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Summary
In the context of Markov Decision Processes (MDPs) with linear Bellman completeness, a

generalization of linear MDPs, we reconsider the learning capabilities of a greedy algorithm.
The motivation is that, when exploration is costly or dangerous, an exploration-free approach
may be preferable to optimistic or randomized solutions. We show that, under a condition
of sufficient diversity in the feature distribution, Least-Squares Value Iteration (LSVI) can
achieve sublinear regret. Specifically, we show that the expected cumulative regret is at most
Õ(H3

√
dK/λ0), where K is the number of episodes, H is the task horizon, d is the dimension

of the feature map and λ0 is a measure of feature diversity. We empirically validate our theo-
retical findings on synthetic linear MDPs. Our analysis is a first step towards exploration-free
reinforcement learning in MDPs with large state spaces.

Contribution(s)
1. The definition of a new diversity condition for linear MDPs.

Context: Inspired from prior work of Bastani et al. (2021) and Kannan et al. (2018).

2. Proved that a greedy algorithm (LSVI) achieves sublinear cumulative regret with high prob-
ability when the here defined diversity condition is satisfied.
Context: Proof built upon the related work on linear contextual bandit of Bastani et al.
(2021).

3. Proved that a greedy algorithm (LSVI) achieves sublinear cumulative regret with high prob-
ability when the here defined diversity condition is satisfied, under a misspecified setting.
Context: Proof built upon the related work on approximately linear MDPs of Zanette et al.
(2020).
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Abstract

In the context of Markov Decision Processes (MDPs) with linear Bellman complete-
ness, a generalization of linear MDPs, we reconsider the learning capabilities of a
greedy algorithm. The motivation is that, when exploration is costly or dangerous,
an exploration-free approach may be preferable to optimistic or randomized solutions.
We show that, under a condition of sufficient diversity in the feature distribution, Least-
Squares Value Iteration (LSVI) can achieve sublinear regret. Specifically, we show that
the expected cumulative regret is at most Õ(H3

√
dK/λ0), where K is the number

of episodes, H is the task horizon, d is the dimension of the feature map and λ0 is a
measure of feature diversity. We empirically validate our theoretical findings on syn-
thetic linear MDPs. Our analysis is a first step towards exploration-free reinforcement
learning in MDPs with large state spaces.

1 INTRODUCTION

Reinforcement Learning (RL) is one of the most popular approaches to sequential decision making
under uncertainty. In the last few years, RL in large state spaces has received a lot of attention both
in theory (Long & Han, 2023) and practice, with applications ranging from robotics (Singh et al.,
2022) to LLM finetuning (Ahmadian et al., 2024). One great potential of RL solutions, still largely
untapped, is their intrinsically adaptive nature: RL agents, once deployed, can improve over time
from interaction data. This requires a careful balancing of exploitation (taking decisions that are
known to be good) and exploration (taking decisions that may be even better, but of which little is
known).

This exploration-exploitation dilemma is well known in the RL literature since its beginnings (Sut-
ton & Barto, 2018) and is the main subject of study of the bandit literature (Lattimore & Szepesvári,
2020) and of a good part of RL theory (Agarwal et al., 2019a). All agree on this basic principle:
that some form of exploration is necessary. A purely greedy agent can easily get stuck on a promis-
ing course of action, without ever discovering better but neglected alternatives. Some of the most
popular exploration strategies are based on the optimism in the face of uncertainty principle (Lai
& Robbins, 1985), of which (Azar et al., 2017) and (Jaksch et al., 2010) are notable applications
to RL, posterior sampling (Thompson, 1933), like (Osband et al., 2013), or simple noise injec-
tion (Haarnoja et al., 2018).

In practice, however, there are several reasons to avoid exploration in favor of a greedy approach. In
safety-critical applications, such as robotic (Brunke et al., 2022), explorative actions may be danger-
ous. In many cases, exploration for the sake of learning can also be considered unethical (Bird et al.,
2016), some prominent examples being drug trials, predictive policing, lending, resume screening,
and social media personalization. It is not hard to imagine that chatbots will incur in similar ethical
issues (Følstad et al., 2021). Furthermore, explorative solutions are more expensive to implement,
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their behavior is less predictable, and their decisions less interpretable. Greedy approaches are not
only favored for the aforementioned reasons, but often are also surprisingly effective in practice (e.g.,
Li et al., 2024). Hence, even if theory clearly shows the necessity of exploration, common sense may
suggest otherwise in many real-world scenarios.

To reconcile theory and practice, Bastani et al. (2021), closely followed by Kannan et al. (2018),
proposed to study special conditions under which exploration-free learning is possible. They did
so within the framework of linear contextual bandits (Lattimore & Szepesvári, 2020, Chapter 19).
In this model, at each timestep t, the agent observes a context Xt (e.g., data about the current
user) and selects an action At (e.g., an item to recommend). The agent receives a reward that is
linear in some context-action features. Clearly, some structure in the rewards (such as linearity) is
necessary for exploration-free learning. If rewards of different actions are completely uncorrelated,
active exploration is the only way to compare the value of different actions. On the other hand,
if some structure is present, an action may reveal something about other actions, reducing or even
removing the need for exploration. Indeed, Bastani et al. (2021) show that under sufficient diversity
of contexts, exploration-free learning is possible in linear contextual bandits. In particular, they
introduce a covariate-diversity assumption and prove that the regret of a simple greedy algorithm
is sublinear. This does not mean that exploration is in general unnecessary for linear contextual
bandits, but provides a possible characterization of tasks for which pure exploitation suffices.

Our purpose is to provide a similar characterization for Markov Decision Processes with structure,
showing when exploration-free RL is possible. To leverage results from the linear contextual bandit
literature, we examine MDPs with some kind of linear structure. These are commonly studied in
the context of no-regret RL with linear function approximation. This line of work was pioneered
by Jin et al. (2023), who first designed a no-regret algorithm for finite-horizon MDPs with linear
rewards and transition probabilities, also known as low-rank MDPs (Yang & Wang, 2019). The
algorithm is called LSVI-UCB and is based on the optimism principle. A follow-up work by Zanette
et al. (2020) considers a more general class of “linear" MDPs where the class of linear action-
value functions is closed under the Bellman optimality operator. This is the framework that we will
adopt for our analysis, although we will use low-rank MDPs as numerical examples.1 Nonlinear
function approximation is also an active area of research (e.g., Jin et al., 2021). This is beyond
the scope of this paper, but we believe that our analysis of linear MDPs is a necessary step in
the study of exploration-free reinforcement learning in complex environments requiring general
function approximation.

Our main contributions are as follows: we define a novel diversity condition, inspired by Bastani
et al. (2021) and Kannan et al. (2018), for Markov Decision Processes with linear function approxi-
mation, and present new insights into how feature coverage affects the performance of exploration-
free reinforcement learning algorithms. We prove that a greedy algorithm (LSVI) achieves sublinear
cumulative regret with high probability when the diversity condition is satisfied. We also establish an
any-time bound on the expected cumulative regret. Finally, we empirically validate our theoretical
findings on synthetic linear MDPs.

The paper is structured as follows. In Section 2 we present all the necessary preliminaries for
understanding and developing the concepts discussed in this work. We begin by introducing Markov
Decision Processes (MDPs), followed by the specific case of MDPs that satisfy the linear Bellman
completeness condition, which is the setting of this work. We also consider the special case of
low-rank MDPs. Section 3 describes the analyzed algorithm, outlines the assumptions required for
our analysis, and presents the theoretical results. Section 4 provides more details on the theoretical
analysis, where we state the key lemmas used in the proof of the main theorem, followed by a
detailed proof of the latter. Other proofs can be found in the Appendix. In Section 5, we discuss
related works, while Section 6 focuses on the experiments conducted to empirically validate our
theoretical results.

1A more intuitive generalization of low-rank MDPs is linear realizability of action-value functions. However, this has so
far proven to be much more challenging to analyze (Weisz et al., 2023).
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2 PRELIMINARIES

In this section, we provide the necessary background on Markov decision processes and the linearity
assumption under which our work is conducted.

Notation. We denote with [n] = {1, . . . , n} the set of the first n natural numbers, and with I{E}
the indicator function for event E. For vectors x, y ∈ Rd and symmetric PSD matrix A ∈ Rd×d, we
denote with λmin(A) the smallest eigenvalue, with ⟨x, y⟩ =

∑d
i=1 the inner product, with ∥x∥p the

ℓp-norm, and with ∥x∥A =
√
x⊤Ax the weighted ℓ2-norm.

2.1 Markov Decision Processes

A finite-horizon Markov Decision Process (MDP, Puterman, 1994) is denoted by the tuple M =
(S,A, H,P, r, µ), where S is the space of states, A is the space of actions, H ∈ N is the length of
each episode, P = {Ph}Hh=1 and r = {rh}Hh=1 are, respectively, the state transition probabilities and
the reward functions. We assume that S is a measurable space andA has finite cardinality. For each
step h ∈ [H], Ph(·|s, a) denotes the transition kernel over the next states if we choose action a in
state s, and rh : S ×A → [−1, 1] is the deterministic reward function. Finally µ is the starting-state
probability distribution over S.

An agent interacts with the MDP as follows: an initial state s1 is drawn from µ, then at each step
h ∈ [H] the agent observes the state sh, picks an action ah and receives a reward rh(sh, ah).
The MDP evolves into a new state sh+1 that is drawn from the transition kernel Ph(·|sh, ah). The
episode ends when state sH+1 is reached. A (deterministic) policy π of an agent is a function
π : S × [H] → A, where π(s, h) is the action that the agent takes in state s at the h-th step of the
episode. We will abbreviate π(s, h) as πh(s) in the following. For a policy π, for each h ∈ [H],
we can define the value function V π

h : S → R, which, given the current state at step h, returns the
cumulative expected reward following policy π:

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
,

where Eπ is short for ah ∼ π(·|sh), sh+1 ∼ P(·|sh, ah), . . . , aH ∼ π(·|sH) conditional on π. We
also define the action-value function Qπ

h : S ×A → R, which gives the expected value of cumula-
tive rewards when the agent starts from a given state-action pair at the h-th step and follows policy
π afterwards. We have:

Qπ
h(s, a) := rh(s, a) + Eπ

[
H∑

h′=h+1

rh′(sh′ , πh′(sh′))

∣∣∣∣sh = s, ah = a

]
,

for all (s, a) ∈ S ×A, h ∈ [H].

Finally, we can define the occupancy measure of the policy π:

ρπh(s) := Eπ,s0∼µ[I{sh = s}].

There always exists an optimal deterministic policy π∗ which gives the optimal value V ∗
h (s) =

supπ V
π
h (s) for all s ∈ S and h ∈ [H] (Puterman, 1994). Similarly, Q∗

h(s, a) = Qπ∗

h (s, a).

In an episodic MDP, the agent aims to learn the optimal policy by interacting with the environment
over a series of K episodes. For each k ≥ 1, an initial state sk1 is drawn from µ and the agent
chooses policy πk. The difference in values between V πk

1 (sk) and V ∗
1 (sk) is the instantaneous

regret, or suboptimality, of the agent at the k-th episode. Thus, after playing for K episodes, the
total regret is

R(K) :=

K∑
k=1

Esk∼µ [V
∗
1 (sk)− V πk

1 (sk)] .
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We can also rewrite the total regret, by using a performance difference lemma (e.g., Proposition 29
from Papini et al. (2021a)), as follows:

R(K) :=

K∑
k=1

H∑
h=1

Esh∼ρ
πk
h

[∆h(sh, πk(sh))] , (1)

where ∆h(s, a) := V ∗
h (s)−Q∗

h(s, a) is the suboptimality gap.

2.2 Linear Bellman Completeness

We will consider a setting in which we have a set of features that satisfy the linear Bellman com-
pleteness condition, which we will refer to as linear MDPs for brevity. In this scenario we work with
a feature map ϕ : S ×A → Rd. Let us first define the set of admissible parameters as:

W = {w ∈ Rd s.t. |⟨ϕ(s, a),w⟩| ≤ H ∀s ∈ S, ∀a ∈ A}.

We restrict our analysis to MDPs equipped with a feature map that satisfies the following:

Assumption 2.1 (Linear Bellman completeness, Agarwal et al. (2019b)). We say that the feature
map ϕ satisfies the linear Bellman completeness property if, for all θ ∈ W and (s, a, h) ∈ S ×A×
[H], there exists w ∈ W such that:

w⊤ϕ(s, a) = r(s, a) + Es′∼Ph(s,a) max
a′

θ⊤ϕ(s′, a′).

This condition implies that Q∗
h(s, a) is linear in ϕ, i.e., there exists θ∗

h such that Q∗
h(s, a) =

(θ∗
h)

⊤ϕ(s, a) (Zanette et al., 2020, Lemma 6). This justifies the use of linear function approxi-
mation.

2.3 Low-Rank Markov Decision Processes

Although our theoretical results apply to general linear-Bellman-complete MDPs, we mention a
particular case in which Assumption 2.1 holds, low-rank Markov Decision Processes (Jin et al.,
2023). In this scenario, the transition kernel and the reward function are assumed to be linear w.r.t.
known state-action features.

Formally, a Markov Decision Process defined as M = (S,A, H,P, r), with a feature map ϕ :
S × A → Rd, is considered a low-rank MDP (Yang & Wang, 2019; Jin et al., 2023) if, for each
time step h ∈ [H], there exist d signed measures ρh = (ρ(1), . . . , ρ(d)) over the state space S , and a
vector θh ∈ Rd, such that, for any state-action pair (s, a) ∈ S ×A, the following holds:

Ph(· | s, a) = ⟨ϕ(s, a),ρh(·)⟩, rh(s, a) = ⟨ϕ(s, a),θh⟩.

A key characteristic of a low-rank MDP is that the action-value functions of all policies are linear
with respect to the same feature map ϕ (Jin et al., 2023, Proposition 2.3). It is easy to show that all
low-rank MDPs are linear-Bellman-complete. The opposite is not true (Zanette et al., 2020).

3 GREEDY LEARNING

In this section, after reviewing the LSVI algorithm, we present our feature-diversity assumption and
show how this is sufficient to achieve sublinear regret in an exploration-free manner.

3.1 Algorithm

The algorithm we consider in our work is Least-Square Value Iteration (LSVI, Bradtke & Barto,
1996), a simple greedy algorithm, based on value-iteration, which finds the optimal Q-function by
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iterative application of Bellman’s optimality equation:

Q∗
h(s, a) = rh(s, a) + Es′∼Ph(·|s,a) max

a′∈A
Q∗

h+1(s
′, a′).

LSVI parametrizes Q∗
h(s, a) by a linear form and approximates the optimality equation with a regu-

larized least-squares problem in which we solve for wh. The algorithm solves the following program
at each stage of each episode:

wh ← argmin
w∈W

k−1∑
τ=1

[rh(s
τ
h, a

τ
h) + max

a∈A
Qh+1(s

τ
h+1, a)−w⊤ϕ(sτh, a

τ
h)]

2 + λ||w||2.

Algorithm 1 LSVI

1: for episode k = 1, . . . ,K do
2: Observe the initial state sk1 ∼ µ
3: for step h = H, . . . , 1 do
4: Σ̂k,h =

∑k−1
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λ · I
5: w̃k

h = Σ̂−1
k,h

∑k−1
τ=1 ϕ(s

τ
h, a

τ
h)[rh(s

τ
h, a

τ
h) + maxa Q

k
h+1(s

τ
h+1, a)]

6: ŵk
h = argminw∈W

∥∥w − w̃k
h

∥∥
Σ̂k,h

7: Qk
h = ⟨ŵk

h,ϕ(·, ·)⟩
8: end for
9: for step h = 1, . . . ,H do

10: Take action akh = argmaxa∈A Qk
h(s

k
h, a) and observe skh+1

11: end for
12: end for

At a high level, each episode involves two main passes through all time-steps. The first backward
pass (lines 3-8) updates ŵk

h and Σ̂k,h, that are, respectively, the parameters we are trying to esti-
mate and the covariance matrix, which are used to construct the action-value function Qk

h. In the
second pass (lines 9-11), the greedy policy is executed: akh = argmaxa∈A Qk

h(s
k
h, a), using the Qk

h

computed in the first pass. It’s important to note that QH+1 ≡ 0 since no reward is given after
the H-th step. In the first episode (k = 1), the summations in lines 4 and 5 run from τ = 1 to 0,
meaning Σ̂1,h = λ · I and ŵ1

h = 0. The inverse covariance matrix can be updated directly using
Sherman-Morrison’s formula for improved computational complexity. Line 6 is a projection step
ensuring ŵk

h ∈ W .2

3.2 Assumptions

We will now outline the assumptions necessary for our regret analysis. The first is a technical one
on the parameter set:

Assumption 3.1. W is a convex set. Moreover, there exists a constant ϕmax such that ∥ϕ(s, a)∥2 ≤
ϕmax for all s, a, and a constant wmax such that ∥w∥2 ≤ wmax for all w ∈ W .

The most important assumption is the following, inspired by conceptually similar conditions pro-
posed by Bastani et al. (2021) and Kannan et al. (2018) for linear contextual bandits:

Assumption 3.2. (Covariate Diversity). There exists a positive constant λ0 such that, for each
policy π,w ∈ W , and for each h ∈ [H],

λmin

(
Es∼ρπ

h(s)

[
ϕ(s, π(s))ϕ(s, π(s))⊤I{⟨ϕ(s, π(s)),w⟩ ≥ max

a∈A
⟨ϕ(s, a),w⟩}

])
≥ λ0.

2It is more common to directly clip the Q-function estimate in [−H,H]. However, for technical reasons, we need to
preserve the linearity of the estimator.
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Intuitively, the feature vectors witnessed by the agent in “sensible" rounds must cover the whole
feature space. Fix a linear Q-function estimator. A round is “sensible" if the agent plays an action
that would appear optimal according to the Q-function estimate. It must hold true for all determin-
istic policies the agent may play, all linear Q-function estimators, and separately for each episode’s
timestep. This is a joint property of the MDP and of the feature map. It is encouraged by feature
maps showing great diversity across states, but also by strongly connected MDPs and starting-states
distributions with a large support. The constant λ0 is a measure of diversity. We expect exploration-
free learning to be easier when λ0 is larger.

A simple example where Assumption 3.2 holds is the following. For simplicity we consider two
actions and d = 1, but similar constructions can be made for a generic number of actions and a
larger feature dimension.
Proposition 3.3 (Noisy features). Let |A| = 2 and ϕ(s, a) = f(s, a) + η(a) for some function
f : S × A → [0,

√
2σ] and independent Gaussian noises η(a) ∼ N (0, σ2). Then Assumption 3.2

holds with λ0 ≥ 0.2σ2.

3.3 Regret of LSVI with Covariate Diversity

We now establish an upper bound on the cumulative regret of LSVI in the case of an MDP whose
representation satisfies both the Assumption 2.1 and Assumption 3.2.
Theorem 3.4. Under Assumptions 2.1, 3.1, and 3.2, with probability 1− δ, the cumulative regret of
LSVI is at most:

R(K) = O

(
H3

√
dK

λ0
log(K/δ)

)
.

Notice that Algorithm 1 is not parametric in the failure probability δ. By setting this free parameter
to δ = 1/

√
K, by a standard argument, we obtain an upper bound on the expected regret, where the

extra expectation is over the random sequence of (deterministic) policies played by LSVI.
Corollary 3.5. Under the same assumptions as Theorem 3.4, the expected cumulative regret of LSVI
is at most:

E [R(K)] = O

(
H3

√
dK

λ0
log(K)

)
.

The result is still any-time, that is, the algorithm does not need to know the number of episodes K
in advance.

Our regret upper bounds, scaling with
√
d, seem to contradict existing Ω(d

√
K) lower bounds

(cf. Zanette et al. (2020), Theorem 2). This may actually be possible under the non-standard As-
sumption 3.2. Anyway, notice that λ0 ≤ 1/d, the minimum eigenvalue of the covariance matrix
of a D-optimal design (Lattimore et al., 2020). Hence, linear dependence on the dimension of the
feature map is not avoided. If λ0 ≃ 1/d, LSVI with covariate diversity has a better dependence than
LSVI-UCB (d

√
d) and matches that of the computationally inefficient ELEANOR (Zanette et al.,

2020). This is possible thanks to the linearity of the Q-function estimates, while LSVI-UCB incurs
an extra

√
d factor due to its nonlinear exploration bonuses.

3.4 Misspecification

Our results extend to the case where the MDP is only approximately linear. In particular, we consider
the notion of low inherent Bellman error introduced by Zanette et al. (2020):
Assumption 3.6.

sup
w′∈W

inf
w∈W

sup
s∈S,a∈A

∣∣∣∣⟨ϕ(s, a),w⟩ − rh(s, a)− Es′∼Ph(·|s,a)

[
max
a′
⟨ϕ(s′, a′),w′⟩

] ∣∣∣∣ ≤ ζ.
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The constant ζ measures the level of misspecification, and the linear Bellman completeness case we
considered so far corresponds to ζ = 0, no misspecification. The optimal action-value function is
no longer linear, but is well approximated by a linear function (Zanette et al., 2020, Lemma 6). Our
results generalize well to this misspecified setting.

Theorem 3.7. If Assumptions 3.6 and 3.2 are satisfied, with probability 1− δ, the cumulative regret
of LSVI is at most:

R(K) = Õ
(
H3

√
dK

λ0
+H2ζ

K√
λ0

+H2ζK

)
.

With misspecification, the linear term in K is inevitable (Zanette et al., 2020), but is controlled by
ζ, which is supposed to be very small. In fact, our result seems to violate a fundamental Ω(ζ

√
dK)

lower bound (Lattimore et al., 2020). Again, this is not the case since λ0 ≤ 1/d, making the second
term in the regret upper bound never smaller than H2ζ

√
dK.

4 ANALYSIS

In this section, we prove our main result, Theorem 3.4. We first provide two fundamental lemmas,
whose proofs are deferred to Appendix A and B.

The first lemma provides an upper bound on the difference between the estimated Q-function at
episode k and step h, and the actual optimal Q-function.

Lemma 4.1. Assume λmin(Σ̂k,h) ≥ λk for all k ≥ 1 and h ∈ [H]. Under Assumptions 2.1 and 3.1,
with probability 1− δ/2, for all k ≥ 1, h ∈ [H], s ∈ S, a ∈ A:

|Q̂k
h(s, a)−Q∗

h(s, a)| ≤ (H − h)ϕmax

√
βk(δ)

λk
,

where

√
βk(δ) := H

√
A+B + C + 1 + wmax,

and A := d ln
(
1 +

ϕ2
maxk
d

)
, B := d ln(w2

maxϕ
2
maxk), C := ln(2Hδ−1).

Next, we show that the minimum eigenvalue of the sample covariance matrix at time step h until
episode k, λmin(Σ̂k,h), grows linearly with k. This will guarantee the convergence of our regression
estimate.

Lemma 4.2. Given Assumptions 3.1 and 3.2, the following holds for the minimum eigenvalue of the
empirical covariance matrix for each h ∈ [H] and for each k ≥ 1:

P
[
λmin(Σ̂k,h) ≥ λ+ λ0k − 8ϕ2

max

√
k log(4dk/δ)

]
≥ 1− δ

2
.
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Proof of Theorem 3.4. Given the representation of regret from Equation (1):

R(K) =

K∑
k=1

Es∼ρ
πk
h

[
H∑

h=1

∆h(s, πk(s))

]

=

K∑
k=1

Es∼ρ
πk
h

[ H∑
h=1

Q∗
h(s, π

∗
h(s))−Q∗

h(s, π
k
h(s))

]

=

K∑
k=1

Es∼ρ
πk
h

[ H∑
h=1

Q∗
h(s, π

∗
h(s))− Q̂k

h(s, π
k
h(s)) + Q̂k

h(s, π
k
h(s))−Q∗

h(s, π
k
h(s))

]

≤
K∑

k=1

Es∼ρ
πk
h

[ H∑
h=1

Q∗
h(s, π

∗
h(s))− Q̂k

h(s, π
∗
h(s)) + Q̂k

h(s, π
k
h(s))−Q∗

h(s, π
k
h(s))

]

≤
K∑

k=1

Es∼ρ
πk
h

[ H∑
h=1

2 sup
a∈A

∣∣Q̂k
h(s, a)−Q∗

h(s, a)
∣∣]

≤
K∑

k=1

H∑
h=1

2(H − h)
√

βk(δ)
ϕmax√
λk

(
w.p. 1− δ

2

)

≤
K∑

k=1

H(H + 1)
√
βk(δ)

ϕmax√
λk

= O
(
H3
√
d log(K/δ)

K∑
k=1

1√
λ0k

) (
w.p. 1− δ

2

)

= O

(
H3

√
dK

λ0
log(K/δ)

)
,

The first inequality is by definition of the greedy algorithm (Alg. 1, line 10). The third inequality
follows from Lemma 4.1 with a choice of λk provided by Lemma 4.2, and the final inequality is an
elementary upper bound on the sum

∑H
h=1 2(H − h). The last two equalities result from bounding

βk(δ) by βK(δ), and then substituting
√

βk(δ) = O(H
√
d log(k/δ)) as defined in Lemma 4.1.

Additionally, we use the fact that 1/(
√
k−O(

√
k log(k))) = O(

√
log(k)/k) and this derives from

the definition of λk in Lemma 4.2.

5 RELATED WORKS

Our work is mainly inspired by the one of Bastani et al. (2021) on linear contextual bandits. They
first introduced a covariate-diversity assumption that allows a greedy algorithm to achieve sublinear
regret. In the same paper, they also proposed a greedy-first algorithm that operates greedily until it
detects that convergence to the optimal policy is unlikely, at which point it begins exploring. This
was shown to outperform existing exploration-based bandit algorithms. A similar analysis of greedy
algorithms, using a slightly different diversity condition, was carried out by Kannan et al. (2018).
To the best of our knowledge, we are the first to extend this kind of analysis to MDPs.

With similar motivations, but a radically different approach, Saleh et al. (2022) studied noise-free
reinforcement learning in MDPs with Lipschitz-continuous transition models. They proposed a
regularized policy gradient approach called truly deterministic policy optimization.3 They proved

3The name is a reference to the more popular deterministic policy gradient algorithms (Silver et al., 2014; Lillicrap et al.,
2016; Fujimoto et al., 2018). These optimize a deterministic parametric policy using data collected by a stochastic counterpart
obtained by noise injection. For this reason, despite the name, they cannot be considered exploration-free. The reasons for
deploying deterministic policies are similar to ours, but are only applied to the final product of learning and not to the learning
process itself. See Montenegro et al. (2024) for a recent investigation of this approach.
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monotonic improvement guarantees, but did not study sample complexity nor regret. Their exper-
iments show promising results in robotics applications, but are essentially incomparable to ours.
Also, because of the (deterministic) policy regularization, their algorithm may not be considered
greedy.

5.1 Diversity Conditions

Besides (Bastani et al., 2021) and (Kannan et al., 2018), which serve as the foundation for our work,
several papers have adopted covariate-diversity assumptions in linear contextual bandits for diverse
reasons, often as mere technical assumptions (Foster et al., 2019; Chatterji et al., 2020; Ghosh et al.,
2021; Hao et al., 2020; Wu et al., 2020; Tirinzoni et al., 2022), sometimes, with a representation
learning perspective, as a characterization of “good" feature maps (Papini et al., 2021b; Tirinzoni
et al., 2022; 2023). See (Papini et al., 2021b) for a discussion and comparison of the different
conditions.

For linear MDPs, Papini et al. (2021a) proposed a diversity condition, called UNISOFT, under which
LSVI-UCB and other optimistic algorithms achieve constant regret (under a minimum-gap assump-
tion). In our notation, they require:

λmin

(
Es∼ρπ∗

h (s)

[
ϕ(s, π∗(s))ϕ(s, π∗(s))⊤

])
≥ λ∗. (2)

It is sufficient to observe that ⟨ϕ(s, π∗(s)),w∗⟩ ≥ maxa⟨ϕ(s, a),w∗⟩, where w∗ is the linear
parameter of Q∗, to see that Assumption 3.2 implies UNISOFT and λ0 ≤ λ∗. Intuitively, UNISOFT
requires optimal trajectories to be informative, while we ask the same of all trajectories that are
optimal according to some linear estimate. In fact, our design of Assumption 3.2 was partly inspired
by UNISOFT.

In the theory of policy gradient algorithms, concentrability coefficients (Agarwal et al., 2021) play
a similar role than our covariate-diversity assumption: by assuming that the starting-state distribu-
tion covers well the subset of the state space visited by the optimal policy, they remove part of the
challenges of exploration. This allows to study policy gradient algorithms with simple exploration
strategies (e.g., noise injection) from the perspective of stochastic optimization. The algorithms
considered in this line of work always employ stochastic policies, at least for data collection. Our
covariate diversity assumption is also reminiscent of some coverage ratios used in offline RL (Ue-
hara & Sun, 2022) with linear function approximation and of some notions of coverability (Xie et al.,
2023).

5.2 Safe Exploration

A related body of literature focuses on developing reinforcement learning algorithms that prioritize
controlled exploration for ethical and safety reasons, moving away from conventional exploratory
methods. This challenge is well outlined in Amodei et al. (2016), which identifies several AI safety
problems. These include issues like “avoiding side effects” and “reward hacking,” where agents can
inadvertently perform harmful actions due to poorly designed objective functions, but also concerns
regarding undesirable behavior during the learning process, a problem known as safe exploration.

The concept of safe exploration was first introduced by Moldovan & Abbeel (2012), who presents
an algorithm for safe but potentially suboptimal exploration in Markov Decision Processes (MDPs).
A key contribution of their work is a formal definition of safety that focuses on maintaining er-
godicity with a controlled probability. Although the problem is NP-hard, the authors propose an
approximation scheme that balances safety and performance.

A natural way to ensure safe exploration is by adding constraints to the MDP (Altman, 2021) and
enforcing them during the learning process. A notable example is the Constrained Policy Optimiza-
tion (CPO) algorithm by Achiam et al. (2017), that ensures near-satisfaction of safety constraints at
each iteration.
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Safe exploration can also be defined in terms of stability, as in (Berkenkamp et al., 2017). A model-
based predictive approach allows the agent to avoid exploratory actions that may lead to irrecover-
able states.

Finally, with an appropriately designed reward function, safety during the learning process can be
ensured by enforcing monotonic performance improvement (Papini et al., 2022).

6 EXPERIMENTS

In this section, we present the experimental results obtained from synthetic low-rank MDPs (as
defined in Section 2.3). For each scenario, we evaluate the performance of LSVI and of an optimistic
algorithm, LSVI-UCB (Jin et al., 2023).

Synthetic Problems. We define a randomly generated low-rank MDP with two distinct realizable
linear representations, both instances of simplex feature space (Jin et al., 2023, Example 2.2), but
with different characteristics. The first representation satisfies covariate diversity by generating
random features (cf. Proposition 3.3), while the second is specifically constructed to violate the
diversity assumption, using orthogonal features to simulate an MDP without any correlation between
actions (as in a tabular MDP). The purpose of these experiments is to demonstrate the varying
behavior of LSVI-UCB and LSVI across different MDPs and to highlight the impact of covariate
diversity, comparing the cases where it is satisfied and where it is not. We conduct our experiments
in a setting where H = 3, d = 10 and K = 500. Each experiment is replicated 30 times under these
same parameters. We plot cumulative regret normalized by V ∗, averaged over the independent runs,
with shaded areas corresponding to 95% confidence interval.

Covariate vs Non-Covariate Diversity. We construct two different environments with randomly
generated parameters and compare, normalizing both with respect to their V ∗, the expected cumu-
lative regret obtained when using a representation that satisfies covariate diversity against one that
does not. In the left image of Figure 1, it is evident that the absence of covariate diversity causes
the expected cumulative regret to increase linearly with LSVI (exploration-free). Conversely, the
right image, depicting a setting satisfying covariate diversity, shows sub-linear curves for both LSVI
(exploration-free) and LSVI-UCB (optimistic). Figure 2 shows a close-up of the results under co-
variate diversity.
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Figure 1: Expected cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with (right) and without (left) covariate diversity.
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Figure 2: Expected cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with covariate diversity.

Additionally, in Figure 3, we show the average over 100 different MDPs with covariate diversity for
both LSVI (non-explorative) and LSVI-UCB (explorative).
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Figure 3: Average cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with covariate diversity over 100 MDPs.

As shown by the experimental results, our findings align with the theory. Specifically, in both
Figure 1 and Figure 3, we observe that the presence of covariate diversity makes exploration-free
learning feasible. In Figure 3, we average the (normalized) performance across 100 randomly gener-
ated MDPs that satisfy covariate diversity, with each parameter sampled from a uniform distribution
between 0 and 1, using parameters within this range can result in some MDPs having very small sub-
optimality gaps, which makes the learning process harder. This variability is reflected in the large
standard deviation of Figure 3. Additionally, some of them may have a very small λ0, resulting in
weak covariate diversity. Unfortunately, this condition is difficult to measure, as λ0 is defined for
every parameter w and policy π.
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7 CONCLUSION

In this paper, we have proven that in the setting of Markov Decision Processes, under the assumption
of linear Bellman completeness, LSVI, a greedy algorithm, can achieve sub-linear regret if there is
sufficient diversity in the feature distribution, as defined by our proposed diversity condition. This
eliminates the need for explicit exploration for the agent to learn the optimal policy. Experimental
results are coherent with the theory.

Our results on linear function approximation pave the way for exploration-free RL in MDPs with
structure. Future work should focus on nonlinear function approximation in order to scale to com-
plex control problems. Some questions remain even in the linear realm. Is exploration-free learning
possible in Qπ-realizable MDPs (Weisz et al., 2023)? Since our covariate diversity condition is a
special case of UNISOFT (Papini et al., 2021a), it might be possible for LSVI to achieve constant
regret like LSVI-UCB under a minimum-gap assumption. From the perspective of representation
learning, our notion of feature diversity could be encouraged by some form of spectral regularization
as proposed by Tirinzoni et al. (2022) for UNISOFT. Our approach is inherently value-based, but
similar ideas could be applied to policy-based RL to reconcile theory with practical “deterministic
policy gradient" algorithms such as the one proposed by (Saleh et al., 2022). Finally, we may try
to develop a greedy-first exploration algorithm for MDPs following the example of Bastani et al.
(2021) on linear contextual bandits.
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A Proof of Lemma 4.1

Lemma 4.1. Assume λmin(Σ̂k,h) ≥ λk for all k ≥ 1 and h ∈ [H]. Under Assumptions 2.1 and 3.1,
with probability 1− δ/2, for all k ≥ 1, h ∈ [H], s ∈ S, a ∈ A:

|Q̂k
h(s, a)−Q∗

h(s, a)| ≤ (H − h)ϕmax

√
βk(δ)

λk
,

where √
βk(δ) := H

√
A+B + C + 1 + wmax,

and A := d ln
(
1 +

ϕ2
maxk
d

)
, B := d ln(w2

maxϕ
2
maxk), C := ln(2Hδ−1).

We shall prove a more general version of Lemma 4.1 that takes misspecification into account.

Let the Bellman Error be defined as:

Lh(w; s, a,w′) :=
∣∣∣⟨ϕ(s, a),w⟩ − rh(s, a)− Es′∼Ph(·|s,a)

[
max
a′
⟨ϕ(s′, a′),w′⟩

]∣∣∣ . (3)

Assumption 3.6 can be rephrased as follows.

Assumption A.1 (ζ-Approximate Linear Bellman Completeness, Zanette et al. (2020)). For all
h ∈ [H] and w′ ∈ W , there exists a w ∈ W such that sups∈S,a∈A Lh(w; s, a,w′) ≤ ζ.

We will denote:
Th(w′) := arg min

w∈W
sup

s∈S,a∈A
Lh(w; s, a,w′). (4)

Clearly, by definition, for all s ∈ S, a ∈ A, h ∈ [H]:

Lh(Th(w′); s, a,w′) ≤ ζ. (5)

Let Q = {⟨ϕ(·, ·),w⟩ s.t. w ∈ W} and V = {maxa∈A Q(·, a) s.t. Q ∈ Q}. Let Q̂k
h(s, a) =

⟨ϕ(s, a), ŵk
h⟩ and V̂ k

h (s) = maxa∈A⟨ϕ(s, a), ŵk
h⟩. Clearly Q̂k

h ∈ Q and V̂ k
h ∈ V for all k, h.

Proposition A.2 (Lemma 3 by Zanette et al. (2020)4). Fix h ∈ [H]. If λ = 1, with probability 1−δ,
for all V ∈ V:∥∥∥∥∥

k−1∑
t=1

ϕ(sth, a
t
h)
(
V (sth+1)− Es′∼P(·|sth,a

t
h)
[V (s′)]

)∥∥∥∥∥
Σ−1

t,h

≤ H

√
d ln

(
1 +

ϕ2
maxk

d

)
+ d ln(w2

maxϕ
2
maxk) + ln(δ−1) + 1.

Proposition A.3 (Lemma 8 by Zanette et al. (2020)). Let a1, . . . , ak ∈ Rd and b1, . . . , bk ∈ R such
that |bt| ≤ ϵ for all t ∈ [k]. Let Σ =

∑k
t=1 ata

⊤
t + λI . Then, for any k > 1 and λ ≥ 0:∥∥∥∥∥

k∑
t=1

atbt

∥∥∥∥∥
2

Σ−1

≤ kϵ2. (6)

4The extra H factor is due to the fact that we assume value functions to be in [0, H] rather than in [0, 1].
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Lemma A.4. Under Assumption A.1, if λ = 1, with probability 1− δ, for all k ≥ 1 and h ∈ [H]:∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h
≤
√

βk(δ) +
√
kζ,

where
√
βk(δ) := H

√
d ln

(
1 +

ϕ2
maxk
d

)
+ d ln(w2

maxϕ
2
maxk) + ln(Hδ−1) + 1 + wmax.

Proof. First, we show that
∥∥ŵk

h − Th(ŵk
h+1)

∥∥
Σ̂k,h

≤
∥∥w̃k

h − Th(ŵk
h+1)

∥∥
Σ̂k,h

, that is, the projec-
tion step can only bring the estimated parameter closer to its target. Fix k, h and let Proj(w) :=
argmaxw′∈W ∥w −w′∥Σ̂k,h

. Since Th(ŵk
h+1) ∈ W by definition, Proj(Th(ŵk

h+1)) = Th(ŵk
h+1).

Then:∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

=
∥∥Proj(w̃k

h)− Proj(Th(ŵk
h+1))

∥∥ ≤ ∥∥w̃k
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

, (7)

where the last inequality is by contractivity of metric projections onto convex sets (W is convex by
Asm. 3.1). We then proceed to upper bound

∥∥w̃k
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

. First notice that:

w̃k
h = Σ̂−1

k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + max

a′∈A
⟨ϕ(sth+1, a

′), ŵk
h+1⟩

)
(8)

= Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
])

+ (A) (9)

= Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)⟨ϕ(sth, aht ), Th(ŵk

h+1)⟩+ (A) + (B) (10)

= Th(ŵk
h+1) + (A) + (B) + (C), (11)

where

(A) := Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
max
a′∈A
⟨ϕ(sth+1, a

′), ŵk
h+1⟩ − Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
])

= Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)
(
V̂ k
h+1(s

t
h+1)− Es′∼P(·|sth,a

t
h)

[
V̂ k
h+1(s

′)
])

, (12)

and

(B) := Σ̂−1
k,h

k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]

− ⟨ϕ(sth, ath), Th(ŵk
h+1)⟩

)
,

and
(C) := Σ̂−1

k,h(−λITh(ŵ
k
h+1)). (13)

By the triangular inequality,
∥∥w̃k

h − Th(ŵk
h+1)

∥∥
Σ̂k,h
≤ ∥(A)∥Σ̂k,h

+ ∥(B)∥Σ̂k,h
+ ∥(C)∥Σ̂k,h

.

By Proposition A.2, if λ = 1, since V̂ k
h+1 ∈ V , the following holds with probability 1 − δ for all

h ∈ [H]:

∥(A)∥Σ̂k,h
=

∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)
(
V̂ k
h+1(s

t
h+1)− Es′∼P(·|sth,a

t
h)

[
V̂ k
h+1(s

′)
])∥∥∥∥∥

Σ̂−1
k,h

(14)

≤ H

√
d ln

(
1 +

ϕ2
maxk

d

)
+ d ln(w2

maxϕ
2
maxk) + ln(Hδ−1) + 1. (15)
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By Proposition A.3 and Equation (5):

∥(B)∥Σ̂k,h
=

∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)

(
rh(s

t
h, a

t
h) + Es′∼P(·|sth,a

t
h)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]

− ⟨ϕ(sth, ath), Th(ŵk
h+1)⟩

)∥∥∥∥∥
Σ̂−1

k,h

≤

∥∥∥∥∥
k−1∑
t=1

ϕ(sth, a
t
h)L(Th(ŵk

h+1); s
t
h, a

t
h, ŵ

k
h+1)

∥∥∥∥∥
Σ̂−1

k,h

(16)

≤
√
kζ. (17)

Finally:

∥(C)∥Σ̂k,h
= λ

∥∥∥Σ−1
k,hTh(ŵ

k
h+1)

∥∥∥
Σ̂k,h

(18)

= λ
∥∥Th(ŵk

h+1)
∥∥
Σ̂−1

k,h

(19)

≤
√
λ
∥∥Th(ŵk

h+1)
∥∥ (20)

≤
√
λwmax. (21)

Lemma A.5. Assume λmin(Σ̂k,h) ≥ λk for all k ≥ 1 and h ∈ [H]. Under Assumption A.1, with
probability 1− δ, for all k ≥ 1, h ∈ [H], s ∈ S, a ∈ A:

|Q̂k
h(s, a)−Q∗

h(s, a)| ≤ (H − h)

((√
βk(δ) +

√
kζ
) ϕmax√

λk

+ ζ

)
,

where
√
βk is defined in Lemma A.4.

Proof. First:

|Q̂k
h(s, a)− ThQ̂k

h+1(s, a)| =
∣∣∣∣⟨ϕ(s, a), ŵk

h⟩ − rh(s, a)− Es′∼P(·|s,a)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
]∣∣∣∣

(22)

=

∣∣∣∣∣⟨ϕ(s, a), ŵk
h − Th(ŵk

h+1)⟩+ ⟨ϕ(s, a), Th(ŵk
h+1)⟩ − rh(s, a)

− Es′∼P(·|s,a)

[
max
a′∈A
⟨ϕ(s′, a′), ŵk

h+1⟩
] ∣∣∣∣∣ (23)

≤
∣∣⟨ϕ(s, a), ŵk

h − Th(ŵk
h+1)⟩

∣∣+ ζ (by Equation 5) (24)

≤ ∥ϕ(s, a)∥Σ̂−1
k,h

∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

+ ζ (25)

≤ ϕmax√
λmin(Σ̂k,h)

∥∥ŵk
h − Th(ŵk

h+1)
∥∥
Σ̂k,h

+ ζ (26)

≤ ϕmax√
λmin(Σ̂k,h)

(√
βk(δ) +

√
kζ
)
+ ζ (27)

≤ ϕmax√
λk

(√
βk(δ) +

√
kζ
)
+ ζ := εk. (28)
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The rest of the proof is by (backward) induction. Note that Q∗
H+1 = Q̂k

H+1 = 0. Then, THQ̂k
H+1 =

THQ∗
H+1(s, a) = Q∗

H(s, a). By Equation (28):

|Q̂k
H(s, a)−Q∗

H(s, a)| = |Q̂k
H(s, a)− THQ̂k

H+1| ≤ εk. (29)

This is our base case (h = H). The inductive hypothesis is:

|Q̂k
h+1(s, a)−Q∗

h+1(s, a)| ≤ (H − h− 1)εk. (30)

Then:

|Q̂k
h(s, a)−Q∗

h(s, a)| = |Q̂k
h(s, a)− ThQ̂k

h+1(s, a) + ThQ̂k
h+1(s, a)−Q∗

h(s, a)| (31)

≤ |Q̂k
h(s, a)− ThQ̂k

h+1(s, a)|+ |ThQ̂k
h+1(s, a)−Q∗

h(s, a)| (32)

≤ εk + |ThQ̂k
h+1(s, a)−Q∗

h(s, a)| (33)

= εk + |ThQ̂k
h+1(s, a)− ThQ∗

h+1(s, a)| (34)

≤ εk + |Q̂k
h+1(s, a)−Q∗

h+1(s, a)| (35)
≤ εk + (H − h− 1)εk (36)
= (H − h)εk, (37)

where the inequalities are, in order: by triangular inequality, by Equation (28), by the contraction
property of Bellman’s operator, by the induction hypothesis.

Lemma 4.1 is just a special case of Lemma A.5 when ζ = 0.

B Proof of Lemma 4.2

Lemma 4.2. Given Assumptions 3.1 and 3.2, the following holds for the minimum eigenvalue of the
empirical covariance matrix for each h ∈ [H] and for each k ≥ 1:

P
[
λmin(Σ̂k,h) ≥ λ+ λ0k − 8ϕ2

max

√
k log(4dk/δ)

]
≥ 1− δ

2
.

Proof. Let πτ be the policy played by Algorithm 1 in the τ -th episode. We can rewrite the design
matrix as:

Σ̂k,h =

k∑
τ=1

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λI

= λI+

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤]

−
k∑

τ=1

(
Es∼ρπτ

h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤]− ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤
)
.

If Xτ = Es∼ρπτ
h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤]−ϕ(sτh, aτh)ϕ(sτh, aτh)⊤, then we have that Eτ [Xτ ] = 0. Also
since Xτ is symmetric:

X2
τ ≤ λmax(X

2
τ )I ≤ ||Xτ ||2I ≤ 4ϕ4

maxI. (38)

Hence from the matrix Azuma inequality by Tropp (2011), with probability 1− δk, for all k ≥ 1:

λmax

(
k∑

τ=1

Xτ

)
≤ 4ϕ2

max

√
2k log d/δk. (39)
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We set δk = δ/(2k2) and perform a union bound over time. Finally with probability at least 1 − δ
for all k≥ 1:

λmax

(
k∑

τ=1

Xτ

)
≤ 4ϕ2

max

√
2k log(4dk2/δ) ≤ 8ϕ2

max

√
k log(4dk/δ). (40)

Now let π = πk. By definition of Algorithm 1:

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤] =

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, π

τ
h(s))ϕ(s

τ
h, π

τ
h(s))

⊤] (41)

=

k∑
τ=1

Es∼ρπτ
h
[ϕ(sτh, π

τ
h(s))ϕ(s

τ
h, π

τ
h(s))

⊤I{⟨ϕ(s, πτ
h(s)), ŵ

k
h⟩ ≥ max

a∈A
⟨ϕ(s, a), ŵk

h⟩}].

(42)

So, by Assumption 3.2:

λmin(Σ̂k,h) ≥ λI+ λ0k − 8ϕ2
max

√
k log(4dk/δ). (43)

C Other Proofs

Proposition 3.3 (Noisy features). Let |A| = 2 and ϕ(s, a) = f(s, a) + η(a) for some function
f : S × A → [0,

√
2σ] and independent Gaussian noises η(a) ∼ N (0, σ2). Then Assumption 3.2

holds with λ0 ≥ 0.2σ2.

Proof. Let A = {a1, a2}, w ∈ W , and π be any deterministic policy:

λ0 = Es∼ρπ
h(s)

[
ϕ(s, π(s))2I{ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}}

]
(44)

= Es∼ρπ
h(s)

[
(f(s, a) + η(a))2I{ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}}

]
(45)

≥ Es∼ρπ
h(s)

[
η(a)2I{ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}}

]
(46)

= σ2P
(
ϕ(s, π(s))w ≥ max

a∈A
{ϕ(s, a)w}

)
(47)

= σ2P
(
(f(s, π(s)) + η(π(s)))w ≥ max

a∈A
{(f(s, a) + η(a))w}

)
. (48)

Fix a state s and let π(s) = a1 and w > 0 without loss of generality. Then

P
(
(f(s, a1) + η(a1))w ≥ max

a∈A
{(f(s, a) + η(a))w}

)
(49)

≥ P
(
(f(s, a1) + η(a1))w ≥ (f(s, a2) + η(a2))w

)
(50)

= P
(
f(s, a1) + η(a1) ≥ f(s, a2) + η(a2)

)
(51)

≥ P
(
η(a1)− η(a2) >

√
2σ
)

(52)

= P(X >
√
2σ) > 0.2, (53)

where X ∼ N (0, 2σ2).

Corollary 3.5. Under the same assumptions as Theorem 3.4, the expected cumulative regret of LSVI
is at most:

E [R(K)] = O

(
H3

√
dK

λ0
log(K)

)
.
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Proof. We define an event P , under which the cumulative regret is bounded as described in Theorem
3.4, that occurs with probability 1− δ:

E[R(K)] = E[R(K)I(P )] + E[R(K)I(P )]

≤ O

(
H3

√
dK

λ0
log(K/δ)

)
(1− δ) + 2HKδ

≤ O

(
H3

√
dK

λ0
log(K3/2)

)
+ 2H

√
K

= O

(
H3

√
dK

λ0
log(K)

)
.

The first inequality is by Theorem 3.4, and by upper bounding the regret with the trivial 2HK when
P does not hold. The second inequality follows by 1− δ ≤ 1 and by setting δ = 1/

√
K.

Theorem 3.7. If Assumptions 3.6 and 3.2 are satisfied, with probability 1− δ, the cumulative regret
of LSVI is at most:

R(K) = Õ
(
H3

√
dK

λ0
+H2ζ

K√
λ0

+H2ζK

)
.

Proof. This is a simple variant of Theorem 3.4 that uses the more general Lemma A.5 in place of
Lemma 4.1. Logarithmic terms are omitted for brevity.

D Additional Experiments

This appendix chapter presents additional experiments related to Chapter 6.

D.1 Varying Exploration Bonuses

The first additional experiment explores tuning the parameter β in LSVI-UCB. As expected, Fig. 4
illustrates that reducing β from 1 to 0.1 shifts LSVI-UCB’s behavior closer to non-explorative LSVI.
Additionally, under the covariate diversity condition (Assumption 3.2), the parameter β does not
need to be large to achieve improved performance. Indeed, while LSVI-UCB demonstrates strong
performance with covariate diversity even at β = 0.1, in the absence of covariate diversity, the
LSVI-UCB curve exhibits a sublinear trend only when β ≥ 0.7.
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Figure 4: Expected cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with covariate diversity for different β.
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D.2 Robustness to Misspecification

This experiment examines the effects of adding a small Gaussian noise to the features of each state-
action pair, making the MDP only approximately linear (Assumption A.1). As stated in Theorem
3.7, if the misspecification is minor, the results remain robust. Fig. 5 supports this theory empirically,
showing that LSVI is not significantly impacted by the misspecification. However, LSVI-UCB
performs worse than LSVI because, under misspecification, LSVI-UCB would require a different
exploration bonus (Theorem 3.2, Jin et al., 2023).
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Figure 5: Expected cumulative regret of LSVI (without exploration) and LSVI-UCB (with explo-
ration), with covariate diversity and misspecification.

E Code and Computing Infrastructure

The experimental results presented in Section 6 were obtained using Python. The code, a modified
version of the official implementation from Liu & Xu (2024), is attached to the paper and was
executed on Kaggle.com, a cloud computing platform.

https://www.kaggle.com

