
Large Language Models as General Pattern Machines

Suvir Mirchandani1, Fei Xia2, Pete Florence2, Brian Ichter2, Danny Driess2 3,
Montserrat Gonzalez Arenas2, Kanishka Rao2, Dorsa Sadigh1 2, Andy Zeng2

1Stanford University, 2Google DeepMind, 3TU Berlin
https://general-pattern-machines.github.io

Abstract: We observe that pre-trained large language models (LLMs) are capable of au-
toregressively completing complex token sequences—from arbitrary ones procedurally
generated by probabilistic context-free grammars (PCFG), to more rich spatial pat-
terns found in the Abstraction and Reasoning Corpus (ARC), a general AI benchmark,
prompted in the style of ASCII art. Surprisingly, pattern completion proficiency can be
partially retained even when the sequences are expressed using tokens randomly sampled
from the vocabulary. These results suggest that without any additional training, LLMs
can serve as general sequence modelers, driven by in-context learning. In this work, we
investigate how these zero-shot capabilities may be applied to problems in robotics—
from extrapolating sequences of numbers that represent states over time to complete
simple motions, to least-to-most prompting of reward-conditioned trajectories that can
discover and represent closed-loop policies (e.g., a stabilizing controller for CartPole).
While difficult to deploy today for real systems due to latency, context size limitations,
and compute costs, the approach of using LLMs to drive low-level control may provide
an exciting glimpse into how the patterns among words could be transferred to actions.

Keywords: large language models, in-context learning, language for robotics

1 Introduction

Large language models (LLMs) are trained to absorb the myriad of patterns that are woven into the structure
of language. They not only exhibit various out-of-the-box capabilities such as generating chains of reasoning
[1, 2], solving logic problems [3, 4], and completing math puzzles [5], but also have been applied in robotics
where they can serve as high-level planners for instruction following tasks [6, 7, 8, 9, 10, 11, 12], synthesize
programs representing robot policies [13, 14], design reward functions [15, 16], and generalize user pref-
erences [17]. These settings rely on few-shot in-context examples in text prompts that specify the domain
and input-output format for their tasks [18, 19], and remain highly semantic in their inputs and outputs.

input:
 0, 0, 0, 0
 0, 3, 4, 0
 0, 7, 6, 0
 0, 0, 0, 0
output:
 3, 0, 0, 4
 0, 0, 0, 0
 0, 0, 0, 0
 7, 0, 0, 6

input:
 0, 0, 0, 0
 0, 5, 6, 0
 0, 8, 3, 0
 0, 0, 0, 0
output:
 5, 0, 0, 6
 0, 0, 0, 0
 0, 0, 0, 0
 8, 0, 0, 3

input:
 0, 0, 0, 0
 0, +#, B, 0
 0, @, 慶, 0
 0, 0, 0, 0
output:
 +#, 0, 0, B
 0, 0, 0, 0
 0, 0, 0, 0
 @, 0, 0, 慶

Fig. 1: LLMs out-of-the-box
can complete (highlighted)
complex ARC patterns [20]
expressed in arbitrary tokens.

A key observation of our work—and perhaps contrary to the predominant
intuition—is that an LLM’s ability to represent, manipulate, and extrapolate
more abstract, nonlinguistic patterns may allow them to serve as basic versions
of general pattern machines. To illustrate this idea, consider the Abstraction
and Reasoning Corpus [20], a general AI benchmark that contains collections
of 2D grids with patterns that evoke abstract concepts (e.g., infilling, counting,
and rotating shapes). Each problem provides a small number of input-output
examples, followed by test input(s) for which the objective is to predict
the corresponding output. Most methods (based on program synthesis) are
manually engineered with domain-specific languages [21, 22, 23, 24] or
evaluated on simplified extensions or subsets of the benchmark [25, 26, 27].
End-to-end machine learning methods only solve a handful of test problems
[28]; however, our experiments indicate that LLMs in-context prompted in
the style of ASCII art (see Fig. 1) can correctly predict solutions for up to 85
(out of 800) problems—exceeding some existing recent systems [21, 22, 24], without additional model
training or fine-tuning. Surprisingly, we find this extends beyond ASCII numbers, and that when they

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://general-pattern-machines.github.io

|
100

100 -

··· 78, 76, 72, 66, 60, 53, 46 ···

Fig. 2: Pre-trained LLMs out-of-the-box may serve as basic versions of general pattern machines that can recognize and
complete sequences of numeric or arbitrary (symbolic) tokens expressing abstract problems in robotics and sequential
decision-making. Experiments show that to an extent, LLMs can in-context learn (i) sequence transformations (e.g.,
to reason over spatial rearrangements of symbols, for dynamics modeling and next state prediction on downsampled
images), (ii) completion of simple functions (e.g., to extrapolate kinesthetic demonstrations), or (iii) meta-patterns to
improve return-conditioned policies (e.g., to discover oscillatory behaviors to stabilize a CartPole).

are replaced with a mapping to randomly sampled tokens in the vocabulary, LLMs can still generate
some valid solutions. These results suggest an intriguing insight: that LLMs may exhibit more general
capabilities of representing and extrapolating symbolic patterns, invariant to the specific tokens involved.
This is in-line with—and complementary to—recent observations that using random or abstract label
mappings for in-context classification retains some performance compared to ground-truth labels [29, 30].
We hypothesize that the capabilities that drive pattern reasoning on the ARC may allow general pattern
manipulation at various levels of abstraction useful for robotics and sequential decision making [31, 32],
wherein a diverse array of problems involve patterns that may be difficult to reason about precisely in
words. For example, a procedure for spatially rearranging tabletop objects could be represented using
arbitrary tokens (see Fig. 2). As another example, optimizing a trajectory with respect to a reward function
can be framed as extrapolating a sequence consisting of state and action tokens with increasing returns.

Orthogonal and complementary to efforts that develop multi-task policies by pre-training on large amounts
of robot data [33], or robotics foundation models [34] that can be fine-tuned for downstream tasks [35, 36,
37], our goal is instead to (i) assess the zero-shot capabilities that LLMs may already contain to perform
some degree of general pattern manipulation, and (ii) investigate how these abilities can be used in robotics.
These capabilities are certainly not sufficient to replace specialized algorithms; nonetheless, they are useful
to characterize, and doing so may help inform priorities for training generalist models in robotics.

We assess LLMs as pattern machines categorized into three areas: sequence transformation, sequence
completion, and sequence improvement (Fig. 2). First, we show that LLMs are capable of generalizing
certain sequence transformations of increasing complexity with a degree of token invariance, and posit
that this can carry over to spatial reasoning capabilities in robotic tasks. Next, we assess LLMs’ ability to
complete patterns from simple functions (e.g., sinusoids) and show this can be applied to robotic tasks like
extending a wiping motion from kinesthetic demonstrations, or drawing patterns on a whiteboard. The
combination of in-context sequence transformation and extrapolation further enables LLMs to do basic
forms of sequence improvement. We show that providing reward-labeled trajectories as context, coupled
with online interaction, can enable an LLM-based agent to learn to navigate through a small grid, discover
a simple CartPole controller, and optimize simple trajectories via human-in-the-loop “clicker” reward
training. Code, benchmarks, and videos are made available at https://general-pattern-machines.github.io.

2

https://general-pattern-machines.github.io

2 Related Work

In-Context Learning. Pattern reasoning by prompting pre-trained LLMs with few-shot input-output
examples is driven by in-context learning [38, 39]. The examples serve as a form of task specification,
where the model is expected to complete further instances of the task by predicting what comes next. In-
context learning extends the concept of “task prefixes” (predefined token sequences, e.g., [40]), but swapped
in with examples instead. Brown et al. [39] observe that it improves (in particular, out-of-distribution
generalization) from scaling model size. This is in contrast to scaling models for pre-training + fine-tuning,
which has been shown to not necessarily improve OOD generalization on language tasks [41]. Nonetheless,
despite compelling OOD generalization abilities, in-context learning still comes at a cost, as it continues to
lag behind in terms of absolute performance on benchmarks compared to task-specific fine-tuning [38, 42].

Explanations of In-Context Learning. In-context learning is explicitly trained for by packing examples
from the same task and dataset into a context buffer that is fed as input to an LLM with an unsupervised
autoregressive objective [39], sometimes referred to as meta-training. However, it can also emerge implicitly
from training on datasets where tokens exhibit a Zipfian distribution [43] on Transformer architectures,
but not necessarily with recurrent architectures (e.g., vanilla RNNs) [43]. Other works have shown that in-
context learning with Transformers can learn simple function classes on par with least squares [44, 45, 46],
and can generalize to a seemingly unbounded number of tasks (when trained on tasks from the same task
family) better than multitask MLPs [47], with Bayesian interpretations of this phenomenon [48] [49].

In-Context vs. In-Weights Learning. In-context learning occurs during inference without gradient updates
to the model weights, and can be differentiated from in-weights learning, which relies on information
stored in the model weights during LLM training [50] (and can be useful for completion tasks such as
“Abraham Lincoln was born in ”). Chan et al. [50] observes that generalization of in-context learning
can be characterized as more “exemplar-based” (on the basis of similarity to in-context examples [51]),
as opposed to generalization of in-weights learning which tends to be more “rule-based” (on the basis
of minimal features that support category boundaries in the training data [52]). The vast capabilities of
LLMs [39, 53, 54, 55, 56] have been driven by a combination of both forms of learning. In this work, we
are particularly interested in in-context learning, and (depending on the task) using the semantic priors of
numeric tokens to drive capabilities such as sequence completion (Section 5) and improvement (Section 6).

LLMs and Robotics. LLMs have been applied across several areas in robotics—such as decomposing
high-level task descriptions to mid-level plans [6, 7, 57, 58, 59, 60], robot code [13, 17, 14, 61], and plan-
ning domain definition languages [10]. These methods leverage semantic priors stored in LLMs to compose
plans or parameterize primitive APIs, but whether LLMs can directly influence control (e.g., at the level of
trajectories) in a zero-shot manner remains an open problem. We explore how pattern reasoning capabilities
of LLMs may drive various control tasks, to extend or optimize low-level sequences. While it is possible to
explicitly train models for these capabilities [62, 63, 64, 65], this work focuses on the inherent abilities of
LLMs out-of-the-box, which may have implications for the role of language pre-training for building em-
bodied AI systems. Related to our work are [42] which studies how LLMs perform on non-language classi-
fication and regression tasks; [66] which examines analogical reasoning in various text tasks; and [67] which
studies how LLMs can represent a rollout policy and world model in-context and then uses Q-learning to
drive policy improvement across a collection of toy environments with linguistic representations. Our use of
LLMs for sequence improvement can be seen as a simplification of in-context policy iteration that supports
learning from demonstrations and in-context RL, driven by the generality of LLMs as pattern machines.

3 Language Models as General Pattern Machines

The capacity of LLMs to act as general pattern machines is driven by their ability to perform in-context
learning on sequences of numeric or arbitrary tokens. An LLM typically represents sequence modeling
autoregressively, with a decoder-only Transformer [68], by factorizing the probability of a sequence
x, which is a sequence of symbols (s1, ..., sn), into the product of conditional probabilities p(x) =∏︁n

i=1p(si|s1, ..., si−1). To perform in-context learning, the model can be conditioned with a prompt that
provides the initial tokens in the sequence s1:k=(s1, ..., sk) and uses the model to complete sk+1:n.

3

The adaptability of in-context learning lies in the amount of flexibility that can be packed into s1:k—this
prompt sequence can itself contain many sequences, each an input-output pair, and perhaps additional task
conditioning [38, 29]. Specifically, a model can in-context learn to complete a prompt which is a set of N
examples s1:k=(x1, x2, ..., xN) where each xi is a variable-length sequence (si1, s

i
2, ..., s

i
mi).

Rather than investigating in-context learning with natural language tasks [39], in this work we are interested
in investigating more abstract notions of non-linguistic patterns. The following sections evaluate these
capabilities across LLMs, and show how they can be used in robotics. By varying the notion of what each
xi should be, we can characterize in-context pattern learning capabilities into the following 3 categories.

• Sequence Transformation (Section 4): each x1, ..., xN−1 is a sequence-to-sequence input-output pair;
i.e., xi=(xiinput,x

i
output), each subsequence of variable length, and xN is the query input (xNinput).

• Sequence Completion (Section 5): rather than containing input-output pairs, and rather than containing
many examples of different sequences, the prompt x=(s1, ...,sk) corresponds to discrete samples from
a single function, e.g., of the form si=a·sin(bi), which can be extrapolated.

• Sequence Improvement (Section 6): each x1, ..., xN−1 is a collection of trajectories (potentially labeled
with corresponding total rewards), and xN prompts the model to “improve” the sequences by inferring a
better one, e.g., with least-to-most prompting [69]—this process can be iterative and applied to a variety
of formulations, e.g., offline trajectory optimization or online in-context reinforcement learning.

4 Sequence Transformation
LLMs are capable of in-context learning the distribution of functions that represent sequence transformations
by completing abstract patterns observed among examples of input-output sequences xi=(xiinput,x

i
output) of

arbitrary tokens, each drawn from a fixed alphabet A. For example, suppose that we are given a string of
input-output examples such as “ 5 3 0, 3 5; 7 6 1, 6 7; 9 2 3, 2 9; 4 8 5,”. Here A consists
of tokens that represent space-prefixed digits 0–9, a comma token to separate inputs from outputs, and
a semi-colon token to delineate examples from each other. A general pattern machine should infer the
completion “ 8 4” by recognizing that the pattern is to swap the first 2 tokens, then remove the 3rd.

Method Total (of 800)

(g4) gpt-4-0613 77
(d3) text-davinci-003 85
(d3) w/ random A †44±6
(d2) text-davinci-002 [53] 64
(p) PaLM [55, 56] 42
(d1) text-davinci-001 [39] 11
(d1) finetuned 9

Ainooson et al., 2023 [23] ∗130
Kaggle 1st Place, 2022 [70] #164
Xu et al., 2022 [22] ††57
Alford et al., 2021 [24] ∗∗22
Ferré et al., 2021 [21] 32
†Numbers averaged across 5 randomly sampled alphabets.
∗Based on brute force search over a hand-designed DSL.
#Reported out of 400 train tasks, among 3 candidates.

††Reported out of a subset of 160 object-oriented problems.
∗∗Based on program synthesis, out of 36 symmetry tasks.

Tab. 1: LLMs out-of-the-box can solve a non-
trivial number of ARC problems.

We use the ARC [20] to evaluate LLMs on such sequence
transformations that are substantially more complex, covering
a range of abstract spatial tasks: infilling, counting, rotating
shapes, etc. Each task has input-output examples (3.3 on aver-
age), and 1-3 test inputs which can be represented as 2D grids.
Input and output sizes may differ. LLMs can be used for the
ARC by flattening grids and predicting output grid items in
row-major order, which naturally supports variable-length out-
puts. While LLMs are not specifically trained for rasterizing
spatial outputs, we hypothesize that a general pattern machine
would be capable of implicitly recognizing long-range depen-
dencies between rows (using positional encoding as a bias
[71]) to pick up patterns that extend across the 2nd dimension.

Result: ARC benchmark. Table 1 shows that LLMs (PaLM,
InstructGPT series in acronyms d1 - d3) prompted with input
grids represented as tokens drawn from an alphabet of digits,
can correctly infer solutions for up to 85 problems. Surpris-
ingly, this outperforms some recent systems [21, 22] based on
program synthesis that use manually engineered domain-specific languages (DSLs). While LLMs have yet
to surpass brute-force search [23] to compose functions from a handcrafted API of grid operators, they do
exhibit non-trivial performance. (We address the important caveat that parts of the ARC may be present in
the training data of LLMs later below.) Note that while we are concerned with LLM performance over raw
patterns, concurrent work finds improvements via object representations [72] and hypothesis search [73].

Observation: consistent tokenization matters. The ARC can be found among the suite of tasks in BIG-
Bench [74], but has often been overlooked since many language models appear to perform poorly (near or

4

at zero performance). We observe this occurs due to the formatting of the benchmark, where grid elements
are represented as neighboring characters i.e., “8686” (instead of “ 8 6 8 6”). While subtle, this difference
is enough for certain Byte-Pair Encoding (or SentencePiece) tokenizers [75, 76] (that do not tokenize per
digit) to group multiple grid elements (“8” and “6”) into a single token (“86”) which maps to a different
token embedding. This causes inconsistencies with how patterns are expressed at the token level. For
example, given a task expressed as “8686, 6868; 7979,” if the tokenizer groups pairs of digits 86, 68,
79, respectively, the sequential inductive patterns of the task (to swap and repeat individual digits) are lost.
A simple work-around is to directly pass token indices or embeddings to the language model, or use token
alphabets unlikely to be grouped together (which involves some knowledge about the tokenizer). Even
beyond the ARC, we observe it is beneficial to tokenize consistently with the pattern being represented.

Observation: token mapping invariance. The hypothesis that LLMs can serve as general pattern machines
stems from the observation that they can still solve a non-trivial number of ARC problems using alphabets
A sampled randomly from the LLM’s token vocabulary. For instance, given a particular alphabet:{ 8
↦→ falls, 6 ↦→ +#, 7 ↦→ Ul, 9 ↦→ Chev, 3 ↦→ 慶, 2 ↦→ 2010}, a pattern machine at sufficient
proficiency can be expected to complete the prompt “falls +# falls +#, +# falls +# falls; UI
Chev UI Chev, Chev UI Chev UI; 慶 2010 慶 2010,” by predicting “ 2010 慶 2010 慶”. For
example, text-davinci-003 [53, 39] with the following mapping A={ 0 ↦→ offence, 1 ↦→ Subject,
2 ↦→ Lub, 3 ↦→ Fail, 4 ↦→ Chev, 5 ↦→ symb, 6 ↦→ swung, 7 ↦→ Ul, 8 ↦→ escalate, 9 ↦→
Chromebook} solves 52 ARC problems, and across 5 random alphabets solves an average of 43.6 problems.
Interestingly, we find that token mapping invariance holds to an extent on patterns over randomly sampled
embeddings as well (not associated with any token in the vocabulary; see Appendix A.3).

The implications of token mapping invariance are two-fold. First, note that it is possible that parts of the
ARC are present in the LLM’s training data (i.e., due to contamination). Thus, measuring the performance
of LLMs under random alphabets may provide a closer estimate of their underlying sequence transformation
capabilities. (As further evidence that these abilities are not simply due to memorization, we provide a new
procedurally-generated pattern transformation benchmark described below.) Second, we hypothesize that
the pattern manipulation capabilities implied by token invariance could help drive positive transfer from
patterns learned across Internet-scale language data to new modalities or symbolic representations for robot
reasoning. As an example, (i) Fig. 10 (top) in the Appendix shows a grasp (Skittles) detector which outputs
target coordinates within a downsampled image (with 6 in-context examples), and (ii) Fig. 10 (bottom)
shows spatial rearrangement via predicting simple forward dynamics where the red bowl moves to the
green plate (with 9 in-context examples of downsampled images as inputs and outputs). The generality
of what the arbitrary tokens could represent may allow pattern transformation capabilities—especially as
LLMs improve—to be leveraged at various levels of abstraction in robotics (e.g., pixels or joint positions).

Method Accuracy (%)

(d3) text-davinci-003 75
(d3) w/ random A †58 ± 1
(p) PaLM [55, 56] 74
(d2) text-davinci-002 [53] 69
(d1) text-davinci-001 [39] 60
(c1) text-curie-001 54
(b1) text-babbage-001 50
(a1) text-ada-001 39

†Numbers averaged across 5 randomly sampled alphabets.

Tab. 2: LLMs of varying sizes are capable
of completing patterns procedurally generated
with PCFG, averaged over a range of k and w.

Result: PCFG benchmark. The ARC is a difficult bench-
mark, and the performance falloff can be steep (and relatively
uninformative) across LLMs with decreasing model size and
data scale, making it difficult to measure incremental progress
towards pattern machines that could be used for sequence trans-
formation in robotics. Therefore, we introduce an adjustable-
difficulty benchmark, where the transformations are procedu-
rally generated using the probabilistic context-free grammar
(PCFG) in Hupkes et al. [77]. These transformations include
a collection of lexical rules that may be composed (e.g., re-
verse, shift, swap, repeat, etc.) over the tokens in the
input sequence xiinput to generate xioutput. Example transforma-
tions are given in Table 4 in the Appendix. The complexity
of these transformations can be controlled by varying the number of tokens k used to express sequences
xi=(s1,...,sk), and the number of lexical rules w used to define the transformation. This is simply the iden-
tity function when w=0, and progressively appears more complex as w→∞. Table 2 aggregates PCFG
pattern completion accuracy across different LLMs over sequence length k=[1,2,4,8,16,32] and com-
plexity w=[0,1,3,7,15,31], each with 100 runs (see Appendix A.4 for ablations of k,w). This benchmark

5

provides a more unbiased evaluation of pattern reasoning capabilities in LLMs; PCFG completion accuracy
improves with model scale, and correlates with ARC performance. We use PCFG for evaluation only (rather
than for training [77, 78]) so that one can measure how pre-training regimes or modalities may improve
general pattern capabilities across sequence transformations. We have released the PCFG benchmark.

5 Sequence Completion

Completion of sinusoids. We start with a simple example where LLMs extrapolate a function of the form
f(x)=a·sin(bx). As in Section 4, tokenization matters; we found it effective to discretize outputs among
integers 0–100, as these integers are represented by single tokens in the tokenizers of the LLMs we tested.

0 2

x

100 y

0 2

x

100 y

0

300 Error

0 2

x

100 y

0 2

x

100 y

0

300 Error

0 2

x

100 y

0 2

x

100 y

a1 b1 c1 d1 d2 d3
0

300 Error

Fig. 3: LLMs (d3 shown) can extrapolate various func-
tions y=a·sin(bx) (top row), y=ax·sin(bx) (middle
row), and y= a

2x
sin(bx) (bottom row) given amounts of

context. Overall, larger models make better predictions
with lower error rates (right column). More context also
helps prediction accuracy (light vs. dark).

Fig. 3 shows completions of the sine wave by text-
davinci-003 over 11 trials given 3 and 5 periods as
context, as well as average distance (computed by Dy-
namic Time Warping) of the generated predictions to
the ground truth function values across several LLMs.
Multiple LLMs produce near-perfect continuations
of the sine wave, especially with more context (i.e.,
more periods of the sine wave). We additionally test
the function family ax ·sin(bx)—in which the am-
plitude of the oscillations increases with x-values.
Here, the LLM must extrapolate to new values un-
seen in the context, which highlights the utility of
using a metric space for the outputs (0–100) where
the LLM has priors over the scale of the different to-
kens. These functions also contain a “meta-pattern”:
the y-values increase, decrease, and then increase in
a single period—and the amplitude of the function
also increases over time. This is a form of least-to-most prompting [69], an ability we find useful later for
sequence improvement in Section 6. We also test the function a

2x ·sin(bx). Across these three functions,
we observe that greater context and larger scale LLMs yield higher quality predictions.

Completion of periodic motions. We emphasize that the Sequence Completion capability above is domain-
agnostic—i.e., we do not use any specialized prompts explaining what function should be completed, nor
do we provide any linguistic grounding for the metric tokens. We can therefore operationalize this zero-shot
capability of LLMs to simple open-loop motion extrapolation problems in robotics, e.g., by encoding a
series of positions sampled from a demonstration, and predicting future positions. We test two simple tasks
on a mobile robot manipulator: Table Sweeping and Whiteboard Drawing (both shown in Fig. 2).

In Table Sweeping, the goal is to continue a human-provided kinesthetic demonstration of sweeping a
portion of a table (see middle Fig. 2). We encode the demonstration as a series of end-effector poses at
approximately 3 Hz. Each demonstration lasts roughly 20-30 seconds. We represent the 7-dim end-effector
pose as a concatenation of Cartesian position and the quaternion, where each value is binned to an integer
between 0 and 100, and the dimensions are delimited by spaces. We collect 30 demonstrations that
demonstrate the sweeping motion. Note that demonstrations in this task are noisier and higher dimensional
than the stylized sinusoid functions above. For each demonstration, we construct a context to consist of the
first two-thirds of the provided demonstration, and treat the last one-third as the ground truth for the LLM
to predict. Larger models quantitatively perform better with generally lower variance (see Appendix).

In Whiteboard Drawing, the goal is to continue a scripted demonstration of drawing loops on a whiteboard
(see Fig. 2). Loops are defined by parametric equations of the form x = ax cos(bt) + dx and y =
aysin(bt)+cyt+dy. We execute the motions using position control and record the end-effector positions at
5 Hz, then discretize states in between 0 and 300, as finer motion is needed for this task. We provide part of
the loop pattern in-context, and assess the ability to extrapolate from 2 loops to do a third loop. LLMs, e.g.,
text-davinci-003 perform well—we show more completions with different loop styles in the Appendix.

6

6 Sequence Improvement
In this section, we explore the synergies between sequence transformation and completion— and investigate
improving a sequence, such as trajectories in a sequential decision process, along some metric, such as a
reward function. Here, we use an LLM to generate new sequences xN conditioned on previous sequences
(x1, ..., xN−1), which can represent previous iterations of the same sequence (or policy it represents).
The improvement can also be return-conditioned, given a reward function r(·). By inserting as the first
token(s) of each sequence its corresponding total reward x=(r(x),s1 , ..., sk), we can prompt the model to
conditionally “improve” by “just asking” [79] for a higher reward than those seen in-context (i.e., prompting
LLMs to act as Decision Transformers [80]). New “rollouts” can yield new reward labels that then replace
the original desired rewards with actual rewards. Iteratively performing this inference and accumulating
trajectories may jointly use the model’s general notion of pattern transformation and extrapolation to
perform improvement of sequences, which can be represented by numeric or symbolic tokens. Note that
there are practical considerations, e.g., depending on the task or model, not all sequences can fit in context,
so options could be to keep the most recent, or the ones with the highest rewards if available (see Appendix
for more discussion). In this section, we perform a series of targeted experiments on simple tasks, aiming
to explore the possibility of using LLMs for sequence improvement in trajectory and policy optimization.

Fig. 4: LLM agents can generate new trajecto-
ries with increasing returns for a Marker in Cup
task (right). Performance varies with different
ways of building the context (left).

Extrapolating simple meta-patterns among trajectories.
Sequence improvement with LLMs enables a simple form of
trajectory optimization for a Marker in Cup task on a Franka
Panda robot, where we define the prefixed reward of a trajec-
tory to be the negative distance between the final end-effector
position and the cup (normalized between 0–100), and initial-
ize the context with a collection of trajectories (stopping at
20%, 40%, 60%, and 80% of the way to the cup), delimited by
newlines and prefixed by rewards (ranging roughly from 70-
90; see Appendix). For this task, we represent trajectories as
sequences of Cartesian positions, each dimension normalized
between 0–100. We find that text-davinci-003, to an extent,
is able to generalize the pattern and generate a trajectory that achieves a reward >90. For this extrapolation
to occur, we observe that meta-patterns in the context are crucial: in Fig. 4 (left), we compare the average
reward achieved by text-davinci-003 over 11 trials (each with a different goal position) given contexts with
different trajectory orderings (sorted by reward, randomly permuted, or with/without reward annotations).

Fig. 5: Average max return
for LLM agents a1-d3 on
Grid compared to random
exploration (r).

Sampling higher-reward trajectories online. While LLMs can extrapolate
from trajectories that exhibit clear meta-patterns among them, we find that
this ability is more limited for less trivial setups. Consider a simple 9× 9
Grid navigation environment with a random goal position and a fixed starting
position at the grid center. Episodes terminate after 20 timesteps, and the return
is based on the distance from the agent to the goal at the final time step. This
environment is inspired by the Dark Room environment from [62] but with a
continuous reward function, reducing the exploration challenge. The agent may
take actions (1-5) corresponding to moving right, up, left, down, and no-op. We
initialize the context buffer with 20 trajectories of agent grid positions generated
by a random policy, sorted by total cumulative rewards. These trajectories
exhibit a more complicated meta-pattern than in the Marker in Cup task; we
do not find that LLMs can generate trajectories of higher reward immediately. With that said, we can
consider an iterative, online setting, in which the LLM acts as an agent that interacts with the environment
in a closed-loop. The context consists of the highest reward trajectories in sorted order, appended with a
higher reward than was seen in the context, plus states and actions from the current partial trajectory (see
Appendix). Once an episode terminates, its trajectory is relabeled with the reward achieved, and inserted
into the context at the appropriate position. In Fig. 5, we plot the maximum return attained by a1-d3 over
50 episodes, compared to random exploration, averaged over 5 trials. We find that a1-d1 tend to sometimes
“exploit” the suboptimal behaviors represented in the context (which initially contains trajectories with
rewards ranging from 6-78), whereas d3 can consistently find a solution to Grid within 50 episodes.

7

Fig. 6: Different LLM agents (d3 - c1) on average can
improve trajectories (total rewards) with more CartPole
episodes (left), and discovers “oscillatory behaviors” (right)
to keep the CartPole upright (later episodes are brighter).

Discovering a simple CartPole controller. We
show that using LLMs as agents in an online,
closed-loop setting can discover a simple controller
for CartPole (where observations consist of pole
angle and velocity, normalized to 0–100, actions
are 1 (left) and 2 (right), maximum horizon is 200).
Fig. 6 (left) shows that return (number of steps
the CartPole is kept upright) improves on average
across various LLMs over 100 episodes (where
the first 100 are generated by random exploration).
Fig. 6 (right) shows the evolution of trajectories
over episodes of d3, demonstrating that it discovers oscillatory behaviors to keep the CartPole upright.

0 50

Goal reached

Goal -

State (y)

State (x)

State (z)

Episode resets

Steps

Reward signal (online)
Online in-context pushing

t = 0

St
at

e
sp

ac
e

Fig. 7: LLMs can in-context react to sparse reward signals
online to encourage an end effector to reach a desired goal.

Online human-guided trajectory optimization.
LLMs can also react to sparse binary reward sig-
nals (e.g., subjectively provided by a human) to
adjust trajectories online. This is analogous to an
implementation of “clicker training” [81, 82] used
for training dogs, but instead applied to robots. In
this setup, at every time step (2s), the robot exe-
cutes an action corresponding to a movement of its
end-effector in a particular direction. The human
observes the action and chooses whether to give a
reward (i.e., by using the clicker) to encourage or discourage similar behaviors. Episodes reset after 30
seconds, and the first two episodes are generated by random exploration. The (reward, state, action) tuples
are added as in-context examples (with negative examples followed by positives, and an equal number of
each) to generate the next action based on the current state. An example context format is given in the
Appendix. As shown in Fig. 7, applying LLMs’ sequence improvement capabilities in this way enables a
human to guide the robot to push an object.

7 Discussion

We are excited about the opportunities of LLMs as pattern machines for robotics—from reasoning and
extrapolating complex patterns as a prior for control, to online optimization of closed-loop policies via
sequence improvement. These capabilities present several implications, including (i) perspectives on the
role of language pre-training for end-to-end robot learning models [31, 32], and (ii) in-context learning of
arbitrary patterns as a driving mechanism for policy improvement. LLMs also show promise for mixed
autonomy settings—e.g., real-time pattern extrapolation for assistive teleoperation. We expect many of these
abilities to continue improving as large models expand from learning patterns within language-only datasets
to multimodal domains (e.g., images, videos). While this work investigates in-context generalization on
fairly simple settings without additional data collection or model training, these capabilities presumably
may be significantly improved via domain-specific objectives and finetuning [83, 84, 64, 65, 42].

Limitations & Future Work. Today, the inference costs (and monetary costs) of using LLMs in the control
loop are quite high. Predicting the next token for every sequence, e.g., every dimension of every time step
in a trajectory, involves querying an LLM. State-action spaces which are higher dimensional and/or greater
precision also result in longer representations, and thereby the extent to which they can be extrapolated or
sequence optimized is bounded by the context length of models. These limitations may prevent deploying
these models on more complex tasks in practice; however, they may be partially mitigated by incorporating
mechanisms like external memory, and by current efforts to drive improvements in LLM quantization [85]
and inference efficiency [86]. An additional limitation lies in the fact that, for best performance, some
care must be taken to represent patterns with consistent tokenization (which requires knowledge of the
model’s tokenization scheme). Finally, as with any other language-only model, LLM-based control may (i)
be unpredictable, and (ii) lack visual/physical grounding; thus, it is not currently suitable for application
outside of constrained lab settings. We leave the exploration of these important topics for future work.

8

Acknowledgments

The authors would like to acknowledge Jie Tan, Peng Xu, Carolina Parada, Alexander Herzog, Jensen Gao,
Joey Hejna, and Megha Srivastava for valuable feedback and discussions.

References
[1] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought prompting elicits

reasoning in large language models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[2] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot reasoners. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[3] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi,
D. Zhou, et al. Challenging BIG-Bench tasks and whether chain-of-thought can solve them. arXiv:2210.09261,
2022.

[4] A. Creswell, M. Shanahan, and I. Higgins. Selection-Inference: Exploiting large language models for interpretable
logical reasoning. arXiv:2205.09712, 2022.

[5] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil, I. Schlag,
T. Gutman-Solo, et al. Solving quantitative reasoning problems with language models. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[6] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, et al. Do as I can, not as I say: Grounding language in robotic affordances. In Conference on Robot
Learning (CoRL), 2022.

[7] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Extracting actionable
knowledge for embodied agents. arXiv:2201.07207, 2022.

[8] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh. Translating natural language to planning goals with
large-language models. arXiv:2302.05128, 2023.

[9] Y. Ding, X. Zhang, C. Paxton, and S. Zhang. Task and motion planning with large language models for object
rearrangement. arXiv:2303.06247, 2023.

[10] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. LLM+P: Empowering large language
models with optimal planning proficiency. arXiv:2304.11477, 2023.

[11] E. Zelikman, Q. Huang, G. Poesia, N. D. Goodman, and N. Haber. Parsel: A (de-) compositional framework for
algorithmic reasoning with language models. arXiv:2212.10561, 2023.

[12] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2Motion: From natural language instructions to
feasible plans. arXiv:2303.12153, 2023.

[13] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as Policies: Language
model programs for embodied control. In International Conference on Robotics and Automation (ICRA), 2023.

[14] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg. ProgPrompt:
Generating Situated Robot Task Plans using Large Language Models. In International Conference on Robotics
and Automation (ICRA), 2023.

[15] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward Design with Language Models. In International
Conference on Learning Representations (ICLR), 2023.

[16] H. Hu and D. Sadigh. Language Instructed Reinforcement Learning for Human-AI Coordination. In International
Conference on Machine Learning (ICML), 2023.

[17] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and T. Funkhouser. TidyBot:
Personalized Robot Assistance with Large Language Models. In International Conference on Intelligent Robots
and Systems (IROS), 2023.

[18] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen. What Makes Good In-Context Examples for GPT-3.
In Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and
Integration for Deep Learning Architectures, 2021.

[19] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before use: Improving few-shot performance of
language models. In International Conference on Machine Learning (ICML), 2021.

9

[20] F. Chollet. On the measure of intelligence. arXiv:1911.01547, 2019.

[21] S. Ferré. First Steps of an Approach to the ARC Challenge based on Descriptive Grid Models and the Minimum
Description Length Principle. arXiv:2112.00848, 2021.

[22] Y. Xu, E. B. Khalil, and S. Sanner. Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus.
In AAAI Conference on Artificial Intelligence, 2022.

[23] J. Ainooson, D. Sanyal, J. P. Michelson, Y. Yang, and M. Kunda. An approach for solving tasks on the Abstract
Reasoning Corpus. arXiv:2302.09425, 2023.

[24] S. Alford. A Neurosymbolic Approach to Abstraction and Reasoning. PhD thesis, Massachusetts Institute of
Technology, 2021.

[25] R. Assouel, P. Rodriguez, P. Taslakian, D. Vazquez, and Y. Bengio. Object-centric Compositional Imagination for
Visual Abstract Reasoning. In ICLR Workshop on the Elements of Reasoning: Objects, Structure and Causality,
2022.

[26] A. Moskvichev, V. V. Odouard, and M. Mitchell. The ConceptARC Benchmark: Evaluating Understanding and
Generalization in the ARC Domain. arXiv:2305.07141, 2023.

[27] V. Kolev, B. Georgiev, and S. Penkov. Neural abstract reasoner. In 4th Knowledge Representation and Reasoning
Meets Machine Learning Workshop (KR2ML) at NeurIPS, 2020.

[28] T. Paparaju. ARC Competition : EDA + PyTorch CNN. https://www.kaggle.com/code/tarunpaparaju/
arc-competition-eda-pytorch-cnn, 2022. Accessed: 2023-05-30.

[29] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer. Rethinking the Role
of Demonstrations: What Makes In-Context Learning Work? In Conference on Empirical Methods in Natural
Language Processing, 2022.

[30] J. Pan, T. Gao, H. Chen, and D. Chen. What In-Context Learning “Learns” In-Context: Disentangling Task
Recognition and Task Learning. In Findings of the Association for Computational Linguistics, 2023.

[31] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Pretrained transformers as universal computation engines. In AAAI
Conference on Artificial Intelligence, 2022.

[32] M. Reid, Y. Yamada, and S. S. Gu. Can wikipedia help offline reinforcement learning? In International
Conference on Learning Representations (ICLR), 2023.

[33] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog,
J. Hsu, et al. RT-1: Robotics transformer for real-world control at scale. In Proceedings of Robotics: Science and
Systems (RSS), 2022.

[34] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut,
E. Brunskill, et al. On the opportunities and risks of foundation models. arXiv:2108.07258, 2021.

[35] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3M: A universal visual representation for robot
manipulation. In Conference on Robot Learning (CoRL), 2022.

[36] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot learning with masked
visual pre-training. In Conference on Robot Learning (CoRL), 2023.

[37] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh, and P. Liang. Language-Driven Representation
Learning for Robotics. In Proceedings of Robotics: Science and Systems (RSS), 2023.

[38] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

[39] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[40] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research
(JMLR), 21(1):5485–5551, 2020.

[41] D. Hendrycks, X. Liu, E. Wallace, A. Dziedzic, R. Krishnan, and D. Song. Pretrained transformers improve
out-of-distribution robustness. In Annual Meeting of the Association for Computational Linguistics, 2020.

10

https://www.kaggle.com/code/tarunpaparaju/arc-competition-eda-pytorch-cnn
https://www.kaggle.com/code/tarunpaparaju/arc-competition-eda-pytorch-cnn

[42] T. Dinh, Y. Zeng, R. Zhang, Z. Lin, M. Gira, S. Rajput, J.-y. Sohn, D. Papailiopoulos, and K. Lee. LIFT:
Language-interfaced fine-tuning for non-language machine learning tasks. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[43] S. Chan, A. Santoro, A. Lampinen, J. Wang, A. Singh, P. Richemond, J. McClelland, and F. Hill. Data
distributional properties drive emergent in-context learning in transformers. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[44] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What can transformers learn in-context? a case study of simple
function classes. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[45] E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is in-context learning?
investigations with linear models. In International Conference on Learning Representations (ICLR), 2022.

[46] J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and M. Vladymyrov.
Transformers learn in-context by gradient descent. In International Conference on Machine Learning (ICML),
2023.

[47] L. Kirsch, J. Harrison, J. Sohl-Dickstein, and L. Metz. General-purpose in-context learning by meta-learning
transformers. In Workshop on Meta-Learning at NeurIPS, 2022.

[48] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explanation of in-context learning as implicit bayesian
inference. In International Conference on Learning Representations (ICLR), 2022.

[49] X. Wang, W. Zhu, and W. Y. Wang. Large language models are implicitly topic models: Explaining and finding
good demonstrations for in-context learning. arXiv:2301.11916, 2023.

[50] S. C. Chan, I. Dasgupta, J. Kim, D. Kumaran, A. K. Lampinen, and F. Hill. Transformers generalize differently
from information stored in context vs in weights. arXiv:2210.05675, 2022.

[51] R. N. Shepard and J.-J. Chang. Stimulus generalization in the learning of classifications. Journal of Experimental
Psychology, 65(1):94, 1963.

[52] F. G. Ashby and J. T. Townsend. Varieties of perceptual independence. Psychological Review, 93(2):154, 1986.

[53] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
et al. Training language models to follow instructions with human feedback. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[54] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
et al. Evaluating large language models trained on code. arXiv:2107.03374, 2021.

[55] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, et al. PaLM: Scaling language modeling with pathways. arXiv:2204.02311, 2022.

[56] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey, Z. Chen, et al.
PaLM 2 Technical Report. arXiv:2305.10403, 2023.

[57] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar,
P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter. Inner Monologue: Embodied
Reasoning through Planning with Language Models. In Conference on Robot Learning (CoRL), 2022.

[58] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, J. Lee,
V. Vanhoucke, et al. Socratic Models: Composing zero-shot multimodal reasoning with language. In International
Conference on Learning Representations (ICLR), 2023.

[59] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su. LLM-Planner: Few-shot grounded
planning for embodied agents with large language models. arXiv:2212.04088, 2022.

[60] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence, I. Mordatch, S. Levine, K. Hausman, et al.
Grounded Decoding: Guiding text generation with grounded models for robot control. arXiv:2303.00855, 2023.

[61] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager: An Open-Ended
Embodied Agent with Large Language Models. arXiv:2305.16291, 2023.

[62] M. Laskin, L. Wang, J. Oh, E. Parisotto, S. Spencer, R. Steigerwald, D. Strouse, S. Hansen, A. Filos, E. Brooks,
et al. In-context reinforcement learning with algorithm distillation. In International Conference on Learning
Representations (ICLR), 2023.

11

[63] M. Xu, Y. Shen, S. Zhang, Y. Lu, D. Zhao, J. Tenenbaum, and C. Gan. Prompting decision transformer for
few-shot policy generalization. In International Conference on Machine Learning (ICML), 2022.

[64] Y. Zhang, D. Huang, B. Liu, S. Tang, Y. Lu, L. Chen, L. Bai, Q. Chu, N. Yu, and W. Ouyang. MotionGPT:
Finetuned LLMs are General-Purpose Motion Generators. arXiv:2306.10900, 2023.

[65] J. N. Lee, A. Xie, A. Pacchiano, Y. Chandak, C. Finn, O. Nachum, and E. Brunskill. Supervised Pretraining Can
Learn In-Context Reinforcemenet Learning. arXiv:2306.14892, 2023.

[66] T. Webb, K. J. Holyoak, and H. Lu. Emergent analogical reasoning in large language models. Nature Human
Behaviour, pages 1–16, 2023.

[67] E. Brooks, L. Walls, R. L. Lewis, and S. Singh. In-Context Policy Iteration. arXiv:2210.03821, 2022.

[68] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[69] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, Q. Le, and E. Chi.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. In International Conference
on Learning Representations (ICLR), 2023.

[70] Abstraction and Rasoning Challenge 1st place solution. https://www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/discussion/154597, 2020.

[71] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. RoFormer: Enhanced Transformer with Rotary Position
Embedding. arXiv:2104.09864, 2021.

[72] Y. Xu, W. Li, P. Vaezipoor, S. Sanner, and E. B. Khalil. Llms and the abstraction and reasoning corpus: Successes,
failures, and the importance of object-based representations. arXiv:2305.18354, 2023.

[73] R. Wang, E. Zelikman, G. Poesia, Y. Pu, N. Haber, and N. D. Goodman. Hypothesis search: Inductive reasoning
with language models. arXiv:2309.05660, 2023.

[74] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta,
A. Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. Transactions on Machine Learning Research (TMLR), 2022.

[75] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword units. In Annual
Meeting of the Association for Computational Linguistics, 2015.

[76] T. Kudo and J. Richardson. SentencePiece: A simple and language independent subword tokenizer and
detokenizer for neural text processing. In Conference on Empirical Methods in Natural Language Processing,
2018.

[77] D. Hupkes, V. Dankers, M. Mul, and E. Bruni. Compositionality decomposed: How do neural networks
generalise? Journal of Artificial Intelligence Research (JAIR), 2020.

[78] Z. Allen-Zhu and Y. Li. Physics of Language Models: Part 1, Context-Free Grammar. arXiv:2305.13673, 2023.

[79] E. Jang. Just Ask for Generalization. In https://evjang.com/2021/10/23/generalization.html, 2022.

[80] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch. Decision
transformer: Reinforcement learning via sequence modeling. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[81] F. Kaplan, P.-Y. Oudeyer, E. Kubinyi, and A. Miklósi. Robotic clicker training. Robotics and Autonomous
Systems, 38(3-4):197–206, 2002.

[82] C. Chiandetti, S. Avella, E. Fongaro, and F. Cerri. Can clicker training facilitate conditioning in dogs? Applied
Animal Behaviour Science, 184:109–116, 2016.

[83] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang, E. Akyürek, A. Anandkumar, et al.
Pre-trained language models for interactive decision-making. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[84] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu,
et al. PaLM-E: An embodied multimodal language model. arXiv:2303.03378, 2023.

[85] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8bert: Quantized 8bit bert. In Fifth Workshop on Energy
Efficient Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), pages 36–39. IEEE, 2019.

12

https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597

[86] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact attention with
io-awareness. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[87] F. Paischer, T. Adler, V. Patil, A. Bitto-Nemling, M. Holzleitner, S. Lehner, H. Eghbal-Zadeh, and S. Hochreiter.
History compression via language models in reinforcement learning. In International Conference on Machine
Learning (ICML), 2022.

[88] K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, and J. B.
Tenenbaum. DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning. In
ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), 2021.

[89] K. Ellis, L. Morales, M. Sablé-Meyer, A. Solar-Lezama, and J. Tenenbaum. Learning libraries of subroutines for
neurally–guided bayesian program induction. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

[90] M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mansinghka. Gen: A General-Purpose Proba-
bilistic Programming System with Programmable Inference. In ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI), 2019.

13

A Sequence Transformation

A.1 Abstraction and Reasoning Corpus: Additional Details and Examples

In Section 4 of the main paper, we describe how ARC problems require reasoning about a range of different
types of pattern operations—infilling, counting, translating and rotating shapes, and more. In Fig. 8, we
show sample problems among the 800 ARC problems for which text-davinci-003 correctly generalizes
the pattern shown in a few train examples to a test example. In Fig. 9, we show sample problems that are
not correctly solved by text-davinci-003. In Listing 1, we show an example context for an ARC problem
encoded as integers.

Input Output Input Output Input Output Input Output Input Output

Train 
Examples

Test 
Example

Fig. 8: Sample ARC problems that are correctly solved by text-davinci-003.

Input Output Input Output Input Output Input Output Input Output

Train 
Examples

Test 
Example

Fig. 9: Sample ARC problems that are not correctly solved by text-davinci-003.

input:
0, 0, 0, 0
0, 3, 4, 0
0, 7, 6, 0
0, 0, 0, 0
output:
3, 0, 0, 4
0, 0, 0, 4
0, 0, 0, 0
0, 0, 0, 0
7, 0, 0, 6

input:
0, 0, 0, 0
0, 5, 6, 0

14

0, 8, 3, 0
0, 0, 0, 0
output:

Listing 1: Example context format for an ARC problem (only one input-output example is shown, along with a query
input.

A.2 Patterns over Low-Resolution Images

In Fig. 10, we show an example in-context grasp detector which outputs target coordinates in a downsampled
image, given 6 in-context examples, as well as an example of a simple forward dynamics model predicting
spatial rearrangement of a red bowl into a green plate, given 9 in-context examples. As LLMs progress on
the benchmarks discussed in Section 4, they may become more robust and precise at performing such tasks.

input:

 123 61 62 93 146 92 67 67 92 93

...

 124 87 62 62 86 91 86 86 87 92

 123 43 44 43 87 87 91 61 87 87

 123 69 44 68 112 112 92 92 93 93

 118 123 93 118 117 118 87 92 93 93

output:

 3 6

input:

 63 47 47 63 77 77 61 57 58 62

...

 63 42 41 42 42 42 37 37 37 42

 63 46 46 46 46 46 37 37 41 42

 63 62 62 62 62 62 62 62 58 42

 63 63 62 62 62 62 62 62 62 62

output:

 63 47 47 63 77 77 61 57 58 62

...

 63 37 37 42 42 42 42 42 42 42

 63 53 53 57 46 42 42 42 42 42

 63 58 58 62 46 62 62 62 46 42

 63 63 63 63 62 62 62 62 62 62

Input Input (Low-Res) Input & Output (Tokens) Output (Rendered)

Fig. 10: Example LLM prediction as an in-context grasp detector (top) and a simple forward dynamics model (bottom).

A.3 Token Invariance for New Token Embeddings

In Section 4, we have argued that LLMs are, to a certain extent, invariant to the choice of alphabet a pattern
is encoded with, in line with prior work on mappings from semantically meaningful tokens to random
tokens in a pre-trained language model [29, 30, 87]. Here, we present an experiment that investigates
token invariance even further by introducing new token embedding vectors the model has not seen during
training.

We sample K many new embedding vectors as Gaussian samples using the mean and 1 or 2 standard
deviations of the original LLM embedding matrix statistics in each of embedding vector dimension. This
way, we create a new token embedding matrix, that mainly consists of the newly sampled token embeddings
the model has not seen during training. Additionally, we add embeddings from the original matrix that
correspond to separating tokens (comma, period) to build the input prompts. Although the model has
never seen the new embedding vectors during training, we can feed them into the transformer as input and
compute cosine similarities at the output analogously to how the original embedding matrix is treated.

Fig. 11 shows the success rate of correctly choosing the target token in a single-token prediction task when
using the newly sampled embeddings in comparison with the native embedding matrix. The tasks we are
considering are of the form (1, 1, 2) ↦→ 2 or (1, 2, 2) ↦→ 1. We provide in-context examples
to build a prompt of the form “1, 2, 2, 1 \n 3, 4, 4, 3 \n 5, 6, 6, 5 \n 7, 8, 8,” where
the correct prediction should be “7” in this example. Note that the numbers “1”, “2” etc. are randomly
mapped to the newly sampled token embeddings for indexing purposes and in particular do not enter the
LLM. As one can see in Fig. 11, for 1σ noise sampling, the model is able to solve the task with the new
embeddings with similar performance as with the native embeddings. In case of 2σ, the performance
degrades. Although these are relatively simple single-token prediction tasks, this experiment shows that
LLMs show pattern recognition abilities even when prompted with out-of-distribution continuous input
embeddings. The results are obtained with K=100, averaged over 3 random seeds when sampling the
token embeddings, 30 instances each, and a context length of 5, 10, or 20 examples. The LLM is the 8B
parameter variant of [55].

15

Fig. 11: Token-invariance experiment with newly sampled token embeddings the model has not seen during training.
Shown are success rates when using randomly sampled token embeddings from the native embedding matrix, or newly
sampled embeddings.

A.4 PCFG Benchmark: Additional Details and Ablations

Our PCFG benchmark is a procedurally generated, adjustable-difficulty benchmark for measuring abstract
sequence transformation capabilities in LLMs, based on the PCFG from [77]. In Table 3, we show
illustrations of the primitive operations in the PCFG that can be applied on one or two sequences of
tokens. In Table 4, we show examples of two transformations (of different complexities) from our
benchmark, which are composed of the primitive operations. In Table 5, we show independent ablations of
sequence length (number of tokens) k and complexity (number of rules) w in the sequence transformations,
illustrating the way in which the solve rate decreases as either factor increases. In Listing 2, we show an
example context for a PCFG problem on integer sequences.

copy

Input Output

reverse

shift

repeat

echo

swap

Unary Functions Binary Functions

append

prepend

remove_first

remove_second

Input OutputName Name

Tab. 3: Illustrations depicting the unary and binary operators from Hupkes et al. 2020, which we use for our PCFG
benchmark.

6 7 7 8 1 5 9 8 9, 1 5 9 8 9 7 7 6 6; 4 3 0 3 5 0 2 3 8; 5 0 2 3 8 3 3 4
4; 1 3 3 3 7 0 1 9 9,

Listing 2: Example context format for a PCFG problem (two input-output examples are shown, along with a query
input).

16

remove_second(swap(,),)s1 s2 s3
5 3 0 53

7 6 1 6 7

Example Inputs Example Outputs

echo(copy(swap(swap(
prepend(remove_second(
swap(echo()),),)s1s2 s3s4 s5s6s7s8s9s10

6 7 7 8 1 5 9 8 9 1 5 9 8 9 7 7 6 6

4 3 0 3 5 0 2 3 8 5 0 2 3 8 3 3 4 4

Function

Tab. 4: Illustrations of transformations in our PCFG benchmark. Row 1 shows a transformation composed of w=2
operations over k=3 tokens, and row 2 shows a transformation composed of w=8 operations over k=10 tokens,
respectively. For each transformation function, we show two example inputs and the corresponding outputs.

text-davinci-003

w

k 0 1 3 7 15 31

1 100 - - - - -
2 100 100 - - - -
4 100 100 100 - - -
8 100 99 95 92 - -

16 100 86 59 4 47 -
32 100 74 32 14 12 22

text-davinci-003 w/ random A
w

k 0 1 3 7 15 31

1 92 - - - - -
2 91 92 - - - -
4 93 92 93 - - -
8 88 82 62 49 - -

16 84 64 32 17 22 -
32 83 40 13 8 9 12

PaLM

w

k 0 1 3 7 15 31

1 100 - - - - -
2 100 100 - - - -
4 100 100 100 - - -
8 100 89 74 82 - -

16 100 78 57 51 58 -
32 100 68 23 18 22 34

Tab. 5: Solve rate (%) for PCFG across number of tokens k and number of rules w for different models.

A.5 PCFG Benchmark: Program Synthesis

We have run DreamCoder [88] on our PCFG benchmark to contextualize the hardness of the task, and
present the results in Table 6. We ran DreamCoder with two different sets of initial primitives:

• PCFG Ops. In this version, we provide DreamCoder with an initial set of primitives that corresponds
to the exact set of unary and binary functions (from [77]) that the PCFG benchmark is based on: copy,
reverse, shift, swap, repeat, echo, append, prepend, remove first, remove second. We also
include a slicing operator slice, length, and integers 1–10.

• List Ops. In this version, we provide DreamCoder with a set of list primitives: length, empty, singleton,
range, append, map, reduce, true, not, and, or, sort, add, negate, equal, reverse, index, filter,
slice. These primitives are not specially designed for PCFG and are based on those used in [88, 89].

In both cases, the provided primitives are sufficient to define the transformations in the PCFG benchmark.
For each (k,w) pair in Table 6, we train on 100 task instances and report the number of tasks which get
solved (i.e. a correct program that satisfies the training examples is discovered). We ran DreamCoder
for 4 iterations and use the default hyperparameters and timeout. As we would expect, the version of
DreamCoder with “oracle” access to the PCFG operations performs well, in several cases matching or
exceeding the performance of LLMs. This is especially true when the search problem is easier (i.e. when
number of functions w is smaller). The version of DreamCoder with access to list primitives is also able to
solve many of the tasks with small values of w, but there is a sizeable dropoff as the complexity of the tasks
increases. These results help to contextualize the difficulty of the PCFG benchmark when given access to
different amounts of domain-specific information. We also note that we would expect brute-force search
over the PCFG operators to eventually solve these tasks. Doubling the computation time budget for the
version with oracle access to the PCFG operators leads to increased success rates (k=8, w=3) increases
from 80→84; (k=16, w=7) increases from 33→41.

17

DreamCoder w/ PCFG Ops.

w

k 0 1 3 7 15 31

1 100 - - - - -
2 100 100 - - - -
4 100 100 98 - - -
8 100 100 80 58 - -

16 100 98 64 38 38 -
32 100 96 41 24 26 37

DreamCoder w/ List Ops.

w

k 0 1 3 7 15 31

1 100 - - - - -
2 100 100 - - - -
4 100 85 51 - - -
8 100 81 23 25 - -

16 100 63 26 4 17 -
32 100 66 6 3 5 11

Tab. 6: Solve rate (%) for PCFG across number of tokens k and number of rules w for DreamCoder initialized with
two different sets of primitives.

B Sequence Completion

B.1 Sinusoids: Structure Learning Comparison

While the sinusoid extrapolation could be easily performed with standard regression techniques, we
contextualize the task with another method that has no specific prior knowledge of the function being
extrapolated. We include the structure learning baseline from [90], implemented with Gen [90]. This
method uses a Gaussian Process with an inferred covariance kernel to model time series data. The
covariance kernel is inferred using MCMC sampling over a PCFG of covariance functions (e.g. squared
exponential, periodic). We run the algorithm for 100 iterations and sample from the resulting GP, as shown
below in Fig. 12. The training data is generally fit with low error. However, the quality of the completion
differs for the various functions; the sine wave is generally extrapolated well whereas the sinusoids yield
high variance samples. Similar to the LLMs, greater context generally yields lower error completions. Note
however that the outputs of the structure learning algorithm are high-variance by design, and there are
multiple ways to utilize the outputs of the algorithm. We also note that [90] was tested on a larger set of
functions than those we look at here. Though not the goal of our work, it would be interesting future work
to evaluate how LLMs extrapolate patterns generated by a wider array of function classes. We also refer to
[42] for an extensive comparison of language models to baselines on regression tasks when formulated
with a natural language interface as well as a study on the effects of fine-tuning.

Fig. 12: The structure learning approach (g) extrapolates various functions y = a · sin(bx) (top row),
y= ax ·sin(bx) (middle row), and y= a

2x sin(bx) (bottom row) with different degrees of error. More
context also generally helps prediction accuracy (light vs. dark).

B.2 Table Sweeping: Additional Details

In Section 5 of the main paper, we demonstrate how sequence completion capabilities can be applied to
continuation of partial motions, such as sweeping a table. In Fig. 13, we show the average DTW distance
between predicted and ground truth trajectory completions in the Table Sweeping task, given 66% of
the trajectory as context, over 30 trials. Each full trajectory consists of 9 sweeping motions across a
table. We compare completions made by various language models. We find that larger models generally

18

Fig. 13: LLM trajectory predictions Table Sweeping improve with larger models.

perform better; text-davinci-003 performs the best, and also has the lowest variance. On our website, we
show qualitative examples of text-davinci-003 completing a table sweeping motion given by a human
demonstration.

B.3 Whiteboard Drawing: Qualitative Results

In Fig. 14, we show example completions for three different loop styles by text-davinci-003 over three trials.
The completions generally match the overall shape shown in the two loops given as context. However, the
results also qualitatively illustrate that fine motion patterns can be challenging to predict precisely.

Fig. 14: Sampled drawings produced by performing an in-context completion (of one loop, highlighted in green) given
a scripted demonstration of two loops. Each row is a different loop style (narrow, medium, wide), and each column is a
different trial. Results are shown for text-davinci-003.

C Sequence Improvement

C.1 Marker in Cup: Additional Details

In this task, we use LLMs to generate improved trajectories (according to a reward metric) given a context
of trajectories that have increasing returns. For this task, states are Cartesian (x, y, z) positions, with each
dimension normalized between 0 and 200, trajectories are series of states that can be executed via position
control, and the return of a trajectory is proportional to the negative distance to the goal (cup) plus an offset.
We form the trajectories in the context as follows: we take a full trajectory which attains a reward of 100
and construct trajectories that stop moving 20%, 40%, 60%, and 80% of the way to the goal (such that all
trajectories are 50 timesteps). We condition the LLM to generate a 100-reward trajectory by prompting it
with “100: start state”. An excerpt of an example context is shown in Listing 3. The results in Figure 5
from the main paper are over 11 trials, each with a different goal position.

71: 104 83 123, 104 83 123, ...
72: 104 83 123, 104 83 123, ...
80: 104 83 123, 104 83 123, ...

19

90: 104 83 123, 104 83 123, 104 83 123, 104 83 123, 104 83 123, 104 83
123, 104 83 123, 104 83 123, 104 83 123, 104 83 123, 104 83 123, 104
83 123, 104 83 123, 104 83 123, 104 83 123, 105 83 123, 105 83 123,
106 83 123, 106 83 123, 107 83 123, 108 83 122, 109 83 122, 110 83
122, 111 83 121, 112 82 120, 113 82 119, 113 82 118, 114 81 118, 115
81 117, 115 81 116, 115 80 115, 116 80 114, 116 80 113, 117 79 112,
117 79 111, 118 79 110, 118 78 109, 118 78 109, 118 78 109, 118 78
109, 118 78 109, 118 78 109, 118 78 109, 118 78 109, 118 78 109, 118
78 109, 118 78 109, 118 78 109, 118 78 109, 118 78 109

100: 104 83 123

Listing 3: Example context (excerpt) for a Marker in Cup, illustrating the (reward: state, state, state...) format..

C.2 Grid: Additional Details

In the Grid environment, observations are x,y positions represented by integers 0–8 for each coordinate.
There are five possible actions (1, 2, 3, 4, 5) corresponding to (right, up, left, down) movement by one space
and no-op. A goal is randomly placed in the grid. The agent (which is initialized at the center position)
receives a reward of 100 - 10 * distance from the goal to the agent’s final position. Episodes terminate
after 20 time steps. For our experiments, we limit the context length to 1024 tokens. At each iteration, the
LLMs is prompted to generate a trajectory with the maximum seen return from the buffer plus a randomly
selected offset of up to 20.

C.3 CartPole: Additional Details

We use a simplified version of the CartPole enviornment in OpenAI Gym. Observations are two-dimensional
(corresponding to pole angle and velocity, normalized to 0-100) and the maximum time horizon is 200.
There are two possible actions (1, 2) corresponding to (left, right), and the agent gets +1 reward for every
time step that the CartPole is kept upright. In Listing 4, we show an example context excerpt for CartPole,
where a trajectory history is appended with an encoding of the current trajectory.
52: 40 50, 1, 40 54, 2, 41 49, 1, 41 54, 1, ...
60: 45 50, 2, 45 45, 1, 44 50, 2, 44 45, 1, ...
75: 52 50, 1, 52 55, 2, 53 50, 2, 53 46, 2, ...
98: 44 50, 1, 44 55, 2, 45 50,

Listing 4: Example context format for a CartPole run. A trajectory history (with each trajectory in the format reward:
observation, action, observation, action ...) is followed by an encoding of the current trajectory, up to the current
observation.

Below, we discuss some additional considerations for forming the context from the trajectory history.

Context Length. When context length is longer, more trajectories can fit in the context (which yields more
in-context “training data” that could potentially be used to generalize to higher rewards, but also requires
the LLM to attend over more tokens). Context length is a limiting factor of using current LLMs in our
trajectory improvement setting: the number of tokens required to represent a trajectory history scales with
the observation dimensionality, action dimensionality, time horizon, and number of trajectories. For our
CartPole experiments, we limit the context to 1024 tokens (which is the maximum context length for
text-ada-001, text-babbage-001, and text-curie-001 models).

Action Representation. In initial experiments, we found that the tokens used to represent the action space
(e.g. “0” for left, “1” for right) can seemingly affect the ability of an LLM to improve trajectories in the
online setting. For example, we observed that if “0” is included in the action space, LLMs may “default”
to sampling “0” (likely due to token-specific priors). Therefore, for our experiments, we use 1-indexed
integer action representations, which appears to alleviate the bias towards choosing a particular action. The
fact that action representation can sometimes affect performance complements our observations in the
Sequence Transformation section, in which we find that token mapping invariance holds to some extent,
but not entirely.

C.4 Clicker Training: Additional Details

In our clicker training example, the observation consists of the end-effector position and the approximate
object position as determined by visual input, with the (x,y,z) values normalized between 0 and 300.

20

Actions correspond to movements of the end-effector (normalized between 0 and 100, such that 50,50,50
represents no movement). A sample context is given in Listing 5.

0: 80 ,49 ,138 ,109 ,54 ,133; 45 ,44 ,55
0: 82 ,32 ,155 ,109 ,54 ,133; 48 ,59 ,48
0: 82 ,32 ,155 ,109 ,54 ,133; 48 ,59 ,48
1: 88 ,31 ,154 ,109 ,54 ,133; 45 ,54 ,43
1: 85 ,36 ,146 ,109 ,54 ,133; 57 ,54 ,46
1: 93 ,40 ,142 ,109 ,54 ,133; 44 ,52 ,43
1: ...

Listing 5: Example context format for clicker training. (Reward, observation, action) tuples are ordered by reward
(with a click corresponding to a reward of 1) with an equal number of reward 0 and reward 1 transitions represented in
the context.

21

	Introduction
	Related Work
	Language Models as General Pattern Machines
	Sequence Transformation
	Sequence Completion
	Sequence Improvement
	Discussion
	Sequence Transformation
	Abstraction and Reasoning Corpus: Additional Details and Examples
	Patterns over Low-Resolution Images
	Token Invariance for New Token Embeddings
	PCFG Benchmark: Additional Details and Ablations
	PCFG Benchmark: Program Synthesis

	Sequence Completion
	Sinusoids: Structure Learning Comparison
	Table Sweeping: Additional Details
	Whiteboard Drawing: Qualitative Results

	Sequence Improvement
	Marker in Cup: Additional Details
	Grid: Additional Details
	CartPole: Additional Details
	Clicker Training: Additional Details

