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Summary
In the context of Markov Decision Processes (MDPs) with linear Bellman completeness, a

generalization of linear MDPs, we reconsider the learning capabilities of a greedy algorithm.
The motivation is that, when exploration is costly or dangerous, an exploration-free approach
may be preferable to optimistic or randomized solutions. We show that, under a condition
of sufficient diversity in the feature distribution, Least-Squares Value Iteration (LSVI) can
achieve sublinear regret. Specifically, we show that the expected cumulative regret is at most
Õ(H3

√
dK/λ0), where K is the number of episodes, H is the task horizon, d is the dimension

of the feature map and λ0 is a measure of feature diversity. We empirically validate our theo-
retical findings on synthetic linear MDPs. Our analysis is a first step towards exploration-free
reinforcement learning in MDPs with large state spaces.

Contribution(s)
1. The definition of a new diversity condition for linear MDPs.

Context: Inspired from prior work of Bastani et al. (2021) and Kannan et al. (2018).

2. Proved that a greedy algorithm (LSVI) achieves sublinear cumulative regret with high prob-
ability when the here defined diversity condition is satisfied.
Context: Proof built upon the related work on linear contextual bandit of Bastani et al.
(2021).

3. Proved that a greedy algorithm (LSVI) achieves sublinear cumulative regret with high prob-
ability when the here defined diversity condition is satisfied, under a misspecified setting.
Context: Proof built upon the related work on approximately linear MDPs of Zanette et al.
(2020).
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Abstract

In the context of Markov Decision Processes (MDPs) with linear Bellman complete-1
ness, a generalization of linear MDPs, we reconsider the learning capabilities of a2
greedy algorithm. The motivation is that, when exploration is costly or dangerous,3
an exploration-free approach may be preferable to optimistic or randomized solutions.4
We show that, under a condition of sufficient diversity in the feature distribution, Least-5
Squares Value Iteration (LSVI) can achieve sublinear regret. Specifically, we show that6
the expected cumulative regret is at most Õ(H3

√
dK/λ0), where K is the number7

of episodes, H is the task horizon, d is the dimension of the feature map and λ0 is a8
measure of feature diversity. We empirically validate our theoretical findings on syn-9
thetic linear MDPs. Our analysis is a first step towards exploration-free reinforcement10
learning in MDPs with large state spaces.11

1 INTRODUCTION12

Reinforcement Learning (RL) is one of the most popular approaches to sequential decision making13
under uncertainty. In the last few years, RL in large state spaces has received a lot of attention both14
in theory (Long & Han, 2023) and practice, with applications ranging from robotics (Singh et al.,15
2022) to LLM finetuning (Ahmadian et al., 2024). One great potential of RL solutions, still largely16
untapped, is their intrinsically adaptive nature: RL agents, once deployed, can improve over time17
from interaction data. This requires a careful balancing of exploitation (taking decisions that are18
known to be good) and exploration (taking decisions that may be even better, but of which little is19
known).20

This exploration-exploitation dilemma is well known in the RL literature since its beginnings (Sut-21
ton & Barto, 2018) and is the main subject of study of the bandit literature (Lattimore & Szepesvári,22
2020) and of a good part of RL theory (Agarwal et al., 2019). All agree on this basic principle:23
that some form of exploration is necessary. A purely greedy agent can easily get stuck on a promis-24
ing course of action, without ever discovering better but neglected alternatives. Some of the most25
popular exploration strategies are based on the optimism in the face of uncertainty principle (Lai26
& Robbins, 1985), of which (Azar et al., 2017) and (Jaksch et al., 2010) are notable applications27
to RL, posterior sampling (Thompson, 1933), like (Osband et al., 2013), or simple noise injec-28
tion (Haarnoja et al., 2018).29

In practice, however, there are several reasons to avoid exploration in favor of a greedy approach. In30
safety-critical applications, such as robotic (Brunke et al., 2022), explorative actions may be danger-31
ous. In many cases, exploration for the sake of learning can also be considered unethical (Bird et al.,32
2016), some prominent examples being drug trials, predictive policing, lending, resume screening,33
and social media personalization. It is not hard to imagine that chatbots will incur in similar ethical34
issues (Følstad et al., 2021). Furthermore, explorative solutions are more expensive to implement,35
their behavior is less predictable, and their decisions less interpretable. Greedy approaches are not36
only favored for the aforementioned reasons, but often are also surprisingly effective in practice (e.g.,37
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Li et al., 2024). Hence, even if theory clearly shows the necessity of exploration, common sense may38
suggest otherwise in many real-world scenarios.39

To reconcile theory and practice, Bastani et al. (2021), closely followed by Kannan et al. (2018),40
proposed to study special conditions under which exploration-free learning is possible. They did41
so within the framework of linear contextual bandits (Lattimore & Szepesvári, 2020, Chapter 19).42
In this model, at each timestep t, the agent observes a context Xt (e.g., data about the current43
user) and selects an action At (e.g., an item to recommend). The agent receives a reward that is44
linear in some context-action features. Clearly, some structure in the rewards (such as linearity) is45
necessary for exploration-free learning. If rewards of different actions are completely uncorrelated,46
active exploration is the only way to compare the value of different actions. On the other hand,47
if some structure is present, an action may reveal something about other actions, reducing or even48
removing the need for exploration. Indeed, Bastani et al. (2021) show that under sufficient diversity49
of contexts, exploration-free learning is possible in linear contextual bandits. In particular, they50
introduce a covariate-diversity assumption and prove that the regret of a simple greedy algorithm51
is sublinear. This does not mean that exploration is in general unnecessary for linear contextual52
bandits, but provides a possible characterization of tasks for which pure exploitation suffices.53

Our purpose is to provide a similar characterization for Markov Decision Processes with structure,54
showing when exploration-free RL is possible. To leverage results from the linear contextual bandit55
literature, we examine MDPs with some kind of linear structure. These are commonly studied in56
the context of no-regret RL with linear function approximation. This line of work was pioneered57
by Jin et al. (2023), who first designed a no-regret algorithm for finite-horizon MDPs with linear58
rewards and transition probabilities, also known as low-rank MDPs (Yang & Wang, 2019). The59
algorithm is called LSVI-UCB and is based on the optimism principle. A follow-up work by Zanette60
et al. (2020) considers a more general class of “linear" MDPs where the class of linear action-61
value functions is closed under the Bellman optimality operator. This is the framework that we will62
adopt for our analysis, although we will use low-rank MDPs as numerical examples.1 Nonlinear63
function approximation is also an active area of research (e.g., Jin et al., 2021). This is beyond64
the scope of this paper, but we believe that our analysis of linear MDPs is a necessary step in65
the study of exploration-free reinforcement learning in complex environments requiring general66
function approximation.67

Our main contributions are as follows: we define a novel diversity condition, inspired by Bastani68
et al. (2021) and Kannan et al. (2018), for Markov Decision Processes with linear function approxi-69
mation, and present new insights into how feature coverage affects the performance of exploration-70
free reinforcement learning algorithms. We prove that a greedy algorithm (LSVI) achieves sublinear71
cumulative regret with high probability when the diversity condition is satisfied. We also establish an72
any-time bound on the expected cumulative regret. Finally, we empirically validate our theoretical73
findings on synthetic linear MDPs.74

The paper is structured as follows. In Section 2 we present all the necessary preliminaries for75
understanding and developing the concepts discussed in this work. We begin by introducing Markov76
Decision Processes (MDPs), followed by the specific case of MDPs that satisfy the linear Bellman77
completeness condition, which is the setting of this work. We also consider the special case of78
low-rank MDPs. Section 3 describes the analyzed algorithm, outlines the assumptions required for79
our analysis, and presents the theoretical results. Section 4 provides more details on the theoretical80
analysis, where we state the key lemmas used in the proof of the main theorem, followed by a81
detailed proof of the latter. Other proofs can be found in the Appendix. In Section 5, we discuss82
related works, while Section 6 focuses on the experiments conducted to empirically validate our83
theoretical results.84

1A more intuitive generalization of low-rank MDPs is linear realizability of action-value functions. However, this has so
far proven to be much more challenging to analyze (Weisz et al., 2023).
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Table 1: Notation

SYMBOL DESCRIPTION

[n] {1, . . . , n}
I Indicator function
λmin(A) Minimum eigenvalue of matrix A
⟨x, y⟩ Inner product, ⟨x, y⟩ =

∑
i xiyi

||x||p p-norm of vector x
||x||2A x⊤Ax

2 PRELIMINARIES85

In this section, we provide the necessary background on Markov decision processes and the linearity86
assumption under which our work is conducted. Our notation is summarized in Table 1.87

2.1 Markov Decision Processes88

A finite-horizon Markov Decision Process (MDP, Puterman, 1994) is denoted by the tuple M =89
(S,A, H,P, r, µ), where S is the space of states, A is the space of actions, H ∈ N is the length of90
each episode, P = {Ph}Hh=1 and r = {rh}Hh=1 are, respectively, the state transition probabilities and91
the reward functions. We assume that S is a measurable space andA has finite cardinality. For each92
step h ∈ [H], Ph(·|s, a) denotes the transition kernel over the next states if we choose action a in93
state s, and rh : S ×A → [−1, 1] is the deterministic reward function. Finally µ is the starting-state94
probability distribution over S.95

An agent interacts with the MDP as follows: an initial state s1 is drawn from µ, then at each step96
h ∈ [H] the agent observes the state sh, picks an action ah and receives a reward rh(sh, ah).97
The MDP evolves into a new state sh+1 that is drawn from the transition kernel Ph(·|sh, ah). The98
episode ends when state sH+1 is reached. A (deterministic) policy π of an agent is a function99
π : S × [H] → A, where π(s, h) is the action that the agent takes in state s at the h-th step of the100
episode. We will abbreviate π(s, h) as πh(s) in the following. For a policy π, for each h ∈ [H],101
we can define the value function V π

h : S → R, which, given the current state at step h, returns the102
cumulative expected reward following policy π:103

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
,

where Eπ is short for ah ∼ π(·|sh), sh+1 ∼ P(·|sh, ah), . . . , aH ∼ π(·|sH) conditional on π. We104
also define the action-value function Qπ

h : S ×A → R, which gives the expected value of cumula-105
tive rewards when the agent starts from a given state-action pair at the h-th step and follows policy106
π afterwards. We have:107

Qπ
h(s, a) := rh(s, a) + Eπ

[
H∑

h′=h+1

rh′(sh′ , πh′(sh′))

∣∣∣∣sh = s, ah = a

]
,

for all (s, a) ∈ S ×A, h ∈ [H].108

Finally, we can define the occupancy measure of the policy π:109

ρπh(s) := Eπ,s0∼µ[I{sh = s}].

There always exists an optimal deterministic policy π∗ which gives the optimal value V ∗
h (s) =110

supπ V
π
h (s) for all s ∈ S and h ∈ [H] (Puterman, 1994). Similarly, Q∗

h(s, a) = Qπ∗

h (s, a).111
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In an episodic MDP, the agent aims to learn the optimal policy by interacting with the environment112
over a series of K episodes. For each k ≥ 1, an initial state sk1 is drawn from µ and the agent113
chooses policy πk. The difference in values between V πk

1 (sk) and V ∗
1 (sk) is the instantaneous114

regret, or suboptimality, of the agent at the k-th episode. Thus, after playing for K episodes, the115
total regret is116

R(K) :=

K∑
k=1

Esk∼µ [V
∗
1 (sk)− V πk

1 (sk)] .

We can also rewrite the total regret, by using a performance difference lemma (e.g., Proposition 29117
from Papini et al. (2021a)), as follows:118

R(K) :=

K∑
k=1

H∑
h=1

Esh∼ρ
πk
h

[∆h(sh, πk(sh))] , (1)

where ∆h(s, a) := V ∗
h (s)−Q∗

h(s, a) is the suboptimality gap.119

2.2 Linear Bellman Completeness120

We will consider a setting in which we have a set of features that satisfy the linear Bellman com-121
pleteness condition, which we will refer to as linear MDPs for brevity. In this scenario we work with122
a feature map ϕ : S ×A → Rd. Let us first define the set of admissible parameters as:123

W = {w ∈ Rd s.t. |⟨ϕ(s, a),w⟩| ≤ H ∀s ∈ S, ∀a ∈ A}.

We restrict our analysis to MDPs equipped with a feature map that satisfies the following:124

Assumption 2.1 (Linear Bellman completeness, Agarwal et al. (2021a)). We say that the feature125
map ϕ satisfies the linear Bellman completeness property if, for all θ ∈ W and (s, a, h) ∈ S ×A×126
[H], there exists w ∈ W such that:127

w⊤ϕ(s, a) = r(s, a) + Es′∼Ph(s,a) max
a′

θ⊤ϕ(s′, a′).

This condition implies that Q∗
h(s, a) is linear in ϕ, i.e., there exists θ∗

h such that Q∗
h(s, a) =128

(θ∗
h)

⊤ϕ(s, a) (Zanette et al., 2020, Lemma 6). This justifies the use of linear function approxi-129
mation.130

2.3 Low-Rank Markov Decision Processes131

Although our theoretical results apply to general linear-Bellman-complete MDPs, we mention a132
particular case in which Assumption 2.1 holds, low-rank Markov Decision Processes (Jin et al.,133
2023). In this scenario, the transition kernel and the reward function are assumed to be linear w.r.t.134
known state-action features.135

Formally, a Markov Decision Process defined as M = (S,A, H,P, r), with a feature map ϕ :136
S × A → Rd, is considered a low-rank MDP (Yang & Wang, 2019; Jin et al., 2023) if, for each137
time step h ∈ [H], there exist d signed measures ρh = (ρ(1), . . . , ρ(d)) over the state space S , and a138
vector θh ∈ Rd, such that, for any state-action pair (s, a) ∈ S ×A, the following holds:139

Ph(· | s, a) = ⟨ϕ(s, a),ρh(·)⟩, rh(s, a) = ⟨ϕ(s, a),θh⟩.

A key characteristic of a low-rank MDP is that the action-value functions of all policies are linear140
with respect to the same feature map ϕ (Jin et al., 2023, Proposition 2.3). It is easy to show that all141
low-rank MDPs are linear-Bellman-complete. The opposite is not true (Zanette et al., 2020).142
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3 GREEDY LEARNING143

In this section, after reviewing the LSVI algorithm, we present our feature-diversity assumption and144
show how this is sufficient to achieve sublinear regret in an exploration-free manner.145

3.1 Algorithm146

The algorithm we consider in our work is Least-Square Value Iteration (LSVI, Bradtke & Barto,147
1996), a simple greedy algorithm, based on value-iteration, which finds the optimal Q-function by148
iterative application of Bellman’s optimality equation:149

Q∗
h(s, a) = rh(s, a) + Es′∼Ph(·|s,a) max

a′∈A
Q∗

h+1(s
′, a′).

LSVI parametrizes Q∗
h(s, a) by a linear form and approximates the optimality equation with a regu-150

larized least-squares problem in which we solve for wh. The algorithm solves the following program151
at each stage of each episode:152

wh ← argmin
w∈W

k−1∑
τ=1

[rh(s
τ
h, a

τ
h) + max

a∈A
Qh+1(s

τ
h+1, a)−w⊤ϕ(sτh, a

τ
h)]

2 + λ||w||2.

Algorithm 1 LSVI

1: for episode k = 1, . . . ,K do
2: Observe the initial state sk1 ∼ µ
3: for step h = H, . . . , 1 do
4: Σ̂k,h =

∑k−1
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λ · I
5: w̃k

h = Σ̂−1
k,h

∑k−1
τ=1 ϕ(s

τ
h, a

τ
h)[rh(s

τ
h, a

τ
h) + maxa Q

k
h+1(s

τ
h+1, a)]

6: ŵk
h = argminw∈W

∥∥w − w̃k
h

∥∥
Σ̂k,h

7: Qk
h = ⟨ŵk

h,ϕ(·, ·)⟩
8: end for
9: for step h = 1, . . . ,H do

10: take action akh = argmaxa∈A Qk
h(s

k
h, a) and observe skh+1

11: end for
12: end for

At a high level, each episode involves two main passes through all time-steps. The first backward153
pass (lines 3-8) updates ŵk

h and Σ̂k,h, that are, respectively, the parameters we are trying to esti-154
mate and the covariance matrix, which are used to construct the action-value function Qk

h. In the155
second pass (lines 9-11), the greedy policy is executed: akh = argmaxa∈A Qk

h(s
k
h, a), using the Qk

h156
computed in the first pass. It’s important to note that QH+1 ≡ 0 since no reward is given after157
the H-th step. In the first episode (k = 1), the summations in lines 4 and 5 run from τ = 1 to 0,158
meaning Σ̂1,h = λ · I and ŵ1

h = 0. The inverse covariance matrix can be updated directly using159
Sherman-Morrison’s formula for improved computational complexity. Line 6 is a projection step160
ensuring ŵk

h ∈ W .2161

3.2 Assumptions162

We will now outline the assumptions necessary for our regret analysis. The first is a technical one163
on the parameter set:164

Assumption 3.1. W is a convex set. Moreover, there exists a constant ϕmax such that ∥ϕ(s, a)∥2 ≤165
ϕmax for all s, a, and a constant wmax such that ∥w∥2 ≤ wmax for all w ∈ W .166

2It is more common to directly clip the Q-function estimate in [−H,H]. However, for technical reasons, we need to
preserve the linearity of the estimator.
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The most important assumption is the following, inspired by conceptually similar conditions pro-167
posed by Bastani et al. (2021) and Kannan et al. (2018) for linear contextual bandits:168

Assumption 3.2. (Covariate Diversity). There exists a positive constant λ0 such that, for each169
policy π,w ∈ W , and for each h ∈ [H],170

λmin

(
Es∼ρπ

h(s)

[
ϕ(s, π(s))ϕ(s, π(s))⊤I{⟨ϕ(s, π(s)),w⟩ ≥ max

a∈A
⟨ϕ(s, a),w⟩}

])
≥ λ0.

Intuitively, the feature vectors witnessed by the agent in “sensible" rounds must cover the whole171
feature space. Fix a linear Q-function estimator. A round is “sensible" if the agent plays an action172
that would appear optimal according to the Q-function estimate. It must hold true for all determin-173
istic policies the agent may play, all linear Q-function estimators, and separately for each episode’s174
timestep. This is a joint property of the MDP and of the feature map. It is encouraged by feature175
maps showing great diversity across states, but also by strongly connected MDPs and starting-states176
distributions with a large support. The constant λ0 is a measure of diversity. We expect exploration-177
free learning to be easier when λ0 is larger.178

A simple example where Assumption 3.2 holds is the following. For simplicity we consider two179
actions and d = 1, but similar constructions can be made for a generic number of actions and a180
larger feature dimension.181

Proposition 3.3 (Noisy features). Let |A| = 2 and ϕ(s, a) = f(s, a) + η(a) for some function182
f : S × A → [0,

√
2σ] and independent Gaussian noises η(a) ∼ N (0, σ2). Then Assumption 3.2183

holds with λ0 ≥ 0.2σ2.184

3.3 Regret of LSVI with Covariate Diversity185

We now establish an upper bound on the cumulative regret of LSVI in the case of an MDP whose186
representation satisfies both the Assumption 2.1 and Assumption 3.2.187

Theorem 3.4. Under Assumptions 2.1, 3.1, and 3.2, with probability 1− δ, the cumulative regret of188
LSVI is at most:189

R(K) = O

(
H3

√
dK

λ0
log(K/δ)

)
.

Notice that Algorithm 1 is not parametric in the failure probability δ. By setting this free parameter190
to δ = 1/

√
K, by a standard argument, we obtain an upper bound on the expected regret, where the191

extra expectation is over the random sequence of (deterministic) policies played by LSVI.192

Corollary 3.5. Under the same assumptions as Theorem 3.4, the expected cumulative regret of LSVI193
is at most:194

E [R(K)] = O

(
H3

√
dK

λ0
log(K)

)
.

The result is still any-time, that is, the algorithm does not need to know the number of episodes K195
in advance.196

Our regret upper bounds, scaling with
√
d, seem to contradict existing Ω(d

√
K) lower bounds197

(cf. Zanette et al. (2020), Theorem 2). This may actually be possible under the non-standard As-198
sumption 3.2. Anyway, notice that λ0 ≤ 1/d, the minimum eigenvalue of the covariance matrix199
of a D-optimal design (Lattimore et al., 2020). Hence, linear dependence on the dimension of the200
feature map is not avoided. If λ0 ≃ 1/d, LSVI with covariate diversity has a better dependence than201
LSVI-UCB (d

√
d) and matches that of the computationally inefficient ELEANOR (Zanette et al.,202

2020). This is possible thanks to the linearity of the Q-function estimates, while LSVI-UCB incurs203
an extra

√
d factor due to its nonlinear exploration bonuses.204
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3.4 Misspecification205

Our results extend to the case where the MDP is only approximately linear. In particular, we consider206
the notion of low inherent Bellman error introduced by Zanette et al. (2020):207

Assumption 3.6.

sup
w′∈W

inf
w∈W

sup
s∈S,a∈A

∣∣∣∣⟨ϕ(s, a),w⟩ − rh(s, a)− Es′∼Ph(·|s,a)

[
max
a′
⟨ϕ(s′, a′),w′⟩

] ∣∣∣∣ ≤ ζ.

The constant ζ measures the level of misspecification, and the linear Bellman completeness case we208
considered so far corresponds to ζ = 0, no misspecification. The optimal action-value function is209
no longer linear, but is well approximated by a linear function (Zanette et al., 2020, Lemma 6). Our210
results generalize well to this misspecified setting.211

Theorem 3.7. If Assumptions 3.6 and 3.2 are satisfied, with probability 1− δ, the cumulative regret212
of LSVI is at most:213

R(K) = Õ
(
H3

√
dK

λ0
+H2ζ

K√
λ0

+H2ζK

)
.

With misspecification, the linear term in K is inevitable (Zanette et al., 2020), but is controlled by214
ζ, which is supposed to be very small. In fact, our result seems to violate a fundamental Ω(ζ

√
dK)215

lower bound (Lattimore et al., 2020). Again, this is not the case since λ0 ≤ 1/d, making the second216
term in the regret Õ(H2ζ

√
dK).217

4 ANALYSIS218

In this section, we prove our main result, Theorem 3.4. We first provide two fundamental lemmas,219
whose proofs are deferred to Appendix A and B.220

The first lemma provides an upper bound on the difference between the estimated Q-function at221
episode k and step h, and the actual optimal Q-function.222

Lemma 4.1. Assume λmin(Σ̂k,h) ≥ λk for all k ≥ 1 and h ∈ [H]. Under Assumptions 2.1 and 3.1,223
with probability 1− δ/2, for all k ≥ 1, h ∈ [H], s ∈ S, a ∈ A:224

|Q̂k
h(s, a)−Q∗

h(s, a)| ≤ (H − h)

((√
βk(δ)

) ϕmax√
λk

)
,

where225 √
βk(δ) := H

√
A+B + C + 1 + wmax,

and A := d ln
(
1 +

ϕ2
maxk
d

)
, B := d ln(w2

maxϕ
2
maxk), C := ln(2Hδ−1).226

Next, we show that the minimum eigenvalue of the sample covariance matrix at time step h until227
episode k, λmin(Σ̂k,h), grows linearly with k. This will guarantee the convergence of our regression228
estimate.229

Lemma 4.2. Given Assumptions 3.1 and 3.2, the following holds for the minimum eigenvalue of the230
empirical covariance matrix for each h ∈ [H] and for each k ≥ 1:231

P
[
λmin(Σ̂k,h) ≥ λ+ λ0k − 8ϕ2

max

√
k log(4dk/δ)

]
≥ 1− δ

2
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Proof of Theorem 3.4. Given the representation of regret from Equation (1):232

R(K) =

K∑
k=1

Es∼ρ
πk
h

[
H∑

h=1

∆h(s, πk(s))

]

=

K∑
k=1

Es∼ρ
πk
h

[ H∑
h=1

Q∗
h(s, π

∗
h(s))−Q∗

h(s, π
k
h(s))

]

=

K∑
k=1

Es∼ρ
πk
h

[ H∑
h=1

Q∗
h(s, π

∗
h(s))− Q̂k

h(s, π
k
h(s)) + Q̂k

h(s, π
k
h(s))−Q∗

h(s, π
k
h(s))

]

≤
K∑

k=1

Es∼ρ
πk
h

[ H∑
h=1

Q∗
h(s, π

∗
h(s))− Q̂k

h(s, π
∗
h(s)) + Q̂k

h(s, π
k
h(s))−Q∗

h(s, π
k
h(s))

]

≤
K∑

k=1

Es∼ρ
πk
h

[ H∑
h=1

2 sup
a∈A

∣∣Q̂k
h(s, a)−Q∗

h(s, a)
∣∣]

≤
K∑

k=1

H∑
h=1

2(H − h)
√

βk(δ)
ϕmax√
λk

(
w.p. 1− δ

2

)

≤
K∑

k=1

H(H + 1)
√
βk(δ)

ϕmax√
λk

= O
(
H3
√
d log(K/δ)

K∑
k=1

1√
λ0k

) (
w.p. 1− δ

2

)

= O

(
H3

√
dK

λ0
log(K/δ)

)
,

The first inequality is by definition of the greedy algorithm (Alg. 1, line 10). The third inequality233
follows from Lemma 4.1 with a choice of λk provided by Lemma 4.2, and the final inequality is an234
elementary upper bound on the sum

∑H
h=1 2(H − h). The last two equalities result from bounding235

βk(δ) by βK(δ), and then substituting
√

βk(δ) = O(H
√
d log(k/δ)) as defined in Lemma 4.1.236

Additionally, we use the fact that 1/(
√
k−O(

√
k log(k))) = O(

√
log(k)/k) and this derives from237

the definition of λk in Lemma 4.2.238

5 RELATED WORKS239

Our work is mainly inspired by the one of Bastani et al. (2021) on linear contextual bandits. They240
first introduced a covariate-diversity assumption that allows a greedy algorithm to achieve sublinear241
regret. In the same paper, they also proposed a greedy-first algorithm that operates greedily until it242
detects that convergence to the optimal policy is unlikely, at which point it begins exploring. This243
was shown to outperform existing exploration-based bandit algorithms. A similar analysis of greedy244
algorithms, using a slightly different diversity condition, was carried out by Kannan et al. (2018).245
To the best of our knowledge, we are the first to extend this kind of analysis to MDPs.246

With similar motivations, but a radically different approach, Saleh et al. (2022) studied noise-free247
reinforcement learning in MDPs with Lipschitz-continuous transition models. They proposed a248
regularized policy gradient approach called truly deterministic policy optimization.3 They proved249

3The name is a reference to the more popular deterministic policy gradient algorithms (Silver et al., 2014; Lillicrap et al.,
2016; Fujimoto et al., 2018). These optimize a deterministic parametric policy using data collected by a stochastic counterpart
obtained by noise injection. For this reason, despite the name, they cannot be considered exploration-free. The reasons for
deploying deterministic policies are similar to ours, but are only applied to the final product of learning and not to the learning
process itself. See Montenegro et al. (2024) for a recent investigation of this approach.
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monotonic improvement guarantees, but did not study sample complexity nor regret. Their exper-250
iments show promising results in robotics applications, but are essentially incomparable to ours.251
Also, because of the (deterministic) policy regularization, their algorithm may not be considered252
greedy.253

5.1 Diversity Conditions254

Besides (Bastani et al., 2021) and (Kannan et al., 2018), which serve as the foundation for our work,255
several papers have adopted covariate-diversity assumptions in linear contextual bandits for diverse256
reasons, often as mere technical assumptions (Foster et al., 2019; Chatterji et al., 2020; Ghosh et al.,257
2021; Hao et al., 2020; Wu et al., 2020; Tirinzoni et al., 2022), sometimes, with a representation258
learning perspective, as a characterization of “good" feature maps (Papini et al., 2021b; Tirinzoni259
et al., 2022; 2023). See (Papini et al., 2021b) for a discussion and comparison of the different260
conditions.261

For linear MDPs, Papini et al. (2021a) proposed a diversity condition, called UNISOFT, under which262
LSVI-UCB and other optimistic algorithms achieve constant regret (under a minimum-gap assump-263
tion). In our notation, they require:264

λmin

(
Es∼ρπ∗

h (s)

[
ϕ(s, π∗(s))ϕ(s, π∗(s))⊤

])
≥ λ∗. (2)

It is sufficient to observe that ⟨ϕ(s, π∗(s)),w∗⟩ ≥ maxa⟨ϕ(s, a),w∗⟩, where w∗ is the linear265
parameter of Q∗, to see that Assumption 3.2 implies UNISOFT and λ0 ≤ λ∗. Intuitively, UNISOFT266
requires optimal trajectories to be informative, while we ask the same of all trajectories that are267
optimal according to some linear estimate. In fact, our design of Assumption 3.2 was partly inspired268
by UNISOFT.269

In the theory of policy gradient algorithms, concentrability coefficients (Agarwal et al., 2021b) play270
a similar role than our covariate-diversity assumption: by assuming that the starting-state distribu-271
tion covers well the subset of the state space visited by the optimal policy, they remove part of the272
challenges of exploration. This allows to study policy gradient algorithms with simple exploration273
strategies (e.g., noise injection) from the perspective of stochastic optimization. The algorithms274
considered in this line of work always employ stochastic policies, at least for data collection. Our275
covariate diversity assumption is also reminiscent of some coverage ratios used in offline RL (Ue-276
hara & Sun, 2022) with linear function approximation and of some notions of coverability (Xie et al.,277
2023).278

5.2 Safe Exploration279

A related body of literature focuses on developing reinforcement learning algorithms that prioritize280
controlled exploration for ethical and safety reasons, moving away from conventional exploratory281
methods. This challenge is well outlined in Amodei et al. (2016), which identifies several AI safety282
problems. These include issues like “avoiding side effects” and “reward hacking,” where agents can283
inadvertently perform harmful actions due to poorly designed objective functions, but also concerns284
regarding undesirable behavior during the learning process, a problem known as safe exploration.285

The concept of safe exploration was first introduced by Moldovan & Abbeel (2012), who presents286
an algorithm for safe but potentially suboptimal exploration in Markov Decision Processes (MDPs).287
A key contribution of their work is a formal definition of safety that focuses on maintaining er-288
godicity with a controlled probability. Although the problem is NP-hard, the authors propose an289
approximation scheme that balances safety and performance.290

A natural way to ensure safe exploration is by adding constraints to the MDP (Altman, 2021) and291
enforcing them during the learning process. A notable example is the Constrained Policy Optimiza-292
tion (CPO) algorithm by Achiam et al. (2017), that ensures near-satisfaction of safety constraints at293
each iteration.294
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Figure 1: Expected cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with (right) and without (left) covariate diversity.

Safe exploration can also be defined in terms of stability, as in (Berkenkamp et al., 2017). A model-295
based predictive approach allows the agent to avoid exploratory actions that may lead to irrecover-296
able states.297

Finally, with an appropriately designed reward function, safety during the learning process can be298
ensured by enforcing monotonic performance improvement (Papini et al., 2022).299

6 EXPERIMENTS300

In this section, we present the experimental results obtained from synthetic low-rank MDPs (as301
defined in Section 2.3). For each scenario, we evaluate the performance of LSVI and of an optimistic302
algorithm, LSVI-UCB (Jin et al., 2023).303

Synthetic Problems. We define a randomly generated low-rank MDP with two distinct realizable304
linear representations, both obtained following Example 2.2 in Jin et al. (2023), each exhibiting305
different characteristics. The first representation satisfies covariate diversity by generating random306
features (cf. Proposition 3.3), while the second is specifically constructed to violate the diversity307
assumption, using orthogonal features to simulate an MDP without any correlation between actions308
(a tabular MDP). The purpose of these experiments is to demonstrate the varying behavior of LSVI-309
UCB and LSVI across different MDPs and to highlight the impact of covariate diversity, comparing310
the cases where it is satisfied and where it is not. We conduct our experiments in a setting where311
H = 3, d = 10 and K = 500. Each experiment is replicated 30 times under these same parameters.312
We plot cumulative regret normalized by V ∗, averaged over the independent runs, with shaded areas313
corresponding to one standard deviation.314

Covariate vs Non-Covariate Diversity. We construct two different environments with randomly315
generated parameters and compare, normalizing both with respect to their V ∗, the expected cumu-316
lative regret obtained when using a representation that satisfies covariate diversity against one that317
does not. In the left image of Fig. 1, it is evident that the absence of covariate diversity causes318
the expected cumulative regret to increase linearly with LSVI (exploration-free). Conversely, the319
right image, depicting a setting satisfying covariate diversity, shows sub-linear curves for both LSVI320
(exploration-free) and LSVI-UCB (optimistic). Fig. 2 shows a close-up of the results under covari-321
ate diversity. Additionally, in Fig. 3, we show the average over 100 different MDPs with covariate322
diversity for both LSVI (non-explorative) and LSVI-UCB (explorative).323
As shown by the experimental results, our findings align with the theory. Specifically, in both Fig. 1324

and Fig. 3, we observe that the presence of covariate diversity makes exploration-free learning fea-325
sible. In Fig. 3, we average the (normalized) performance across 100 randomly generated MDPs326
that satisfy covariate diversity, with each parameter sampled from a uniform distribution between 0327
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Figure 2: Expected cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with covariate diversity.

Figure 3: Average cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with covariate diversity over 100 MDP.

and 1, using parameters within this range can result in some MDPs having very small suboptimality328
gaps, which makes the learning process harder. This variability is reflected in the large standard329
deviation of Figure 3. Additionally, some of them may have a very small λ0, resulting in weak330
covariate diversity. Unfortunately, this condition is difficult to measure, as λ0 is defined for every331
parameter w and policy π.332
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7 CONCLUSION333

In this paper, we have proven that in the setting of Markov Decision Processes, under the assumption334
of linear Bellman completeness, LSVI, a greedy algorithm, can achieve sub-linear regret if there is335
sufficient diversity in the feature distribution, as defined by our proposed diversity condition. This336
eliminates the need for explicit exploration for the agent to learn the optimal policy. Experimental337
results are coherent with the theory.338

Our results on linear function approximation pave the way for exploration-free RL in MDPs with339
structure. Future work should focus on nonlinear function approximation in order to scale to com-340
plex control problems. Some questions remain even in the linear realm. Is exploration-free learning341
possible in Qπ-realizable MDPs (Weisz et al., 2023)? Since our covariate diversity condition is a342
special case of UNISOFT (Papini et al., 2021a), it might be possible for LSVI to achieve constant343
regret like LSVI-UCB under a minimum-gap assumption. From the perspective of representation344
learning, our notion of feature diversity could be encouraged by some form of spectral regularization345
as proposed by Tirinzoni et al. (2022) for UNISOFT. Our approach is inherently value-based, but346
similar ideas could be applied to policy-based RL to reconcile theory with practical “deterministic347
policy gradient" algorithms such as the one proposed by (Saleh et al., 2022). Finally, we may try348
to develop a greedy-first exploration algorithm for MDPs following the example of Bastani et al.349
(2021) on linear contextual bandits.350
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A Proof of Lemma 4.1489

Lemma 4.1. Assume λmin(Σ̂k,h) ≥ λk for all k ≥ 1 and h ∈ [H]. Under Assumptions 2.1 and 3.1,490
with probability 1− δ/2, for all k ≥ 1, h ∈ [H], s ∈ S, a ∈ A:491

|Q̂k
h(s, a)−Q∗

h(s, a)| ≤ (H − h)

((√
βk(δ)

) ϕmax√
λk

)
,

where492 √
βk(δ) := H

√
A+B + C + 1 + wmax,

and A := d ln
(
1 +

ϕ2
maxk
d

)
, B := d ln(w2

maxϕ
2
maxk), C := ln(2Hδ−1).493

We shall prove a more general version of Lemma 4.1 that takes misspecification into account.494

Let the Bellman Error be defined as:495

Lh(w; s, a,w′) :=
∣∣∣⟨ϕ(s, a),w⟩ − rh(s, a)− Es′∼Ph(·|s,a)

[
max
a′
⟨ϕ(s′, a′),w′⟩

]∣∣∣ . (3)

Assumption 3.6 can be rephrased as follows.496

Assumption A.1 (ζ-Approximate Linear Bellman Completeness, Zanette et al. (2020)). For all497
h ∈ [H] and w′ ∈ W , there exists a w ∈ W such that sups∈S,a∈A Lh(w; s, a,w′) ≤ ζ.498

We will denote:499
Th(w′) := arg min

w∈W
sup

s∈S,a∈A
Lh(w; s, a,w′). (4)

Clearly, by definition, for all s ∈ S, a ∈ A, h ∈ [H]:500

Lh(Th(w′); s, a,w′) ≤ ζ. (5)

Let Q = {⟨ϕ(·, ·),w⟩ s.t. w ∈ W} and V = {maxa∈A Q(·, a) s.t. Q ∈ Q}. Let Q̂k
h(s, a) =501

⟨ϕ(s, a), ŵk
h⟩ and V̂ k

h (s) = maxa∈A⟨ϕ(s, a), ŵk
h⟩. Clearly Q̂k

h ∈ Q and V̂ k
h ∈ V for all k, h.502

Proposition A.2 (Lemma 3 by Zanette et al. (2020)4). Fix h ∈ [H]. If λ = 1, with probability 1−δ,503
for all V ∈ V:504 ∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)
(
V (sth+1)− Es′∼P(·|sth,a

t
h)
[V (s′)]

)∥∥∥∥∥
Σ−1

t,h

≤ H

√
d ln

(
1 +

ϕ2
maxk

d

)
+ d ln(w2

maxϕ
2
maxk) + ln(δ−1)+1.

Proposition A.3 (Lemma 8 by Zanette et al. (2020)). Let a1, . . . , ak ∈ Rd and b1, . . . , bk ∈ R such505
that |bt| ≤ ϵ for all t ∈ [k]. Let Σ =

∑k
t=1 ata

⊤
t + λI . Then, for any k > 1 and λ ≥ 0:506 ∥∥∥∥∥

k∑
t=1

atbt

∥∥∥∥∥
2

Σ−1

≤ kϵ2. (6)

4The extra H factor is due to the fact that we assume value functions to be in [0, H] rather than in [0, 1].
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Lemma A.4. Under Assumption A.1, if λ = 1, with probability 1− δ, for all k ≥ 1 and h ∈ [H]:507 ∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h
≤
√

βk(δ) +
√
kζ,

where
√
βk(δ) := H

√
d ln

(
1 +

ϕ2
maxk
d

)
+ d ln(w2

maxϕ
2
maxk) + ln(Hδ−1) + 1 + wmax.508

Proof. First, we show that
∥∥ŵk

h − Th(ŵk
h+1)

∥∥
Σ̂k,h

≤
∥∥w̃k

h − Th(ŵk
h+1)

∥∥
Σ̂k,h

, that is, the projec-509

tion step can only bring the estimated parameter closer to its target. Fix k, h and let Proj(w) :=510
argmaxw′∈W ∥w −w′∥Σ̂k,h

. Since Th(ŵk
h+1) ∈ W by definition, Proj(Th(ŵk

h+1)) = Th(ŵk
h+1).511

Then:512 ∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

=
∥∥Proj(w̃k

h)− Proj(Th(ŵk
h+1))

∥∥ ≤ ∥∥w̃k
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

, (7)

where the last inequality is by contractivity of metric projections onto convex sets (W is convex by513
Asm. 3.1). We then proceed to upper bound

∥∥w̃k
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

. First notice that:514

w̃k
h = Σ̂−1

k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + max

a′∈A
⟨ϕ(sth+1, a

′), ŵk
h+1⟩

)
(8)

= Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
])

+ (A) (9)

= Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)⟨ϕ(sth, aht ), Th(ŵk

h+1)⟩+ (A) + (B) (10)

= Th(ŵk
h+1) + (A) + (B) + (C), (11)

where515

(A) := Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
max
a′∈A
⟨ϕ(sth+1, a

′), ŵk
h+1⟩ − Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
])

= Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)
(
V̂ k
h+1(s

t
h+1)− Es′∼P(·|sth,a

t
h)

[
V̂ k
h+1(s

′)
])

, (12)

and516

(B) := Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]
− ⟨ϕ(sth, ath), Th(ŵk

h+1)⟩
)
,

(13)
and517

(C) := Σ̂−1
k,h(−λITh(ŵ

k
h+1)). (14)

By the triangular inequality,
∥∥w̃k

h − Th(ŵk
h+1)

∥∥
Σ̂k,h
≤ ∥(A)∥Σ̂k,h

+ ∥(B)∥Σ̂k,h
+ ∥(C)∥Σ̂k,h

.518

By Proposition A.2, if λ = 1, since V̂ k
h+1 ∈ V , the following holds with probability 1 − δ for all519

h ∈ [H]:520

∥(A)∥Σ̂k,h
=

∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)
(
V̂ k
h+1(s

t
h+1)− Es′∼P(·|sth,a

t
h)

[
V̂ k
h+1(s

′)
])∥∥∥∥∥

Σ̂−1
k,h

(15)

≤ H

√
d ln

(
1 +

ϕ2
maxk

d

)
+ d ln(w2

maxϕ
2
maxk) + ln(Hδ−1) + 1. (16)
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By Proposition A.3 and Equation (5):521

∥(B)∥Σ̂k,h
=

∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]
− ⟨ϕ(sth, ath), Th(ŵk

h+1)⟩
)∥∥∥∥∥

Σ̂−1
k,h

≤

∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)L(Th(ŵk

h+1); s
t
h, a

t
h, ŵ

k
h+1)

∥∥∥∥∥
Σ̂−1

k,h

(17)

≤
√
kζ. (18)

Finally:522

∥(C)∥Σ̂k,h
= λ

∥∥∥Σ−1
k,hTh(ŵ

k
h+1)

∥∥∥
Σ̂k,h

(19)

= λ
∥∥Th(ŵk

h+1)
∥∥
Σ̂−1

k,h

(20)

≤
√
λ
∥∥Th(ŵk

h+1)
∥∥ (21)

≤
√
λwmax. (22)

523

Lemma A.5. Assume λmin(Σ̂k,h) ≥ λk for all k ≥ 1 and h ∈ [H]. Under Assumption A.1, with524
probability 1− δ, for all k ≥ 1, h ∈ [H], s ∈ S, a ∈ A:525

|Q̂k
h(s, a)−Q∗

h(s, a)| ≤ (H − h)

((√
βk(δ) +

√
kζ
) ϕmax√

λk

+ ζ

)
,

where
√
βk is defined in Lemma A.4.526

Proof. First:527

|Q̂k
h(s, a)− ThQ̂k

h+1(s, a)| =
∣∣∣∣⟨ϕ(s, a), ŵk

h⟩ − rh(s, a)− Es′∼P(·|s,a)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]∣∣∣∣
(23)

=

∣∣∣∣⟨ϕ(s, a), ŵk
h − Th(ŵk

h+1)⟩+ ⟨ϕ(s, a), Th(ŵk
h+1)⟩ − rh(s, a)− Es′∼P(·|s,a)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]∣∣∣∣

(24)

≤
∣∣⟨ϕ(s, a), ŵk

h − Th(ŵk
h+1)⟩

∣∣+ ζ (by Equation 5) (25)

≤ ∥ϕ(s, a)∥Σ̂−1
k,h

∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

+ ζ (26)

≤ ϕmax√
λmin(Σ̂k,h)

∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

+ ζ (27)

≤ ϕmax√
λmin(Σ̂k,h)

(√
βk(δ) +

√
kζ
)
+ ζ (28)

≤ ϕmax√
λk

(√
βk(δ) +

√
kζ
)
+ ζ := εk. (29)

The rest of the proof is by (backward) induction. Note that Q∗
H+1 = Q̂k

H+1 = 0. Then, THQ̂k
H+1 =528

THQ∗
H+1(s, a) = Q∗

H(s, a). By Equation (29):529

|Q̂k
H(s, a)−Q∗

H(s, a)| = |Q̂k
H(s, a)− THQ̂k

H+1| ≤ εk. (30)
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This is our base case (h = H). The inductive hypothesis is:530

|Q̂k
h+1(s, a)−Q∗

h+1(s, a)| ≤ (H − h− 1)εk. (31)

Then:531

|Q̂k
h(s, a)−Q∗

h(s, a)| = |Q̂k
h(s, a)− ThQ̂k

h+1(s, a) + ThQ̂k
h+1(s, a)−Q∗

h(s, a)| (32)

≤ |Q̂k
h(s, a)− ThQ̂k

h+1(s, a)|+ |ThQ̂k
h+1(s, a)−Q∗

h(s, a)| (33)

≤ εk + |ThQ̂k
h+1(s, a)−Q∗

h(s, a)| (34)

= εk + |ThQ̂k
h+1(s, a)− ThQ∗

h+1(s, a)| (35)

≤ εk + |Q̂k
h+1(s, a)−Q∗

h+1(s, a)| (36)
≤ εk + (H − h− 1)εk (37)
= (H − h)εk, (38)

where the inequalities are, in order: by triangular inequality, by Equation (29), by the contraction532
property of Bellman’s operator, by the induction hypothesis.533

Lemma 4.1 is just a special case of Lemma A.5 when ζ = 0.534

B Proof of Lemma 4.2535

Lemma 4.2. Given Assumptions 3.1 and 3.2, the following holds for the minimum eigenvalue of the536
empirical covariance matrix for each h ∈ [H] and for each k ≥ 1:537

P
[
λmin(Σ̂k,h) ≥ λ+ λ0k − 8ϕ2

max

√
k log(4dk/δ)

]
≥ 1− δ

2

Proof. Let πτ be the policy played by Algorithm 1 in the τ -th episode. We can rewrite the design538
matrix as:539

Σ̂k,h =

k∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λI (39)

= λI+

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤]−
k∑

τ=1

(
Es∼ρπτ

h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤]− ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤
)

(40)

If Xτ = Es∼ρπτ
h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤]−ϕ(sτh, aτh)ϕ(sτh, aτh)⊤, then we have that Eτ [Xτ ] = 0. Also540
since Xτ is symmetric:541

X2
τ ≤ λmax(X

2
τ )I ≤ ||Xτ ||2I ≤ 4ϕ4

maxI (41)

Hence from the matrix Azuma inequality by Tropp (2011), with probability 1− δk, for all k ≥ 1:542

λmax

(
k∑

τ=1

Xτ

)
≤ 4ϕ2

max

√
2k log d/δk (42)

We set δk = δ/(2k2) and perform a union bound over time. Finally with probability at least 1 − δ543
for all k≥ 1:544

λmax

(
k∑

τ=1

Xτ

)
≤ 4ϕ2

max

√
2k log(4dk2/δ) ≤ 8ϕ2

max

√
k log(4dk/δ). (43)
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Now let π = πk. By definition of Algorithm 1:545

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤] =

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, π

τ
h(s))ϕ(s

τ
h, π

τ
h(s))

⊤] (44)

=

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, π

τ
h(s))ϕ(s

τ
h, π

τ
h(s))

⊤I{⟨ϕ(s, πτ
h(s)), ŵ

k
h⟩ ≥ max

a∈A
⟨ϕ(s, a), ŵk

h⟩}].

(45)

So, by Assumption 3.2:546

λmin(Σ̂k,h) ≥ λI+ λ0k − 8ϕ2
max

√
k log(4dk/δ). (46)

547

C Other Proofs548

Proposition 3.3 (Noisy features). Let |A| = 2 and ϕ(s, a) = f(s, a) + η(a) for some function549
f : S × A → [0,

√
2σ] and independent Gaussian noises η(a) ∼ N (0, σ2). Then Assumption 3.2550

holds with λ0 ≥ 0.2σ2.551

Proof. Let A = {a1, a2}, w ∈ W , and π be any deterministic policy:552

λ0 = Es∼ρπ
h(s)

[
ϕ(s, π(s))2I{ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}}

]
(47)

= Es∼ρπ
h(s)

[
(f(s, a) + η(a))2I{ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}}

]
(48)

≥ Es∼ρπ
h(s)

[
η(a)2I{ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}}

]
(49)

= σ2P
(
ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}

)
(50)

= σ2P
(
(f(s, π(s)) + η(π(s)))w ≥ max

a∈A
{(f(s, a) + η(a))w}

)
. (51)

Fix a state s and let π(s) = a1 and w > 0 without loss of generality. Then553

P
(
(f(s, a1) + η(a1))w ≥ max

a∈A
{(f(s, a) + η(a))w}

)
≥ P

(
(f(s, a1) + η(a1))w ≥ (f(s, a2) + η(a2))w

)
(52)

= P
(
f(s, a1) + η(a1) ≥ f(s, a2) + η(a2)

)
(53)

≥ P
(
η(a1)− η(a2) >

√
2σ
)

(54)

= P(X >
√
2σ) > 0.2, (55)

where X ∼ N (0, 2σ2).554

Corollary 3.5. Under the same assumptions as Theorem 3.4, the expected cumulative regret of LSVI555
is at most:556

E [R(K)] = O

(
H3

√
dK

λ0
log(K)

)
.
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Proof. We define an event P , under which the cumulative regret is bounded as described in Theorem557
3.4, that occurs with probability 1− δ:558

E[R(K)] = E[R(K)I(P )] + E[R(K)I(P )]

≤ O

(
H3

√
dK

λ0
log(K/δ)

)
(1− δ) + 2HKδ

≤ O

(
H3

√
dK

λ0
log(K3/2)

)
+ 2H

√
K

= O

(
H3

√
dK

λ0
log(K)

)

The first inequality is by Theorem 3.4, and by upper bounding the regret with the trivial 2HK when559
P does not hold. The second inequality follows by 1− δ ≤ 1 and by setting δ = 1/

√
K.560

Theorem 3.7. If Assumptions 3.6 and 3.2 are satisfied, with probability 1− δ, the cumulative regret561
of LSVI is at most:562

R(K) = Õ
(
H3

√
dK

λ0
+H2ζ

K√
λ0

+H2ζK

)
.

Proof. This is a simple variant of Theorem 3.4 that uses the more general Lemma A.5 in place of563
Lemma 4.1. Logarithmic terms are omitted for brevity.564

D Code and Computing Infrastructure565

The experimental results presented in Section 6 were obtained using Python. The code, a modified566
version of the official implementation from Liu & Xu (2024), is attached to the paper and was567
executed on Kaggle.com, a cloud computing platform.568
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