) to a standard normal Gaussian in R2. Outliers in the original space were
drawn from a uniform distribution and consisted of 2.4% of the total data. As Figure 3 b) shows,
outliers are successfully mapped far from the inlier data points. Furthermore, the average value of
the prior evaluated at the outlier points is 0.02, while the average for inliers is 0.08, confirming that
outliers are mapped to lower-probability regions than inliers.

5 CONCLUSION

We have introduced OP-DMA, an autoencoder-based solution that unlike prior methods is truly
outlier preserving in its distribution mapping method. That is, OP-DMA maps outliers in the feature
space to low probability regions in the latent space in which a multivariate standard normal Gaussian
prior distribution is enforced. Outliers are consequently easily identifiable in the latent space. Our
experimental study comparing OP-DMA to state-of-the-art methods on a collection of benchmark
outlier detection datasets shows that it consistently outperforms these methods on the majority of the
datasets. We have also demonstrated that there is not a significant increase in running time between
our method and state-of-the-art methods.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Since c is a Wasserstein divergence, we know that c(x1, x2) ≥ 0 (∀ x1, x2 ∈ supp(P )),
(c(x, x) = 0) (∀ x ∈ supp(P )), and Eγ [c(x1, x2)] ≥ 0 (∀ γ ∈ Γ[P, PZ ]). Since PZ(z) ≥ 0 (∀ z), c′
will also fulfill the three aforementioned properties of c. Thus, Wc′ is a Wasserstein divergence.

A.2 PROOF OF THEOREM 2

Proof. The Mahalanobis distance of Q(X) can itself be expressed as a random variable, δ =√
Q(X)Σ−1Q(X)T . Let Φδ be the CDF of δ. Then, Φδ(1 − α) = P (δ ≤ 1 − α) = P (δ2 ≤

(1− α)2) = Φδ2((1− α)2).

Let Y = Q(X)M−1, where MTM = Σ is the Choleski decomposition of the covariance Σ. Since
D(PQ, PZ ,F) = 0, and D(A,B,F) = 0 iff A = B, we thus know that Q(X) ∼ N (0,Σ). Thus
sinceQ(X) is normally distributed and centered, Y is normally distributed with identity covariance.
Since δ2 = Q(X)Σ−1Q(X)T = Y Y T , Φδ2 is the CDF of of the sum of squares of n normally
distributed variables with mean 0 and σ = 1. Thus, Φδ2 is the Chi Squared distribution. The
inverse Chi Squared CDF will thus give us the distance δ such that 1 − α percent of the points are

within δ =

√∫ 1−α
0

t−n/2−1e
1
2t

2
n
2 Γ( n

2 )
dt Now, let us assume that for some parameter choice Θ′ for Q that

αP (Q(X(A)|Θ′) ≤ δ) = β, β > 0. Consequently, (1 − α)P (Q(X(H)|Θ′) > δ) = β, since
P (Q(X) > δ) = α and

∫
X(A)

pX(x)dx = α. Conversely, let us assume that there is a parameter
configuration Θ such that αP (Q(X(A)|Θ) ≤ δ) = 0 and so (1− α)P (Q(X(H)|Θ) > δ) = 0.

Since PZ ∼ N (0,Σ), PZ(d1) < PZ(d2) for ‖d1‖mahalanobis > ‖d2‖mahalanobis. Thus, since we
assume c(a,G(Q(a)) > c(h,G(Q(h)) ∀ a ∈ X(A), h ∈ X(H), then

EPX
EQ(Z|X)c

′(xp, G(Q(xp|Θ′))) = EPX
EQ(Z|X)c(xp, G(Q(xp|Θ′)))PZ(xp)

> EPX
EQ(Z|X)c(xp, G(Q(xp|Θ)))PZ(xp) = EPX

EQ(Z|X)c
′(xp, G(Q(xp|Θ))).

Thus, the optimal solution for OP-DMA’s cost function is one that maps outliers to regions with a
larger Mahalanobis distance than that of inliers.

A.3 OP-DMA ALGORITHM

Algorithm 1: Unsupervised Outlier Detection with OP-DMA
Require: Regularization coefficient λ
Contamination parameter α
Initialized encoder network QΦ and decoder network GΘ with random weights Φ and Θ
Dataset X
while Θ, Φ not converged do

Sample {x1, x1, ..., xn} from X , {z1, z1, ..., zn} from N (0, I), and {z̃1, z̃1, ..., z̃n} from
QΦ(Z|X)

Update weights Φ and Θ by descending

1

n

n∑
i=1

c(xi, GΘ(z̃i)) · λ · PZ(z̃i) +
1

n2 − n

(∑
h 6=j

k(zh, zj) +
∑
h 6=j

k(z̃h, z̃j)

)
− 2

n2

∑
h,j

k(zh, z̃j)

end
Find Dmin = {QΦ(xi), QΦ(xj), ..., QΦ(xk)}, ‖Dmin‖ = (1− α)‖D‖ with Minimum
Covariance Determinant estimator, infΣ̃Det{Σ̃}.

Find estimated mean µ̃ from Dmin

return ‖QΦ(xi)‖mahalanobis = (QΦ(xi)− µ̃)′Σ̃(QΦ(xi)− µ̃) for xi ∈ D as outlier scores
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