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Abstract

A continuous attractor network is one of the most common theoretical framework for study-
ing a wide range of neural computations in the brain. Many previous approaches have at-
tempted to identify continuous attractor systems by investigating the state-space structure
of population neural activity. However, establishing the patterns of connectivity for relat-
ing the structure of attractor networks to their function is still an open problem. In this
work, we propose the use of graph neural networks combined with the structure learning for
inferring the recurrent connectivity of a ring attractor network and demonstrate that the
developed model greatly improves the quality of circuit inference as well as the prediction
of neural responses compared to baseline inference algorithms.
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1. Introduction

Continuous attractor networks (CAN) have become some of the most influential circuit
models in systems neuroscience. A CAN defined by a symmetric recurrent connectivity
leads to spontaneous and stable neural activity patterns and the stable states can be used
to represent numerous external variables such as the orientation of visual stimuli (Ben-
Yishai et al., 1995), head direction (Zhang, 1996), eye position (Seung, 1996), and spatial
location (Fuhs and Touretzky, 2006; Burak and Fiete, 2009). The CAN’s wide range of
utility has spurred several computational studies to find evidence of attractor dynamics in
the brain.

The classic approach for identification of continuous attractors is to probe for the in-
variance of correlation structures in neural population activity (Taube et al., 1990; Yoga-
narasimha et al., 2006; Fyhn et al., 2007; Yoon et al., 2013; Gardner et al., 2019; Trettel
et al., 2019). The invariance is an essential condition because the states of the system
are internally generated by strong recurrent connections, which constrain the activity of
neurons to form a certain coactivation pattern; thus, pairwise cell-cell relationships should
remain invariant across time, environmental conditions, and behavioral states, independent
of external sensory inputs (Burak and Fiete, 2009). Another recent attempt to address this
challenge has been made to directly characterize the full state-space of the population re-
sponses and visualize them by topological data analysis (Low et al., 2018; Chaudhuri et al.,
2019; Rybakken et al., 2019; Gardner et al., 2022). The resulting topological structure of
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the attractor manifold provides the hints of an underlying circuit mechanism, and its in-
variance across the aforementioned external factors validates the main predictions of CAN
models.

Nevertheless, few approaches are more reliable for identifying CAN than directly mea-
suring the wiring diagrams of neural circuits. Hence, estimating the network connectivity
from large population recordings has also been a long-standing problem (Paninski et al.,
2003; Schneidman et al., 2006; Pillow et al., 2008). A fundamental challenge in circuit
inference is that the mapping from circuits to activity is not injective: many neural cir-
cuits can generate the same activity states (Das and Fiete, 2020; Powell et al., 2021; Curto
and Morrison, 2019). Moreover, several previous statistical models with strong parametric
assumptions limit their ability to recover direct synaptic connections; thus, the inferred con-
nectivity could be substantially different from the true connections, especially when neurons
are highly correlated (Das and Fiete, 2020).

Here, we take a new approach to inferring structural connectivity with no stringent
parametric assumptions based on neural spike data generated from a strongly recurrent ring
attractor network. We adopt the framework of graph neural networks (GNNs) (Hamilton
et al., 2017; Bronstein et al., 2017; Battaglia et al., 2018) combined with the structure
learning module, an architectural design strategy that relies on learning the underlying
circuitry jointly with predicting multi-neuronal spike responses. We show that this approach
can be significantly more expressive than statistically sophisticated inference algorithms.
Furthermore, we propose the use of an iterative neural message-passing scheme (Gilmer
et al., 2017) that is closely matched to the generative nature of CAN. Taken together, these
ideas suggest new possibilities for less biased inference of recurrent neural circuits.

2. Methods

2.1. Generative Model

We consider a ring network of 100 neurons where the process of generating neural spikes is
by either a simple threshold-crossing or simulating an inhomogeneous Poisson process (Ap-
pendix A). The generative network model is designed to have rotation-invariant recurrent
connections with a local Mexican hat weight profile and exhibit spatially periodic activity
patterns drifting over time (Figure 1a)1. We record spikes from the network for 8 minutes
with a time step ∆t = 0.1 ms and represent the spike trains via x ∈ {0, 1}N×L, where N is
the number of neurons and L is the length of time steps (Figure 1a). The data is split into
80%, 10%, and 10% over time for training, validation and testing.

2.2. Inference Model

Structure learning module The goal of this module is to model the pairwise connection
strength wij given every pair of (xi,xj) where xi = (x1

i , . . . ,x
L
i ) denotes the spike train of

ith neuron. We apply a 1D convolution fConv1D with 10 kernels of size 200 2 and a stride
of 20 over each input spike train, vectorize the feature maps along time dimension, and use

1. This generative model is equivalent to the highly structured ring network in the strongest weight regime
by Das and Fiete (2020) when the scalar weight strength parameter r = 0.025.

2. The kernel size is set twice as long as the synaptic time constant (τ = 10 ms) of the generative model.
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Figure 1: Schematics of the proposed inference model. (a) Structure learning mod-
ule, (b) Spike prediction module.

a fully connected layer fout to get a reduced output embedding vector zi:

zi = fout (vec (fConv1D(xi))) (1)

Aside from these layers, we use batch normalization (Ioffe and Szegedy, 2015) placed after
ReLU activation function. We then concatenate every pair of (zi, zj) and apply a multilayer
perceptron (MLP) that has two hidden layers with 32 units to infer the strength of network
connectivity:

wij = MLP(zi ∥ zj) (2)

The resulting inferred weight matrixw ∈ RN×N is assumed to be symmetric and have no
self-loop. This constraint is weaker than the rotation-invariance of target recurrent weight
strengths. In simple terms, every neuron in the proposed inference model does not have
to share the same outgoing synaptic weights to all of the other neurons around the ring
network.

Spike prediction module The task of this module is to predict the spike activity x for
every neuron given the latent circuitry w:

pθ(x|w) =
T∏
t=1

pθ
(
xt+1|xt, . . . ,x1,w

)
(3)

where xt = (xt
1, . . . ,x

t
N ) represents the spike activity of all N neurons at time t. We

assume that the attractor dynamics can be implicitly learned by modeling instantaneous
neural spike rates λt+1 where Poisson(λt+1) = pθ

(
xt+1|xt, . . . ,x1,w

)
through the message-

passing operations:

h0
i,t = gemb

(
xt
i, . . . ,x

t−2τ/∆t+1
i

)
(4)

hk+1
i,t = ϕ

hk
i,t, h

0
i,t

∥∥∥∥∥∥
∑
j ̸=i

wij · ψ
(
hk
i,t ∥ hk

j,t

) (5)

log
(
λt+1
i

)
= gout

(
hK
i,t

)
(6)
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Figure 2: Quality of circuit inference using 4.8× 106 spikes from a strongly recur-
rent ring attractor network. (a) True Mexican hat-shaped connectivity weight (orange)
superimposed by the average inferred weight profile by GNN (blue). The inset at the bot-
tom right presents the inferred weight matrix Ŵ. The model performs inference on spike
data generated by threshold-crossing (top) and linear-nonlinear-poisson (bottom) models.
The followings are the quality of inference by (b) GLM, (c) seqNMF, and (d) TCA.

where h0
i,t is the initial embedding of the ith neuron’s spike history for the past τ

∆t(= 200)
steps at time t. At kth step of message passing, we compute the message sent from neuron
j to i through ψ and a function ϕ combines the sum of incoming messages weighted by
connection strength wij with the previous latent state hk

i,t to generate the updated neuronal

state hk+1
i,t . After K rounds of message passing, we use gout to read out the log-firing rate

from the output of the final propagation step (for our spike trains, K=1 was enough3). This
firing rate determines the rate of an inhomogeneous Poisson process that generates spikes
in neuron i at time t + 1. In this experiment, we use separate two-layer MLPs for ψ and
gout, a fully connected layer for gemb, and the gated recurrent unit is applied to ϕ.

2.3. Training

The training loss is the negative log-likelihood of the recorded population activity and the
objective is to predict the spike times accurately by minimizing the likelihood using the
Adam optimizer with a learning rate of 5×10−4, decayed by a factor of 0.5 every 50 epochs:

Θ∗,w = argmin
Θ

N∑
i=1

L∑
t=1

(
λti − xt

i log λ
t
i

)
(7)

where the parameters Θ are the weights of the structure learning and spike prediction
network modules, and w is the best inferred connectivity weight matrix.

3. Our task is not multi-step but single-step spike predictions because the spatially patterned neural re-
sponses are not driven by an external input but drift around the ring over time. One possible issue with
the single step prediction is that the inferred weights cannot have a considerable effect on short-term
dynamics. Meanwhile, a large number of message-passing iterations may reduce the effect of structure
learning module and for this reason we set K to 1.
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Table 1: Quality of spike prediction L and inference error ∆

generative model(→) threshold-crossing linear-nonlinear-poisson
inference model(↓) L ∆ L ∆

TCA - 0.7619 - 0.7612
seqNMF - 0.7885 - 0.7963
GLM 0.0409 0.2441 0.0430 0.4841
Ours 0.0322 0.0614 0.0334 0.0487

3. Experiments

To evaluate the quality of inferred connectivity, the outgoing weight profiles w are realigned
by minimizing the gap (ℓ1-norm) between the estimated weights of all neurons. We then
compute the average weight profile w̄ and rescale w by minimizing ℓ1 deviation between w̄
and W to match the scale of the true weights W. It is necessary because the message func-
tion ψ in Equation (5) may compensate for an arbitrary scale of w. Notably, the estimated
bias during rescaling is an order of magnitude smaller than the rescaling factor, which sug-
gests that the type of inferred connectivity (i.e. excitatory or inhibitory interaction) is in
good agreement with the ground truth.

We next use the following two metrics to compare the proposed approach to three
baselines4: i) the normalized inference error, computed as ∆ = ∥W − Ŵ∥F /∥W∥F where
Ŵ is the scaled version ofw and ∥·∥F denotes the Frobenius-norm, and ii) the log-likelihood
score L in Equation (7). Every alternative inference method exhibits an error biased toward
inferring unconnected neurons, evidenced by side bumps in the weight profile or by multiple
off-diagonal stripes in the weight matrix (Figures 2b-2d). This type of systematic inference
error is interpreted as overestimated connections resulting from highly correlated activity
by strongly recurrent networks (Das and Fiete, 2020). Despite the failure to explain away
strong correlations, the proposed inference model alleviates the side bumps (Figure 2a)
and thus significantly reduces biased errors (Table. 1). More accurate estimation of spike
activity in our model (Table. 1) suggests that the GNN-based spike prediction module is
expressive enough to learn and match actual neural dynamics of a ring attractor network.

4. Conclusion

We presented a GNN-based neural inference model to understand the network mechanism
of neural circuits by reconstruction of structural connectivity from population neural spike
data. We demonstrated that the proposed model is highly effective at inferring direct con-
nections of a strongly recurrent network. It will be interesting to test this model framework
by examining real population recording data, and to see whether the inferred circuitry
supports the continuous attractor dynamics in the brain.

4. The baselines are generalized linear model (GLM) (Pillow et al., 2008), sequence non-negative matrix
factorization (seqNMF) (Mackevicius et al., 2019), and tensor component analysis (TCA) (Williams
et al., 2018) (see more details in Appendix B). TCA and seqNMF are not the models for circuit inference
but aim to extract low-dimensional representations and dynamics of neural data. Nonetheless, we have
run those models to identify low-dimensional neuron factors (i.e. features) and obtain their correlation
structure since the correlation structure offer a crude estimate of network connectivity.
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Appendix A. Generative network models

We construct a ring network of N = 100 neurons where the outgoing synaptic weights Wij

around the ring are defined by a local Mexican hat profile:

Wij = e−d2ij/2σ
2
1 − ae−d2ij/2σ

2
2 (8)

where dij is the distance between neurons i and j, σ1 = 6.98, and σ2 = 7 (in units of
neuron index). All inhibitory recurrent weights by setting a = 1.0005 > 1 allow the pattern
formation and dynamical stability.

Threshold-crossing model The input to each neuron at time step t is given by

g(t) = rWs(t) + b(t) (9)

where s(t) is the vector of synaptic activations, W is the N × N matrix of recurrent
connectivity defined by Equation (8), and b(t) = 10−3(1 + ξ(t)) is the feed-forward inputs.
ξ(t) is a white Gaussian noise per neuron, with zero mean and s.d. σξ = 0.3, resulting in
a Poisson-like variance proportional to the mean activation. We set the weight strength
r = 0.025. The neurons in this generative model emit a spike when the input gi(t) to
neuron i at time step t exceeds a threshold θ. The synaptic activation from neurons that
just spiked is incremented by 1 and otherwise decays exponentially with time constant
τ = 10 ms according to the following equation:

s(t+∆t) = s(t)

(
1− ∆t

τ

)
+ σ(t) (10)

where σ(t) is the binary vector of spikes from the network.

Linear-nonlinear Poisson model The inputs to this model are determined by Equation
(9) except that the external input b(t) = 10−3 that is constant with no noise. The neural
firing rate λi(t) is determined by passing the summed input gi(t) to the rectifying nonlinear
activation function:

λi(t) = λ0 ReLU [ gi(t)− θ ] (11)

These firing rates determine the rate of an inhomogeneous Poisson process that generates
ni(t) spikes in neuron i at time t.

ni(t) ∼ Pois(λi(t)) (12)

The synaptic activations are determined by Equation (10) except that σi(t) is replaced by
ni(t).
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Appendix B. Baseline inference algorithms

Algorithm 1 Generalized Linear Model

1 Initialize the model parameters by setting b = 0,w = 0, z = 1

2 for i ∈ [1, N ] do

3 for k ∈ [1, 2000] do

4 Coupling filter fcouple = Bz

5 if i > 1 then

6 circular shift w by i steps

7 end if

8 Xneigh = x1:L−1
j∈N(i)

9 log λi = fcouple ∗ (Xneighw) + b

10 L =
∑

t

∑
i

(
λti − xt

i log λ
t
i

)
11 b,w, s = argmin

b,w,s
(L) by Quasi-Newton Method

12 end for

13 end for

We first arrange a 200×10 matrix B whose column represents a raised cosine filter. The
coupling filter fcouple in GLM is constructed by a linear combination of the basis B. Then
the log-firing rate λi is computed by linearly projecting neighbored neural spike trains onto
fcouple weighted by the connection strengths w. All the model parameters are updated by
Quasi-Newton method.
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Algorithm 2 Tensor Component Analysis (TCA)

1 Initialize N,K,T (neuron, trial, and time factors respectively)

N ∈ RN×R,K ∈ RK×R,T ∈ RT×R

The number of neurons N , components R, total time steps T , length of sequence L

2 M = EW(X)

EW: exponentially weighted moving average

3 Reshape M ∈ RN×L to RN×K×T , T = L/K

4 for k ∈ [1, 500] do

5 N:,r,K:,r,T:,r = argmin
N:,r,K:,r,T:,r

(∥M−
∑

r N:,r ⊗K:,r ⊗T:,r∥F ),

by alternating least-squares method

6 end for

7 for r ∈ [1, R] do

8 Z(r) = N:,r ⊗N:,r ⊗K:,r ⊗T:,r

9 E(r) =
∑T

t=1

∑K
k=1

(
Z
(r)
:,:,k,t

)
10 end for

11 E = 1
R

∑
r

(
E(r)

)
TCA decomposes an input tensor into R components of neuron, trial, and time factors

respectively. We convolve spike trains with an exponential filter, then the filtered spike
trains are reshaped to have K = 10 trial components. Next, we apply TCA and take the
outer product of each neuron factor N:,r with itself followed by multiplying trial and time
factors for estimating low-dimensional average correlation structure over trial and time.
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Algorithm 3 Sequence Non-negative Matrix Factorization (seqNMF)

1 Initialize neuron factor W and time factor H

W ∈ RN×R×L, H ∈ RR×T

The number of neurons N , components R, total time steps T , length of sequence L

2 Define smoothing matrix S ∈ RT×T

Si,j = 1 when |i− j| < L otherwise 0

3 Define regularization parameter β

4 for k ∈ [1, 100] do

5 X̃i,t =
∑

r

∑
l Wi,r,lHr,(t−l)

6 Ci,j =
∑

l

∑
nWn,i,lXn,j+l

7 W,H = argmin
W,H

(∥∥∥X̃−X
∥∥∥
F
+ β

∥∥C · S ·H⊤∥∥
1,i ̸=j

)
,

by non-negative gradient descent (Lee and Seung, 1999, 2000)

8 end for

9 for r ∈ [1, R] do

10 Z(r) = W:,r,0 ⊗W:,r,1 ⊗Hr,:

11 E(r) =
∑T

t=1

(
Z
(r)
:,:,t

)
12 end for

13 E = 1
R

∑
r

(
E(r)

)
SeqNMF is a dimensional reduction method with regularized convolutional non-negative

matrix factorization to extract sequential patterns. We first define the smoothing matrix
S ∈ RT×T with the length of sequence L = 2 and regularization parameter β = 0.001, and
then compute the neuron factor W ∈ RN×R×L and time factor H ∈ RR×T by Algorithm 3,
We take the outer product between learned neuron factors multiplied by time factor Hr,:

to extract the average component-wise edge features as in TCA.

12


	Introduction
	Methods
	Generative Model
	Inference Model
	Training

	Experiments
	Conclusion
	Generative network models
	Baseline inference algorithms

