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Abstract

Combining the signed distance function (SDF) and differentiable volume rendering
has emerged as a powerful paradigm for surface reconstruction from multi-view
images without 3D supervision. However, current methods are impeded by requir-
ing long-time per-scene optimizations and cannot generalize to new scenes. In this
paper, we present GenS, an end-to-end generalizable neural surface reconstruction
model. Unlike coordinate-based methods that train a separate network for each
scene, we construct a generalized multi-scale volume to directly encode all scenes.
Compared with existing solutions, our representation is more powerful, which can
recover high-frequency details while maintaining global smoothness. Meanwhile,
we introduce a multi-scale feature-metric consistency to impose the multi-view
consistency in a more discriminative multi-scale feature space, which is robust
to the failures of the photometric consistency. And the learnable feature can be
self-enhanced to continuously improve the matching accuracy and mitigate aggre-
gation ambiguity. Furthermore, we design a view contrast loss to force the model
to be robust to those regions covered by few viewpoints through distilling the
geometric prior from dense input to sparse input. Extensive experiments on popular
benchmarks show that our model can generalize well to new scenes and outper-
form existing state-of-the-art methods even those employing ground-truth depth
supervision. Code will be available at https://github.com/prstrive/GenS.

1 Introduction
Surface reconstruction from multi-view images is a cornerstone task in computer vision with many
applications in virtual reality, autonomous driving, robotics, etc. Typical solutions [15, 16, 7,
43, 58, 56, 10, 36] in the past were mostly based on a multi-step pipeline, which includes depth
estimation, depth fusion and meshing. Although they have demonstrated their excellent performance,
the procedure is cumbersome and inevitably introduces cumulative errors. While several early
works [31, 61] used differentiable surface rendering to directly reconstruct surfaces, recent works
[34, 49, 60], inspired by the huge success of neural radiance field (NeRF) [27] in synthesizing novel
views, follow the volume rendering [24] to represent the 3D geometry with an occupancy field [25]
or signed distance function (SDF) [35] and can achieve more impressive results.

The key idea of these approaches is to train a compact multi-layer perceptrons (MLPs) to predict the
implicit representation (e,g., SDF) of each sampled point on camera rays. The density of volume
rendering is then regarded as a function of this implicit representation, and alpha-composition of
samples is performed to produce the corresponding pixel color and geometry information. However,
existing methods are hampered by requiring a lengthy per-scene optimization procedure and cannot
generalize to new scenes, which makes them infeasible for many application scenarios. A recent
method [23] attempts to address these issues through conditioning the SDF-induced model with
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Figure 1: Qualitative comparisons on DTU and BlendedMVS datasets with sparse inputs.

features extracted from sparse nearby views. Nevertheless, its accuracy is limited due to the smooth
reconstruction, and the multi-stage process it relies on is prone to introducing cumulative errors.
In this paper, we seek to establish an end-to-end generalizable model which can efficiently infer
finer 3D structure. Compared with existing methods [49, 60], this generalization system faces more
challenging problems. First, it’s non-trivial to efficiently represent the scene. Previous methods
[29, 23, 3, 50] either build a global volume or employ feature projections, but they have proven to be
either lacking in detail or unsuitable for view independent surface reconstruction. Second, relying only
on the rendering loss is difficult to reconstruct compact geometry, since the multi-view consistency is
ignored. And we found that the ordinary photometric consistency also cannot effectively solve this
problem for our generalizable model because of the existence of ambiguous areas such as low-texture
and reflection. Last but not least, since generalizable models heavily rely on aggregation quality, how
to infer smooth geometry when the input is sparse is a thorny issue.

To this end, we introduce GenS to tackle these challenges. The main ideas behind are as follows: 1)
We first construct a generalized multi-scale volume to represent the scene, which preserves global
smoothness through the low-resolution volumes and recovers geometric details from high-resolution
volumes. Meanwhile, low-dimensional features make our model more lightweight compared to
a single large-width volume. 2) We introduce the multi-scale feature-metric consistency, which
enforces multi-view consistency in the multi-scale feature space, to replace the common photometric
consistency. Compared with the original image space, learnable multi-scale features can provide more
discriminative representation, and the feature space can be self-enhanced during the generalization
training process to continuously improve the matching accuracy. 3) Inspired by the fact that the
reconstruction with dense inputs is more accurate, we propose a view contrast loss to force the
model to better perceive the geometry of regions visible by few viewpoints through teaching the
reconstruction from sparse inputs with dense inputs.

To demonstrate the quantitative and qualitative effectiveness of GenS, we conduct extensive ex-
periments on DTU [12] and BlendedMVS [59] datasets. Results show that our model can out-
perform existing state-of-the-art generalizable method [23], and even recent method [40] which
adopts the ground-truth depth for supervision. Compared with the per-scene overfitting methods
[49, 60, 61, 34, 23], we can also achieve comparable or superior results with dense inputs. Some
comparisons are shown in Fig. 1. In summary, our main contributions are highlighted below: a) We
present a powerful representation based on our generalized multi-scale volume, which can efficiently
reconstruct smooth and detail surfaces from multi-view images. b) We introduce a more discrim-
inative multi-scale feature-metric consistency to successfully constrain the geometry, which helps
the generalization model converge to the optimum. c) We propose a view contrast loss to improve
the geometric smoothness and accuracy when the visible viewpoint is limited. d) Our model can be
trained end-to-end and achieve state-of-the-art reconstructions in both generic setting and per-scene
optimization setting.
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Figure 2: Illustration of GenS. We first extract multi-scale features through a FPN network. The
generalized multi-scale volume is then reconstructed with the corresponding scale feature. We employ
the same blending strategy as [50] to estimate the appearance of each point on a ray, and adopt the
volume rendering to recover the color of a pixel. We design the multi-scale feature-metric consistency
to constrain the geometry as shown in the top right. For convenience, we omit some losses that will
be detailed later.

2 Related work
Classical multi-view reconstruction. Reconstructing 3D geometry from multi-view images is
a longstanding problem in the field of 3D vision. Classical algorithms mainly adopt depth-based
or voxel-based methodology to solve this problem. Multi-view stereo (MVS) is a typical class of
depth-based methods, which takes stereo correspondence from multiple images as the main cue to
reconstruct depth maps. While previous traditional MVS methods [1, 43, 7, 6, 56, 44] relied on the
hand-crafted similarity metrics, many recent learning-based methods [58, 10, 48, 36] apply deep
learning to achieve more discriminative matching. These methods go through complicated procedures
to retrieve surface, including depth filtering, fusion and meshing [15, 2], and are prone to cumulative
errors. On the other hand, voxel-based methods [45, 18, 11, 32] directly model objects in a volume,
but they are restricted to memory, which is the common drawback of the volumetric representation,
and cannot achieve high accuracy.

Neural surface. Due to the notable advantages of being able to achieve high spatial resolution,
neural implicit functions have recently gained a lot of attention and have emerged as an effective
representation of 3D geometry [47, 25, 35, 8, 26, 30, 37, 42] and appearance [20, 27, 21, 33, 46, 62,
38, 28]. Furthermore, some works [27, 22, 31] have proposed to train models without 3D supervision
via differentiable rendering, e.g., surface rendering and volume rendering. Methods adopt surface
rendering [31, 61, 65] only consider a single surface intersection point for each ray and fail to
reconstruct complex objects, and they are restricted by the need of accurate object masks and careful
weight initialization. On the contrary, recent methods use volume rendering [34, 49, 60, 64] to take
multiple points along the ray into consideration and achieve more impressive results. However, either
type of method requires an expensive per-scene optimization and cannot generalize to new scenes.

Generalizable neural surface. In the field of novel view synthesis, some methods [3, 50, 63, 13]
have successfully introduced the generalization into rendering methods. These methods suffer from
the same problem as NeRF: the geometry is ambiguous. Few works have focused on the generalization
of neural surface reconstruction. A recent study, SparseNeuS [23], is the first attempt to achieve
this by reconstructing the surface from nearby viewpoints in a multi-stage manner. Nevertheless, its
reconstruction lacks details, and same to the classical 3D reconstruction, the multi-stage pipeline may
accumulates errors at each stage. On the contrary, our designed model can be trained end-to-end and
reconstruct smoother and more refined geometries.

3 Method
Given N posed images of an object taken from different viewpoints, our goal is to reconstruct the
surface as an implicit function without expensive per-scene optimization or only by fast fine-tuning.
Our overall framework is depicted in Fig 2. We first introduce how to infer the geometry and
appearance from the generalized multi-scale volume in Sec. 3.1, then elaborate on the necessity
and implementation of the multi-scale feature-metric consistency in Sec. 3.2, and finally detail the
realization of view contrast loss in Sec. 3.3 and the overall pipeline in Sec. 3.4.
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3.1 Geometry and color reasoning from the generalized multi-scale volume
Compared with existing solution [23], which relies on a single volume and multi-stage strategy, we
have three main advantages. First of all, our generalized multi-scale volume is a more powerful
representation, which implicitly decouples geometry into base structures in low-resolution volumes
and high-frequency details in high-resolution volumes. Second, with the low-dimensional features,
we can construct multi-scale volumes with higher resolution and less memory consumption than a
single large-width volume. Besides, our model can be trained end-to-end, avoiding cumulative errors.

Generalized multi-scale volume construction. Suppose there are N images {Ii}N−1
i=0 of an object,

we first apply the FPN network [19] to extract multi-scale feature maps {F j
i }

N−1,L−1
i,j=0,0 for all images

with shared weights, and different volumes are then constructed from features at corresponding scales.
In this paper, we define a bounding box of interest in the reference frustum like [23] and in the
world coordinate system like [49, 66] when dense inputs are available. We adopt a combination of L
volumes {Vj}L−1

j=0 , which cover the same region but with different resolutions Ch× D
2j × H

2j × W
2j .

Here, we discuss at the first scale and omit the scale subscript j for convenience. Given camera intrin-
sics {Ki}N−1

i=0 and extrinsics {[R, t]i}N−1
i=0 , we first project the voxel v = (x, y, z) onto viewpoint i’s

pixel position:
qi(v) = π(KiR

T
i (v − ti)), (1)

where π((x, y, z)T ) = (xz ,
y
z )

T is an operator to convert homogeneous coordinates to cartesian
coordinates. Then we can get the corresponding feature of each voxel on ith viewpoint through
bilinear interpolation Fi(v) = Fi < qi(v) >. To fuse features from all viewpoints {Fi(v)}N−1

i=0 , we
adopt the same aggregation strategies to generate cost volume as in [50] that concatenates mean and
variance to simultaneously capture statistical and semantic information: B(v) = [Mean(v), V ar(v)].

Simply repeating the above process on features and volumes of all L scales, we can get the multi-scale
cost volumes {Bj}L−1

j=0 . Next, we further design an efficient multi-scale 3D network ψ to refine these
cost volumes in one forward, starting from the finest volume and injecting the others into different
stages of the model to save memory. The output of the 3D network {Vj}L−1

j=0 = ψ({Bj}L−1
j=0 ) is the

multi-scale volume that we need to infer the geometry.

Geometry reasoning. For an arbitrary 3D point p = (x, y, z), we first get the interpolation of
volumes at all scales {Vj(p)}L−1

j=0 through trilinear sampling, and then concatenate them as the final
feature F(p) ∈ RCh1 , where Ch1 = L×Ch. Combining the feature and the point position, an MLP
network is applied to predict the corresponding SDF value: sdfθ : R3 ×RCh1 → R. And the surface
is represented by the zero-level set of the SDF value:

S = {p ∈ R3|sdfθ(p,F(p)) = 0}. (2)

Color prediction. We refer to the first viewpoint I0 as the reference image. To predict the color of
each point on a ray, we employ the blending strategy similar to [50]. We first project the 3D point p to
source views’ pixel position according to Eq. 1, and interpolate the corresponding colors {Ii(p)}N−1

i=1

and features {Fi(p)}N−1
i=1 . Here, we only use the highest resolution features to predict the color. Next,

an MLP network take the concatenation of features and viewing direction differences ∆d = d− di
as input, to predict the softmax-activated blending weights {wi(p)}N−1

i=1 of each source view, and the
final color is blended as the weighted sum of source colors:

c(p) =

N−1∑
i=1

Ii(p)wi(p). (3)

SDF-based volume rendering. Given the density {σi}Mi=1 and color {ci}Mi=1 of M samples along
the ray p(t) = o + td emitting from camera center o to pixel q in view direction d, NeRF [27]
approximates the color using numerical quadrature:

Ĉ =

M∑
i=1

Tiαici, Ti =

i−1∏
j=1

(1− αj), (4)
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Figure 3: Multi-view aggregation ambiguity. Here, we take two viewpoints as an example. (a) For
those low-texture regions, sampling points near the surface may get the same aggregation and lack
discriminability. (b) The aggregation of points away from the surface are random and hard to infer
the accurate geometry, e.g., two sampling points may get the same aggregation even with different
SDF value.

where Ti is the accumulated transmittance, and αi = 1−exp(−σiδi) in original volume rendering. To
better approximation the geometry of the scene, NeuS [49] proposed an unbiased and occlusion-aware
weighting method to incorporate signed distance, and the αi is formulated as:

αi = max(
Φs(sdf(p(ti)))− Φs(sdf(p(ti+1)))

Φs(sdf(p(ti)))
, 0). (5)

Here, Φs(x) = (1 + e−sx)−1 is the sigmoid function and s is an anneal factor. Readers can refer to
[49] for more details.

3.2 Multi-scale feature-metric consistency

Rendering loss tends to trap the model into sub-optimization since it only considers a single point
and ignores the consistency among multiple viewpoints. To mitigate this problem, a straightforward
practice is to project the image patches of multiple views to the estimated surface location based
on the local planar assumption and rely on the photometric consistency to enforce the multi-view
consistency. However, we found this solution works well for per-scene overfitting training [4, 5] but
brings limited benefits to generalization training.

Image space

NCC=0.99 0.99 0.77 0.99 0.43 0.99

Multi-scale feature space

Figure 4: Multi-scale feature space. The feature
space is more discriminative than ordinary image
space, and is more potential to find the correspond-
ing point during matching.

We analyze that the main reason may be the
failure of photometric consistency, which be-
comes more challenging for generalization train-
ing. As proven in recent self-supervised multi-
view stereo methods [55, 54, 57, 39], the as-
sumption of photometric consistency isn’t al-
ways effective, and the predicted geometry still
has significant holes even in combination with
the robust patch similarity like SSIM [52]. As
the coordinate-based methods train models sepa-
rately for each scene to directly overfit the scene,
they have greater potential to converge to the op-
timum. However, our generalization model en-
codes all scenes with one model, and it requires
image features to infer geometry, which makes
the model rely heavily on the discriminability
of features, e.g., regions like low-texture and
reflection become more critical for degrading
results. As shown in Fig 3 (a), those regions vi-
olating photometric consistency not only reduce
the accuracy of multi-view matching, but also decrease the discriminability of generalization model’s
input (we call this aggregation ambiguity), while the input of overfitting methods are distinct (3D
coordinate).
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To overcome these challenges, we propose the multi-scale feature-metric consistency to measure the
consistency between views in a multi-scale feature space, as shown in Fig. 4. There are three main
advantages of doing this way. First of all, the learnable feature is proven to be more discriminative
than the original image [14], especially on those ambiguous regions like low-texture and reflection.
Second, due to the larger receptive field, multi-scale information is conducive to improving the
matching accuracy, and allows the model to be assisted by global information while recovering details.
More importantly, the feature discriminability can be continuously self-enhanced in the process of
generalization training. The multi-scale feature space can train a powerful model through more
accurate matching, and the more powerful model can in turn lead to a more discriminative feature
space. And the enhanced feature can further mitigate the aforementioned aggregation ambiguity.
These advantages have been proven in Tab. 3.

−𝑠𝑑𝑓(𝑝!)

𝑠𝑑𝑓(𝑝")

𝑝"

𝑝!

𝑝# 𝑠!

𝑠"

𝑠𝑑𝑓(𝑝")

𝑝"

𝑝!

𝑝# 𝑠!

𝑠"

𝑠𝑑𝑓(𝑝")

𝑝"

𝑝!

𝑝# 𝑠!
𝑠" −𝑠𝑑𝑓(𝑝!)

Figure 5: Locating the sur-
face of a ray.

To generate the geometry, we adopt the same approximate method
as [5] to directly locate the zero-level set of the SDF. As shown in
Fig. 5, We first find the interval where a ray intersects the surface by
checking whether the signs of the SDFs of two adjacent sampling
points are different. To handle occlusion, we only extract the surface
within the first interval. Suppose the two samples of the interval
are p1 and p2, and their distances to the camera center are t1 and t2
respectively, our goal is to compute the position of ps. Here, we rely
on an assumption that two adjacent samples are close enough that
the near surface can be regarded as a local plane. In this way, we
can get two similar triangles:

△p2pss2 ∽ △p1pss1, (6)

Therefore, we can approximate the distance from the surface to the camera center ts as:

−sdf(p2)
sdf(p1)

=
t2 − ts
ts − t1

⇒ ts =
sdf(p1)t2 − sdf(p2)t1

t1 − t2
. (7)

We thus can get the coordinate of the surface point ps = o+ tsd.

Through the automatic differentiation of the SDF network at ps, we can get the corresponding normal
ns. Based on the assumption that the local surface centered at ps is a plane of normal ns, we can find
the corresponding pixel position qi in ith source view that correspond to the pixel q0 in reference
view:

qi = Hiq0, Hi = Ki(RiR
T
0 +

Ri(R
T
i ti −RT

0 t0)n
T
s

nTs ps
)K−1

0 . (8)

For a pixel patch q0 in the reference view, we can find the corresponding source patch through
passing all pixels to Eq. 8 like qi = Hiq0. Regardless of occlusion, if the estimated surface ps is
accurate, then these corresponding patches should also be consistent. In this paper, we measure patch
consistency in a multi-scale feature space. We only apply features at the top 3 scales, since features
at lower scales lose a lot of structural information. Therefore, for a pixel patch at a certain view, we
can get the multi-scale patches {Fj < q >}2j=0 through bilinear interpolation, and we upsample
and concatenate them together as input F ′, whose channel is Ch2 = 3 × Ch, for patch similarity
measure. Here, we employ the normalization cross correlation (NCC) to compute the feature-space
consistency:

NCCi =
1

Ch2

Ch2−1∑
l=0

Cov(F ′
0l, F

′
il)√

V ar(F ′
0l)V ar(F

′
il)
, (9)

where Cov denotes covariance and V ar refers to variance. Following the common solution in
multi-view stereo field [7], we compute the final multi-scale feature-space consistency loss as the
average of the best K NCCs:

Lmfc =
1

K

K−1∑
k=0

(1−NCCk). (10)

3.3 View contrast loss
For a 3D structure captured by multiple viewpoints, there is a fact that some regions are covered by
enough viewpoints, while some regions are only visible to a few viewpoints. Compared with the
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former, the aggregated features of the latter are more likely to be polluted by irrelevant rays, making
them less predictable. To solve this problem, we design a view contrast loss to improve the accuracy
of the reconstruction when visible views are limited, which enforces the geometric estimation to be
the same under different inputs of the same scene.

𝑠

𝑝 ∈ 𝑃!
𝐿"#

𝑠′

𝑝 ∈ 𝑃!

Teacher SDF

Student SDF

Figure 6: Visualization of
view contrast loss.

We empirically lets results from dense inputs to supervise results of
sparse inputs. Specially, taking a set of multi-view images as input,
we first reconstruct a multi-scale volume as a teacher, which is used
to infer the finer SDF value s for a set of 3D points P . Then we build
a student multi-scale volume from sparse input views and estimate
the corresponding SDF value s′. Meanwhile, as shown in Fig. 3 (b),
we found that only the sampling points falling on the surface have
positive epipolar correspondences, and their aggregated features are
more meaningful, while other samples are more random, and may
obtain the same aggregation even if their SDF values are different.
As shown in Fig. 6, we thus only calculate the consistency loss for
near-surface points, whose finer SDF values are more accurate:

Lvc =
1

|P ′|
∑
p∈P ′

|s(p)− s′(p)|, (11)

where P ′ is a set of points close to the surface inferred from the fine SDF according to Eq. 7.

3.4 Overall pipeline
This section will introduce some implementation details and crucial components of our model
including generalization training and fine-tuning.

Loss function. The overall loss function is defined as:

L = Lcolor + αLmfc + βLvc + Lreg. (12)

For a batch of sampled pixel setQ, the color loss is computed as the L1 distance between the rendered
color and the ground-truth:

Lcolor =
1

|Q|
∑
q∈Q

|C(q)− Ĉ(q)|. (13)

To make the geometry more compact and accurate, we apply the regularization loss which is composed
of four terms:

Lreg = γLek + ηLsmooth + λLtv + δLsparse. (14)

Eikonal loss [9] is employed to regularize SDF values of all sampled points P :

Lek =
1

|P |
∑
p∈P

(||∇sdf(p)||2 − 1)2. (15)

To maintain the smooth of the surface, we introduce a regularization to the gradient of the normal:

Lsmooth =
1

|Q|
∑
q∈Q

||ngrad(q)||2, (16)

where ngrad(q) is the alpha composition of normal gradient ∇2sdf(q) in a ray through pixel q.
Besides, we also adopt the total variation (TV) regularization [41] for our multi-scale volumes:

Ltv =

L−1∑
j=0

√
∆2

x(Vj) + ∆2
y(Vj) + ∆2

z(Vj). (17)

To clean the geometric estimation, we introduce a sparsity prior:

Lsparse =
1

|P |
∑
p∈P

exp(−τ |sdf(p)|). (18)
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Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
VolRecon* [40] 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38
PixelNerf [63] 5.13 8.07 5.85 4.40 7.11 4.64 5.68 6.76 9.05 6.11 3.95 5.92 6.26 6.89 6.93 6.28
IBRNet [50] 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09 2.32
MVSNerf [3] 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26 2.09
SparseNeuS [23] 1.68 3.06 2.25 1.10 2.37 2.18 1.28 1.47 1.80 1.23 1.19 1.17 0.75 1.56 1.55 1.64
GenS 1.45 2.77 1.69 0.97 1.54 1.90 1.03 1.49 1.36 0.97 1.07 0.97 0.62 1.14 1.16 1.34
NeuS [49] 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11 4.00
VolSDF [60] 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
IBRNet (ft) 1.67 2.97 2.26 1.56 2.52 2.30 1.50 2.05 2.02 1.73 1.66 1.63 1.17 1.84 1.61 1.90
COLMAP [44] 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52
SparseNeuS (ft) 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27
GenS (ft) 0.91 2.33 1.46 0.75 1.02 1.58 0.74 1.16 1.05 0.77 0.88 0.56 0.49 0.78 0.93 1.03

Table 1: Quantitative results of Chamfer Distance on DTU dataset with sparse inputs. ‘*’
denotes that the method needs the ground-truth depth for supervision.

Generalization training. We select N = 4 for sparse setting and N = 19 for dense setting. We
use Adam optimizer [17] with the base learning rate of 1e-3 for feature network and 5e-4 for other
MLPs. We train the joint loss for 16 epochs on two A100 GPUs. We increase the value of α from 0
to 1 and in the first 2 epochs. In our implementation, we generate the surface points P ′ of each image
of the model trained with dense input first, and then distill the model with sparse input, with β set to
1. We build the generalized multi-scale volume with 5 scales, whose resolution increase from 24 to
28. Each volume is equipped with thin features with only 4 feature channels, which allows us to save
memory compared to general single volume methods.

Fine-tuning. After generalization training, we first reconstruct the generalized multi-scale volume,
which has encoded the geometry information. Then we sparse the multi-scale volume by pruning
voxels far from the surface. During fine-tuning, we abandon the feature network, and directly optimize
the multi-scale volume and MLPs. With the generalization prior, we can achieve state-of-the-art
performance in only about 20 minutes of fine-tuning.

4 Experiments
We demonstrate the state-of-the-art performance of GenS with comprehensive experiments and verify
the effectiveness of each module through ablation studies. We first introduce the datasets and then
analyze our results.

Datasets. We conduct experiments on both DTU [12] and BlendedMVS [59] datasets as previous
methods [49, 60, 23]. Our generalization model is trained on DTU dataset, which is an indoor MVS
dataset with 124 different scenes scaned from 49 or 64 views with fixed camera trajectories. Following
[61, 49, 23], we take the same 15 scenes for testing. The training set is defined as in [58, 36], and the
test scenes contained therein are removed. We also evaluate our model on BlendedMVS, which is a
large-scale synthetic dataset. Each scene is scaned from different number of views, and all images
has a resolution of 768 × 576. We report the Chamfer Distance for DTU, and show some visual
effects for BlendedMVS.

4.1 Comparisons
Results on DTU. We first adopt the same testing split and configuration as [23] to compare with
existing generalizable methods [3, 50, 23, 63]. The results shown in Tab. 1 indicate that our model
outperforms existing methods by a significant margin, and this advantage can be amplified after rapid
fine-tuning (about 20 mins). Even compared with recent method [40], which adopts the ground-truth
depth for supervision, our model can achieve superior results. The qualitative results in Fig. 1 show
that our reconstruction exhibits finer details. We further conducted more experiments on DTU to
compare with per-scene overfitting methods with more input views. The quantitative comparisons
in Tab. 2 show that our model can surpass some methods [61, 34, 49, 60] just through a very fast
network inference, i.e., we can achieve more than 34% improvement on scene 24 compared with [49].
After a fast fine-tuning, the performance can be significantly improved, and even surpassing recent
SOTA works [4, 5, 51]. Some visualization results in Fig. 7 depict that our model trained on large
amounts of data is more robust to ambiguous regions.
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Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
IDR [61] 1.63 1.87 0.63 0.48 1.04 0.79 0.77 1.33 1.16 0.76 0.67 0.90 0.42 0.51 0.53 0.90
MVSDF [65] 0.83 1.76 0.88 0.44 1.11 0.90 0.75 1.26 1.02 1.35 0.87 0.84 0.34 0.47 0.46 0.88
COLMAP [44] 0.45 0.91 0.37 0.37 0.90 1.00 0.54 1.22 1.08 0.64 0.48 0.59 0.32 0.45 0.43 0.65
NeRF [27] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49
UNISURF [34] 1.32 1.36 1.72 0.44 1.35 0.79 0.80 1.49 1.37 0.89 0.59 1.47 0.46 0.59 0.62 1.02
VolSDF [60] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS [49] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84
HF-NeuS [51] 0.76 1.32 0.70 0.39 1.06 0.63 0.63 1.15 1.12 0.80 0.52 1.22 0.33 0.49 0.50 0.77
Voxurf [53] 0.65 0.74 0.39 0.35 0.96 0.64 0.85 1.58 1.01 0.68 0.60 1.11 0.37 0.45 0.47 0.72
NeuralWarp [4] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68
Geo-NeuS* [5] 0.46 0.83 0.38 0.39 0.88 0.61 0.51 1.26 0.92 0.68 0.57 0.82 0.30 0.41 0.42 0.63
GenS 0.66 1.01 0.71 0.43 1.06 0.99 0.73 1.43 1.18 0.78 0.64 0.93 0.38 0.54 0.54 0.80
GenS (ft) 0.55 0.71 0.39 0.38 0.79 0.65 0.57 1.29 0.96 0.64 0.49 0.59 0.33 0.44 0.45 0.62

Table 2: Quantitative results of Chamfer Distance on DTU dataset with dense inputs. ‘*’ denotes
that we retrain the Geo-NeuS without sparse geometric supervision.
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Figure 7: Qualitative comparisons with per-scene overfitting methods on DTU dataset with
dense inputs.

Generalizing to BlendedMVS. Like [23], we conduct additional verification on BlendedMVS to
showcase the generalization ability of our model. We also employ the same evaluation strategy as
[23] for a fair comparison. As shown in Fig. 1, just through a fast network inference, our model can
recover more geometric details than SparseNeuS [23]. Through the fine-tuning of 5k iterations, the
effect will be significantly improved and better than SparseNeuS with 10k iterations.

4.2 Analysis

Patch-similarity Multi-scale Self-enhanced Mean
✗ ✗ ✗ 1.86
✓ ✗ ✗ 1.76
✓ ✓ ✗ 1.73
✓ ✓ ✓ 1.62

Table 3: Some ablation studies on MFC.

Single 963 Single 1923 Our GMV

Figure 8: Reconstruction from volumes with
different resolution.

Ablation studies. We conduct ablation stud-
ies on DTU dataset to understand how the com-
ponents of our model contribute to the overall
performance. We start with our baseline model
SparseNeuS [23], and gradually insert our con-
tributions. The results in Tab. 4 show that
our full model combining all components has
the best mean score, and the baseline model,
without any of our contributions, performs the
worst. Multi-scale Feature-metric Consis-
tency (MFC): Our self-enhanced MFC can con-
tinuously improve the multi-view consistency of
the model, and we also elaborated the ablation
results of its three main characteristics in Tab.
3. And the baseline is based on the pixel-wise
feature consistency proposed in [65]. It can be
seen that our strategy is more robust and efficiency. Generalized Multi-scale Volume (GMV):
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MFC GMV VCL 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
✗ ✗ ✗ 2.26 3.39 2.04 1.27 2.47 2.65 1.62 1.84 1.61 1.32 1.82 1.94 0.91 1.78 1.62 1.90
✓ ✗ ✗ 1.61 3.12 1.99 1.16 2.00 2.21 1.30 1.58 1.45 1.18 1.48 1.53 0.80 1.54 1.43 1.62
✓ ✓ ✗ 1.51 3.07 1.88 0.97 1.56 2.11 1.12 1.45 1.31 0.95 1.20 1.02 0.64 1.32 1.24 1.42
✓ ✓ ✓ 1.45 2.77 1.69 0.97 1.54 1.90 1.03 1.49 1.36 0.97 1.07 0.97 0.62 1.14 1.16 1.34

Table 4: Ablation results on DTU.
Image Baseline MFC MFC+GMV MFC+GMV+VCL

Chamfer Distance 2.11 1.51 1.28 1.08

Chamfer Distance 2.02 1.53 1.02 0.87

Chamfer Distance 1.91 1.54 1.29 1.14

Figure 9: Visualization of some ablation results on DTU.

We show some results of the models have different resolutions in Fig. 8. We can see that the
reconstruction of a single high-resolution volume is unbearably noisy (higher-resolution volume will
lead to more empty voxels, which is more tricky for generalizable models.) and overly smooth at low
resolution, whereas our GMV reconstructs clean and detailed geometry. And our representation is
lighter than a single volume with a resolution of 32× 1923 due to our thin feature. View Contrast
Loss (VCL): As the results shown in Tab. 1 and Tab. 2, the reconstruction with dense inputs is more
accurate than the sparse reconstruction, we therefore treat the former as a teacher to teach the latter.
The results shown in Tab. 4 validate that this strategy can indeed improve the reconstruction quality
of the model. The visualization of the ablation results are shown in Fig. 9, which further depicts that
every contributions we propose can continuously improve performance.

Limitation. Although our model exhibits excellent generalization performance in multi-view
reconstruction, we found that it cannot satisfactorily handle scenes with large camera motion, such as
surrounding cases. Because in these scenarios, the aggregation features will be polluted by the ray
features shooting from behind. Our current solution is to first predict the local structure covered by
some adjacent viewpoints like [23, 58, 36], and finally fuse them together.

5 Conclusion

In this paper, we introduced GenS, an end-to-end generalizable neural surface reconstruction model.
We first encode all scenes into our generalized multi-scale volume, a more powerful representation
that can reconstruct clean and detailed 3D structures. Then we introduce the multi-scale feature-
metric consistency to combat the challenge of the photometric consistency failure. The learnable
multi-scale feature can provide more discriminative representation and can be self-enhanced during
the generalization training. And we finally designed a view contrast loss to improve the accuracy of
the reconstruction through distilling the finer reconstruction from dense inputs to the reconstruction
from sparse inputs. Experimental results on both DTU and BlendedMVS datasets show that our model
possess stronger generalization ability and can achieve start-of-the-art reconstruction through fast
network inference or efficient fine-tuning. In the future, we will focus on improving the performance
of the model in difficult scenarios.
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