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ABSTRACT

Standard conformal prediction offers a marginal guarantee on coverage, but for pre-
diction sets to be truly useful, they should ideally ensure coverage conditional on
each test point. However, it is impossible to achieve exact, distribution-free condi-
tional coverage in finite samples. In this work, we propose an alternative conformal
prediction algorithm that targets coverage where it matters most—in instances
where a classifier is overconfident in its incorrect predictions. We start by dissect-
ing miscoverage events in marginally-valid conformal prediction, and show that
miscoverage rates vary based on the classifier’s confidence and its deviation from
the Bayes optimal classifier. Motivated by this insight, we develop a variant of con-
formal prediction that targets coverage conditional on a reduced set of two variables:
the classifier’s confidence in a prediction and a nonparametric trust score that mea-
sures its deviation from the Bayes classifier. Empirical evaluation on multiple image
datasets shows that our method generally improves conditional coverage properties
compared to standard conformal prediction, including class-conditional coverage,
coverage over arbitrary subgroups, and coverage over demographic groups.

1 INTRODUCTION

Machine learning models are envisioned to inform decision-making in high-stakes applications such
as medical diagnosis (Kumar et al., 2023; Elfanagely et al., 2021; Caruana et al., 2015). Consequently,
there is a critical need for actionable and useful uncertainty estimates to mitigate the risks associated
with incorrect decisions influenced by overconfident models. Conformal prediction (Vovk et al.,
2005) is a framework for constructing prediction sets that provide finite-sample marginal coverage
guarantees without making any modeling or distributional assumptions beyond exchangeability; i.e.,
the sets contain the correct output with a probability specified by the user. Given a calibration dataset
{(Xi, Yi)}ni=1 and a new test point (Xn+1, Yn+1), split conformal prediction (referred to as simply
“conformal prediction” from here on) constructs a prediction set C(Xn+1) ⊆ Y that satisfies,

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α, (1)

for α ∈ (0, 1). However, marginal validity does not necessarily ensure that the prediction sets are ac-
tionable in arbitrary contexts, as coverage can be unacceptably poor for individual predictions.

To highlight the limitations of marginal validity, consider a scenario where a model is used to diagnose
a disease in a population where 90% of the cases are straightforward to diagnose, while 10% are
challenging. Prediction sets that only cover in the straightforward cases may achieve 90% marginal
coverage, but may be useless for the cases where uncertainty estimates are most critical for clinicians.
Ideally, one would like to construct prediction sets that satisfy conditional coverage; i.e., P(Yn+1 ∈
C(Xn+1)|Xn+1 = x) ≥ 1− α,∀x. Unfortunately, however, it is well known that it is impossible to
attain distribution-free exact conditional coverage in a meaningful sense (Lei & Wasserman, 2014;
Vovk, 2012; Barber et al., 2021). The question becomes one of approximate conditional coverage.

In this work, we introduce a relaxed objective for conditional coverage and a variant of conformal
prediction that ensures prediction sets adapt to the true uncertainty of test instances. Since the feature
space X ⊆ Rd can be high-dimensional, achieving approximate X-conditional coverage is challeng-
ing. Gibbs et al. (2023) proposed a method that can theoretically achieve conditional coverage with
respect to any function class; however, implementing this with a function class that corresponds to
X-conditional coverage is infeasible. Our key idea is to instead identify a lower-dimensional variable
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Figure 1: Miscoverage patterns in standard conformal prediction. Illustration of conditional
coverage of standard conformal prediction (STANDARD) over regions of the feature space binned
by model confidence and rank of the true class (top) (Conf × Rank), and confidence and trust score
(bottom) (Conf × Trust). We set α = 0.1; hence, red bins indicate undercoverage (coverage < 0.9)
and green bins indicate overcoverage (coverage > 0.9). We split samples into equal-size bins based
on rank and trust score. As a special case for ImageNet, we manually define the rank bins, as ∼75%
test samples have accurate predictions. Models are confidence calibrated using temperature scaling.

V , where the value of V is indicative of whether standard conformal prediction will over- or under-
cover the corresponding test instance. Based on V , we propose a function class that is both practical
to implement and yields conditional guarantees important for decision-making. We then construct
prediction sets that achieve (approximate) conditional coverage with respect to V , i.e.,

P(Yn+1 ∈ C(Xn+1)|Vn+1 = v) ≥ 1− α, ∀v. (2)

Our choice of the variable V is driven by an analysis of how miscoverage events are distributed across
test instances in standard conformal prediction. In the classification setting, we select V as a statistic
that identifies instances where conformal prediction is most likely to fail—specifically when the clas-
sifier is overconfident in its incorrect predictions. Figure 1 illustrates the relationship between mis-
coverage rates in standard conformal prediction and the classifier’s overconfidence as measured by its
reported confidence (top softmax output) and the rank of Yn+1 in its sorted softmax probabilities. The
miscoverage patterns in Figure 1 suggest that these two factors are predictive of whether conformal
prediction over- or under-covers a test instance. We defer a formal analysis to Section 2.2.

A variant of conformal prediction that achieves the relaxed conditional guarantee in (2) with respect
to the statistic V = {Conf,Rank}—where Conf is the classifier’s confidence and Rank is the rank of
Yn+1—ensures that the resulting prediction sets cover both low- and high-uncertainty test instances.
Such a procedure would produce more balanced coverage patterns compared to standard conformal
prediction. Since the Rank variable depends on Yn+1, which is not available to us during test time,
we propose a practical choice for V that assesses the classifier’s overconfidence through the model
confidence (Conf) and a nonparametric trust score (Trust) that measures the disagreement of the
model predictions with the Bayes-optimal classifier (Jiang et al., 2018) (Section 3.1).

We perform an extensive evaluation on four large-scale image classification datasets: ImageNet (Rus-
sakovsky et al., 2015), Places365 (Zhou et al., 2018), and their corresponding long-tail versions
ImageNet-LT and Places365-LT (Liu et al., 2019). Since conditional coverage has not been studied in
this setting previously, we propose a suite of evaluation metrics to measure approximate conditional
coverage. We find that our proposed method reduces coverage gap across test instances as evaluated
by these metrics in all datasets. We also perform evaluation on the Fitzpatrick 17k dataset (Groh et al.,
2021) for skin condition classification in clinical images, where we are able to improve coverage
across different skin types without access to type annotations.

1.1 RELATED WORK

Group-conditional conformal prediction. A widely adopted relaxation of conditional coverage in
prior work is based on group-conditional guarantees of the form P(Yn+1 ∈ C(Xn+1) | Xn+1 ∈ G) ≥
1− α for all groups G ∈ G (Vovk et al., 2003; Barber et al., 2021; Jung et al., 2023). This concept
is often motivated by the idea that instead of X-conditional coverage, one can ensure the coverage
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guarantee holds over predetermined subgroups that might otherwise be underserved by marginal
coverage (Romano et al., 2020a). Mondrian conformal prediction (Vovk et al., 2003) achieves
exact group-conditional coverage in finite samples when the groups in G are disjoint. The proce-
dure involves splitting the calibration data into subgroups and then separately calibrating on each
group. Within this framework, Romano et al. (2020a) focus on achieving equal coverage over disjoint
protected groups of interest. Barber et al. (2021) propose an approach that allows groups in G to
overlap; however, this method can be highly conservative and result in wide prediction intervals that
over-cover. To provide practical, “multivalid” coverage guarantees over arbitrary subgroups, (Jung
et al., 2023) propose learning quantile multiaccurate predictors by minimizing the pinball loss over
the class of functions F = {∑G∈G βG1{x ∈ G} : β ∈ R|G|}. While Jung et al. (2023) provide
PAC-style guarantees, Gibbs et al. (2023) propose a conditional conformal procedure that yields exact
coverage guarantees over arbitrary collection of groups in finite samples, and also extends beyond the
group setting to finite-dimensional classes. That said, as noted earlier, it is not feasible to run this
method with a function class that can guarantee approximate X-conditional coverage. Our work is
complementary to this line of work: we propose a practical way to construct a function class that
guarantees an interpretable notion of conditional coverage broader than group-conditional coverage
over pre-specified groups.

Learning features from data for improved conditional coverage. We note there are some recent
works relevant to us that share similar motivation of learning features from data to improve conditional
coverage; however our methodology presented herein differs greatly. Yuksekgonul et al. (2023)
propose a density-based atypicality notion to improve calibration and conditional coverage with
respect to input atypicality. They implement a special case of Mondrian conformal prediction to
improve coverage in high atypicality or low confidence groups. In our work, the goal is to improve
conditional coverage more generally beyond the chosen statistic V and our evaluation reflects the
same. Our method is also very different from Mondrian conformal prediction as we discuss. (Kiyani
et al., 2024) propose to learn partitioning of the covariate space such that points in the same partition
are similar in terms of their prediction sets in order to improve conditional validity. They present
an algorithm that iteratively updates the partitioning and prediction sets over a given calibration
data set. While they learn low-dimensional features from the calibration data, we study general
patterns of miscoverage in standard conformal prediction and propose a two-dimensional statistic that
consistently shows to be effective. It would be interesting to explore their approach in our evaluation
setup that extends beyond pre-defined groups. In the regression setting, (Sesia & Romano, 2021)
learn conditional histograms from the data to detect the skewness of Y | X and estimate the quantiles
of the conditional distribution. Guan (2022) propose a localized conformal prediction framework to
adapt to the heterogeneity of the conditional distribution. They propose weighting the conformal
scores differently based on the observed feature value Xn+1 of the test sample.

Other approaches for improving conditional coverage. With the goal of achieving approximate X-
conditional coverage, previous works have proposed new conformity score functions (Romano et al.,
2019; 2020b; Angelopoulos et al., 2021) that yield significant practical improvements. Ding et al.
(2023) focus on achieving class-conditional coverage instead, and introduce a clustered conformal
prediction method for Y -conditional coverage. As argued by Angelopoulos et al. (2021) and Ding
et al. (2023), we note that in high-signal problems like image classification where Y is perfectly
determined by X , X-conditional coverage is less interpretable as an objective.

2 PRELIMINARIES

2.1 STANDARD CONFORMAL PREDICTION

In this paper, we consider a classification setting in which each input feature Xi ∈ X is associated with
a class label Yi drawn from a discrete set of possible classes Y . Let s : X × Y → R be a conformity
score function that measures how well the label y “conforms” to a model prediction at x, where
lower scores indicate better agreement. (A simple choice for the score is s(x, y) = 1− f̂y(x), where
f̂ : X → Y is a pretrained classifier and f̂y(x) is its softmax output for class y). Given the calibration
data set, {(Xi, Yi)}ni=1, and a model f̂ , a conformal prediction set C(Xn+1) for a test point Xn+1 is
constructed by evaluating the conformity scores si = s(Xi, Yi), 1 ≤ 1 ≤ n. Then, we compute q̂ as
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the ⌈(n+ 1)(1− α)⌉/n empirical quantile of {si}ni=1, and use q̂ to construct the prediction sets

C(Xn+1) = {y : s(Xn+1, y) ≤ q̂}. (3)

We refer to this as STANDARD split conformal prediction following Ding et al. (2023). STANDARD
conformal prediction guarantees marginal validity as described in (1) as long as the calibration and test
scores s1, . . . , sn, sn+1 are exchangeable. However, as discussed earlier, marginal coverage may be
insufficient for C to be practically useful and we aim for a stronger notion of conditional coverage.

2.2 DISSECTING MISCOVERAGE PATTERNS IN STANDARD CONFORMAL PREDICTION

Exact conditional coverage with an oracle classifier. Imagine an “oracle” classifier f∗ which per-
fectly captures the distribution f∗

y (x) = P (Y = y|X = x),∀y ∈ Y, x ∈ X . Romano et al. (2020b)
showed that one could construct optimal prediction sets Coracle(x) with exact conditional coverage by
leveraging the order statistics f∗

(1)(x) ≥ f∗
(2)(x) ≥ · · · ≥ f∗

(|Y|)(x), for {f∗
y (x) : y ∈ Y}, as follows:

Coracle(x) = {‘y’ indices of the k largest f∗
y (x)},where k = inf

{
k′ :

∑k′

j=1f
∗
(j)(x) ≥ 1− α

}
.

With knowledge of the true probabilities {f∗
y (x)}y, k = inf{k′ : ∑k′

j=1f
∗
(j)(x) ≥ 1 − α} can be

thought of as a generalization of the conditional quantile function for continuous outcomes. In this
sense, the oracle sets are conditionally valid because they correspond to the (1− α) quantile of Y |X .
In practice, however, constructing such sets is impossible because we do not have access to f∗.

Overconfidence and (conditional) miscoverage. A common implementation of conformal prediction
approximates the oracle algorithm above using f̂ as a “plug-in” estimate of f∗ to compute the score

s(x, y) =
∑k

j=1f̂(j)(x),where f̂(k)(x) = f̂y(x), (4)

f̂(j)(x) denotes the jth sorted value of the softmax outputs of f̂ , and k is the index in the sorted order
that corresponds to true class y (Romano et al., 2020b; Angelopoulos et al., 2021). This variant of
conformal prediction may empirically improve adaptivity of the resulting sets, but still guarantees only
marginal validity in finite samples. This means some regions of the feature space will be over-covered,
while others will be under-covered. Intuitively, miscoverage is more likely to cover instances where f̂
is a poor approximation of the oracle f∗, which are also the cases where uncertainty quantification is
most critical. To formalize this intuition, let the output of the classifier f̂ be parameterized as

f̂j(z;T ) =
ezj/T∑|Y|
i=1 e

zi/T
, (5)

where z ∈ R|Y| are the model logits and T ≥ 1 is a temperature parameter. Then, the following result
provides insight into miscoverage pattern by STANDARD (proof is provided in Appendix A).
Proposition 1. Let C(.) be constructed as in (3) for a classifier with the parameterization in (5), with
the conformity score in (4). Let Rank(Xn+1, Yn+1) be the position of softmax output f̂Yn+1

(Xn+1) in
the decreasing sorted order of class probabilities f̂(1)(Xn+1), . . . , f̂(|Y|)(Xn+1), and Conf(Xn+1) =

maxy f̂y(Xn+1). Then, for any Rank(Xn+1, Yn+1) > 1, if Conf(x) > Conf′(x) (T < T ′), we have
for a fixed q̂

P(Yn+1 ∈ C(Xn+1) | Xn+1 = x,Conf(x)) ≤ P(Yn+1 ∈ C(Xn+1) | Xn+1 = x,Conf′(x)),

∀x ∈ X . The variables Rank(x, y) and Conf(x) measure a model’s overconfidence—a model is
considered overconfident when it assigns a high value on its largest softmax output while the true
class ranks poorly in the descending order of predicted class probabilities. This result shows that, con-
ditional on Xn+1 = x, if the model’s prediction is incorrect (i.e., Rank(Xn+1, Yn+1) > 1), an
increase in overconfidence leads to a reduction in coverage probability. This is because overconfident
models concentrate the probability mass on fewer classes, yielding smaller prediction sets.

Miscoverage patterns for STANDARD. Proposition 1 highlights the impact of classifier confidence on
pointwise coverage probabilities. In Figure 1, we empirically visualize the marginal coverage rates of
STANDARD in different strata of Conf and Rank across various image classification datasets. As we can
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see, the marginal version of the monotonic relationship in Proposition 1 holds consistently across
all predictions that share the same value for Rank. Additionally, we observe that for a fixed Conf,
coverage probability decreases as Rank increases. This finding suggests that, given the values of Conf
and Rank for a test instance, we can determine its position within the strata in Figure 1, predict
whether STANDARD will likely over- or under-cover the true label, and adjust the conformal prediction
set accordingly to achieve more balanced coverage across test instances.

3 CONDITIONAL CONFORMAL PREDICTION WITH TRUST SCORES

Consider a scenario where the feature space X is discrete, and we have access to a large calibration set
that includes all possible values in X . In this case, one approach to constructing conditionally valid
sets is to select a distinct threshold q̂ in (3) for each x ∈ X . This procedure would assign a larger q̂ for
instances where the model f̂ is more prone to errors, and a smaller q̂ where errors are less likely. How-
ever, in practice, this procedure is infeasible because X is typically high-dimensional or continuous.
More generally, Lei & Wasserman (2014) and Barber et al. (2021) have shown that distribution-free
conditionally valid predictive inference is impossible to attain meaningfully.

The key idea behind our proposed method is to condition on a lower-dimensional statistic V ∈ V ,
rather than the full feature space X , where |V| ≪ |X |. We select this statistic as a proxy to identify
test instances prone to error, enabling the selection of a distinct threshold q̂ for each v ∈ V , rather than
conditioning on each individual point in X . While this procedure does not achieve X-conditional
coverage, it provides coverage conditioned on the likelihood of under-coverage by STANDARD. The
miscoverage patterns discussed in Section 2.1 motivate the selection of V as V = {Conf,Rank}.
Consequently, instead of strict conditional coverage, P(Yn+1 ∈ C(Xn+1) | Xn+1 = x) ≥ 1− α, for
all x ∈ X , we adopt a more relaxed notion of conditional coverage as follows:

P(Yn+1 ∈ C(Xn+1) | Conf(Xn+1) = c, Rank(Xn+1, Yn+1) = r) ≥ 1− α, (6)

for all c ∈ [0, 1] and r ∈ {1, . . . , |Y|}. However, the label Yn+1 is not available at test time, and thus
Rank(Xn+1, Yn+1) cannot be used to construct the prediction sets. In the next section, we propose an
alternative to the Rank(X,Y ) variable that can be computed using calibration data.

3.1 IMPLEMENTATION USING TRUST SCORES

The Rank(X,Y ) variable measures how far from the top softmax score a classifier ranks the true class
Y for a given input X . Since we do not have access to the label Y , we use the trust score proposed in
Jiang et al. (2018) as a proxy for Rank. The trust score is a nonparametric statistic that measures the
agreement between the classifier f̂ and the Bayes-optimal classifier on a given testing point X .
Formally, the trust score Trust(X; f̂) for a classifier f̂ on test point X is defined as

Trust(x; f̂) := d
(
x, Ĥδ(Pỹ)

)
/d

(
x, Ĥδ(Pŷ)

)
, (7)

where Ĥδ(P ) := {x ∈ X : rk(x) ≤ ε}; k-NN radius rk(x) := inf{r > 0 : |B(x, r) ∩X| ≥ k},
ε := inf{r > 0 : |{x ∈ X : rk(x) > r}| ≤ δ · n}. The evaluation of Trust proceeds in two stages:
first, a δ-high-density-set Ĥδ(Pℓ) (for continuous density function P with compact support X ) is
estimated for each class ℓ from the training data by filtering out δ-fraction of samples with lowest
density. Then, for a given test sample, the trust score (Trust(X)) (7) is computed as the ratio of the
Euclidean distance between X and the nearest point in the training set with class label different from
the top-1 predicted label (say, ỹ), and the distance between X and the nearest point with class label
same as the top-1 predicted label by the classifier (say, ŷ). We provide the implementation details in
Appendix B.3.

Theorem 4 in Jiang et al. (2018) provides the following guarantee for the trust score: for labeled data
distributions with well-behaved class margins, when the trust score is large, the classifier likely agrees
with the Bayes optimal classifier argmaxℓ∈Y P(y = ℓ|x), and when the trust score is small, the
classifier likely disagrees with it. Given the Bayes-optimal classifier has low error, high probability
of agreement with the Bayes-optimal classifier can help identify correct predictions (“trustworthy”
examples), whereas high probability of disagreement can indicate the classifier is making an unrea-
sonable decision. In our previous result, we showed that when Rank(X,Y ) > 1, coverage decreases
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with higher confidence. In this regard, the trust score can be used to signal when the true class
has a higher probability of not being the top class in the model output probabilities. We present an
empirical analysis of the correlation between Trust and Rank in Appendix C.3.

3.2 ALGORITHM

We introduce our CONDITIONAL method for conformal prediction with the goal of achieving approx-
imate conditional coverage over the reduced variable set V = {Conf(Xn+1), Trust(Xn+1)}:

P(Yn+1 ∈ C(Xn+1) | Conf(Xn+1) ∈ I1, Trust(Xn+1) ∈ I2) ≥ 1− α, (8)
where sub-intervals I1 and I2 are some discretization of [0, 1] and (0,∞) respectively. The exact
conditional coverage guarantee P(Yn+1 ∈ C(Xn+1)|Xn+1 = x) = 1− α, ∀x ∈ X , is equivalent to
a marginal guarantee over all measurable functions f :

E[f(Xn+1) · (1{Yn+1 ∈ C(Xn+1)} − (1− α))] = 0, for all measurable f. (9)
If f(x) = x 7→ 1, we recover marginal coverage. Gibbs et al. (2023) propose a relaxation of the exact
conditional coverage guarantee over all measurable f to all f belonging to some function class F ,

E[f(Xn+1) · (1{Yn+1 ∈ C(Xn+1)} − (1− α))] = 0, for all f ∈ F . (10)
A special case of this guarantee is group-conditional coverage; i.e., P(Yn+1 ∈ C(Xn+1) | Xn+1 ∈
G) = 1 − α for all G belonging to some collection of groups G, where F = {∑G∈G βG1{x ∈
G} : β ∈ R|G|}. The above conditional coverage guarantee can be achieved by fitting an augmented
quantile regression problem over F where the unknown conformity score sn+1 is imputed as s. The
quantile estimate ĝs is fit using the pinball loss ℓα(g(Xi), si) as follows

ĝs = argmin
g∈F

1
n+1

∑n
i=1ℓα(g(Xi), si) +

1
n+1ℓα(g(Xn+1), s), (11)

where ℓα(g(Xi), si) = (1− α)(si − g(Xi))+ + α(g(Xi)− si)+. We compute the prediction set by
C(Xn+1) = {y : s(Xn+1, y) ≤ ĝs(Xn+1,y)(Xn+1)}. (12)

For a finite-dimensional linear class F = {Φ(·)⊤β : β ∈ Rd} over the basis Φ : X → Rd, Gibbs
et al. (2023) show that we can achieve an upper bound on coverage in (10) and the exact coverage
guarantee with appropriate randomization.
Theorem 1 (Theorem 2 Gibbs et al. (2023)). Suppose {(Xi, Yi)}n+1

i=1 are independent and identically
distributed. Let F = {Φ(·)⊤β : β ∈ Rd} denote the class of linear functions over the basis
Φ : X → Rd. If the distribution of s | X is continuous, then for all f ∈ F , we have

|E[f(Xn+1) · (1{Yn+1 ∈ C(Xn+1)} − (1− α))]| ≤ d

n+ 1
E
[

max
1≤i≤n+1

|f(Xi)|
]
.

To achieve our coverage objective (8), we now define a function class F that depends on V .
Corollary 1. Let F = {∑I1∈I1

β1I1
1{Conf(x) ∈ I1} +

∑
I2∈I2

β2I2
1{Trust(x) ∈ I2} : β1 ∈

R|I1|, β2 ∈ R|I2|} for some finite collection of sub-intervals I1, I2. Then,
P(Yn+1 ∈ C(Xn+1) | Conf(Xn+1) ∈ I1, Trust(Xn+1) ∈ I2) ≥ 1− α.

If we randomize the non-conformity scores s, we have an upper bound on coverage,
P(Yn+1 ∈ C(Xn+1) | Conf(Xn+1) ∈ I1, Trust(Xn+1) ∈ I2) ≤ 1− α+

|I1|+ |I2|
(n+ 1)P(Conf(Xn+1) ∈ I1, Trust(Xn+1) ∈ I2)

. (13)

Note that with F as defined above in Corollary 1, we achieve the conditional coverage guarantee over
V in (8). However, this will be highly computationally inefficient when computing the prediction set
(12) as I1, I2 can be very large. In order to speed up computation we use polynomial functions of
Conf(X) and Trust(X), with the intent of capturing higher-order interactions between the conformity
score function and V . To this end, we define F as a function class of degree-d polynomials,

Φ(X) =
{

Conf(X)i · Trust(X)j | i+ j ≤ d, i, j ≥ 0
}
; F =

{
Φ(·)⊤β : β ∈ R

(d+1)(d+2)
2

}
. (14)

If we are willing to allow C(Xn+1) to be randomized, we can achieve exact coverage equal to
1 − α (stated formally in Theorem 2, Appendix A). However, it is not desirable to have non-
deterministic prediction sets in most practical scenarios. Hence, we use a non-randomized version in
our experiments, which guarantees that prediction sets have at least 1− α coverage over F .
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4 EXPERIMENTS

We evaluate CONDITIONAL empirically on four large-scale image classification datasets and a clinical
dataset in dermatology. We propose evaluation metrics that measure the gap in coverage from the
desired 1− α level across different regions of the distribution. We also introduce a NAIVE baseline
that aims to improve coverage with respect to V via group-conditional coverage guarantees over
non-overlapping subgroups in V (Section 4.2). We evaluate STANDARD, NAIVE, and CONDITIONAL
on all datasets, and show that CONDITIONAL achieves the best conditional coverage performance
across all settings. CONDITIONAL also improves class-conditional coverage on all but one dataset.

4.1 EVALUATION METRICS

To evaluate approximate conditional coverage over test points {(Xi′ , Yi′)}Ni′=1, we propose binning
the feature space into |B| bins and computing the average coverage gap (CovGap) across these bins
(15). The coverage gap measures the l1 distance between the achieved coverage and the desired
1 − α level across all bins. Here, ĉb denotes the mean empirical coverage in bin b; i.e., ĉb =
(
∑

Xi′∈b 1{Yi′ ∈ C(Xi′})/|b|, where |b| is the number of samples in bin b. This metric is inspired
from the class coverage gap in Ding et al. (2023):

CovGap =
1

|B|
∑
b∈B

|ĉb − (1− α)| × 100. (15)

For comprehensive evaluation, we measure the conditional coverage performance using CovGap over
three different binning schemes:

1. Conf×Trust: We apply two-dimensional binning by splitting the samples into evenly spaced
bins based on Conf and then splitting each confidence bin into equal-size bins based on Trust
score (see Figure 1 (bottom) for reference).

2. Conf × Rank : We apply two-dimensional binning by splitting the samples into evenly
spaced bins based on Conf and then splitting each confidence bin into equal-size bins based
on Rank (see Figure 1 (top) for reference).

3. Class-conditional: We split samples into bins based on their class labels, hence |B| = |Y|.

We only consider bins with a non-zero number of samples (|b| > 0) in our evaluation. We also report
marginal coverage and average set size (

∑N
i′=1 |C(Xi′)|/N ) in our results.

4.2 EXPERIMENTAL SETUP

Datasets. We perform experiments on ImageNet (Russakovsky et al., 2015), Places365 (Zhou et al.,
2018), and their corresponding long-tail versions ImageNet-LT and Places365-LT (Liu et al., 2019).
ImageNet-LT and Places365-LT are constructed from the original datasets using a Pareto distribution
with a power value α = 6. Places365-LT has higher class imbalance than ImageNet-LT, defined by
the number of samples in the largest class divided by the number of samples in the smallest class. We
also evaluate on the Fitzpatrick 17k dataset (Groh et al., 2021) for skin disease diagnosis to study
coverage of prediction sets across skin types (Section 4.4).

Baselines. Along with STANDARD split conformal prediction, we additionally include a NAIVE base-
line that also aims to provide coverage with respect to V using the Mondrian conformal prediction pro-
cedure (Vovk et al., 2003) discussed earlier. NAIVE fits a separate quantile q̂b for each individual bin
b in the Conf × Trust binning setting, and the prediction sets for Xi′ ∈ b are computed as

C(Xi′) = {y : s(Xi′ , y) ≤ q̂b}.
The objective is to evaluate the effectiveness of covering over a higher-dimensional function class F .

Experimental details. We use a non-randomized version of the APS score (Romano et al., 2020b)
(described in Section 2.1), as our conformity score: s(x, y) =

∑k−1
j=1 f̂(j)(x),where f̂(k)(x) = f̂y(x).

We exclude f̂y(x) to achieve smaller set sizes overall (Gibbs et al., 2023). We perform an extra step
of temperature scaling to rescale the probabilities following past work (Angelopoulos et al., 2021;
Guo et al., 2017). We consider α = 0.1 for all experiments to achieve a desired coverage level of
90%. Further experimental details are provided in Appendix B.
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Table 1: Conditional coverage evaluation on ImageNet, ImageNet-LT, Places365, and Places365-LT.
Bold indicates the best (within ±0.1) coverage gap. We report standard errors in parentheses.

Marginal Conditional

Coverage Size Conf × Trust Conf × Rank Class-conditional
CovGap CovGap CovGap

Dataset Method

ImageNet STANDARD 0.90 (0.00) 4.32 (0.04) 6.35 (0.11) 33.12 (0.15) 7.23 (0.04)
NAIVE 0.93 (0.00) 7.21 (0.05) 8.01 (0.50) 23.82 (0.15) 6.68 (0.02)
CONDITIONAL 0.90 (0.00) 22.36 (0.83) 4.37 (0.09) 23.66 (0.24) 6.02 (0.04)

ImageNet-LT STANDARD 0.89 (0.00) 50.35 (0.02) 4.47 (0.02) 19.92 (0.03) 8.32 (0.00)
NAIVE 0.89 (0.00) 46.63 (0.07) 2.99 (0.01) 18.27 (0.02) 8.29 (0.01)
CONDITIONAL 0.90 (0.00) 58.64 (0.18) 2.21 (0.01) 17.09 (0.02) 7.92 (0.00)

Places365 STANDARD 0.90 (0.00) 14.17 (0.07) 5.78 (0.08) 25.58 (0.09) 4.99 (0.05)
NAIVE 0.90 (0.00) 12.76 (0.11) 2.40 (0.16) 22.22 (0.13) 5.11 (0.06)
CONDITIONAL 0.90 (0.00) 15.98 (0.57) 4.38 (0.10) 22.09 (0.12) 4.98 (0.05)

Places365-LT STANDARD 0.90 (0.00) 43.46 (0.10) 5.55 (0.02) 13.23 (0.01) 5.34 (0.00)
NAIVE 0.90 (0.00) 38.54 (0.06) 4.55 (0.02) 11.75 (0.01) 5.61 (0.01)
CONDITIONAL 0.90 (0.00) 37.07 (0.03) 1.72 (0.00) 11.75 (0.01) 5.65 (0.00)

4.3 RESULTS

Table 1 presents the CovGap of STANDARD, NAIVE, and CONDITIONAL on all datasets. We see that
while all methods achieve the desired marginal coverage level of 90%, there is a significant difference
in conditional coverage as evaluated by the coverage gap. Overall, CONDITIONAL achieves the best
performance (lowest CovGap) across different binning schemes in nearly all experimental settings.

Focusing our attention on the Conf × Trust and Conf × Rank CovGap metrics, we observe that
CONDITIONAL significantly outperforms STANDARD on all datasets, demonstrating improved condi-
tional coverage. CONDITIONAL also performs better or comparable to NAIVE on the oracle metric
Conf × Rank CovGap, which shows the effectiveness of our polynomial function class F (14). Note
that CONDITIONAL has lower Conf × Trust coverage gap than NAIVE on all but one dataset, despite
NAIVE having access to Conf × Trust bin information during the calibration phase. The improved
performance of CONDITIONAL compared to STANDARD as well as NAIVE empirically validates
our choice of V . We can see this improved conditional coverage is achieved with sets that are not
significantly larger than STANDARD (and, in fact, smaller in Places365-LT).

Further, we also evaluate class-conditional coverage gap of all methods. Despite not explicitly
targeting class-conditional coverage, our method generally improves the Class-conditional CovGap
over STANDARD and NAIVE.

Approximate X-conditional coverage. Beyond evaluating coverage over the well-defined axes of
Conf × Trust and Conf × Rank , we also measure approximate conditional coverage via a notion of
local coverage over ℓ2 balls in the feature space (Barber et al., 2021) (Figure 2). We evaluate the
coverage gap between randomly sampled Euclidean balls of a fixed radius r, varying r as shown in
the figure from [rmin, rmax] (see Appendix B.4 for further details on the choice of r and simulation
parameters). The CovGap in Figure 2 shows that CONDITIONAL generally performs better than
STANDARD and NAIVE when r is relatively small. This is an approximation of local coverage
as the neighborhood is small. As r approaches rmax, the coverage for individual balls approach
marginal coverage, and hence the CovGap decreases and the performance of all methods is typically
comaparable. These results indicate that our coverage objective and method make significant progress
towards improving conditional coverage in classification settings.

4.4 FITZPATRICK 17K DATASET: SKIN CONDITION CLASSIFICATION IN CLINICAL IMAGES

Fitzpatrick 17k (Groh et al., 2021) is a dataset of clinical images with skin condition labels and skin
type labels 1 through 6 based on the Fitzpatrick scoring system. The Fitzpatrick skin type labels
are annotated by a team of humans, and a small subset of images with annotated disagreement are

8
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Figure 2: Average coverage gap between randomly sampled Euclidean balls of fixed radius. We
vary the radius on x-axis. Standard errors are reported by error bars.

Table 2: Conditional coverage evaluation on Fitzpatrick 17k. Bold indicates the best (within ±0.1)
coverage gap and worst-group coverage. We report standard errors in parentheses.

Marginal Conditional

Coverage Size Skin type-conditional Worst-group Class-conditional
CovGap coverage CovGap

Method

STANDARD 0.90 (0.00) 27.30 (0.12) 1.88 (0.13) 0.86 (0.01) 7.69 (0.10)
GROUPWISE 0.90 (0.00) 27.53 (0.21) 1.76 (0.18) 0.86 (0.01) 7.60 (0.18)
CONDITIONAL 0.90 (0.00) 30.17 (0.14) 1.73 (0.14) 0.87 (0.01) 7.47 (0.13)

labeled as unknown. Higher Fitzpatrick skin type label indicates darker skin tones. The dataset has
significantly fewer images of dark skin types compared to light skin, accompanied by imbalance of
skin condition labels across skin types. Past work has shown there is disparity in model performance
across skin tones and worse performance on uncommon diseases (Daneshjou et al., 2022; Yuksekgonul
et al., 2023). Fitzpatrick 17k has 114 skin conditions (classes). Further details on the dataset and the
experiment are provided in Appendix B.2.

We evaluate how our proposed method reduces the coverage gap across skin type groups without
access to type labels (Table 2). For this specific setup, we naturally consider skin type groups as our
evaluation bins. Similar to NAIVE, we include an analagous GROUPWISE baseline that has access
to skin type annotations and computes an individual quantile level q̂ for each group. We report the
Skin type-conditional CovGap to measure the coverage gap between groups, along with Worst-group
coverage. We see that CONDITIONAL reduces the coverage gap as well as improves worst-group
coverage over STANDARD. Despite having no access to group labels, CONDITIONAL performs better
or comparable to GROUPWISE, while having lesser variance. We also achieve lower class-conditional
CovGap than STANDARD with GROUPWISE and CONDITIONAL.

5 DISCUSSION

Conformal prediction guarantees exact coverage marginally across test samples in finite samples. How-
ever, for uncertainty sets to be truly meaningful and useful, they should provide coverage conditional
on test instances where uncertainty is higher or where the model is more likely to err. Unfortunately,
achieving X-conditional coverage in finite samples is impossible without making distributional as-
sumptions. In this paper, we propose a relaxed notion of conditional coverage that improves the practi-
cal utility of prediction sets by ensuring coverage where it matters most—specifically, in cases where a
classifier is overconfident in its incorrect predictions. To assess a classifier’s overconfidence, we
use its reported confidence (softmax probabilities) in combination with a nonparametric trust score
that measures its alignment with the Bayes classifier. We develop a practical variant of conformal
prediction that achieves approximate conditional coverage with respect to these two variables, and
demonstrate that it improves conditional coverage properties in a general sense, including subgroup-
level and class-conditional coverage. By reducing the coverage gap across relevant subpopulations,
our resulting prediction sets can lead to fairer and improved downstream decision-making, especially
in high-stakes applications where miscoverage can be consequential.
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While we show trust scores significantly improve conditional coverage in conformal prediction, they
also come with limitations. Particularly, in cases where the trust scores are not a good approximate of
the rank of the true class, our method may not improve conditional coverage properties over standard
conformal prediction. To add, our function class is susceptible to computational difficulties at higher
polynomial degrees beyond a threshold. Future work can explore more sophisticated function classes
to achieve our proposed conditional coverage objective.

6 REPRODUCIBILITY STATEMENT

We provide the code to reproduce our experiments as part of the supplemental material. We also
describe all experimental details in Appendix B including dataset and model details, experimental
setup, and details on evaluation metrics. We include proofs for our theoretical results in Appendix A.
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A PROOFS

Proof of Proposition 1. We parameterize the output of the classifier f̂ as

f̂j(z;T ) =
ezj/T∑|Y|
i=1 e

zi/T
,

where z ∈ R|Y| are the model logits and T ≥ 1 is a temperature parameter.

Then, for any y′ ∈ [K] and any T , let C(z;T ) be defined as in equation 3 with the conformity score
defined as in (4) parameterized as

s(z, y′;T ) =

k∑
j=1

f̂(j)(z;T ),where f̂(k)(z;T ) = f̂y′(z;T ), (16)

mutatis mutandis. Then, for any T ′ > T ,

C(z;T ) ⊆ C(z;T ′). (17)

In particular, this means that for any y ∈ [K],

1(y ∈ C(z;T )) =⇒ 1(y ∈ C(z;T ′)), . (18)

and thus that for any joint distribution P over (z, y), that

PP (y ∈ C(z;T ) | z) ≤ PP (y ∈ C(z;T ′) | z) (19)

and
PP (y ∈ C(z;T )) ≤ PP (y ∈ C(z;T ′)). (20)

Proof of Theorem 1. See Theorem 2, (Gibbs et al., 2023).

Proof of Corollary 1. Corollary 1 follows directly from Theorem 1 in the special case where we choose
F = {∑I1∈I1

β1I1
1{Conf(x) ∈ I1}+

∑
I2∈I2

β2I2
1{Trust(x) ∈ I2} : β1 ∈ R|I1|, β2 ∈ R|I2|}.

Theorem 2 (Proposition 4 Gibbs et al. (2023)). Suppose {(Xi, Yi)}n+1
i=1 are independent and identi-

cally distributed. Let F = {Φ(·)⊤β : β ∈ Rd} denote the class of linear functions over the basis
Φ : X → Rd. If we optimize the dual formulation of (11) and the dual solutions are computed using
an algorithm that is symmetric in the input data, then the randomized prediction set Crand(Xn+1)
achieves exact coverage for all f ∈ F:

E[f(Xn+1) · (1{Yn+1 ∈ Crand(Xn+1)} − (1− α))] = 0.

Proof of Theorem 2. See Proposition 4, (Gibbs et al., 2023). We formally state this result here to
show that appropriate randomization of C(Xn+1) can guarantee exact coverage without the continuity
assumption on s|X as in Theorem 1.

B EXPERIMENTAL DETAILS

B.1 EXPERIMENTAL SETUP

We set α = 0.1 for our empirical evaluation. We run all our experiments with 10 random seeds
{1, . . . , 10} and report the standard errors in our results. The randomness in our experiments is
over splitting the validation set into calibration and evaluation data and fitting the temperature
parameter (Guo et al., 2017).
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Evaluation Metrics. For our conditional coverage evaluation, we use the notion of CovGap
(inspired by class coverage gap in Ding et al. (2023)) to measure the coverage gap across multiple
bins in the feature space. We propose three binning schemes: Conf × Trust, Conf × Rank, and
Class-conditional CovGap. To apply two-dimensional binning, we split the samples into evenly
spaced bins based on Conf and then split each confidence bin into equal-size bins based on Trust
score or Rank depending on the binning scheme. For both two-dimensional binning schemes, we
split the samples into 10 evenly spaced confidence bins and then 4 equal-size bins based on trust
score or rank. We choose this splitting to have appreciable granularity while also ensuring most bins
have sufficient number of samples in all cases. As a special case for ImageNet, we manually edit the
Rank bins as ∼ 75% test samples have accurate predictions.

B.2 DATASETS AND MODELS

We follow the data processing steps and pretrained models used by Yuksekgonul et al. (2023) in our
evaluation for ImageNet, ImageNet-LT, and Places365-LT.

ImageNet. ImageNet (Russakovsky et al., 2015) is a large-scale image classification dataset with
1000 classes. ImageNet has roughly balanced class distributions. We use the ImageNet-1k version
from Torchvision (Marcel & Rodriguez, 2010) and the pretrained ResNet50 model. We split the
validation dataset evenly into calibration and evaluation splits based on the random seed.

ImageNet-LT. ImageNet-LT is the long-tailed version of ImageNet with 1000 classes (Liu et al.,
2019). ImageNet-LT was constructed from the original dataset using a Pareto distribution with a power
value α = 6, and has a maximum of 1280 images per class and minimum of 5 images per class. We
use the validation split as our calibration set and use the test set for evaluation. Following Yuksekgonul
et al. (2023), we use the ResNeXt50 model trained on ImageNet-LT by (Zhisheng Zhong & Jia, 2021)
in our experiments.

Places365. Places365 (Zhou et al., 2018) contains 10 million images from 365 classes. For
Places365, we train a ResNet152 model on our own (pretrained on ImageNet). We fine-tune on the
train split of the original dataset and split the validation set evenly into calibration and test splits.

Places365-LT. Places365-LT is the long-tailed version of Places365 (Liu et al., 2019). Places365-
LT was constructed from the original dataset using a Pareto distribution with a power value α = 6,
and has a maximum of 4980 images per class and a minimum of 5 images per class. We use the
validation split as our calibration set and use the test set for evaluation. Following Yuksekgonul et al.
(2023), we use the ResNet152 model trained on Places365-LT by (Zhisheng Zhong & Jia, 2021) in
our experiments.

Fitzpatrick 17k. Fitzpatrick 17k (Groh et al., 2021) is a dataset of clinical images with skin
condition labels and skin type labels 1 through 6 based on the Fitzpatrick scoring system. We use the
training script provided by Groh et al. (2021) to train a ResNet18 model (pretrained on ImageNet)
for 50 epochs. We consider the full classification task over 114 skin condition labels. For our
group-conditional coverage evaluation, we consider Fitzpatrick skin types 1 through 6 as well as the
Unknown type as our subgroups.

B.3 DETAILS ON F

We define our function class as F = {∑I1∈I1
β1I1

1{Conf(x) ∈ I1} +
∑

I2∈I2
β2I2

1{Trust(x) ∈
I2} : β1 ∈ R|I1|, β2 ∈ R|I2|}. To compute Trust(x), we use features from the model’s penultimate
layer. Following Jiang et al. (2018), we skip the initial filtering step of the trust score algorithm
to increase computational efficiency. For calculating the nearest neighbor distance to each class
for the trust scores computation, we use IndexFlatL2 from FAISS (Johnson et al., 2017), Meta’s
open-sourced GPU-accelerated library for efficient similarity search. This reduces the single nearest
neighbor search time to ∼0.06 ms/sample (averaged over 10 runs) on ImageNet. For all experiments,
we run CONDITIONAL with polynomial degree d = 5. We study the effect of d in Appendix C.2.
We would like to mention that with d > 5, the convex optimization procedure for computing the
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prediction sets significantly slows down, and hence we do not report results for polynomial degree
values d > 5.

B.4 DETAILS ON APPROXIMATE X-CONDITIONAL COVERAGE EVALUATION

We share details regarding the experimental setup for evaluating approximate X-conditional coverage
(Figure 2). In this experiment, we evaluate the coverage gap between randomly sampled ℓ2 balls in
the feature space. We compute the Euclidean distance between features Xi and Xj from the model’s
penultimate layer. We vary the radius r of the ℓ2 balls, where r is evenly spaced in the interval
[rmin, rmax]. rmin and rmax are estimated as the minimum and 90th percentile of the distribution of
distances between randomly sampled pairs of points for each dataset, respectively. For a fixed r, we
randomly sample 100 test points and find Euclidean balls with radius r around the test point such that
every ball should have at least 10 neighboring points. Then, we compute the coverage gap over these
regions using Eq. 15. We perform 100 trials of this procedure for each r for all datasets, and report
the standard errors by error bars.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 MISCOVERAGE PATTERNS IN STANDARD AND CONDITIONAL

To demonstrate the improvement in conditional coverage over standard conformal prediction, we
show the miscoverage patterns as in Figure 1 for CONDITIONAL along with STANDARD (Figures 3, 4).
From Figure 3, we can see that CONDITIONAL typically improves coverage over the severly under-
covered bins in Conf × Rank for all datasets. Figure 4 further demonstrates the effectiveness of our
function class F , as we see that coverage over all bins approaches the desired level of 1− α = 0.9.
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Figure 3: Conditional coverage of STANDARD (top) and CONDITIONAL (bottom) over regions of the
feature space binned by model confidence and rank of the true class (Conf × Rank).
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Figure 4: Conditional coverage of STANDARD (top) and CONDITIONAL (bottom) over regions of the
feature space binned by model confidence and trust score (bottom) (Conf × Trust).
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C.2 EFFECT OF d

We study the effect of polynomial degree d in function class F (14) on CovGap and average set size in
Figure 5. We can see that the choice of d is not a trivial one, and different datasets may have different
optimal values for d. The polynomial function class offers greater flexibility in capturing interactions
between the conformity score function and V through this choice, compared to the NAIVE baseline.
Specifically for ImageNet, it is interesting to note that the CovGap improves as we increase d, and
the set sizes also shrink on average.
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Figure 5: Effect of polynomial degree d on CovGap and Size.

C.3 TRUST-RANK CORRELATION

Here we empirically study the relationship between trust score (Trust) and rank of the true class
(Rank). We compute the Pearson and Spearman’s rank correlation coefficients with p-values for
Trust and Rank on test samples in all datasets (Table 3). The correlation coefficients and p-values
indicate a statistically significant negative correlation between Trust and Rank. We also plot the
relationship between trust score and log(rank) in Figure 6. This shows that lower (better) rank values
generally correspond to higher trust scores on average, whereas higher (worse) rank values generally
correspond to lower trust scores.

Table 3: Pearson and Spearman correlation coefficients with p-values for Trust and Rank.

Pearson Spearman

r p-value r p-value
Dataset

ImageNet -0.09 < 0.001 -0.53 < 0.001
ImageNet-LT -0.13 < 0.001 -0.47 < 0.001
Places365 -0.02 0.004 -0.43 < 0.001
Places365-LT -0.14 < 0.001 -0.29 < 0.001

Figure 6: Relationship between trust score (Trust) and log(rank) (Rank).

C.4 PRINCIPAL COMPONENTS OF FEATURE LAYER AS F

We construct an alternate function class using the top principal components of the feature layer. We
choose the number of principal components as 20, with an added intercept term to achieve marginal
coverage. We make this choice considering the computational constraints of the conditional conformal
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procedure in Gibbs et al. (2023) at the scale of our datasets. We compare the performance of this
function class with our method over all evaluation metrics. Approximate X-conditional coverage
evaluation (Figure 7) shows that our method consistently outperforms this function class on all but
one dataset. Evaluation metrics in Table 4 also show that CONDITIONAL outperforms this function
class on average.
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Figure 7: Average coverage gap between randomly sampled Euclidean balls of fixed radius. We
vary the radius on x-axis. Standard errors are reported by error bars.

C.5 COMPARISON WITH CLASSWISE MONDRIAN CP

We include the special case of Mondrian conformal predictio (CP) in our evaluation where each class
forms a group (CLASSWISE). We split the calibration data by class and run conformal prediction
once for each class. We evaluate the performance of this method over all evaluation metrics. In
the approximate X-conditional coverage evaluation (Figure 8), we can see Mondrian CP performs
worse than CONDITIONAL on all but one dataset. From conditional coverage evaluation in Table 5,
we see that Mondrian CP achieves lower Conf × Rank CovGap on ImageNet-LT and Places365-LT,
albeit with much larger set sizes. Interestingly, Mondrian CP does not always achieve the lowest
Class-conditional coverage gap despite computing class-wise quantiles during calibration.
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Figure 8: Average coverage gap between randomly sampled Euclidean balls of fixed radius. We
vary the radius on x-axis. Standard errors are reported by error bars.

C.6 CONDITIONAL COVERAGE EVALUATION USING DIFFERENT SCORE FUNCTIONS

We motivate our method using the Adaptive Prediction Sets (APS) algorithm (Romano et al., 2020b)
designed to improve X-conditional coverage in classification settings. Regularized Adaptive Predic-
tion Sets (RAPS) (Angelopoulos et al., 2021) is a regularized version of APS that produces smaller
sets on average. In Table 6, we report the conditional coverage evaluation metrics on all datasets
using APS, RAPS, and the simple softmax-based score described in Section 2.1. We note that our
method can also improve conditional coverage properties using other score functions, especially in
terms of class-conditional coverage gap.
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Table 4: Conditional coverage evaluation on ImageNet, ImageNet-LT, Places365, and Places365-LT.
Bold indicates the best (within ±0.1) coverage gap. We report standard errors in parentheses.

Marginal Conditional

Coverage Size Conf × Trust Conf × Rank Class-conditional
CovGap CovGap CovGap

Dataset Method

ImageNet STANDARD 0.90 (0.00) 4.32 (0.04) 6.35 (0.11) 33.12 (0.15) 7.23 (0.04)
NAIVE 0.93 (0.00) 7.21 (0.05) 8.01 (0.50) 23.82 (0.15) 6.68 (0.02)
CONDITIONAL 0.90 (0.00) 22.36 (0.83) 4.37 (0.09) 23.66 (0.24) 6.02 (0.04)
CONDITIONAL (PCA) 0.90 (0.00) 6.54 (0.07) 6.23 (0.09) 31.27 (0.14) 6.92 (0.04)

ImageNet-LT STANDARD 0.89 (0.00) 50.35 (0.02) 4.47 (0.02) 19.92 (0.03) 8.32 (0.00)
NAIVE 0.89 (0.00) 46.63 (0.07) 2.99 (0.01) 18.27 (0.02) 8.29 (0.01)
CONDITIONAL 0.90 (0.00) 58.64 (0.18) 2.21 (0.01) 17.09 (0.02) 7.92 (0.00)
CONDITIONAL (PCA) 0.89 (0.00) 53.59 (0.05) 4.78 (0.01) 20.13 (0.04) 8.17 (0.01)

Places365 STANDARD 0.90 (0.00) 14.17 (0.07) 5.78 (0.08) 25.58 (0.09) 4.99 (0.05)
NAIVE 0.90 (0.00) 12.76 (0.11) 2.40 (0.16) 22.22 (0.13) 5.11 (0.06)
CONDITIONAL 0.90 (0.00) 15.98 (0.57) 4.38 (0.10) 22.09 (0.12) 4.98 (0.05)
CONDITIONAL (PCA) 0.90 (0.00) 13.89 (0.07) 5.34 (0.07) 25.17 (0.12) 4.96 (0.04)

Places365-LT STANDARD 0.90 (0.00) 43.46 (0.10) 5.55 (0.02) 13.23 (0.01) 5.34 (0.00)
NAIVE 0.90 (0.00) 38.54 (0.06) 4.55 (0.02) 11.75 (0.01) 5.61 (0.01)
CONDITIONAL 0.90 (0.00) 37.07 (0.03) 1.72 (0.00) 11.75 (0.01) 5.65 (0.00)
CONDITIONAL (PCA) 0.90 (0.00) 45.03 (0.13) 5.37 (0.03) 12.89 (0.01) 5.35 (0.01)

Table 5: Conditional coverage evaluation on ImageNet, ImageNet-LT, Places365, and Places365-LT.
Bold indicates the best (within ±0.1) coverage gap. We report standard errors in parentheses.

Marginal Conditional

Coverage Size Conf × Trust Conf × Rank Class-conditional
CovGap CovGap CovGap

Dataset Method

ImageNet STANDARD 0.90 (0.00) 4.32 (0.04) 6.35 (0.11) 33.12 (0.15) 7.23 (0.04)
NAIVE 0.93 (0.00) 7.21 (0.05) 8.01 (0.50) 23.82 (0.15) 6.68 (0.02)
CONDITIONAL 0.90 (0.00) 22.36 (0.83) 4.37 (0.09) 23.66 (0.24) 6.02 (0.04)
MONDRIAN CP 0.90 (0.00) 9.83 (0.14) 7.83 (0.32) 26.70 (0.16) 6.36 (0.03)

ImageNet-LT STANDARD 0.89 (0.00) 50.35 (0.02) 4.47 (0.02) 19.92 (0.03) 8.32 (0.00)
NAIVE 0.89 (0.00) 46.63 (0.07) 2.99 (0.01) 18.27 (0.02) 8.29 (0.01)
CONDITIONAL 0.90 (0.00) 58.64 (0.18) 2.21 (0.01) 17.09 (0.02) 7.92 (0.00)
MONDRIAN CP 0.90 (0.00) 67.38 (0.10) 3.77 (0.01) 15.23 (0.02) 6.34 (0.00)

Places365 STANDARD 0.90 (0.00) 14.17 (0.07) 5.78 (0.08) 25.58 (0.09) 4.99 (0.05)
NAIVE 0.90 (0.00) 12.76 (0.11) 2.40 (0.16) 22.22 (0.13) 5.11 (0.06)
CONDITIONAL 0.90 (0.00) 15.98 (0.57) 4.38 (0.10) 22.09 (0.12) 4.98 (0.05)
MONDRIAN CP 0.90 (0.00) 17.63 (0.08) 5.09 (0.07) 22.79 (0.17) 4.68 (0.05)

Places365-LT STANDARD 0.90 (0.00) 43.46 (0.10) 5.55 (0.02) 13.23 (0.01) 5.34 (0.00)
NAIVE 0.90 (0.00) 38.54 (0.06) 4.55 (0.02) 11.75 (0.01) 5.61 (0.01)
CONDITIONAL 0.90 (0.00) 37.07 (0.03) 1.72 (0.00) 11.75 (0.01) 5.65 (0.00)
MONDRIAN CP 0.90 (0.00) 60.34 (0.13) 5.12 (0.02) 11.27 (0.02) 5.47 (0.01)
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Table 6: Conditional coverage evaluation on ImageNet, ImageNet-LT, Places365, and Places365-LT
with different conformity score functions. Bold indicates the best (within ±0.1) coverage gap. We
report standard errors in parentheses.

Marginal Conditional

Coverage Size Conf × Trust Conf × Rank Class-conditional
CovGap CovGap CovGap

Dataset Score func. Method

ImageNet softmax STANDARD 0.90 (0.00) 2.12 (0.01) 10.32 (0.15) 32.25 (0.12) 7.41 (0.04)
NAIVE 0.90 (0.00) 4.61 (0.06) 8.48 (0.62) 24.18 (0.12) 6.28 (0.04)
CONDITIONAL 0.90 (0.00) 98.36 (1.84) 5.94 (0.26) 23.89 (0.17) 6.09 (0.04)

APS STANDARD 0.90 (0.00) 4.32 (0.04) 6.35 (0.11) 33.12 (0.15) 7.23 (0.04)
NAIVE 0.93 (0.00) 7.21 (0.05) 8.01 (0.50) 23.82 (0.15) 6.68 (0.02)
CONDITIONAL 0.90 (0.00) 22.36 (0.83) 4.37 (0.09) 23.66 (0.24) 6.02 (0.04)

RAPS STANDARD 0.90 (0.00) 3.03 (0.02) 7.03 (0.08) 33.12 (0.18) 7.27 (0.04)
NAIVE 0.93 (0.00) 5.13 (0.04) 7.99 (0.50) 24.04 (0.15) 6.73 (0.01)
CONDITIONAL 0.90 (0.00) 5.82 (0.06) 4.45 (0.19) 23.76 (0.23) 6.07 (0.02)

ImageNet-LT softmax STANDARD 0.90 (0.00) 24.54 (0.02) 4.25 (0.02) 17.68 (0.02) 9.45 (0.01)
NAIVE 0.89 (0.00) 33.04 (0.04) 2.86 (0.00) 19.86 (0.01) 8.37 (0.00)
CONDITIONAL 0.90 (0.00) 228.82 (1.44) 6.82 (0.01) 18.04 (0.01) 7.68 (0.01)

APS STANDARD 0.89 (0.00) 50.35 (0.02) 4.47 (0.02) 19.92 (0.03) 8.32 (0.00)
NAIVE 0.89 (0.00) 46.63 (0.07) 2.99 (0.01) 18.27 (0.02) 8.29 (0.01)
CONDITIONAL 0.90 (0.00) 58.64 (0.18) 2.21 (0.01) 17.09 (0.02) 7.92 (0.00)

RAPS STANDARD 0.89 (0.00) 25.79 (0.08) 5.30 (0.02) 16.95 (0.03) 9.55 (0.00)
NAIVE 0.89 (0.00) 33.82 (0.00) 2.98 (0.01) 19.95 (0.02) 8.50 (0.00)
CONDITIONAL 0.90 (0.00) 35.04 (0.02) 1.72 (0.01) 18.73 (0.02) 8.15 (0.01)

Places365 softmax STANDARD 0.90 (0.00) 9.38 (0.03) 3.18 (0.06) 20.21 (0.13) 5.30 (0.05)
NAIVE 0.90 (0.00) 10.37 (0.06) 2.39 (0.14) 22.36 (0.10) 5.04 (0.05)
CONDITIONAL 0.90 (0.00) 43.96 (1.68) 6.64 (0.21) 23.15 (0.12) 4.86 (0.04)

APS STANDARD 0.90 (0.00) 14.17 (0.07) 5.78 (0.08) 25.58 (0.09) 4.99 (0.05)
NAIVE 0.90 (0.00) 12.76 (0.11) 2.40 (0.16) 22.22 (0.13) 5.11 (0.06)
CONDITIONAL 0.90 (0.00) 15.98 (0.57) 4.38 (0.10) 22.09 (0.12) 4.98 (0.05)

RAPS STANDARD 0.90 (0.00) 10.24 (0.05) 3.60 (0.08) 21.43 (0.13) 5.21 (0.04)
NAIVE 0.90 (0.00) 10.93 (0.09) 2.44 (0.14) 22.38 (0.09) 5.05 (0.05)
CONDITIONAL 0.90 (0.00) 11.48 (0.05) 3.99 (0.09) 22.19 (0.10) 4.99 (0.04)

Places365-LT softmax STANDARD 0.90 (0.00) 24.98 (0.05) 2.59 (0.00) 14.88 (0.01) 6.24 (0.00)
NAIVE 0.90 (0.00) 26.45 (0.03) 4.62 (0.01) 14.98 (0.02) 6.36 (0.01)
CONDITIONAL 0.90 (0.00) 28.35 (0.25) 2.02 (0.01) 14.44 (0.01) 6.23 (0.01)

APS STANDARD 0.90 (0.00) 43.46 (0.10) 5.55 (0.02) 13.23 (0.01) 5.34 (0.00)
NAIVE 0.90 (0.00) 38.54 (0.06) 4.55 (0.02) 11.75 (0.01) 5.61 (0.01)
CONDITIONAL 0.90 (0.00) 37.07 (0.03) 1.72 (0.00) 11.75 (0.01) 5.65 (0.00)

RAPS STANDARD 0.90 (0.00) 23.46 (0.10) 3.00 (0.01) 15.84 (0.11) 6.47 (0.00)
NAIVE 0.90 (0.00) 26.23 (0.04) 4.31 (0.01) 14.91 (0.05) 6.44 (0.01)
CONDITIONAL 0.90 (0.00) 25.92 (0.05) 1.51 (0.01) 14.81 (0.05) 6.37 (0.01)
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