
Incremental Learning of Retrievable Skills For
Efficient Continual Task Adaptation

Daehee Lee♠,♢, Minjong Yoo♠, Woo Kyung Kim♠, Wonje Choi♠, Honguk Woo♠
♠Sungkyunkwan University ♢Carnegie Mellon University

{dulgi7245, mjyoo2, kwk2696, wjchoi1995, hwoo}@skku.edu

Abstract

Continual Imitation Learning (CiL) involves extracting and accumulating task
knowledge from demonstrations across multiple stages and tasks to achieve a
multi-task policy. With recent advancements in foundation models, there has been
a growing interest in adapter-based CiL approaches, where adapters are established
parameter-efficiently for tasks newly demonstrated. While these approaches isolate
parameters for specific tasks and tend to mitigate catastrophic forgetting, they
limit knowledge sharing among different demonstrations. We introduce IsCiL, an
adapter-based CiL framework that addresses this limitation of knowledge sharing by
incrementally learning shareable skills from different demonstrations, thus enabling
sample-efficient task adaptation using the skills particularly in non-stationary CiL
environments. In IsCiL, demonstrations are mapped into the state embedding space,
where proper skills can be retrieved upon input states through prototype-based
memory. These retrievable skills are incrementally learned on their corresponding
adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-
World demonstrate robust performance of IsCiL in both task adaptation and sample-
efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.

1 Introduction

Lifelong agents such as home robots are required to continually adapt to new tasks in sequential
decision-making situations by leveraging knowledge from past experiences. However, many real-
world domains pose substantial challenges for these lifelong agents; the complexity and ever-changing
nature of these tasks make it difficult for agents to constantly adapt, leading to difficulties in retaining
knowledge and maintaining operational efficiency [1]. For instance, a home robot agent, operating
within a single household, needs to continuously adapt, learning specific tasks in various areas such
as cooking assistance in the kitchen or cleaning in the bathroom. At the same time, it is crucial that
the agent not only retains but also improves its proficiency in the tasks it has previously learned,
ensuring that it maintains consistent efficiency throughout the home.

For these lifelong agents, Continual Imitation Learning (CiL) has been explored, in which an agent
progressively learns a series of tasks by leveraging expert demonstrations over time to achieve a
multi-task policy. Yet, CiL often encounters practical challenges: (1) the high costs and inefficiencies
associated with comprehensive expert demonstrations [2] that are required for imitation, (2) frequently
shifting tasks in dynamic, non-stationary environments, and (3) privacy concerns [3] related to learning
from expert demonstrations. In this context, CiL faces significant issues in terms of cost, adaptability,
and privacy, complicating its implementation in real-world scenarios.

Corresponding author: Honguk Woo (hwoo@skku.edu). Daehee Lee is currently a visiting scholar at
Carnegie Mellon University.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

To address these challenges, our work focuses on incorporation of skill learning and fine-tuning in CiL,
leveraging recent advancements in foundation models [4, 5]. These have been increased interests in
continual task adaptation based on multiple adapters learned on a foundation model [6, 7]. The adapter-
based learning approach allows for parameter isolation for individual tasks, thus enabling to mitigate
catastrophic forgetting of previously learned knowledge in CiL. Motivated by this use of adapters, we
develop IsCiL, a new adapter-based CiL framework that addresses the practical challenges of CiL
aforementioned, by incrementally learning shareable skills from different demonstrations through
multiple adapters. IsCiL facilitates sample-efficient task adaptation using the skills particularly in
non-stationary CiL environments.

Specifically, in the IsCiL framework, a prototype-based skill incremental learning method is employed
with a two-level hierarchy including smaller, more manageable adapters: skill retriever and skill
decoder. The skill retriever is responsible for composing skills to complete given goal-reaching tasks.
It utilizes skill prototypes, which are representative embeddings of skills, to retrieve the appropriate
skill for input. The knowledge of each skill is contained within the adapter, which can modify its
associated base model output. The skill decoder is responsible for producing short-horizon actions
for state-skill pairs.

We evaluate IsCiL and several adapter-based continual learning baselines across scenario variations
based on complex, long-horizon tasks in the Franka-Kitchen and Meta-World environments to assess
sample efficiency, task adaptation, and privacy considerations. The baselines include adapter-based
continual adaptation techniques as well as conventional continual imitation learning methods. Our
results demonstrate that IsCiL achieves robust performance without requiring comprehensive expert
demonstrations. This flexibility allows IsCiL to continually and efficiently adapt to varying sequences
in different environments by leveraging any available expert data to learn useful skills, with tasks
composed of diverse instructions and demonstrations.

In summary, the IsCiL framework enhances sample efficiency and task adaptation, effectively bridging
the gap between adapter-based CiL approaches and the knowledge sharing across demonstrations.
Comprehensive experiments demonstrate that IsCiL outperforms other adapter-based continual
learning approaches in various CiL scenarios.

2 Related work

Continual imitation learning. To tackle the problem of catastrophic forgetting in continual learning,
numerous studies have employed rehearsal techniques [8, 9, 10, 11], which involve replaying past
experiences to maintain performance on previously learned tasks. Another approach involves utilizing
additional model parameters to progressively extend the model architecture [12, 13, 14, 15, 16].
These methods adapt the model’s structure over time to accommodate new tasks. However, rehearsal
techniques exhibit high variability in forgetting depending on the replay ratio and often demand
substantial training to incorporate new knowledge [17]. Progressive models, on the other hand, require
stage identification during evaluation and often overlook unseen tasks [13]. In this work, we propose
a CiL framework that enables effective learning and expansion without requiring rehearsal and stage
identification, leveraging pre-trained goal-based model knowledge.

Continual task adaptation with pre-trained models. Several recent works use pre-trained models,
accumulating knowledge continually through additional Parameter Efficient Tuning (PET) modules
such as adapters [18, 17, 19, 20, 21, 6, 22]. These methods enhance the flexibility and scalability of
continual learning systems. However, they suffer from inaccurate matching between adapter selection
and trained knowledge, leading to a misalignment between the knowledge learned during training
and the knowledge used during evaluation [17, 20], which hinders overall performance. In the realm
of sequential decision making, some studies have explored adapting pre-trained models. In [6], the
state space of tasks is fully partitioned, restricting its applicability in more integrated environments.
Meanwhile, [7] relies on comprehensive demonstrations for learning, which may be impractical in
real-world scenarios. Our study aims to enhance task adaptation efficiency by using incrementally
generalized skills with accurate matching on state space.

Skill adaptation. Reinforcement learning research has enhanced fast adaptation through skill ex-
ploration [23] and skill priors [24], focusing on improving sample efficiency with offline datasets.
Despite these advancements, adapting fixed skill decoders to new environments remains challenging.
To overcome these limitations, skill-based few-shot imitation learning methods have been developed

2

Action ෞ𝒂𝒕

Skills

Missing

𝜏1

Learned skill

Skills

(ii) Task-wise selective adaptation

Adaptation Stage : Unseen task 𝝉𝒖
𝑔6 𝑔2 𝑔3 𝑔5

(i) Prototype-based skill incremental learning

Donemissing

CiL Stage 1 : Incomplete demo. of 𝜏1
Done

𝓓𝟏 (𝒐𝒕, 𝒈𝒕)

𝜏𝑛

missing

CiL Stage N : Incomplete demo. of 𝜏𝑛

𝓓𝒏 (𝒐𝒕, 𝒈𝒕)

Similar skill

referencing

Usable

Skills Task adaptation

𝝉𝒖: 𝑔6 𝑔2 𝑔3 𝑔5

Skill Decoder

Skill Retriever
…

𝜏1
𝜏2

𝝉𝒖

𝜏1

Skill Decoder

Skill Retriever

Action ෞ𝒂𝒕

Start Done

Skill Decoder

Skill Retriever

Task adaptation via learned skill retrieval
Skill incremental learning from

given demonstrations

Complementing missing parts

through usable skill retrieval

Task 𝜏𝑛 :

Success

Task 𝜏1 :

Fail →
Success

𝜏1 𝜏𝑛 Task 𝝉𝒖:

Success

𝝉𝒖Task 𝜏1 :

Fail

𝜏1

Retrieved

skills

Retrieved

skills

Task evaluation

Figure 1: The scenario demonstrating how IsCiL enhances continual imitation learning efficiency
through retrievable skills: (i) Prototype-based skill incremental learning: despite the failure of τ1,
skills are incrementally learned from the available demonstrations. In later stages, missing skills for
τ1 are retrieved from other tasks, achieving the resolution of τ1 and illustrating the reversibility and
efficiency of retrievable skills. (ii) Task-wise selective adaptation: IsCiL effectively retrieves relevant
learned skills, facilitating rapid task adaptation.

[25, 26]. However, these methods require extensive past data and struggle with scalability and gener-
alization. Even skill-based approaches used in continual imitation learning [8] still require rehearsal
data to mitigate knowledge loss and face difficulties addressing privacy issues through unlearning.
Our IsCiL employs parameter-efficient skill adapters to prevent catastrophic forgetting and maintain
efficiency, providing a scalable solution for unlearning.

3 Approaches

Our work addresses three key challenges of CiL: (1) data inefficiency, (2) non-stationarity, and (3)
privacy concerns, by adopting retrievable skills in the CiL context. Specifically, our IsCiL framework
not only enhances data-efficient continual task evaluation in a non-stationary environment but also
supports unlearning as a task adaptation strategy, thereby mitigating privacy concerns.

3.1 Problem formulation

In CiL scenarios, we consider a data stream of task datasets {Di}pi=1, where Di contains an expert
demonstration Di = {d1i , ..., dNi } for its associated task τi. To effectively represent complex long-
horizon tasks, each task τi is comprised of sub-goal list, τ = {g1i , ..., gMi }. Each task dataset is
sampled in a finite-horizon markov decision process (S,A,P,R, µ0, H), where S is a state space,A
is a action space, P is a transition probability,R is a reward function, µ0 is an initial state distribution,
and H is an environment horizon.

For demonstration d = {(st, at)}Ht=1, a state st ∈ S represents a tuple (ot, gt) consisting of an
observation ot and a sub-goal gt. In our work, we represent sub-goals through language and use
language-based goal embeddings for gt to achieve language-conditioned policies. Then, the objective
of IsCiL is to obtain a multi-task policy π∗, by which the performance on the tasks in the data stream
can be comparable to that of respective expert policies. This is formulated as

π∗ = argmin
π

[
Ei

[∑
τ∈Ti

KL(π(·|s)∥π̃τ (·|s))

]]
(1)

where π̃τ represents an expert policy for τ and Ti denotes a set of evaluation tasks at stage i. In this
context, the evaluation tasks continuously vary across different stages.

3

3.2 Overall architecture

To effectively handle complicated CiL scenarios, we present the IsCiL framework which involves (i)
prototype-based skill incremental learning and (ii) task-wise selective adaptation.

As illustrated in Figure 1, in (i) the prototype-based skill incremental learning, we use a two-level
hierarchy structure with a skill retriever πR composing the skills for each sub-goal, and a skill decoder
πD producing short-horizon actions based on state-skill pairs. For this two-level policy hierarchy, we
employ a skill prototype-based approach, in which skill prototypes capture the sequential patterns
of actions and associated environmental states, as observed from expert demonstrations. These
prototypes serve as a reference for skills learned from a multi-stage data stream. Using these skill
prototypes, we can effectively translate task-specific instructions or demonstrations into a series of
appropriate skills.

Through this prototype-based skill retrieval method, the policy flexibly uses skills that are shareable
among tasks, potentially learned in the past or future, for policy evaluation. This enables the CiL agent
to effectively learn diverse tasks and rapidly adapt to variations, while incrementally accumulating
skill knowledge from a multi-stage data stream. Furthermore, to facilitate sample-efficient learning
and enhance stability in CiL, we employ parameter-efficient adapters that are continually fine-tuned
on a base model. Each skill knowledge is encapsulated within a dedicated adapter and incorporated
into the skill decoder πD to infer expert actions.

In (ii) the task-wise selective adaptation, we devise efficient task adaptation procedures in the policy
hierarchy to adapt to specific tasks using incrementally learned skills. This enables the CiL agent to
not only facilitate adaptation to shifts in task distribution (e.g., due to non-stationary environment
conditions) but also support task unlearning upon explicit user request (e.g., due to privacy concerns).

Suppose that the smart home environment undergoes an upgrade with the installation of new smart
lighting systems throughout the house. In this case, task-wise selective adaptation can be used for
rapid adaptation by removing outdated control routines associated with the previous systems.

3.3 Prototype-based skill incremental learning

State encoder and prototype-based skill retriever. To facilitate skill retrieval from demonstrations,
we encode observation and goal pairs (ot, gt) into state embeddings st using a function f : (ot, gt) 7→
st. We implement f as a fixed function to ensure consistent retrieval results for learning efficiency,
mitigating the negative effects of input distribution shifts.

To effectively handle the multi-modality of the state distribution in non-stationary environments, we
employ a skill retriever πR. For this, we use multifaceted skill prototypes χz ∈ X , where X is the set
of learned skill prototypes. These prototypes capture the sequential patterns of expert demonstrations
associated with specific goal-reaching tasks.

θz = πR(st;X) = h
(
argmaxχz∈XS(χz, st)

)
, where S(χz, st) = maxb∈χz sim(b, st) (2)

Here, h : χz 7→ θz denotes a one-to-one function that maps each skill prototype χz to its dedicated
adapter parameters θz , while the similarity function S is defined as the maximum similarity between
state s and bases b ∈ χz . Each χz consists of multiple bases (e.g., 20 bases), and each basis b is a
representative vector containing its corresponding centroid, shaped identically to the state st.

Adapter conditioned skill decoder. To effectively use the knowledge of the pre-trained base model
without forgetting, even in a non-stationary changing environment, the skill decoder is conditioned
based on parameters. The skill decoder policy πD(ât|ot, gt; θpre, θz) operates with the skill adapter
parameters θz and the pre-trained base model θpre, using the Low-Rank Adaptation [27].

Skill incremental learning. To incrementally learn new retrievable skills, we update the skill
prototype and adapter pair (χz∗ , θz∗) for a novel skill z∗. The skill prototype χz∗ is created by
dividing a dataset of a single skill into several clusters based on similarity. From each cluster, a
representative value is extracted to serve as the basis b, representing z∗. We use the KMeans algorithm
[28] to determine these bases, ensuring that the number of bases |χz| adequately captures the diversity
within the dataset of the novel skill. This multifaceted set of bases allows the skill prototype to capture
an accurate multi-modal distribution of the skill represented in the state space, enabling effective
retrieval as described in Eq. 2. In our experiment, z∗ is created for each sub-goal g in the given dataset
Di for each stage i.

4

Skill Decoder

𝝅𝑫 ෝ𝒂𝒕 𝒐𝒕, 𝒈𝒕; 𝜽𝒑𝒓𝒆, 𝜽𝒛)

Pred action ෝ𝒂𝒕

(b) Skill incremental learning

𝜒𝑧

Multifaceted skill prototypes (𝒳)

S(𝜒𝑧, 𝑠𝑡)

Skill adapter mapping ℎ(𝜒𝑧)

…

Skill Retriever

𝜽𝒛 = 𝝅𝑹(𝒔𝒕)

Inputs (𝒐𝒕, 𝒈𝒕)

State Encoder

𝒔𝒕 = 𝒇(𝒐𝒕, 𝒈𝒕)
Skill Retriever

𝜽𝒛 = 𝝅𝑹(𝒐𝒕, 𝒈𝒕)

Skill adapter

Skill adapter 𝜃𝑧

(a) Prototype-based skill retriever

𝜃𝑧

𝑠𝑡
0.5

Basis()

State ()

Initialize novel skill prototype

0.9

𝜒𝑧∗

Initialize novel skill adapter

𝜃𝑧∗𝜃 ҧ𝑧

(𝒐𝒕, 𝒈𝒕)

𝓓𝑧∗

Dataset

ℎ(𝜒𝑧)

Initialize

argmax

training
𝜃𝑧

𝜒𝑧:

𝜒𝑧

Figure 2: Overview of the IsCiL framework: (a) The prototype-based skill retriever sequentially
utilizes a state encoder f , multifaceted skill prototypes X , and a skill adapter mapping function h to
identify the skill adapter θz . (b) Skill incremental learning involves the initialization and updating of
the skill prototype χz∗ and its corresponding adapter θz∗ .

The learning of the skill adapter is divided into two phases: initialization and update. During the
initialization phase, θz∗ is initialized using existing skill adapters. Predictions with the existing skill
dataset and skill prototypes χz ∈ X are used to identify the most frequently selected skill. Average
scores are computed for each skill prototype using the dataset involved in training z∗, as defined
in Eq. 2. The skill with the highest average score, denoted as z̄, is selected. Consequently, θz∗ is
initialized by θz̄ . Then, the initialized adapter is updated through the following imitation loss.

L(ot, gt, at; θz) = ∥a− πD(ât | ot, gt; θpre, θz)∥, where θz = πR(ot, gt) (3)

The novel skill z∗ is incorporated into the learned prototypes X ← X ∪ χz∗ , and the novel prototype
and adapter pair (χz∗ , θz∗) updates the function h for pair mapping. Figure 2 presents an overview of
this methodology, along with the algorithm for incremental learning is detailed in Appendix B.1.

3.4 Task-wise selective adaptation

Task evaluation. Given the pre-trained model θpre and learned skill prototypes X , for given inputs
(ot, gt) from the environment, IsCiL performs the following evaluation process.

ât ∼ πD(ât | ot, gt; θpre, θz), where θz = πR(ot, gt;X) (4)

The evaluation process adapts to novel tasks and sub-goal sequences from the environment by
modifying the goal gt. This adjustment enables the inference of appropriate current actions, in a
manner of similar to handling learned tasks. For example, a kitchen robot tailored to a specific user’s
kitchen setup can continuously and instantly adapt to changes in recipes without additional training.

Task unlearning. To ensure privacy protection for incrementally learned skills, our architecture
allows for task unlearning by removing task-specific skill prototypes and adapters. In IsCiL, the
separation of skill adapters for each task facilitates easy tagging of task information on each skill.
When an unlearning request is given with a task identifier τ , the corresponding skill prototypes and
adapters are removed. This approach ensures exceptionally efficient and effective unlearning, aligning
with the strong unlearning strategies in continual learning discussed in [3].

4 Experiments

4.1 Environments and data streams

To investigate the sample efficiency and adaptation performance, we construct complex CiL scenarios
using diverse long-horizon tasks [29, 30, 31]. We then analyze the sample efficiency across different
stages and tasks with three types of scenarios: Complete, Semi-complete, and Incomplete, depending
on how the samples are utilized and shared. Each scenario consists of a pre-training stage followed
by 20 CiL stages. Figure 3 illustrates these scenarios.

Evolving Kitchen. Evolving Kitchen is a data stream based on long-horizon tasks in the Franka-
Kitchen environment [29, 30]. Each task requires sequentially achieving four out of seven sub-goals.
The scenario consists of a pre-training stage in the environment with only four objects: kettle, bottom
burner, top burner, and light switch, followed by continual adaptation to tasks involving seven objects.

5

Skill Incremental Learning

Pre-training agent

Non-stationary stream of environments and tasks Time

stage1 stage 2 stage 3 ... stage N
Repeated with

different

missing parts

Evolving kitchen

Evolving World

CiL Scenario Scenario categorization by sample utilization difficulty

Low (comprehensive) (incomplete) High

CiL Stage

Demo.

Missing part

of demo

Incomplete 𝜏𝑛

Demo. of 𝜏𝑛

Demo. of 𝜏1

Complete

Demo. of 𝜏𝑛

Demo. of 𝜏1

…

Semi-complete

Complete demo. of 𝜏1

Demo. of 𝜏1 Demo. of 𝜏1
…

𝜏1𝜏𝑛𝜏1

𝜏1 𝜏1

Repeated

with different

missing parts

Sample utilization difficulty

Figure 3: CiL scenarios including Complete, Semi-Complete, and Incomplete, categorized by sample
utilization difficulty, based on the completeness of the demonstration for task performance: In
Complete, each of the 20 CiL stages incrementally introduces new tasks featuring objects not
encountered in the pre-training stage, along with full, comprehensive demonstrations for each task.
In Semi-Complete, the first 10 stages are repeated twice, with tasks presented alongside incomplete
demonstrations, where specific sub-goals are missing from the trajectories. In Incomplete, the same
sequence of tasks from the Complete scenario is used, but all stages feature incomplete demonstrations,
requiring the system to handle tasks with missing sub-goal trajectories.

Evolving World. Evolving World is a data stream based on the Meta-World environment [31] with
long-horizon tasks, similar to [32, 33, 34]. Each task requires sequentially achieving four out of eight
sub-goals. The scenario consists of a pre-training stage in the environment with only four objects,
followed by continual adaptation to an entire environment with all eight Meta-World objects. More
detailed configurations are provided in Appendix A.

4.2 Baselines and metrics

Baselines. We implement continual imitation learning and continual adaptation methods for sequen-
tial decision-making problems, which do not use rehearsal. First, we consider continual learning
algorithms which involve full-model updates (Seq, EWC [35]). We also implement several continual
adaptation approaches that utilize pre-trained models with adapters (L2M [6], TAIL [7]). L2M
learns a key and adapter pair to modulate the pre-trained model, where the key is a retrievable state
embedding similar to our prototypes. TAIL, unlike L2M, incrementally constructs task identifiers
and corresponding adapters to modulate the pre-trained model with new task data without forgetting
previous tasks. Each method is categorized based on the values used for adapter retrieval: a version
that uses no additional identifiers, sub-goal identifiers (denoted as -g), and whole sub-goal sequences
as single identifiers (denoted as -τ). Additionally, we include a Multi-task learning approach as an
oracle baseline, which retains all incoming data at each stage and utilizes it for training in subse-
quent stages. For all baselines, we use the same pre-trained goal-conditioned policy and a diffusion
model [36, 37] as the base policy architecture. A detailed description of the baselines and their
hyperparameters are provided in Appendix B.2.

Metrics. We use three metrics to report CiL performance: Forward Transfer (FWT), Backward
Transfer (BWT), and Area Under Curve (AUC) [38, 7]. In our long-horizon tasks, these metrics rely
on goal-conditioned success rates (GC), which measure the ratio of successfully completed sub-goals
to the total sub-goals within each task [39].

• FWT (Forward Transfer): This evaluates the ability to learn tasks using previously learned knowl-
edge. It is measured by the performance of a task when it occurs.

• BWT (Backward Transfer): This evaluates the impact of each learning stage on the performance
of tasks learned in previous stages. It measures the change in task performance from past stages
observed in the current stage.

• AUC (Area Under Curve): This represents the overall continual imitation learning performance
in a scenario. It measures the average performance of tasks learned in the current stage over the
remaining stages of the scenario.

For all metrics, higher values indicate better performance, with details provided in Appendix B.3.

6

Table 1: Overall performance on CiL scenarios of Evolving Kitchen and Evolving World: The rows
represent baselines, categorized into sequential adaptation and adapter-based approaches, and oracle,
respectively. The columns represent continual learning scenarios, where each scenario has 20 stages.
Each scenario in the environment is categorized into Complete, Semi-complete, and Incomplete. The
highest performance is highlighted in bold and the second highest performance is underlined.

Stream Evolving Kitchen-Complete Evolving Kitchen-Semi Evolving Kitchen-Incomplete

CiL-algorithm FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%)

Pre-trained - - 24.3±0.5 - - 29.1±0.9 - - 24.3±0.5

Seq-FT 90.9±2.6 -63.7±2.7 35.0±0.7 37.1±2.1 -25.1±2.7 16.5±0.7 32.7±4.3 -19.6±3.0 15.7±0.5

EWC 34.2±0.8 -19.5±4.2 17.1±2.7 27.2±1.3 -18.0±1.3 12.2±1.4 19.3±2.3 -3.2±11.3 10.4±1.7

Seq-LoRA 77.5±2.6 -55.2±1.8 28.3±1.5 37.4±3.8 -25.5±3.2 15.9±1.6 32.9±2.5 -19.9±2.9 14.5±0.2

L2M 24.7±4.8 -2.5±4.5 22.7±1.6 19.2±4.4 0.2±1.3 19.1±4.8 17.5±4.0 -2.0±3.2 15.8±4.8

L2M-g 38.2±3.4 -6.5±3.7 32.3±1.4 37.9±3.7 -4.5±3.1 32.1±1.2 37.5±10.0 -6.5±6.9 31.0±8.8

TAIL-g 85.3±8.0 -49.9±6.7 41.5±1.7 55.0±1.5 -21.1±2.2 37.2±2.4 53.2±1.7 -20.0±2.0 35.4±0.7

TAIL-τ 86.2±5.6 0.0±0.0 86.2±5.6 41.2±2.5 0.0±0.0 41.2±2.5 33.8±3.0 0.0±0.0 33.8±3.0

IsCiL (ours) 79.3±1.7 11.0±1.6 89.8±0.5 68.1±2.2 8.6±0.6 75.8±1.8 61.8±0.9 13.7±2.9 74.0±1.9

Multi-task 93.3±1.7 -1.6±2.3 92.3±1.8 75.4±4.5 8.0±5.5 83.2±1.1 71.7±1.1 12.6±0.8 83.0±1.1

Stream Evolving World-Complete Evolving World-Semi Evolving World-Incomplete

CiL-algorithm FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%)

Pre-trained - - 0.0±0.0 - - 0.0±0.0 - - 0.0±0.0

Seq-FT 88.9±3.1 -73.6±4.2 24.9±0.4 38.9±5.9 -27.5±5.5 13.2±0.9 41.4±2.0 -33.0±2.0 12.2±0.8

EWC 25.7±3.8 -18.0±0.2 10.5±3.5 13.9±1.4 -9.1±1.8 6.2±1.8 18.2±2.8 -11.6±2.1 8.5±0.9

Seq-LoRA 85.6±2.9 -75.1±2.3 21.4±1.2 32.2±5.2 -18.2±4.9 16.0±2.3 38.1±1.6 -30.6±0.9 11.7±0.9

L2M 72.1±5.3 -6.6±2.1 65.9±3.3 41.0±2.1 6.3±3.0 47.0±0.7 26.1±1.1 5.7±2.8 31.4±2.0

L2M-g 64.2±3.9 -19.3±4.4 48.6±2.0 44.5±2.0 3.4±2.5 48.2±0.2 33.2±2.0 -0.6±0.9 33.1±2.2

TAIL-g 90.0±3.0 -56.8±0.4 39.5±2.9 43.2±7.8 -17.6±3.5 27.4±5.1 51.4±2.5 -21.4±0.6 32.5±2.3

TAIL-τ 85.7±5.9 0.0±0.0 85.7±5.9 27.5±0.7 0.0±0.0 27.5±0.7 39.7±1.0 0.0±0.0 39.7±1.0

IsCiL (ours) 81.7±0.4 2.7±0.9 84.3±1.1 60.0±1.1 9.3±1.4 68.9±0.5 63.2±1.5 8.7±2.7 71.2±4.2

Multi-task 88.6±3.6 2.8±3.5 90.7±1.2 55.0±3.6 27.6±4.1 80.9±0.3 73.2±1.7 12.6±1.2 84.2±1.3

4.3 Overall performance : sample efficiency

Table 1 shows the CiL performance on Evolving Kitchen and Evolving World across three different
scenarios (Complete, Semi, Incomplete). We compare the performance achieved by our framework
IsCiL and other baselines (L2M, TAIL) with different conditioning values (g,τ) for adapter retrieval.
IsCiL consistently demonstrates superior performance in AUC across all scenarios, achieving between
84.5% and 97.2% of the oracle baseline (Multi-task learning). TAIL-τ shows the most competitive
performance in the Complete CiL scenario across both environments. However, due to its isolated
adapter for learning and evaluation, it fails to effectively utilize samples across stages.

L2M and L2M-g exhibit relatively lower and less stable AUC in the Evolving Kitchen scenario.
Conversely, in Evolving World-Semi, they surpass TAIL-τ in AUC. This demonstrates that they
are capable of sharing different skills across stages. Despite this, they still struggle with accurately
retrieving the correct skill or suffer from performance degradation due to knowledge overwriting.
Unlike them, IsCiL effectively mitigates overwriting by maintaining distinct skill representations
across stages. Both L2M-g and TAIL-g, which aim to leverage sub-goal labels for CiL, struggle to
maintain performance due to skill distribution shifts, leading to catastrophic forgetting of skills for
sub-goals. These challenges reveal that relying solely on sub-goal labels may not be sufficient to
sustain and share skills effectively across different stages and tasks.

Both Seq-FT and Seq-LoRA struggle with forgetting. This is evident in the Complete scenario,
where Seq-FT achieves the highest FWT but shows the lowest BWT, leading to a decline in overall
performance. EWC exhibits consistently lower performance, as the regularization used to preserve
past knowledge significantly hinders learning on current tasks, leading to severe degradation in
long-horizon tasks. Although EWC shows higher BWT compared to other sequential tuning baselines,
its low FWT limits overall effectiveness.

7

Table 2: Task adaptation performance with unseen tasks: This is based on the existing Evolving
World-Complete and Evolving Kitchen-Complete. In Evolving World, four novel tasks are introduced
every four stages, while in Evolving Kitchen, two novel tasks are introduced every five stages. Metrics
with the suffix -A denote performance based solely on adaptation tasks, while other metrics report
performance across all tasks.

Stream Evolving Kitchen-Complete Unseen Evolving World-Complete Unseen

Algorithm FWT (%) BWT (%) AUC (%) FWT-A (%) AUC-A (%) FWT (%) BWT (%) AUC (%) FWT-A (%) AUC-A (%)

Seq-FT 72.3±1.6 -47.7±1.6 30.4±0.2 27.8±0.6 19.5±0.1 52.9±3.6 -26.7±1.8 30.1±2.1 16.3±1.8 24.0±2.6

EWC 21.0±15.9 -14.0±2.0 16.8±1.6 18.1±4.2 14.4±1.6 16.5±1.9 -8.1±0.8 9.6±2.6 6.1±1.3 8.3±2.1

Seq-LoRA 62.4±3.8 -41.5±3.3 25.4±0.9 28.1±0.0 18.2±0.0 45.2±0.4 -35.8±1.3 14.5±0.9 6.4±2.5 8.2±1.8

L2M 22.3±2.3 0.3±1.5 22.7±3.5 15.3±3.2 21.2±4.1 55.1±3.7 -1.4±3.3 53.6±1.0 40.3±2.4 41.2±2.0

L2M-g 33.8±0.9 -4.3±1.2 30.0±0.4 22.2±0.6 24.1±0.7 43.3±1.6 -8.2±3.6 35.7±1.6 24.2±1.5 25.7±1.7

TAIL-g 67.6±7.4 -34.9±5.4 36.8±3.2 34.7±2.2 30.1±1.0 53.2±1.4 -27.1±1.2 29.2±0.3 18.6±0.9 19.1±0.6

IsCiL (ours) 69.5±2.5 16.3±2.2 84.4±1.3 52.1±7.5 72.8±2.1 64.3±2.6 -0.5±3.5 63.9±0.6 45.8±4.7 45.3±0.9

Multi-task 85.3±1.7 3.7±1.8 88.8±0.0 70.8±0.0 79.0±0.1 85.4±0.9 5.6±0.5 90.4±0.5 78.3±2.9 85.9±0.4

Table 3: Overall performance with task unlearning as task adaptation: Additional stages for unlearning
tasks that were learned during other stages are included for tests.

Stream Evolving Kitchen-Complete Unlearning Evolving Kitchen-Incomplete Unlearning

Algorithm FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%)

TAIL-τ CLPU 86.2±5.6 0.0±0.0 86.2±5.6 33.8±3.0 0.0±0.0 33.8±3.0

IsCiL (ours) 75.0±7.2 11.2±5.5 85.2±1.8 61.4±2.9 12.4±2.9 72.7±2.9

4.4 Task adaptation

Table 2 shows the unseen task adaptation ability of IsCiL, where only the sub-goal sequence of novel
task is provided without demonstrations. This scenario extends the existing Complete CiL scenarios
by periodically introducing novel tasks. Metrics labeled with the suffix -A indicate results from
adaptation tasks, whereas the other metrics reflect performance on all tasks. For this scenario, we
exclude TAIL-τ from comparison, as it lacks the ability to adapt to novel tasks.

IsCiL demonstrates superior task performance in both scenarios, which contributes to greater effi-
ciency in task adaptation. Moreover, in Evolving Kitchen, IsCiL not only demonstrates task adaptation
ability by achieving the highest FWT-A, but also significantly enhances its initial performance, raising
FWT-A from 52.1 to an AUC-A of 72.8. TAIL-g shows comparable performance in FWT for the
Evolving Kitchen. However, it struggles with catastrophic forgetting, leading to a −34.9 negative
BWT when faced with significant distribution shifts in sub-goal demonstrations. In Evolving World,
L2M, which actively learns to share skills during training, outperforms TAIL-g. L2M is the only
baseline achieving performance improvement on unseen tasks through CiL.

4.5 Task unlearning as adaptation

Table 3 measures CiL performance in scenario with task-level unlearning. For comparison, we use an
adapter-based approach with parameter isolation-based continual learning private unlearning (CLPU)
[3], extending TAIL to TAIL-τ CLPU and IsCiL without skill adapter initialization. Similar to IsCiL,
CLPU learns tasks in isolated models tagged with specific task identifiers and handles unlearning
requests by removing the corresponding model parameters of the target task. Both TAIL-τ CLPU
and IsCiL ensure output distribution equality between the unlearned model and the model trained
with the retained dataset. Thus, their CiL performance remains largely unaffected by unlearning.

Although IsCiL exhibits a slight performance degradation of 1.8% ∼ 5.2% after unlearning, as
reported in Table 1, it still demonstrates robustness by achieving a 115% higher AUC compared to
TAIL-τ CLPU in incomplete scenarios.

4.6 Analysis

Rehearsal comparison. Figure 4 compares the sample efficiency to retain learned knowledge between
IsCiL and a rehearsal-based continual imitation learning approach, Experience Replay (ER) [40]. For
ER, we adjust the number of stored samples per learning stage, while IsCiL does not store rehearsals

8

Evolving Kitchen-Complete

Rehearsal/stage

G
C

Evolving Kitchen-Semi

Rehearsal/stage

G
C

Evolving Kitchen-Incomplete

Rehearsal/stage

G
C

IsCiL-FWT IsCiL-AUC ER-FWT ER-AUC

Figure 4: Comparison w.r.t. the number of rehearsals: The horizontal axis represents the amount of
stored rehearsal data at each stage, while the vertical axis indicates goal-conditioned success rates
(GC).

Evolving world-Complete

TAIL-𝜏

TAIL-𝑔

L2M-𝑔
L2M

IsCiL

IsCiL TAIL-𝜏 TAIL-𝑔 L2M-𝑔 L2M FWT AUC

Training Epochs

Figure 5: Comparison w.r.t. training resources: In all baselines, the plain bar graph represents FWT,
while the bar graph with hatch marks represents AUC. The vertical axis indicates goal-conditioned
success rates (GC).

for training. IsCiL achieves the highest AUC in all environments and is the only approach where
AUC surpasses FWT. ER shows comparable FWT in Complete, but as the number of stored samples
increases, FWT decreases, indicating that more rehearsals actually reduce training sample efficiency.
In Semi and Incomplete, using 250 rehearsals (approximately 5% of the stage dataset) yields FWT
comparable to IsCiL but rarely improves AUC.

Limited training resource. Figure 5 shows the computational efficiency of IsCiL in resource-
constrained training settings, as discussed in [38]. In this experiment, the training resources is limited
to 1% to 50% of those used in Table 1. IsCiL and TAIL-τ show robust performance for varied training
resources. TAIL-g shows higher FWT, as it trains the same sub-goal data on the same adapter, which
excels in learning new tasks, but it fails to retain that knowledge. However, using skill data from
different stages to update the same adapter makes it vulnerable to skill distribution shifts in CiL; this
ends up with significant AUC degradation.

4.7 Ablation

Table 4: Ablation on IsCiL skill prototype.

Stream Evolving kitchen-Complete

Ablations FWT (%) BWT (%) AUC (%)

IsCiL g, |χz| = 20 79.3±1.7 11.0±1.6 89.8±0.5

IsCiL g, |χz| = 1 28.9±10.2 2.3±5.7 30.6±12.2

IsCiL g, |χz| = 5 63.1±4.0 2.7±7.3 66.5±7.9

IsCiL g, |χz| = 10 76.4±6.5 8.2±4.0 83.9±2.7

IsCiL g, |χz| = 25 77.1±1.8 11.9±1.7 88.2±1.1

IsCiL g, |χz| = 50 81.5±2.8 7.9±4.9 89.4±1.2

IsCiL τ, |χz| = 20 57.8±16.6 10.9±1.8 67.2±17.2

IsCiL τ, |χz| = 80 84.3±6.7 5.0±7.5 89.5±8.3

Table 4 investigates the impact of the num-
ber of prototype bases on CiL performance,
showing that increasing the number of bases
improves both AUC and result stability, par-
ticularly around K=10. Results are reported
based on units (g and τ) used to construct
new skill prototypes and the corresponding
number of bases. IsCiL with a single base
fails to effectively learn task knowledge,
achieving similar performance to L2M in
Table 1, due to insufficient representation of
the skill distribution. Additionally, the IsCiL
framework maintains positive BWT scores,
demonstrating its ability to leverage future samples to enhance past performance. IsCiL with τ ,
which constructs new skills based on entire task trajectories, required more bases in proportion to the
increase in the number of transitions involved in constructing the skill trajectory to maintain stability.

9

5 Conclusion

In this study, we presented the IsCiL framework to address key challenges in continual imitation
learning (CiL). Our approach incorporates adapter-based skill learning, leveraging multifaceted
skill prototypes and an adapter pool to effectively capture the distribution of skills for continual
task adaptation. IsCiL specifies enhanced sample efficiency and robust task adaptation, effectively
bridging the gap between adapter-based CiL approaches and the need for knowledge sharing across
staged demonstrations. Comprehensive experiments demonstrate that IsCiL consistently outperforms
other adapter-based continual learning approaches in various CiL scenarios.

Limitations. Like other adapter-based CiL approaches, IsCiL requires extra computation for evalua-
tion, which can create overhead, especially in resource-constrained environments. It also depends
on sub-goal sequences for training and evaluation, adding complexity and resource demands. An-
other limitation is determining the appropriate size of the adapter parameters, which depends on the
performance of the pre-trained base model and the degree of task shift, making optimal adaptation
challenging. Moreover, balancing the stability of the embedding function with the prototype size
remains an area that requires further refinement to achieve optimal performance.

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT) RS-2022-II220043 (2022-0-
00043), Adaptive Personality for Intelligent Agents, RS-2022-II221045 (2022-0-01045), Self-directed
multi-modal Intelligence for solving unknown, open domain problems, RS-2019-II190421, Artificial
Intelligence Graduate School Program (Sungkyunkwan University), the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00213118), BK21
FOUR Project (S-2024-0580-000) and by Samsung Electronics.

References

[1] Byeonghwi Kim, Minhyuk Seo, and Jonghyun Choi. Online continual learning for interactive instruction
following agents. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

[2] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. In Advances in neural
information processing systems (NeurIPS), 2023.

[3] Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on Lifelong
Learning Agents (CoLLAs), 2022.

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems (NeurIPS), 2021.

[5] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian
Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers. Advances in
neural information processing systems (NeurIPS), 2022.

[6] Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter. Learning
to modulate pre-trained models in rl. Advances in neural information processing systems (NeurIPS), 36,
2024.

[7] Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, and Rasool Fakoor. TAIL:
Task-specific adapters for imitation learning with large pretrained models. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

[8] Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. Lotus: Continual imitation learning for robot
manipulation through unsupervised skill discovery. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), 2024.

[9] Philemon Schopf, Sayantan Auddy, Jakob Hollenstein, and Antonio Rodriguez-Sanchez. Hypernetwork-
ppo for continual reinforcement learning. In Deep RL Workshop at NeurIPS, 2022.

[10] Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen. Cril: Continual robot
imitation learning via generative and prediction model. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021.

10

[11] Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why generaliza-
tion in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in neural information
processing systems (NeurIPS), 2021.

[12] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

[13] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[14] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference on
Machine Learning (ICML), 2019.

[15] Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell. Continual
unsupervised representation learning. Advances in neural information processing systems (NeurIPS), 2019.

[16] Tiantian Zhang, Zichuan Lin, Yuxing Wang, Deheng Ye, Qiang Fu, Wei Yang, Xueqian Wang, Bin Liang,
Bo Yuan, and Xiu Li. Dynamics-adaptive continual reinforcement learning via progressive contextualiza-
tion. IEEE Transactions on Neural Networks and Learning Systems, 2023.

[17] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong
Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for rehearsal-free continual
learning. European Conference on Computer Vision (ECCV), 2022.

[18] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[19] Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
unified continual learning framework with general parameter-efficient tuning. International Conference on
Computer Vision (ICCV), 2023.

[20] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed attention-
based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[21] Wei-Cheng Huang, Chun-Fu Chen, and Hsiang Hsu. OVOR: Oneprompt with virtual outlier regularization
for rehearsal-free class-incremental learning. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

[22] Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles, and Giovanni Zappella. Continual learning with
low rank adaptation. In NeurIPS 2023 Workshop on Distribution Shifts (DistShifts), 2023.

[23] Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised skill
discovery. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.

[24] Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned skill
priors. In Conference on robot learning (CoRL), 2020.

[25] Kourosh Hakhamaneshi, Ruihan Zhao, Albert Zhan, Pieter Abbeel, and Michael Laskin. Hierarchical
few-shot imitation with skill transition models. In International Conference on Learning Representations
(ICLR), 2022.

[26] Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior data for
skill-based imitation learning. In Conference on robot learning (CoRL), 2022.

[27] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2022.

[28] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 1982.

[29] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[30] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning:
Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[31] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference
on robot learning (CoRL), 2020.

11

[32] Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea Finn, et al. Learning language-conditioned
robot behavior from offline data and crowd-sourced annotation. In Conference on robot learning (CoRL),
2022.

[33] Divyansh Garg, Skanda Vaidyanath, Kuno Kim, Jiaming Song, and Stefano Ermon. Lisa: Learning inter-
pretable skill abstractions from language. Advances in neural information processing systems (NeurIPS),
2022.

[34] Sangwoo Shin, Daehee Lee, Minjong Yoo, Woo Kyung Kim, and Honguk Woo. One-shot imitation in
a non-stationary environment via multi-modal skill. In International Conference on Machine Learning
(ICML), 2023.

[35] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 2017.

[36] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
neural information processing systems (NeurIPS), 2020.

[37] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for
offline reinforcement learning. In International Conference on Learning Representations (ICLR) 11, 2023.

[38] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, qiang liu, Yuke Zhu, and Peter Stone. LIBERO:
Benchmarking knowledge transfer for lifelong robot learning. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2023.

[39] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday
tasks. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[40] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486, 2019.

[41] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 2017.

12

A Environment and Data Stream Details

A.1 Franka Kitchen

We conduct experiments on the Franka kitchen environment [29, 30]. Each Franka kitchen task com-
prises of 4 sub-goals, from total pool of 7: microwave, kettle, bottom burner, top burner, light switch,
slide cabinet, and hinge cabinet. Observation is a 60-dimensional vector, which is a combination
of the positions and velocities of 7-DoF robot arm and interacting objects. We express sub-goal
information using language embedding. The target sub-goal of the current state is acquired by a
pre-defined environmental reward and task, and a sub-goal sequence to solve. We use 24 tasks in
the ’mixed’ dataset from the D4RL [29]. In the pre-training stage, we train the model only on tasks
comprised of following four sub-goals: kettle, bottom burner, top burner, light switch.

Figure 6: Example of a multi-stage Meta-World environment in our continual imitation learning
scenarios.

A.2 Multi-stage Meta World

We conduct experiments on the multi-stage variation of the Meta-World environment [31, 34]. Each
Meta-World task comprises of 4 sub-goals from total pool of 8: puck, box, handle, drawer, lever,
button, door, and stick. The environments are divided into different scenarios based on which 4 out of
8 objects are placed on the table. For each environment, tasks are defined according to the sequence
in which the 4 sub-goals must be achieved. Observation is a 140-dimensional vector, which contains
the positions and velocities of the 4-DoF robot arm and all interacting objects in the environment.
In this environment, sub-goal information is also expressed using language embedding. The expert
dataset is collected using a heuristic expert policy provided by Meta-World [31]. In the pre-training
stage of Meta World, we train the model on 24 tasks on a environment consisting of four objects: a
puck, a drawer, a button, and a door.

A.3 Data Stream

Evolving Kitchen Tables 5 and 6 display the detailed configurations of the Evolving Kitchen in
our CiL scenario. Each task involves sequentially solving its respective sub-goals. The underlined
sub-goals (e.g., kettle) are those missing in the Semi Complete and Incomplete scenarios.

Evolving World Tables 7 and 8 display the detailed configurations of our Evolving World CiL
scenario. Similarly, the Evolving World is also presented in the same way as the Evolving Kitchen.

Unseen Task Adaptation Tables 9 and 10 show the detailed configurations of unseen tasks for
our Evolving Kitchen-Complete Unseen and Evolving World-Complete Unseen. In the Evolving
Kitchen, 2 new tasks appear every 5 stages. In the Evolving World, 4 new tasks appear every 4 stages.
Each new task includes only the sequence of sub-goals that must be completed in order, without any
demonstrations.

13

Table 5: Evolving Kitchen-Complete & Incom-
plete data stream task configuration

Evolving Kitchen-Complete & Incomplete

Task Sub-goal 1 Sub-goal 2 Sub-goal 3 Sub-goal 4
τ1 microwave kettle top burner light switch
τ2 kettle bottom burner top burner slide cabinet
τ3 microwave bottom burner top burner slide cabinet
τ4 kettle bottom burner light switch slide cabinet
τ5 microwave kettle light switch slide cabinet
τ6 kettle bottom burner top burner hinge cabinet
τ7 microwave kettle top burner hinge cabinet
τ8 microwave kettle slide cabinet hinge cabinet
τ9 kettle light switch slide cabinet hinge cabinet
τ10 microwave kettle bottom burner hinge cabinet

τ11 kettle bottom burner slide cabinet hinge cabinet
τ12 kettle bottom burner light switch hinge cabinet
τ13 microwave top burner light switch hinge cabinet
τ14 microwave kettle bottom burner slide cabinet
τ15 microwave kettle light switch hinge cabinet
τ16 microwave bottom burner top burner light switch
τ17 kettle top burner light switch slide cabinet
τ18 microwave bottom burner top burner hinge cabinet
τ19 microwave bottom burner slide cabinet hinge cabinet
τ20 microwave bottom burner light switch slide cabinet

Table 6: Evolving Kitchen-Semi data stream task
configuration

Evolving Kitchen-Semi

Task Sub-goal 1 Sub-goal 2 Sub-goal 3 Sub-goal 4
τ1 microwave kettle top burner light switch
τ2 kettle bottom burner top burner slide cabinet
τ3 microwave bottom burner top burner slide cabinet
τ4 kettle bottom burner light switch slide cabinet
τ5 microwave kettle light switch slide cabinet
τ6 kettle bottom burner top burner hinge cabinet
τ7 microwave kettle top burner hinge cabinet
τ8 microwave kettle slide cabinet hinge cabinet
τ9 kettle light switch slide cabinet hinge cabinet
τ10 microwave kettle bottom burner hinge cabinet

τ11 microwave kettle top burner light switch
τ12 kettle bottom burner top burner slide cabinet
τ13 microwave bottom burner top burner slide cabinet
τ14 kettle bottom burner light switch slide cabinet
τ15 microwave kettle light switch slide cabinet
τ16 kettle bottom burner top burner hinge cabinet
τ17 microwave kettle top burner hinge cabinet
τ18 microwave kettle slide cabinet hinge cabinet
τ19 kettle light switch slide cabinet hinge cabinet
τ20 microwave kettle bottom burner hinge cabinet

Table 7: Evolving World-Complete & Incomplete
data stream task configuration

Evolving World-Complete & Incomplete

Task Sub-goal 1 Sub-goal 2 Sub-goal 3 Sub-goal 4
τ1 door handle button box
τ2 puck drawer stick lever
τ3 handle puck lever door
τ4 button drawer box stick
τ5 door handle box button
τ6 lever stick drawer puck
τ7 lever puck handle door
τ8 stick button drawer box
τ9 handle button box door
τ10 drawer stick lever puck

τ11 puck lever door handle
τ12 stick button box drawer
τ13 handle button door box
τ14 drawer lever stick puck
τ15 puck lever handle door
τ16 stick box button drawer
τ17 handle door box button
τ18 stick drawer puck lever
τ19 door puck lever handle
τ20 box drawer button stick

Table 8: Evolving World-Semi data stream task
configuration

Evolving World-Semi

Task Sub-goal 1 Sub-goal 2 Sub-goal 3 Sub-goal 4
τ1 door handle button box
τ2 puck drawer stick lever
τ3 handle puck lever door
τ4 button drawer box stick
τ5 door handle box button
τ6 lever stick drawer puck
τ7 lever puck handle door
τ8 stick button drawer box
τ9 handle button box door
τ10 drawer stick lever puck

τ11 door handle button box
τ12 puck drawer stick lever
τ13 handle puck lever door
τ14 button drawer box stick
τ15 door handle box button
τ16 lever stick drawer puck
τ17 lever puck handle door
τ18 stick button drawer box
τ19 handle button box door
τ20 drawer stick lever puck

Unlearning Scenario In the Unlearning Scenario, 1 learned task is unlearned every 5 learning stages.
In the Evolving Kitchen Unlearning scenario, τ4, τ8, τ13, and τ17 are sequentially unlearned.

B Experiment Details

B.1 IsCiL Implementation

IsCiL consists of two modules: a skill retriever, πR, and a skill decoder, πD. The skill retriever
πR includes three components: a state encoder f , skill prototypes X , and a skill adapter mapping
function h. Each skill prototype χz in X is composed of 20 bases b. To modulate skill decoder πD,
we use Low Rank Adaptation(LoRA) [27]. In our experiment, we used 4-rank LoRA adapters for
skill adapter. IsCiL training and evaluation process follows :

14

Table 9: Evolving Kitchen-Complete Unseen task
configuration

Evolving World-Complete Unseen
Stage Sub-goal 1 Sub-goal 2 Sub-goal 3 Sub-goal 4

5 microwave kettle top burner slide cabinet
5 microwave kettle top burner top burner

10 microwave kettle top burner light switch
10 kettle bottom burner top burner light switch

15 kettle top burner slide cabinet hinge cabinet
15 microwave top burner slide cabinet hinge cabinet

20 microwave top burner light switch slide cabinet
20 kettle top burner light switch hinge cabinet

Table 10: Evolving World-Complete Unseen task
configuration

Evolving World-Complete Unseen
Stage Sub-goal 1 Sub-goal 2 Sub-goal 3 Sub-goal 4

4 door handle button box
4 puck drawer stick lever
4 handle puck lever door
4 button drawer box stick

8 door handle box button
8 puck lever drawer stick
8 handle lever puck door
8 box drawer stick button

12 box handle door button
12 lever drawer stick puck
12 handle lever puck door
12 box drawer stick button

16 door handle box button
16 puck drawer stick lever
16 handle puck lever door
16 box drawer stick button

20 door handle box button
20 lever drawer stick puck
20 door handle lever puck
20 box drawer stick button

Algorithm 1 IsCiL Skill Incremental Learning
1: State encoding function f , Skill retriever πR

2: Skill decoder πD, Pre-trained parameter θpre
3: Skill adapter mapping function h
4: for each stage i in CiL Stages do
5: for each sub-goal g in task dataset Di do
6: Dg

i ← {(o, g′) ∈ Di | g′ = g} // filter transitions related to the current sub-goal g
7: Sg

i ← {f(ot, gt) | (ot, gt) ∈ Dg
i } // encode states from the filtered dataset into state

embeddings
8: X g ← {argmaxχz∈X S(χz, st) | st ∈ Sg

i } // retrieve the most relevant skill prototypes for
each state st

9: χz̄ ← Mode(X g) // select the most frequently retrieved skill prototype from the set
10: θz∗←h(χz̄) // map the selected skill prototype χz̄ to its skill adapter via h
11: Update θz∗ using Eq. (3) // update the skill adapter based on task-specific learning
12: X ← X ∪ χz∗ // append the new skill prototype to the skill set for future retrieval
13: Update the mapping function h to map χz∗ to the updated adapter θz∗ // update h with the

new skill adapter
14: end for
15: end for

Algorithm 2 IsCiL Evaluation
1: State encoding function f , Skill retriever πR

2: Skill decoder πD, Pre-trained parameter θpre
3: while not done do
4: st = f(ot, gt) // encode state
5: θz = πR(st) // retrieve skill
6: ât ∼ πD(ot, gt; θpre, θz) // decode the skill
7: end while

15

B.2 Baselines

Seq-FT & Seq-LoRA Sequential Fine Tuning(Seq-FT) is a method that updates the entire model
sequentially. The variation, Seq-LoRA, is used to determine how effectively the fixed pre-trained
model can utilize its knowledge. Due to poor performance at very low ranks, Seq-LoRA was trained
with a 64-rank adapter in our environment.

EWC[41] Elastic Weight Consolidation (EWC) regularizes the weight update by using the Fisher
information matrix for each network parameter. For our experiment, we adopted the online version of
EWC, which updates the Fisher information at each stage by exponential moving average, following
the methods in [38, 7].We use the hyperparameter alpha, set to 10, to determine the regularization
strength. For updating the online Fisher information matrixF̄i, we use the Fisher information matrix
calculated at the current stage and apply the following formula for regularization: F̄i = γFi−1 +
(1− γ)Fi, where γ is set to 0.9.

L2M[6] L2M is an adapter-based continual learning method consisting of keys and their corre-
sponding adapters. When an input is provided, L2M uses a similarity function to search for the key
corresponding to that input. Input is converted to a query and utilized to search for a key, where key
is a vector with the same shape as the query. Each key is then updated to maximize its similarity to
the data point associated with it. Finally, the data is used to update the adapter that corresponds to
the key value found through that data. This method maximizes the diversity of key usage frequency
by adjusting the similarity between keys and input values during the training phase for learning new
tasks [18, 6]. In our implementation, we use the normalized state value as the input query to find the
key in L2M. For L2M-g, we use the normalized embedding of the state concatenated with the given
conditioned sub-goal information directly as a query. Our adapter pool consists of 100 adapters, each
being a 4-rank LoRA adapter.

TAIL[7] TAIL directly assigns an adapter to the given task using the task’s identifier. We directly
map the given identifier to the corresponding adapter. TAIL-g uses a 4-rank adapter, while TAIL-τ
uses a 16-rank adapter.

Multi-task At each stage, the model learns from the given data and stores all data for the next stage.
The data stored in the buffer is mixed with the data from each stage in a 1:1 ratio for training the
model.

ER[40] Experience Replay (ER), similarly, retains knowledge by storing a subset of the current
stage’s data for the next stage. The data stored in the buffer is mixed with the data from each stage in
a 1:1 ratio for training the model.

CLPU[3] Continual Learning Private Unlearning (CLPU) [3] is a method for managing continual
learning and unlearning. In a continual learning scenario, tasks that require maintenance are trained
using existing models, while data that may require unlearning is trained on independent model
parameters, tagged with when and through which task each model was trained. When an unlearning
request for a specific task or training stage is received, the corresponding model parameters are
completely removed to eliminate the influence of the target unlearning task from the model. CLPU
provides highly efficient and powerful unlearning performance with a single delete operation for tasks
learned in a continual learning scenario. In our experiment, we integrate the unlearning approach
CLPU with TAIL-τ , which conducts training through task information-based searches, to handle
unlearning requests in continual imitation learning as a comparative method.

B.3 Metric

We report 3 metrics for CiL performance for tasks: Forward Transfer(FWT), Backward Trans-
fer(BWT), Area Under Curve(AUC) [38, 7]. In multi-stage environment task, we report performance
using the goal-conditioned success rates (GC), which evaluate the average success rate of successfully
completed sub-goals out of N sub-goals in the task.

• FWT: FWTτ = 1
|Iτ |

∑
i∈Iτ

Cτ,i where τ is task and Cτ,i represents the GC score of task τ

at stage i. and Iτ is set of stage indices where task τ is trained in the CiL scenario.

• BWT: BWTτ = 1
|Iτ |

∑
i∈Iτ

(
1

p−i−1

∑p
j=i+1(Cτ,j − Cτ,i)

)
, where p is the final stage at

which task τ is available. In the case where p = i BWT is 0.

16

• AUC: AUCτ = 1
|Iτ |

∑
i∈Iτ

(
1

p−i

∑p
j=i Cτ,j

)
, represent the the overall performance of

continual learning, internally including FWT and BWT. In the case where p = i, AUCτ is
FWTτ .

The final reported metric is the average across all tasks τ ∈ T . For all metrics, higher values indicate
better performance.

B.4 Scenario training details

Pre-trained Base Model and Stage Settings Table 11 shows the hyperparameters and the architecture
of the model we used as the base model for all baselines. Table 12 shows the common hyperparameters
used to train the model for each stage in our experiments.

Table 11: Pre-trained model configure

Hyperparameter Value

Diffusion Model DDPM [36]
Denoising step 128

Schedule Linear
Linear start 1e-4
Linear end 1e-0

Block MLP
The number of layers 6
hidden dimension 512
Layer normalization yes

Table 12: Continual imitation learning
default hyperparameters

Hyperparameter Value

Learning rate 5e-4
Optimizer Adam

Epochs/stage 5000

Pre-trained model performance Table 13 shows the learning performance of the pre-trained model
and its adaptation performance for tasks learned in scenarios without any prior training. In Evolving
World, where new objects are added and the environment changes significantly, the pre-trained model
failed to successfully complete any sub-goals of tasks.

Table 13: Pre-trained model performance

Stream(Total phase) Evolving Kitchen base Evolving World-Complete Evolving World-Semi Evolving World-Incomplete

Evolving Kitchen Pre-trained 98.8±0.0 24.3±0.5 29.1±0.9 24.3±0.5

Stream(Total phase) Evolving World Base Evolving Kitchen-Complete Evolving Kitchen-Semi Evolving Kitchen-Incomplete

Evolving World Pre-trained 100.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

B.5 Compute Resources

Computing machine Our experimental platform is powered by an AMD 5975wx CPU and 2x RTX
4090 GPUs. The operating system used is Ubuntu 22.04.4 LTS, with Nvidia driver version 535.171.04
and CUDA version 12.2.

Software Detail We utilized jax 0.4.24, jaxlib 0.4.19, and flax 0.8.2 for our implementation.

Training time In the context of the Evolving Kitchen, each scenario involves training with three
different seeds. The training duration averages 2 minutes per stage, with each stage consisting of
5000 epochs. Each scenario comprises 20 such stages, culminating in a total training time of 2 hours
for a single experiment.

C Additional Experiments

C.1 Main experiment extension

Training curve. Figure 7 shows training curves of Evolving-kitchen Complete and Incomplete on
Table 1. The curves provide a clear illustration of the performance progression of IsCiL and baseline
methods, making changes in key metrics over the course of training easily observable.

17

C.2 Analysis

Skill adapter rank. Table 14 shows the results of the ablation study on the performance of CiL
based on the rank of the skill adapter. Overall, the 1-rank adapter in Evolving Kitchen demonstrates
sufficient, or even superior, adaptation performance. However, in Evolving World, the 1-rank adapter
leads to lower overall performance, indicating that some skills cannot be fully learned with a 1-rank
adapter, resulting in a decline in performance.

Skill decoder pre-trained model quality. Table 15 shows the results of the ablation study on
performance changes based on the quality of the pre-trained model (skill decoder). The quality of the
pre-trained model varies with the number of objects included in the tasks used to pre-train the model.
A decrease in the quality of the pre-trained model leads to a performance drop in both TAIL-τ and
IsCiL, as the number of objects is reduced from 4 to 1.

Scenario task sequence variation. Table 16 shows the results of the task sequence variation analysis.
We report the average performance for four different task sequences in Evolving Kitchen-Complete.
The performance of all tasks at the final stage is not significantly affected. Since TAIL-τ learns
independently for each task ID, there was no performance change with different sequences, and IsCiL
also showed similar performance, indicating that task sequence variation had minimal impact on
overall outcomes.

Computational efficiency. In our framework, skill retrieval and adaptation occur at each time step.
Despite this continuous process, the impact on inference time and computational demands is minimal.
Through our implementation on JAX, we observed that factors like compile optimization had a more
significant effect on performance than model size. As a result, IsCiL demonstrates fast evaluation
times, with retrieval and adaptation processes taking 3.6ms and 3.0ms, respectively, which ensures
that IsCiL remains highly efficient during inference.

Additionally, the memory overhead required for the adapted model is minimal, with the skill adapta-
tion adding only 0.37% to 1.48% additional parameters compared to the pre-trained model, depending
on the LoRA rank (1 to 4). For skill retrieval, the parameter size of each skill prototype is relatively
small, accounting for approximately 0.3% of the total model size. Furthermore, the inclusion of
adapters in the skill decoder only increases the FLOPs by 3.13% of the pre-trained model, demon-
strating that the retrieval and adaptation processes are computationally efficient and have a negligible
impact on resource consumption.

Table 14: Ablation study on the skill adapter rank in Evolving Kitchen-Complete and Evolving
World-Complete.

Stream Evolving Kitchen-Complete Evolving World-Complete

Rank CiL-algorithm FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%)

1
L2M-g 30.2±2.1 2.6±1.0 33.0±1.6 56.8±3.5 -16.9±5.2 41.6±1.3

TAIL-g 93.2±2.5 -54.3±1.6 45.7±1.3 77.0±5.0 -47.9±1.9 34.6±3.7

IsCiL 89.2±4.0 2.7±3.0 91.6±1.8 73.6±5.1 -3.3±3.9 70.9±3.3

4
L2M-g 38.2±3.4 -6.5±3.7 32.3±1.4 64.2±3.9 -19.3±4.4 48.6±2.0

TAIL-g 85.3±8.0 -49.9±6.7 41.5±1.7 90.0±3.0 -56.8±0.4 39.5±2.9

IsCiL 79.3±1.7 11.0±1.6 89.8±0.5 81.7±0.4 2.7±0.9 84.3±1.1

18

Stage

Cumulative task success rate (Evolving Kitchen – complete)

G
C

IsCiL

TAIL-𝜏

Cumulative task success rate (Evolving Kitchen – incomplete)

G
C

Stage

TAIL-𝜏

IsCiL

IsCiL TAIL-𝜏 TAIL-𝑔 L2M-𝑔 L2M Seq EWC

Figure 7: Evolving Kitchen-complete and Evolving Kitchen-incomplete training curves represent the
cumulative task success rate up to a given stage. The goal conditioned success rate(GC) is scaled such
that achieving success in all tasks by the final stage is represented as 100%. This result corresponds
to the data presented in Table 1.

Table 15: Ablation study on the quality of the skill decoder pre-trained model in Evolving Kitchen-
Complete and Incomplete.

Stream Evolving Kitchen-Complete Evolving Kitchen-Incomplete

CiL-algorithm Pre-training FWT (%) BWT (%) AUC (%) FWT (%) BWT (%) AUC (%)

TAIL-τ
1 object 72.8±7.9 0.0±0.0 72.8±7.9 28.8±0.7 0.0±0.0 28.8±0.7

2 object 87.2±4.6 0.0±0.0 87.2±4.6 35.9±2.6 0.0±0.0 35.9±2.6

4 object 86.2±5.6 0.0±0.0 86.2±5.6 33.8±3.0 0.0±0.0 33.8±3.0

IsCiL
1 object 60.0±4.0 2.1±4.2 62.1±0.8 42.1±7.3 5.4±3.2 47.0±4.6

2 object 78.9±5.1 6.4±3.7 84.9±1.3 56.7±3.2 12.0±2.3 67.3±1.6

4 object 79.3±1.7 11.0±1.6 89.8±0.5 61.8±0.9 13.7±2.9 74.0±1.9

Table 16: Analysis of task sequence variation in the CiL scenario of Evolving Kitchen-Complete.

Stream Evolving Kitchen-Complete

CiL-algorithm Task sequence FWT (%) BWT (%) AUC (%)

IsCiL

Seq. 1 79.3±1.7 11.0±1.6 89.8±0.5

Seq. 2 80.4±2.9 4.4±2.7 87.6±1.9

Seq. 3 63.5±3.1 13.0±3.2 76.0±4.8

Seq. 4 89.6±1.9 1.3±1.2 90.8±0.9

IsCiL Average 78.2±10.0 7.4±5.3 86.1±6.6

TAIL-τ Average 86.2±5.6 0.0±0.0 86.2±5.6

19

C.3 Scalability

LIBERO. Figure 8 provides a comprehensive visualization of the Skill Retriever in the LIBERO-goal
scenario. The visualization highlights how the retriever successfully identifies and shares skills across
different stages of CiL. This demonstrates its adaptability in handling varied states and tasks, showing
its potential effectiveness even in complex LIBERO environments.

Skill retrieval accuracy

T
ra

in
in

g
 d

at
as

et

Learned stage of retrieved

skills

Training dataset (LIBERO-goal) Retrieved skills (IsCiL)

(a) (a)

(b)(b)

Stage

Figure 8: Visualization of Skill Retriever on the LIBERO-goal Scenario. Left: T-SNE visualization
of the state space of the existing dataset for each stage. Middle: Visualization of the stages where
skills retrieved by the Skill Retriever, after all CiL stages of learning. Right: Map showing the stages
of each dataset and the retrieved skills. This demonstrates that the Skill Retriever can find skills
capable of handling the given state, even in the LIBERO scenario. Additionally, in task-specific parts
(a), it accurately retrieves the skills, and in parts showing similar behaviors (b), it shares skills.

20

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The experimental results explain the mentioned addressed problems in abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the limitations section, the paper discusses the limitations of our methodol-
ogy and the potential trade-offs.

21

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methodology describes the necessary components, and the evaluation
process and details are documented in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

22

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide the codes for supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report these information in Appendix B.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our paper reports error bars and statistical significance information in Table 1,
2, and 3 Figure 4 and 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We report these information in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

24

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conforms to the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.

25

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the papers for the datasets and assets used. [29, 30, 31]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

26

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Related work
	Approaches
	Problem formulation
	Overall architecture
	Prototype-based skill incremental learning
	Task-wise selective adaptation

	Experiments
	Environments and data streams
	Baselines and metrics
	Overall performance : sample efficiency
	Task adaptation
	Task unlearning as adaptation
	Analysis
	Ablation

	Conclusion
	Environment and Data Stream Details
	Franka Kitchen
	Multi-stage Meta World
	Data Stream

	Experiment Details
	IsCiL Implementation
	Baselines
	Metric
	Scenario training details
	Compute Resources

	Additional Experiments
	Main experiment extension
	Analysis
	Scalability

