
Do Slides Help? Multi-modal Context for Automatic Transcription of
Conference Talks

Anonymous ACL submission

Abstract

State-of-the-art (SOTA) Automatic Speech001
Recognition (ASR) systems primarily rely on002
acoustic information while disregarding addi-003
tional multi-modal context. However, visual004
information are essential in disambiguation and005
adaptation. While most work focus on speaker006
images to handle noise conditions, this work007
also focuses on integrating presentation slides008
for the use cases of scientific presentation.009

In a first step, we create a benchmark for multi-010
modal presentation including an automatic anal-011
ysis of transcribing domain-specific terminol-012
ogy. Next, we explore methods for augmenting013
speech models with multi-modal information.014
We mitigate the lack of datasets with accom-015
panying slides by a suitable approach of data016
augmentation. Finally, we train a model using017
the augmented dataset, resulting in a relative018
reduction in word error rate of approximately019
34%, across all words and 35%, for domain-020
specific terms compared to the baseline model.021

1 Introduction022

Automatic Speech Recognition (ASR) like many023

other NLP tasks are currently solved by using pre-024

trained models rather than learning models from025

scratch (Han et al., 2021). Although modern ASR026

systems have an overall similar to human perfor-027

mance on general data yet one important challenge028

remains in accurately transcribing specialized vo-029

cabulary for example, in academic settings. Figure030

1 illustrates a challenge for current ASR systems. A031

system relying on only audio is not able to correctly032

transcribe the domain-specific terms Kenya-Birth033

and Kenya Rwandan (in red).034

As conference talks and lectures often include035

presentation slides, humans can correctly identify036

these words by using this additional context. There-037

fore, we propose to integrate visual context (slides)038

into existing state-of-the-art ASR system and en-039

able them to also exploit this context. As shown on040
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Figure 1: An example of ASR transcription before
and after using multi-modal input. Left: ASR base-
line makes mistakes (in red) for multiple words. Right:
Model correctly transcribes words (in blue) using multi-
modal inputs.

the right side of Figure 1, the final model is able to 041

properly transcribe these words as Kinyabert and 042

Kinyarwanda (in blue) when the correct words are 043

presented to the model in the additional informa- 044

tion provided from the accompanying slides of the 045

talk. 046

In a first step, we extend an existing benchmark, 047

the ACL dataset (Salesky et al., 2023) with ad- 048

ditional slide context, as well as a, target auto- 049

matic evaluation for domain-specific terms to eval- 050

uate this assumption. Furthermore, we verify our 051

assumption that these terms are challenging for 052

SOTA models like Whisper (Radford et al., 2023), 053

Phi-4-multimodal (Abouelenin et al., 2025) and 054

SALMONN (Tang et al., 2023). 055

When integrating visual context into ASR mod- 056

els to handle domain-specific words, we want to 057

keep the strong SOTA performance of current large- 058

scale models. Therefore, we focus on approach that 059

can add this ability to existing models. One inter- 060

esting aspect of current models is their ability to 061

handle zero-shot task. To this end, we first pro- 062

pose a zero-shot integration that is already able to 063

exploit the visual context. 064

In a second step, we investigate methods to train 065

the model to better integrate the contextual infor- 066
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mation. This gives rise to the challenge that we067

need dedicated training data for this scenario. We068

address this problem by using large language mod-069

els (LLMs) to augment ASR training data with070

presentation slides.071

The primary contributions of this paper are:072

• Analysing the ability of ASR to transcribe073

domain-specific words, particularly from scien-074

tific talks.075

• Integration of multi-modal information into ex-076

isting pre-trained models.077

• Application of training approaches with aug-078

mented data to improve the transcription on079

domain-specific terms.080

2 Related Work081

There are multiple work where model performance082

is improved by additional information integration.083

In this regard, (Maergner et al., 2012) create a lec-084

ture specific vocabulary, based on the content of085

the related documents of the lectures. Construction086

of a vocabulary with relevant content improves the087

model performance and results in a reduced word088

error rate of up to 25 percent.089

Additionally, combining modalities for the im-090

provement of ASR is also considered in the liter-091

ature. Starting from Hidden Markov model for092

speech recognition and manually created features093

represented visual components, combining modal-094

ities were also considered for the task of estab-095

lishing relation between words and non-linguistic096

context (Fleischman and Roy, 2008) to compen-097

sate data deficiency. Later extraction of visual098

feature from videos using deep learning architec-099

tures was incorporated into ASR models on open-100

domain videos (Miao and Metze, 2016). These101

approaches are extended with SOTA sequence to102

sequence model (Gupta et al., 2017) which helped103

to extract relevant context information from the104

videos for ASR. (Sun et al., 2022) proposes using105

words from slides and presents GNN encoding us-106

ing tree-RNN for contextual speech recognition.107

In addition, (Huber and Waibel, 2025) performs a108

technique of continuous learning of new words in109

ASR from slides.110

Automatic speech recognition has made a signif-111

icant progress in recent years by generating accu-112

rate transcriptions. Whisper (Radford et al., 2023)113

has made it possible to generate better transcrip-114

tions on unseen datasets. However, transcribing115

domain-specific datasets or low resource datasets,116

abbreviations, disfluencies still posses challenge117

for the SOTA ASR models(Ma et al., 2023). Many 118

approaches focus on fusing audio and visual modal- 119

ities to address challenges such as proper name 120

transcription, error correction, noisy environments, 121

and multi-modal context (Peng et al., 2023),(Ku- 122

mar et al., 2023). 123

In recent work, the integration of presentation 124

slides into Multi-modal ASR has gained atten- 125

tion due to the potential benefits of leveraging vi- 126

sual information to improve transcription. The 127

SLIDESPEECH dataset (Wang et al., 2024b) a 128

large scale audio-visual corpus enriched with slides 129

is created from online conference videos. How- 130

ever only a part of their dataset is transcribed and 131

synchronized with the slides. In a previous work, 132

(Yang et al., 2024) creates a multi-modal-assisted 133

LLM-based ASR model, and uses SLIDESPEECH 134

dataset along with its accessible keywords provided 135

with the dataset to enhance the ASR performance. 136

In contrast to this paper, we explore a strategy 137

to augment existing domain-specific speech-only 138

datasets with images of slides, to enhance model 139

performance on domain-specific vocabulary. Un- 140

like (Yang et al., 2024), we further demonstrate 141

that incorporating images rather than textual con- 142

text yields additional improvements in ASR per- 143

formance. Similar to the SLIDESPEECH dataset 144

(Wang et al., 2024a) creates a dataset SlideAVSR, 145

using scientific paper explanation videos. They 146

propose a FQ ranker in this work which helps to 147

select words based on their frequency to be used 148

as prompts. In contrast, we focus on words unique 149

to specifically scientific domain by removing all 150

words commonly existing in a general dataset. 151

Methods of data augmentation has been pro- 152

posed to create synthetic data with variations of au- 153

dio and visual modality for the purpose of enhanced 154

speech recognition (Oneat, ă and Cucu, 2022). In 155

this work, we augment an existing speech-only 156

dataset and enrich them with visual modality for 157

the purpose of multi-modal ASR. (Chen et al., 158

2024), (Wang et al., 2024a) present a multi-modal 159

academic dataset for audio-visual recognition and 160

understanding tasks. Both datasets requires man- 161

ual annotation, which is both time consuming 162

and expensive, making such an approach to large 163

data collection non-feasible. In contrast, we show 164

that ASR model performances can be improved 165

when trained through an automatically augmented 166

dataset. While most of the conference videos avail- 167

able are in English, our data augmentation allows 168

utilization of datasets in other languages addition 169
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to english.170

3 Multi-modal Scientific Presentation171

Benchmark172

In this section we analyze three baseline mod-173

els on the ability to transcribe on domain-specific174

words. The models are evaluated using an evalu-175

ation dataset. We describe the dataset in Section176

3.1 and give details of model performance on the177

dataset in Section 3.4.178

3.1 Benchmark179

For evaluating the model performances we use the180

ACL 60/60 dataset (Salesky et al., 2023). This181

dataset consists of a development (dev) and eval-182

uation (eval) data each with audio recordings and183

manual transcripts of technical presentations from184

ACL 2022 conference. Both the dev and eval sets185

consist of five recordings each. Each of these186

datasets has a duration of approximately one hour.187

The dataset consists of manually created aligned188

text and audio segments which we consider for our189

task.190

3.2 Metric191

The traditional Word Error Rate (WER) metric is192

employed to evaluate the performance of ASR mod-193

els, assigning equal weight to all words in the tran-194

script. In addition to WER, this study places partic-195

ular emphasis on the ASR performance for words196

that are frequently encountered within scientific197

domains. These words are referred to as domain-198

specific words, and the term special words is used199

interchangeably throughout this paper. In this work,200

we define a domain specific-word as words that201

does not occure in the general domain corpus (in202

most experiements this is the Must-C (Di Gangi203

et al., 2019) corpus) We measure the quality of the204

domain-specific words with respect to the reference205

and the hypothesis similar to recall and precision.206

First, we investigate how many domain-specific207

words in the reference are missed or wrongly tran-208

scribed by the model, by aggregating the deletion209

and the substitution counts, and dividing it by the210

total occurrences of domain-specific words in the211

manual transcript.212

In this paper, we calculate a reference-centric213

WER metric WERtref .214

WERtref = |substituted+deleted|
|recognized +substituted+deleted|215

Next, we calculate the WERthyp to evaluate how216

many domain-specific words in the model’s output217

are incorrectly transcribed.218

WERthyp = |substituted+inserted|
|recognized +substituted+inserted| 219

3.3 Baseline 220

To study the ability of ASR models to transcribe 221

domain-specific words we use the models, Whisper, 222

SALMONN and Phi-4-multimodal. 223

Whisper: Whisper is a transformer-based 224

encoder-decoder model developed by OpenAI 225

for ASR and translation tasks (Radford et al., 226

2023). Trained on approximately 680k hours of 227

web-sourced speech data, it encodes input audio 228

into features, which are then processed by the 229

decoder to generate transcriptions using positional 230

encoding and prior outputs. In this work, we use 231

the Whisper Large V2 model. 232

SALMONN: The SALMONN model, developed 233

by Tsinghua University and ByteDance (Tang et al., 234

2023), extends LLMs such as Vicuna (Chiang et al., 235

2023) to directly process and understand general 236

audio inputs, enabling strong performance on var- 237

ious speech and audio tasks. It integrates outputs 238

from Whisper (Radford et al., 2023) and BEATs 239

(Chen et al., 2022) encoders using a window-level 240

Q-Former module (Zhang et al., 2024), producing 241

augmented audio tokens aligned with the LLM’s 242

internal representations. In this work, we use the 243

SALMONN 13B v1 model. 244

Phi-4-multimodal: Phi-4-multimodal (referred 245

to as Phi) is a 5.6B-parameter, instruction-tuned 246

multi-modal transformer developed by Microsoft. 247

It supports unified processing of text, image, and 248

audio inputs for vision-language, vision-speech, 249

and speech-language tasks, with a context length 250

of up to 128K tokens. The model employs 32 251

transformer layers with Grouped Query Attention 252

(GQA) (Ainslie et al., 2023) for efficient long- 253

context handling. Vision and audio features are 254

projected into the text embedding space using two- 255

layer MLPs. Phi achieves strong performance 256

across multilingual and multi-modal benchmarks. 257

3.4 Analysis 258

We evaluate the models on their ability to transcribe 259

the ACL dataset specifically on domain-specific 260

words. 261

Table 1 gives the statistics on the domain- 262

specific words extracted from the dataset with this 263

approach. The count of total special words in the 264

ACL dev dataset is 333 of which 130 are unique. 265

Similarly, there are in total 276 special words in 266

the ACL eval dataset of which 115 are unique. 267
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Table 1: Statistics of domain-specific words
Whisper SALMONN Phi

Data Total Unique Times Times not Times Times not Times Times not
special words special words recognised recognised recognised recognised recognised recognised

ACL dev 333 130 251 82 204 129 244 89

ACL eval 276 115 150 126 116 160 150 126

Table 2: WER, WERtref and WERthyp
for Whisper,

SALMONN and Phi.
Model ACL dev ACL eval

WER WERtref WERthyp WER WERtref WERthyp

Whisper 8.81 24.62 20.57 13.45 45.65 44.03
SALMONN 17.42 38.44 37.31 20.31 57.97 57.04
Phi 7.01 26.73 25.38 18.58 45.65 44.65

The results of the model performance on the268

ACL dataset are summarized in Table 2. We find269

that for all models, the word error rate (WERtref270

and WERthyp) on domain-specific words is sig-271

nificantly higher compared to WER on all words.272

Whisper makes approximately three times more273

mistakes on ACL dev and eval datasets. Similar re-274

sults can be also observed for SALMONN and Phi275

models which implies that all models consistently276

make more mistakes while transcribing domain-277

specific words. Additionally, since WERtref and278

WERthyp are similar, there appears to be no specific279

problem with over or under-generating domain-280

specific words.281

We also present the number of times the models282

are able to recognize the special words. Columns283

Times recognized and Times not recognized of Ta-284

ble 1 show the details of how many of the domain-285

specific words are recognized and not recognized286

by Whisper, Phi and SALMONN models respec-287

tively. We find that Whisper identifies the highest288

number of domain-specific words on both the ACL289

dev and ACL eval sets compared to all other mod-290

els. Notably, Phi matches Whisper’s performance291

in recognizing domain-specific words on the ACL292

eval set. Whereas the overall results demonstrate293

that the domain-specific words pose a difficult chal-294

lenge for state-of-the-art ASR systems. This moti-295

vates the integration of additional context like pre-296

sentation slides. The following section describes297

our approach of additional context extraction and298

integration to models.299

4 Multi-modal Context Extraction and300

Integration301

Our analysis on Section 3.4 shows that the current302

ASR models make up to three times more mistakes303

while transcribing domain-specific words.304

Based on this analysis, we propose a multi-305

modal context extraction and integration system.306

We build our system on top of an existing ASR 307

model and enrich it through multi-modal informa- 308

tion. We propose both a cascaded approach and 309

an end-to-end approach to incorporate additional 310

information into the model. In both cases, we focus 311

on ASR systems based on multi-modal foundation 312

models to allow an easy integration of additional 313

context. Figure 2 provides an overview of both 314

approaches. 315

In the cascaded approach, we represent the im- 316

portant domain-specific terms explicitly as words 317

and provide these words to the ASR system. In 318

a first step, we obtain text from extracted images. 319

In a second step, we apply additional filtering on 320

these words. Finally, these words are presented as 321

context to the ASR system. 322

One disadvantage of this approach is that only 323

the text from the slide is represented and that we 324

can be harmed by cascading errors. Therefore, we 325

also investigate the direct integration of the image 326

in an end-to-end fashion. In this case, the image 327

is provided directly as additional context to the 328

multimodal ASR system. 329

The following section provides the details on 330

our approach to text extraction from images and 331

integration into models. 332

4.1 Image Frame Extraction 333

To obtain the relevant context, we begin with the 334

corresponding video recordings of the scientific 335

talks of the ACL dataset and extract aligned image 336

frames (denoted by 1 in Figure 2). Since presenta- 337

tion video recordings are not usually accompanied 338

by their respective slides, we extract frames directly 339

from the recordings. Our audio segments are less 340

than 30 seconds, therefore we assume that while 341

demonstrating the content of a particular segment, 342

the presenter uses only one single slide. 343

For each of the audio files, we use the avail- 344

able audio segments, with their durations and off- 345

set timestamps relative to the full recording. This 346

information is used to align segments with the orig- 347

inal video and extract a single frame from the mid- 348

point of each video segment. The images are then 349

directly integrated into the end-to-end models or 350

processed to extract the specific vocabulary for the 351
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cascaded approach.352

4.2 Text Extraction353

In the second component, (denoted by 2 in Fig-354

ure 2) we perform text extraction on the obtained355

frames from the previous step (Section 4.1). To356

perform this task, we use LLaVA-NeXT (Liu et al.,357

2024) (referred to as Llava in rest of this paper),358

due to its ability of better visual reasoning and op-359

tical character recognition (OCR) capability. We360

provide the model with previously extracted image361

frames and a suitable prompt as input (explained362

in Appendix 9), to generate information for each363

provided frame.364

The Llava method results in a large number of365

extracted texts, which needs to be filtered further366

(denoted by 3 in Figure 2). The primary motivation367

behind this is to obtain only domain-specific words.368

To this end, we filter the extracted text by removing369

all common words. This is done by discarding370

all words present in a general presentation dataset371

(Di Gangi et al., 2019), resulting in a collection of372

only domain-specific words.373

4.3 Context Integration374

The extracted information is then provided to an375

existing multi-modal ASR model (denoted by 4376

in Figure 2). Such ASR systems include an LLM377

which can be prompted with text to perform the378

required transcription task. In this work, we focus379

on improving ASR performance by integrating the380

context as part of such prompts.381

In particular, we use the additional information382

to enrich the input to SALMONN and Phi model.383

By default, there exists text prompts used in these384

models that provides instruction (explained in Ap-385

pendix 9) about the task to be performed. We mod-386

ify the default text prompt with the information387

extracted from the previous step (Section 4.2).388

5 Data Augmentation389

ASR systems with integrated LLMs can be390

prompted in a zero-shot manner. Existing work391

(Wei et al., 2021) has shown that compared to zero-392

shot, fine-tuning of models can be useful to achieve393

further improvements. To this end, we first perform394

a zero-shot prompting and further enhance the ca-395

pability of the ASR model to generate accurate396

transcriptions by incorporating and training with397

additional information.398

Enhancing ASR using visual modality, a dataset399

comprising both visual (e.g. images or slides) and400

Image

1 2 3

4

Frames
Extracted Filtered 

Audio

Context

kinyabert, kinyarwanda...

Video of the Talk

Extraction of Domain Specific Words

I am presenting our paper, Kinyabert, a morphology-Aware
  Kinyarwanda language model

Pre-trained ASR model

Task instruction

Text

Figure 2: Overview of our two approaches. The green
arrows represent the end-to-end approach.

speech data is essential. To address the lack of re- 401

quired relevant multi-modal domain-specific data, 402

this work synthesizes a dataset by data augmen- 403

tation. For our purpose, we augment images to 404

an existing dataset where we generate images that 405

corresponds to presentation slides. This generated 406

image is then added to the dataset lacking inherent 407

similar multi-modal content. This novel strategy 408

of automatically generating and augmenting a vi- 409

sual modality allows us to use any existing speech 410

dataset while also supporting domain-specific train- 411

ing. 412

5.1 Generation of Presentation Slides 413

In this approach, we generate presentation slides 414

for existing speech content through a series of steps. 415

First, we segment the speech transcript into smaller 416

textual units, selecting a chunk size of eight sen- 417

tences. Our choice of chunk size results in approx- 418

imately 15–20 slides for a 20–30 minutes speech, 419

ensuring an allocation of 60–90 seconds of speech 420

per slide. 421

Next, we employ LLaMA 3 to generate LaTeX 422

code for these text chunks. We guide LLaMA 3 423

with a pair of instructions consisting of a high level 424

system prompt and a more task specific prompt to 425

generate latex code based on the text chunks (ex- 426

plained in Appendix 9). In the final stage, we con- 427

vert the generated LaTeX code into images. This 428

involves first compiling the LaTeX code into PDFs 429

and subsequently extracting images from the gen- 430

erated PDF files. We adopt a methodology where 431

images are generated from PDFs rather than di- 432

rectly utilizing the PDFs, as such resources are 433

often unavailable in standard datasets. Conversely, 434

presentation videos are typically accessible, which 435

allows us to extract time-aligned slides correspond- 436
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ing to the speech, as described in Section 4.1.437

5.2 Text Extraction438

After obtaining the images from the generated439

slides, we follow the approach of text extraction by440

Llava as described in Section 4.2. Since the target441

dataset for information augmentation is a general442

purpose dataset, we apply a separate filtration strat-443

egy on the extracted text, differing from the one444

used for the ACL datasets. For each talk, we re-445

tain only the words that are relevant to the talk by446

discarding words that also appear in all other talks447

within the dataset. We consider such words that448

are unique to each talk to be the domain-specific449

words for that particular talk.450

6 Experimental Setup and Results451

This section provides details on our experimen-452

tal setup in Section 6.1 and information about the453

dataset used for training is included in Section 6.2.454

6.1 Experimental Setup455

We adopt two models, SALMONN 13B v1, and456

Phi-4-multimodal to perform our experiments. For457

extracting text from the images with LLaVA-NeXT,458

we use llava-v1.6-mistral-7b model which uses459

CLIP-ViT-L-336px (Radford et al., 2021) as im-460

age encoder and LLaMa (Touvron et al., 2023) for461

language understanding. We provide the model462

with an image as well as a suitable prompt to gen-463

erate the text from the image.464

For generation of slides we use LLaMa 3 (Dubey465

et al., 2024) to create latex code and use the python466

library subprocess to execute the shell commands467

pdflatex and pdftoppm respectively to generate latex468

code to PDF and image.469

6.2 Dataset470

For training the ASR model, we use MuST-C (Mul-471

tilingual Speech Translation Corpus) (Di Gangi472

et al., 2019) which is primarily designed as a473

speech translation dataset. The dataset consists of474

around 400 hours of audio recordings from English475

TED Talks speech, transcription and translated tran-476

scripts in multiple languages, which are applicable477

to train model for speech recognition and speech478

translation tasks.479

Since MuST-C does not contain any visual480

modality, we augment it with the generated im-481

ages as described in Section 5. Based on the text482

extraction and filtration approach described in Sec-483

tion 5.2, we obtain 16,830 domain-specific words484

for 2551 talks present in the dataset. 485

7 Results 486

In this section we first analyse the quality of the 487

text extracted using Llava and Phi in Section 7.1. 488

Next, we describe the zero-shot performances of 489

the model on the extracted text presented in Section 490

7.2 and finally we compare the zero-shot perfor- 491

mance of the model to a model fine-tuned using the 492

additional information elucidated in Section 7.3. 493

7.1 Quality of the extracted text 494

We perform an analysis to check the quality of the 495

extracted text from the images using Llava and 496

Phi models. This assessment is essential, as the 497

extracted text is intended to support the model’s 498

transcription of domain-specific terms. For this, we 499

compare the special words that are present in the 500

reference text to the extracted text. Table 3 summa- 501

rizes this result. We find that both the Llava and the 502

Phi model produces a large number of unique spe- 503

cial words of which 62% and 66% are common to 504

the special words present in the reference of ACL 505

dev and 52% is common to the special words in 506

reference of ACL eval dataset. 507

We also measure the performance of the ASR 508

models on the Llava and Phi extracted words. The 509

considered models for our qualitative analysis are 510

SALMONN, Phi and Phi+image (Phi trained to per- 511

form ASR with image) shown as separate columns 512

in Table 3. As an example, consider the ACL dev 513

dataset where Phi extracted text contains 86 unique 514

special words common to the reference. These 86 515

words are present in total 260 times in the dataset. 516

The results presented for each ASR models show 517

the number of times out of 260, it has been rec- 518

ognized and not recognized. Consider the results 519

for SALMONN which is able to recognize the Phi 520

extracted special words 164 times but fails for 96 521

times. Similar ASR model performance results are 522

shown in Table 3 for the Llava extracted text and 523

the reference. 524

7.2 Zero-shot performance of the ASR model 525

on the extracted data 526

We evaluate the zero-shot performance of 527

SALMONN and Phi models providing the ex- 528

tracted domain-specific words as prompts and com- 529

pare it to the model without any additional prompts. 530

Table 4 shows the results of these experiments. 531

It includes our experiments with two models in four 532

configurations. The first configuration referred to 533

6



Table 3: Statistics of domain-specific words extracted using Llava, Phi models and counts of special words
recognized and not-recognized by SALMONN, Phi and Phi+image (Phi trained to perform ASR with image).

SALMONN Phi Phi + image

Dataset Text Unique Common Times Times not Times Times not Times Times not
source special words with ref recognised recognised recognised recognised recognised recognised

ACL ref 130 - 204 129 244 89 278 55
dev Phi 321 86 164 96 193 67 218 42

Llava 367 81 173 96 204 65 231 38

ACL ref 115 - 116 160 150 126 179 97
eval Phi 645 60 77 108 103 82 124 61

Llava 669 60 73 107 95 85 125 55

Table 4: WER, WERtref and WERthyp
scores us-

ing context words from Llava, Phi and reference for
SALMONN and Phi zero-shot approaches.

Model ACL dev ACL eval
WER WERtref WERthyp WER WERtref WERthyp

SALMONN 17.42 38.44 37.31 20.31 57.97 57.04
+ LlaVA prompts 10.31 28.62 28.09 16.54 48.33 47.75
+ Phi prompts 15.36 27.69 27.13 28.08 58.38 57.92
+ Ref prompts 10.93 17.12 20.66 14.09 35.87 34.93
Phi 7.01 26.73 25.38 18.58 45.65 44.03
+ LlaVA prompts 6.95 21.18 20.0 18.29 38.9 38.20
+ Phi prompts 7.05 20.38 19.46 15.62 38.38 37.36
+ Ref prompts 7.01 18.02 14.95 12.30 37.68 36.06

as base configuration is the models without any534

additional prompts shown in first and fifth row of535

the table. The remaining three configurations con-536

siders model with additional context using Llava,537

Phi and from the reference text. We conduct ex-538

periment using the special words from reference to539

show the model performance in the best possible540

configuration.541

We find that the model configurations containing542

additional context outperforms the base configura-543

tion. For the SALMONN model the configuration544

containing Llava context outperforms the base con-545

figuration by 26% and 25% on ACL dev and 17%546

and 16% on ACL eval on WERtref and WERthyp547

respectively. For the Phi model the configuration548

with additional context extracted from Phi achieves549

the best results. It outperforms the base configu-550

ration by 24% and 23 % on ACL dev and by 16%551

and 15% on ACL eval on WERtref and WERthyp552

respectively.553

The SALMONN configuration with Phi context554

performs poorly on ACL eval in comparison to the555

base configuration. In contrast, we find consistent556

improvements over the base configuration for the557

models when special words obtained from Llava558

are considered. As a result, for further experiments559

presented in the paper, we only consider special560

words from Llava.561

7.3 Fine-tuning performance using562

augmented data563

For this experiment, our goal is to check if the564

performance of the ASR models can be improved565

Table 5: WER, WERtref and WERthyp
scores of differ-

ent setup using SALMONN and Phi.
Model ACL dev ACL eval

WER WERtref WERthyp WER WERtref WERthyp

SALMONN
Zero-shot 17.42 38.44 37.31 20.31 57.97 57.04
Zero-shot Llava 10.31 28.62 28.09 16.54 48.33 47.75
Fine-tuned 10.9 30.33 25.48 15.74 51.45 50.0
Fine-tune with Llava 10.24 19.33 17.80 14.85 48.89 46.82
Fine-tuned with ref 9.67 10.51 8.31 14.63 29.35 26.13
Phi
Zero-shot 7.01 26.73 25.38 18.58 45.65 44.03
Zero-shot Llava 6.95 21.18 20.0 18.29 38.9 38.20
Fine-tuned 9.03 22.30 20.83 13.99 40.22 39.33
Fine-tune with Llava 8.81 17.41 15.85 13.66 35.0 33.52
Fine-tune with image 8.70 14.13 13.48 12.23 30.56 30.17
Fine-tuned with ref 6.73 16.22 14.68 18.70 41.30 40.22

further by fine-tuning compared to zero-shot per- 566

formance. To this end, we fine-tune SALMONN 567

and Phi using the augmented dataset obtained in 568

Section 5 and compare it to additional setups de- 569

scribed below. Table 5 summarizes the results of 570

our experiment. 571

The upper part of the table illustrates the 572

SALMONN specific setups and their correspond- 573

ing results while the lower part contains the Phi 574

specific details. The following provides details on 575

the setups of our experiment that corresponds to 576

Table 5. 577

Zero-shot Llava: The model with additional con- 578

text using Llava (Section 7.2). 579

Fine-tuned: The model fine-tuned without any 580

additional context using the configurations used by 581

the model authors i.e., no changes are made to the 582

task description. (Section 7.2). 583

Fine-tuned with Llava: The model fine-tuned 584

with additional context words from Llava (default 585

setup). 586

Fine-tuned with image: The model (only done for 587

Phi since it accepts image as input) fine-tuned with 588

image instead of additional text as context. 589

Fine-tuned with ref: The model fine-tuned with 590

context obtained as special words from transcripts 591

(best possible setup). 592

For the setups mentioned above that uses ad- 593

ditional context words, we modify the model’s 594

task description with additional special words and 595

change the instruction to consider the special words 596
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Manual Transcript

Fine-tuned without added context  

I am presenting our paper Kenyabert a morphology-aware kenyarwanda language model.

I am presenting our paper, "Kenya Bert: A Morphology-Aware Kenyan Swahili language model."

Zero-shot model

i am presenting our paper kenyabirth a morphology aware kenyarwanda language model.

Fine-tuned with Llava prompts 

I am presenting our paper,  "Kinyabert: A Morphology-Aware Kinyarwanda Language Model."

Zero-shot Llava

Fine-tuned with images 

I am presenting our paper,  "KinyaBERT: a Morphology-aware Kinyarwanda Language Model."

I am presenting our paper KinyaBERT: a Morphology-aware Kinyarwanda Language Model.

Figure 3: Example of transcriptions generated by different models with respect to the manual transcript. The figure
shows that the best possible transcript is generated while fine-tuning the ASR model with llava prompts and image.

while transcribing (explained in Appendix 9). Ad-597

ditionally, we make sure that during extraction of598

special words as outlined in Section 5, there exists599

no overlap between special words from training600

and evaluation datasets.601

As illustrated in Table 5, both SALMONN and602

Phi models improve its overall performance when603

fine-tuned with Llava context words over fine-tuned604

with no context words. For the SALMONN setups,605

fine-tuning with Llava words achieves the best pos-606

sible scores across both the datasets. We observe,607

similar results for the Phi setups with additional608

context words. We conduct additional experiments609

with Phi using image instead of extracted words610

as addition context. We find this to be our best611

possible overall setup for Phi, even outperforming612

the setup containing context words from reference.613

This improvements can be attributed to the fact that614

in addition to text in the slides, the included fig-615

ures, plots and tables also contribute to the model616

performance.617

We perform a significance test by using matched-618

pair test for error counts for two hypothesis 1) tran-619

scripts from model using only speech 2) transcripts620

from model using speech and additional context.621

We find a p-value of less than 0.001 showing the622

significance of our results.623

Figure 3, shows an example prediction by the Phi624

model with each setup described earlier. Consider-625

ing both the Zero-shot model and the Fine-tuned626

model without context words, we find that the mod-627

els make mistakes on both words KinyaBERT and628

Kinyarwanda. The zero-shot with Llava model629

improves but is unable to transcribe correctly.630

Whereas the Fine-tuned model with LLava gen-631

erates the correct transcription likely due to its ac-632

quired ability to incorporate from the additional633

information. Finally, the model trained with im- 634

ages not only accurately transcribes the content 635

but also preserves the textual formatting as it ap- 636

pears in the presentation slide. As illustrated by the 637

above example, our experiments show encourag- 638

ing results in improving existing ASR performance 639

either using context words or images. 640

To be used for ASR of scientific talks, the ap- 641

proach requires minimal additional effort to setup. 642

An example setup comprises of a system to gen- 643

erate images from slides of a presenter which is 644

directly utilized by the ASR models for improved 645

transcription. 646

8 Conclusion and Future work 647

Current ASR systems exhibit challenges in accu- 648

rately transcribing domain-specific words. This 649

limitation hinders their effectiveness in various ap- 650

plications. We present an analysis of the model per- 651

formance on transcribing domain-specific words 652

to demonstrate this. This paper investigates the 653

potential of augmenting ASR models with informa- 654

tion extracted from slides to improve performance. 655

We explore the use of visual information extracted 656

from video recordings of slides as prompts. When 657

trained with additional context, the model develops 658

ability to generate better transcription on domain- 659

specific words. This shows the effectiveness of 660

multi-modal information in enhancing ASR perfor- 661

mance. 662

The results presented in Section 7 highlight the 663

potential for further advancements. We find that 664

integrating image as an additional input improves 665

ASR performances for Phi and as future work pro- 666

pose to investigate on SOTA ASR uni-model per- 667

formances on such end-to-end approaches. 668
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Limitations669

While our augmented data approach proves ef-670

fective and results in significant improvements in671

model performance, it is not without limitations,672

presenting opportunities for future research.673

In our work we consider slides to extract domain-674

specific words that can be used as additional infor-675

mation for context integrated ASR. Slides often676

contains summarized, bullet-pointed information677

which may lead to omit domain-specific words to678

some extend which may effect the models ability to679

recognize them correctly. Speakers often elaborate680

the slides with their own words introducing mis-681

match between speech and the slide content which682

also creates similar problem.683

Apart from that, the ASR model in this work684

integrates a pre-trained LLM. LLMs are heavily de-685

pendent on the quality and diversity of their training686

data. Although we achieve improved model per-687

formance with our augmented data there remains688

further scope of improvement. When integrating689

additional information to the LLM, it may fail690

to effectively combine these sources of informa-691

tion, leading to misaligned predictions for some692

cases. Incorporating LLMs into the ASR pipeline693

for context integration introduces substantial com-694

putational overhead, which can slow down the pro-695

cessing time.696

On the other the LLM might misinterpret the697

contextual information for the speech and lead to698

produce incorrect transcription.699

Our experiment involving image integration into700

the existing ASR model is limited to the Phi-4-701

multimodal model. Further comprehensive studies702

are required to draw conclusive insights into model703

performance under such configuration.704
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9 Appendix 851

Textual Context Integration to SALMONN 852

We instruct SALMONN by providing text prompts 853

to Vicuna that ask questions about the processed 854

audio. The LLM then responds with textual an- 855

swers based on its understanding. The model is 856

trained for various speech related tasks with suit- 857

able prompt structure, as follows 858

USER: [Auditory Tokens] Can you transcribe the 859
speech into a written format? \n ASSISTANT: 860

Here, [Auditory Tokens]are the output tokens of the 861

window-level QFormer, followed by user prompts 862

in the form of questions with respect to the task 863

performed by the model on the given audio. 864

Our extracted domain-specific terms from ac- 865

companying slides are included in prompts with 866

the following structure 867

USER: [Auditory Tokens] Please can you 868
transcribe the speech referring to the 869
following tokens wherever needed: 870
kinyarwanda, kinyabert, nlp, pre-trained, 871
...? \n ASSISTANT: 872

Here, domain-specific words like Kinyarwanda, 873

Kinyabert, NLP, and pre-trained are included in 874

the user prompt. The overall prompt is designed 875

to emphasize both these special words and the task 876

itself. 877

10

https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2


Context Integration to Phi Depending on the878

input required for training Phi-4-multimodal modal,879

we construct its prompt format.880

Format for Speech-Language with special881

words:882

user_message = {883
"role": "user",884
"content": "<|audio_1|>\n" + Can you885

transcribe the given speech referring to886
the following words wherever needed887
#### kinyarwanda, kinyabert, nlp, pre-888
trained, ...?889

}890

Format for Speech-image-Language:891

user_message = {892
"role": "user",893
"content": "<|image_1|>\n<|audio_1|>\n" +894
Can you transcribe the given speech?895

}896

Model Instruction for Text Extraction To ex-897

hibit LLaVa-Next models OCR quality an extract898

text from slides we provide the model with an im-899

age and a suitable text prompt. the structure of the900

instruction is given as follow:901

"[INST] <image>\nUSER: Extract the text from the902
sides? [/INST]"903

the <image> tag is replaced with the image input904

for LLaVa-Next following with the user prompt.905

The instruction should always start with the [INST]906

tag and end with [/INST] tag.907

Model Instruction for Data Augmentation For908

creating the multi-modal context for data augmen-909

tation, we use LLaMa 3 and guide it with a pair910

of instructions consisting of a high level system911

prompt and a more task specific prompt to generate912

latex code based on text chunks. This consists of a913

system prompt and a user prompt as follows:914

{"role": "system", "content": "you are a915
presenter who wants to inform and inspire"},916

917
{"role": "user", "content": generate one918

presentation slide with the main points and919
concepts in latex, from the following text:<920
chunk>}921

The chunk in the user prompt is replaced by the922

parts of talk for which we want to generate the923

latex code.924
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