

000
001 **EVIDENCE-GUIDED MULTI-IMAGE REASONING IN**
002 **VISUAL RETRIEVAL-AUGMENTED GENERATION**
003
004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 **ABSTRACT**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

Visual retrieval-augmented generation (VRAG) augments vision–language models (VLMs) with external visual knowledge to ground reasoning and reduce hallucinations. Yet current VRAG systems often fail to reliably perceive and integrate evidence across multiple images, leading to weak grounding and erroneous conclusions. In this paper, we propose EVisRAG, an end-to-end framework that learns to reason with evidence-guided multi-image to address this issue. The model first observes retrieved images and records per-image evidence, then derives the final answer from the aggregated evidence. To train EVisRAG effectively, we introduce Reward-Scaled Group Relative Policy Optimization (RS-GRPO), which binds fine-grained rewards to scope-specific tokens to jointly optimize visual perception and reasoning abilities of VLMs. Experimental results on multiple visual question answering benchmarks demonstrate that EVisRAG delivers substantial end-to-end gains over backbone VLM with 27% improvements on average. Further analysis shows that, powered by RS-GRPO, EVisRAG improves answer accuracy by precisely perceiving and localizing question-relevant evidence across multiple images and deriving the final answer from that evidence, much like a real detective.

028 **1 INTRODUCTION**
029
030

Retrieval-Augmented Generation (RAG) equips Large Language Models (LLMs) with a knowledge retriever that accesses a curated external knowledge base, supplying task-relevant context at generation time and mitigating hallucinations arising from insufficient parametric knowledge (Lewis et al., 2020; Asai et al., 2024). However, ineffective use of retrieved information limits practical adoption in domain-specific tasks. Retrieval-augmented reasoning addresses this gap by extracting evidence from external knowledge during the reasoning process. When combined with reinforcement learning (RL) optimization (Shao et al., 2024; Rafailov et al., 2023; Schulman et al., 2017), this paradigm improves the model’s ability to leverage retrieved evidence and tackle higher-difficulty queries (Li et al., 2025; Song et al., 2025). Yet a substantial portion of real-world knowledge exists in non-textual modalities, such as images, tables, and complex document layouts. Preprocessing routes that first linearize these signals via image captioning or OCR and then feed only text to LLMs inevitably discard crucial visual and spatial cues, preventing the model from accessing information originally present in images or document pages (Zhang et al., 2024b).

To address this limitation, Visual RAG (VRAG) (Yu et al., 2025; Faysse et al., 2024a) retrieves document page snapshots as units, preserving visual and spatial cues so VLMs can read evidence directly from images. Recent variants couple retrieval with reinforcement learning, inserting retrieved images into intermediate reasoning steps so the model can derive the correct answer from pixels rather than text alone (Peng et al., 2025; Wu et al., 2025). Despite these gains, many methods still transplant text-based RAG practices to vision and ignore modality-specific needs such as cross-image grounding, layout-aware reading, and region-level attention. As a result, models often fail to perceive information reliably across multiple images. Some works introduce perception-oriented actions or auxiliary agents to guide reasoning (Wang et al., 2025b;a), which improves attention to visual detail but increases architectural complexity and computational cost, complicating end-to-end training and later reconfiguration.

Recent advances in vision-language reasoning models (VLRMs) have introduced promising strategies for enhancing visual perception on a single image during the reasoning process (Shen et al.,

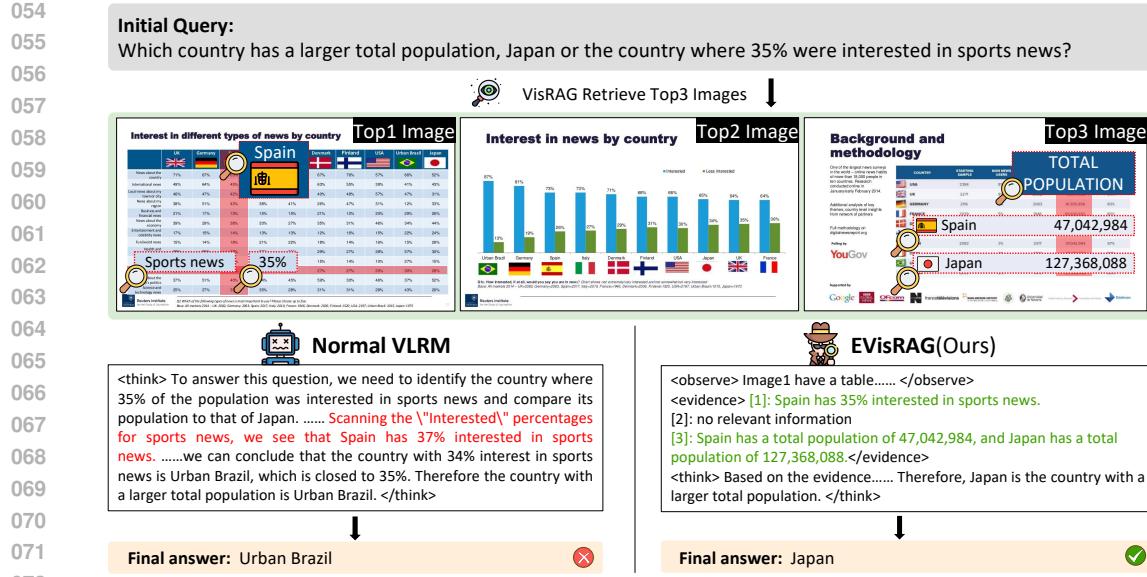


Figure 1: Comparison of normal vision-language reasoning model (VLRM) and EVisRAG

2025; Xu et al., 2025) by incorporating auxiliary rewards related to visual perception. Although these VLRMs perform well on single-image inputs, VRAG often retrieves multiple images, requiring cross-image localization and integration of fine-grained evidence. While current methods lack a built-in per-image evidence collection and instead rely on external tools or agents, increasing complexity and instability. In addition, current VLRM training strategies typically optimize perception and reasoning with mixed rewards, overlooking the effective scope and objective differences of each signal, which blurs credit assignment and causes interference.

Motivated by these challenges, we propose **Evidence-guided Vision Retrieval-augmented Generation (EVisRAG)** to equip VLMs with precise visual perception in multi-image scenarios. As illustrated in Figure 1, EVisRAG conducts a linguistic observation phase that sequentially gathers evidence from retrieved images, maintaining focus on them, and then performs reasoning on the collected evidence to derive the correct answer. To train EVisRAG effectively, we introduce Reward-Scoped Group Relative Policy Optimization (RS-GRPO), a method that uses fine-grained rewards applied directly to in-scope tokens to jointly optimize visual perception and reasoning. Experiments on different VQA tasks demonstrate the effectiveness of EVisRAG, showing substantial improvements over different VRAGs. Powered by RS-GRPO, EVisRAG can precisely find question-relevant evidence image by image and then reason over the recorded cues to produce grounded answers just like a detective. Moreover, EVisRAG demonstrates stronger visual perception and higher answer accuracy among other baselines, confirming that richer visual perception improves the ability of question understanding and response quality.

2 RELATED WORK

Early research on retrieval-augmented generation (RAG) equips large language models (LLMs) with retrievers over curated corpora to provide task-relevant context and mitigate hallucinations (Lewis et al., 2020; Asai et al., 2024). Building on this foundation, retrieval-augmented reasoning acquires evidence at intermediate steps and uses it to guide reasoning (Shao et al., 2024; Rafailov et al., 2023; Schulman et al., 2017; Li et al., 2025; Song et al., 2025). Nevertheless, a considerable portion of real-world knowledge is non-textual, residing in images, tables, and documents with complex layouts. Pipelines that first linearize these signals through captioning or optical character recognition and then supply only text to the model often discard essential visual and spatial cues, which reduces reliability on downstream tasks (Zhang et al., 2024b).

To address the problem, VisRAG (Yu et al., 2025) and Colpali (Fayssse et al., 2024a) introduce Visual RAG (VRAG), which uses document page snapshots as retrieval units, enabling vision-language

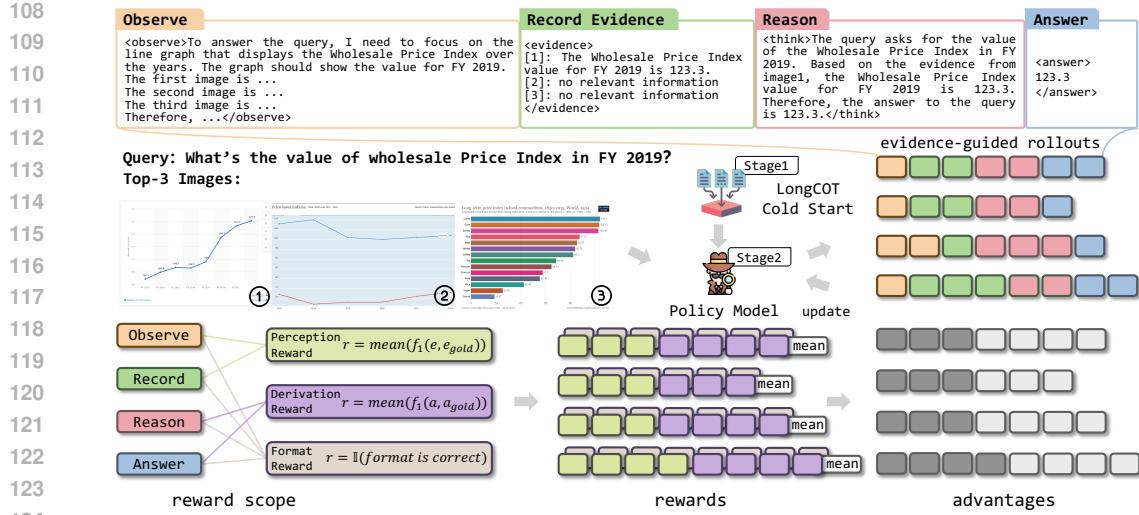


Figure 2: Overall framework of EVisRAG. Followed by the query and top-3 retrieved document pages, EVisRAG outputs four token scopes: observe, record evidence, reason, and answer. RS-GRPO assigns three fine-grained rewards to scope-specific tokens. In-scope rewards are then averaged and group-normalized to obtain token advantages for policy updates.

models to read evidence directly from images. Recent studies further couple retrieval with reinforcement learning: R1-Router (Peng et al., 2025) and MMSearch-R1 (Wu et al., 2025) allow the model to decide when and where to retrieve and insert retrieved images into intermediate reasoning steps, so that answers are derived from visual content rather than text alone. Despite this progress, many approaches transplant text-centric RAG practices to the visual modality and insufficiently address modality-specific needs, such as cross-image grounding, layout-aware reading, and region-level attention, which leads to unstable perception across multiple images. Several studies have recognized this limitation: VRAG-RL (Wang et al., 2025b) defines a visual perception action space that covers region selection, cropping, and scaling, allowing the model to revisit image content multiple times during reasoning; ViDoRAG (Wang et al., 2025a) introduces a multi-agent framework that decouples perception from reasoning, allowing the model to focus on a single subtask at each step. While these frameworks are effective, they increase architectural complexity and computational overhead, complicating end-to-end training and subsequent reconfiguration.

Recent advances in vision and language reasoning models (VLRMs) have introduced effective strategies for strengthening visual perception during reasoning. Vision-R1 (Zhan et al., 2025), MM-Eureka (Meng et al., 2025), Ocean-R1 (Lingfeng et al., 2025), ThinkLite-VL (Wang et al., 2025c), and OpenVLThinker (Deng et al., 2025) show that directly applying GRPO, sometimes even without supervised fine-tuning, substantially promotes the emergence of chain of thought reasoning and can elicit “aha” moments. VLM-R1 (Shen et al., 2025) and Mixed-R1 (Xu et al., 2025) further improve perceptual grounding by augmenting answer correctness signals with auxiliary perception rewards, encouraging better use of image information. However, in VRAG settings that require reasoning over semantically rich content from multiple images, the remaining limitations in perceptual grounding often lead to misinterpretation of visual evidence, which in turn undermines the validity of the overall reasoning process.

3 METHODOLOGY

This section introduces our method, EVisRAG, which enables VLMs to reason over multiple images with rich visual evidence. We first provide an overview of the evidence-guided reasoning process of EVisRAG, covering observation, evidence recording, and answer reasoning (Section 3.1). We then describe how EVisRAG strengthens fine-grained perceptual grounding during reasoning through the Reward-Spaced Group Relative Policy Optimization(RS-GRPO) algorithm(Section 3.2).

162 3.1 THE OVERVIEW FRAMEWORK OF EVISRAG
163164 Given a query q and corpus \mathcal{D} of document-page snapshots, EVisRAG performs a step-by-step
165 reasoning to retrieve and localize visual evidence and produce the final answer a :

166
$$(q, \mathcal{D}) \xrightarrow{\text{EVISRAG}} a, \quad (1)$$

167

168 where q is an open-domain question and corpus \mathcal{D} indexes page-level images, providing visual
169 evidence relevant to q for a VLM to exploit.170 **Information Retrieving.** The first stage of EVisRAG aims to retrieve a set of pages from a large doc-
171 ument page corpus \mathcal{D} , given a query q . Following the VisRAG (Yu et al., 2025) retrieval paradigm,
172 we obtain

173
$$\mathcal{D}_R = \text{VisRAG-Ret}(q, \mathcal{D}), \quad (2)$$

174

175 where the candidate set $\mathcal{D}_R \subset \mathcal{D}$ contains the top- k document pages relevant to the question q .176 **Visual Perception.** After gathering candidates $\mathcal{D}_R = \{d_i\}_{i=1}^k$ from \mathcal{D} , EVisRAG sequentially
177 observes these pages and produces a coarse, page-aware description r_{observe} :

178
$$P(r_{\text{observe}} \mid q, \mathcal{D}_R) = \prod_{t=1}^{|\mathcal{T}_o|} P(r_{\text{observe},t} \mid r_{\text{observe},<t}, q, \mathcal{D}_R), \quad (3)$$

179

180 where $|\mathcal{T}_o|$ is the length of the observation sequence and $r_{\text{observe},t}$ denotes its t -th token.181 Conditioned on q and r_{observe} , EVisRAG then records evidence from each page by generating per-
182 image evidence sequences $r_{\text{evidence}}^{(i)}$:

183
$$P(r_{\text{evidence}} \mid q, r_{\text{observe}}, \mathcal{D}_R) = \prod_{i=1}^k \prod_{t=1}^{|\mathcal{T}_e^{(i)}|} P(r_{\text{evidence},t}^{(i)} \mid r_{\text{evidence},<t}^{(i)}, q, r_{\text{observe}}, d_i), \quad (4)$$

184

185 where $r_{\text{evidence}} = \{r_{\text{evidence}}^{(i)}\}_{i=1}^k$, $|\mathcal{T}_e^{(i)}|$ is the length of the evidence sequence for the retrieved doc-
186 ument page d_i , and $r_{\text{evidence},t}^{(i)}$ is its t -th token.187 **Answer Reasoning.** After visual perception, EVisRAG conducts detective-style reasoning over the
188 perceived information $r_{\text{perception}} = \{r_{\text{observe}}, r_{\text{evidence}}\}$: it distills leads from the recorded evidence,
189 formulates and tests hypotheses across pages, cross-checks contradictions, and organizes a coherent
190 reasoning trajectory r_{reason} :

191
$$P(r_{\text{reason}} \mid q, r_{\text{perception}}, \mathcal{D}_R) = \prod_{t=1}^{|\mathcal{T}_r|} P(r_{\text{reason},t} \mid r_{\text{reason},<t}, q, r_{\text{perception}}, \mathcal{D}_R), \quad (5)$$

192

193 where $|\mathcal{T}_r|$ is the length of the reasoning sequence and $r_{\text{reason},t}$ denotes its t -th token.194 Conditioned on q , $r_{\text{perception}}$, and r_{reason} , EVisRAG then produces the final answer sequence r_{answer} :

195
$$P(r_{\text{answer}} \mid q, r_{\text{perception}}, r_{\text{reason}}, \mathcal{D}_R) = \prod_{t=1}^{|\mathcal{T}_a|} P(r_{\text{answer},t} \mid r_{\text{answer},<t}, q, r_{\text{perception}}, r_{\text{reason}}, \mathcal{D}_R), \quad (6)$$

196

197 where $|\mathcal{T}_a|$ is the answer length and $r_{\text{answer},t}$ is its t -th token.200 3.2 OPTIMIZING VLMS TO EVIDENCE-GUIDED REASON USING RS-GRPO
201202 To enhance EVisRAG’s ability to accurately record evidence from multiple images and reason based
203 on that evidence, we employ a two-stage training as shown in Figure 2. In the first stage, we ap-
204 ply supervised fine-tuning (SFT) as a cold start. In the second stage, we introduce Reward-Sco-
205 ped Group Relative Policy Optimization (RS-GRPO), which extends GRPO to jointly optimize percep-
206 tion and reasoning ability of VLMS, with fine-grained rewards applied to their corresponding reward
207 scopes.208 **Reward Scopes.** To evaluate model outputs while encouraging the evidence-guided reasoning
209 paradigm, we adopt three fine-grained rewards in a coordinated scheme. The format reward R_{format}

enforces adherence to an evidence-guided reasoning paradigm by requiring the model to observe, record evidence, reason, and answer in a disciplined order, making intermediate steps explicit and supervision stable. The perception reward $R_{\text{perception}}$ checks whether question-relevant regions are correctly localized and summarized for each image based on the ground truth evidence generated by a larger VLM and allows an explicit no relevant information when evidence is absent. The derivation reward $R_{\text{derivation}}$ evaluates whether the model derives the correct final answer from its visual perception, ensuring the reasoning is grounded in the observed and recorded evidence. More details of the reward design are shown in Appendix A.3

To jointly train the perception and reasoning ability of VLMs, we introduce Reward Scopes, which route supervision to scope-specific tokens to sharpen credit assignment, reduce interference, and stabilize training. Let $\mathcal{M}(t)$ denote the set of reward channels applicable to the token at position t . The output sequence is segmented by special tokens into four scopes, the observe scope \mathcal{T}_o , the record evidence scope \mathcal{T}_e , the reason scope \mathcal{T}_r , and the answer scope \mathcal{T}_a . Rewards act only where they are meaningful. $R_{\text{perception}}$ supervises tokens in \mathcal{T}_o and \mathcal{T}_e , guiding the model to summarize the right visual regions. $R_{\text{derivation}}$ supervises tokens in \mathcal{T}_r and \mathcal{T}_a , encouraging the model to derive the correct final answer from what was perceived. R_{format} applies to all tokens and keeps the evidence-guided workflow explicit and stable. Formally, we define the reward–scope mapping as:

$$\mathcal{M}(t) = \begin{cases} \{R_{\text{perception}}, R_{\text{format}}\} & t \in \mathcal{T}_o \cup \mathcal{T}_e \\ \{R_{\text{derivation}}, R_{\text{format}}\} & t \in \mathcal{T}_r \cup \mathcal{T}_a \end{cases}. \quad (7)$$

For the i -th sampled output and its token at position t , let $R_t^{(m),i}$ denote the score from reward channel $m \in \mathcal{M}(t)$. The scope-aggregated token reward is the mean over its in-scope channels:

$$\bar{R}_t^i = \frac{1}{|\mathcal{M}(t)|} \sum_{m \in \mathcal{M}(t)} R_t^{(m),i}. \quad (8)$$

RS-GRPO objective. To train both visual perception and reasoning, EVisRAG adopts an RS-GRPO objective that explicitly computes token advantages under reward scopes. Given a group of G sampled outputs, the token-level advantage is

$$\hat{A}_t^i = \frac{\bar{R}_t^i - \text{mean}(\{\bar{R}_t^1, \bar{R}_t^2, \dots, \bar{R}_t^G\})}{\text{std}(\{\bar{R}_t^1, \bar{R}_t^2, \dots, \bar{R}_t^G\})}, \quad (9)$$

where i indexes the i -th sample in the group, and G is the group size. We incorporate the resulting token-level advantages into DAPO to enhance exploration diversity and training stability, and optimize the model by minimizing the following objective:

$$\mathcal{L}_{\text{RS-GRPO}}(\theta) = -\frac{1}{\sum_{i=1}^G |o^i|} \sum_{i=1}^G \sum_{t=1}^{|o^i|} \min\left(r_t^i(\theta) \hat{A}_t^i, \text{clip}(r_t^i(\theta), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}}) \hat{A}_t^i\right), \quad (10)$$

where o^i is the i -th sampled output sequence, $r_t^i(\theta)$ is the importance ratio, and $\epsilon_{\text{low}}, \epsilon_{\text{high}}$ are the lower and upper clipping thresholds.

4 EXPERIMENTAL METHODOLOGY

This section describes the datasets, baselines, evaluation metrics, and implementation details.

Datasets. We first introduce the datasets used in our experiments, followed by the data statistics for golden reasoning trajectory construction.

We evaluate our EVisRAG on five visual question answering (VQA) tasks encompassing diverse document types, including ChartQA (Masry et al., 2022) and InfographicsVQA (Mathew et al., 2022) for various types of figures, MP-DocVQA (Tito et al., 2023) for industrial documents, SlideVQA (Tanaka et al., 2023) for presentation slides, and ViDoseek (Wang et al., 2025a) for multi-document scenarios. For each query, we utilize VisRAG-Ret (Yu et al., 2025) to retrieve the top-3 relevant images as context. Subsequently, each question is categorized according to whether the

270 retrieved context provides sufficient information to answer the question with sufficient context or
 271 with insufficient context. More details of the test datasets are provided in Appendix A.1.
 272

273 We collect 30,000 samples from the training sets of ChartQA and InfoVQA and divide them into SFT
 274 and GRPO subsets with an 8:2 split. For each query, VisRAG-Ret retrieves the top five images, while
 275 only the top three are used during testing. To build high-quality reasoning trajectories for EVisRAG,
 276 we employ Qwen2.5-VL (Bai et al., 2025) models to generate candidate chains of thoughts (Wei
 277 et al., 2022) and retain those yielding correct answers. Following (An et al., 2025), we filter out the
 278 data that can be easily answered when constructing the RL training data. This results in 60,000 SFT
 279 training samples and 4,000 RL training samples. More details of the data construction process are
 280 provided in Appendix A.2.

281 **Baselines.** All baselines use VisRAG-Ret for retrieval. For each query, we fetch the top- k documents,
 282 then the model answers using the retrieved images and the original question.

283 We compare four groups. General VLMs include Qwen2.5-VL-7B, Qwen2.5-VL-32B (Bai et al.,
 284 2025) and MiMo-VL-7B-RL (Xiaomi, 2025). Two generation approaches form VisRAG-Gen(Yu
 285 et al., 2025). VLRMs trained on Qwen2.5-VL-7B-Instruct include Vision-R1-7B (Zhan et al., 2025),
 286 MM-Eureka-7B (Meng et al., 2025), Ocean-R1-7B (Lingfeng et al., 2025), ThinkLite-VL-7B (Wang
 287 et al., 2025c) and OpenVLThinker-7B (Deng et al., 2025). VRAG methods with the same backbone
 288 include R1-Router (Peng et al., 2025), MMSearch-R1 (Wu et al., 2025), and VRAG-RL (Wang et al.,
 289 2025b). More implementation details of the baseline methods are provided in Appendix A.6

290 **Evaluation Metrics.** Due to inherent limitations in retrieval, the selected context may or may not
 291 provide sufficient information to answer the query. To rigorously assess both the perceptual and
 292 reasoning capabilities of the model while mitigating the confounding effects of hallucination, we
 293 categorize each query-context pair into two types: sufficient context and insufficient context (Joren
 294 et al., 2025).

295 For queries where the retrieved images provide sufficient evidence, we adopt the original reference
 296 answer as the ground truth. When the context is inadequate to support a correct answer, the model
 297 is required to output “insufficient to answer.” To evaluate overall performance under realistic VRAG
 298 settings, we report global *Accuracy* and *F1 Score* over all queries as comprehensive, dataset-level
 299 metrics.

300 Additional implementation details for the baseline methods are provided in Appendix A.6. We also
 301 compare three CoT approaches with our Evidence-guided prompt approach. Since these methods
 302 were not trained, we present them separately in Appendix A.4.

303 **Implementation Details.** We use Qwen2.5-VL-7B (Bai et al., 2025) as the backbone for our pro-
 304 posed EVisRAG. We use LLaMA-Factory (Zheng et al., 2024) and Easy-R1 (Yaowei et al., 2025)
 305 for open-sourcing the training framework that we used for SFT and GRPO. All experiments were ex-
 306 ecuted on GPU clusters with computational capabilities comparable to NVIDIA A100 80GB GPUs.
 307 Further details on the hyperparameters that we used for SFT, GRPO are provided in Appendix A.5.

309 5 RESULTS AND ANALYSIS

311 In this section, we begin by evaluating the overall performance of EVisRAG on a range of VQA
 312 benchmarks, covering three single-hop and two multi-hop datasets. We subsequently perform abla-
 313 tion experiments to assess the contributions of our framework. Following this, we investigate how
 314 EVisRAG improves answer accuracy with visual perception.

316 5.1 OVERALL PERFORMANCE

318 Table 1 reports the overall results for EVisRAG and all baselines. EVisRAG-7B consistently out-
 319 performs every comparator across all benchmarks, with substantial gains over the Qwen2.5-VL-7B
 320 backbone, averaging +19% in accuracy and +27% in F1 score. These improvements indicate that
 321 an evidence-guided reasoning paradigm, coupled with RS-GRPO, strengthens perceptual grounding
 322 and enables reasoning that is explicitly conditioned on grounded evidence. Compared with RL-
 323 trained VLRMs, EVisRAG’s explicit visual perception yields a clear advantage. Within the VLRM
 324 group, models emphasizing logical reasoning (e.g., OpenVLThinker (Deng et al., 2025)) do im-

324 Table 1: Overall Performance of EVisRAG and Baselines. “**Bold**” denotes the highest value. Mean-
 325 while, the symbol “ \uparrow ” indicates the increase in our highest value compared to the Vanilla baseline.
 326

Methods	In Distribution				Out of Distribution				Average	
	ChartQA		InfoVQA		DocVQA		SlideVQA		ViDoSeek	
	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1
General VLMs										
Qwen2.5-VL-7B	59.20	52.80	60.86	54.61	63.28	56.03	51.62	46.11	42.56	42.48
MiMo-VL-7B-RL	54.96	40.59	68.11	45.93	74.11	47.67	77.88	47.45	48.34	38.30
Qwen2.5-VL-32B	69.12	60.58	78.13	66.06	83.93	73.78	78.42	58.65	47.55	52.78
										71.43
VisRAG-Gen										
Page Concatenation	59.20	52.80	52.92	46.42	60.58	47.84	64.57	48.45	45.01	41.37
Weighted Selection	32.24	32.32	25.07	27.36	33.67	37.11	33.81	36.44	21.98	31.64
										29.35
VLRMs										
Vision-R1	56.16	50.84	29.53	27.73	32.49	30.04	52.34	47.51	39.05	37.82
Ocean-R1-7B	47.68	47.58	53.20	53.49	56.35	57.02	60.07	57.86	40.63	46.75
MM-Eureka	64.32	58.28	40.53	40.32	56.68	54.75	63.49	58.68	44.40	47.25
ThinkLite-VL-7B	57.60	53.53	61.70	61.62	62.61	62.37	65.29	63.30	45.18	48.40
OpenVLThinker	67.60	62.72	70.47	70.51	71.74	72.51	73.02	72.63	43.52	57.27
										65.27
VRAGs										
MMSearch-R1	63.28	59.89	57.94	57.71	61.59	60.82	65.29	60.97	44.40	54.34
VRAG-RL	47.00	10.03	64.86	12.21	73.22	22.39	73.85	15.37	43.82	18.14
R1-Router	60.72	15.53	60.58	15.17	75.97	25.25	75.36	17.21	44.66	12.53
										63.46
										17.14
EVisRAG(ours)										
EVisRAG-3B	72.64	72.54	71.03	71.83	78.17	79.30	75.84	75.49	45.71	60.13
EVisRAG-7B	76.80	76.60	79.39	79.80	85.45	86.82	81.29	80.28	52.10	65.78
Δ ours \rightarrow Qwen7B	17.60 \uparrow	23.80 \uparrow	18.53 \uparrow	25.19 \uparrow	22.17 \uparrow	30.79 \uparrow	29.67 \uparrow	34.17 \uparrow	9.54 \uparrow	23.30 \uparrow
Δ ours \rightarrow OpenVLThinker	9.20 \uparrow	13.88 \uparrow	8.92 \uparrow	9.29 \uparrow	13.71 \uparrow	14.31 \uparrow	8.27 \uparrow	7.65 \uparrow	8.58 \uparrow	8.51 \uparrow
										9.74 \uparrow
										10.73 \uparrow

351 prove question answering performance, underscoring the value of stronger reasoning. Nevertheless,
 352 EVisRAG’s added perceptual grounding closes a further gap. Moreover, the three VRAG models
 353 improve the extraction of key evidence from retrieved context and, owing to their generalization,
 354 outperform the backbone when reasoning over multiple images. Yet they remain more than ten
 355 percentage points below EVisRAG-7B, since they neglect the need for strong perceptual grounding
 356 over multiple images with rich visual information. EVisRAG further allows a 7B parameter model
 357 to exceed the performance of considerably larger 32B parameter models. Furthermore, thrived on
 358 our RS-GRPO algorithm, EVisRAG jointly improves both perception and reasoning capabilities of
 359 VLMs, leading to a more effective and adaptable RAG framework.

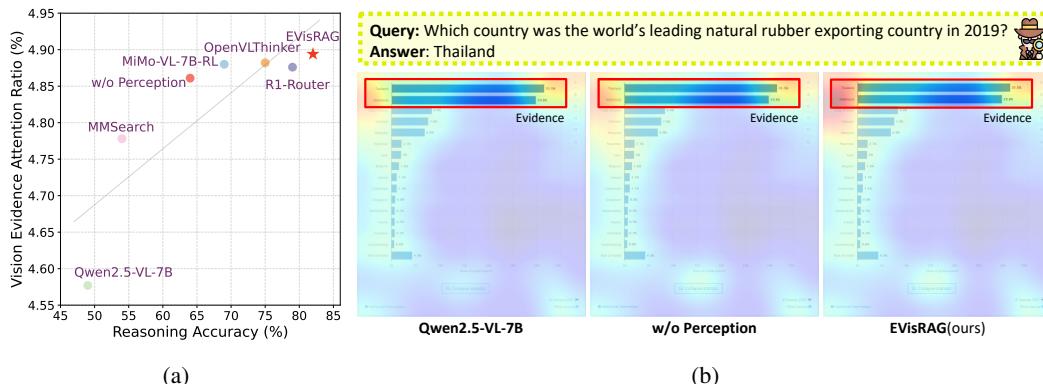
362 5.2 ABLATION STUDY

364 This section reports ablation studies that isolate three training strategies, including the evidence-
 365 guided reasoning paradigm, perception reward, and Reward-Scaled Group Relative Policy Opti-
 366 mization (RS-GRPO), to assess the effectiveness of EVisRAG.

368 As shown in Table 2, EVisRAG achieves the best results across datasets, demonstrating that the
 369 evidence-guided reasoning paradigm combined with RS-GRPO enables VLMs to precisely localize
 370 question-relevant evidence in each image and reason over the recorded cues to produce grounded
 371 answers. Training under a think-then-answer paradigm (w/o Perception) on the same data yields
 372 only modest gains, reflecting the absence of explicit mechanisms for perceptual grounding. Intro-
 373 ducing evidence-guided reasoning paradigm while rewarding only the final answer (w/o Perception
 374 Reward) leads to additional improvements, while underscores EVisRAG demonstrating that intro-
 375 ducing perception reward can further enhance the perception ability of VLMs. Augmenting GRPO
 376 with a perception reward but without reward-scoped (w/o RS-GRPO) provides a further increment,
 377 yet the uniformly aggregated rewards dilute guidance across tokens. In contrast, RS-GRPO applies
 378 rewards directly within their designated reward scopes, sharpening credit assignment, stabilizing
 379 optimization, and ultimately delivering the strongest overall performance.

378
 379
 380
 381
 382
 383
 384 Table 2: Ablation study on accuracy (%) averaged over 5 runs with different random seeds. We
 385 report mean \pm standard deviation: “w/o Perception” trains the model with a standard think-then-
 386 answer approach on the same data. “w/o Perception Reward” uses only answer correctness as the
 387 reward, omitting the additional Perception Reward. “w/o RS-GRPO” sums all rewards and applies
 388 them to every token, corresponding to the standard GRPO algorithm.
 389
 390

384 385 386 387 388 389 390 Methods	384 385 386 387 388 389 390 In Distribution		384 385 386 387 388 389 390 Out of Distribution			384 385 386 387 388 389 390 Avg. Acc
	384 385 386 387 388 389 390 ChartQA	384 385 386 387 388 389 390 InfoVQA	384 385 386 387 388 389 390 DocVQA	384 385 386 387 388 389 390 SlideVQA	384 385 386 387 388 389 390 ViDoSeek	
384 385 386 387 388 389 390 EVisRAG (Ours)	384 385 386 387 388 389 390 76.8 \pm 0.6	384 385 386 387 388 389 390 79.2 \pm 0.7	384 385 386 387 388 389 390 85.5 \pm 1.2	384 385 386 387 388 389 390 81.3 \pm 1.0	384 385 386 387 388 389 390 51.8 \pm 0.7	384 385 386 387 388 389 390 74.9 \pm 0.8
384 385 386 387 388 389 390 w/o Perception	384 385 386 387 388 389 390 67.2 \pm 1.3	384 385 386 387 388 389 390 73.3 \pm 1.6	384 385 386 387 388 389 390 75.7 \pm 2.1	384 385 386 387 388 389 390 77.3 \pm 2.0	384 385 386 387 388 389 390 41.8 \pm 1.2	384 385 386 387 388 389 390 67.1 \pm 1.6
384 385 386 387 388 389 390 w/o Perception Reward	384 385 386 387 388 389 390 69.8 \pm 1.1	384 385 386 387 388 389 390 74.2 \pm 1.2	384 385 386 387 388 389 390 79.9 \pm 3.5	384 385 386 387 388 389 390 77.5 \pm 2.2	384 385 386 387 388 389 390 48.1 \pm 1.7	384 385 386 387 388 389 390 69.9 \pm 1.9
384 385 386 387 388 389 390 w/o RS-GRPO	384 385 386 387 388 389 390 72.0 \pm 2.2	384 385 386 387 388 389 390 75.7 \pm 2.1	384 385 386 387 388 389 390 80.0 \pm 2.2	384 385 386 387 388 389 390 77.9 \pm 1.7	384 385 386 387 388 389 390 48.7 \pm 1.9	384 385 386 387 388 389 390 70.9 \pm 2.0



404
 405
 406
 407
 408
 409 Figure 3: Comparison of models’ attention to question-relevant visual evidence. (a) Accuracy vs.
 410 attention ratio within human-annotated boxes; EVisRAG achieves the highest. (b) Qualitative maps:
 411 Compared with the baseline, EVisRAG better focuses on the top bar encoding the evidence.
 412
 413
 414
 415
 416
 417

5.3 EVALUATING PERCEPTUAL ABILITY THROUGH VISUAL ATTENTION

418 In this section, we evaluate EVisRAG’s visual perception using qualitative and quantitative evidence.
 419 Figure 3b shows a representative case for the question “Which country was the world’s leading natu-
 420 ral rubber exporting country in 2019?”. Training the backbone under a think-then-answer paradigm
 421 (w/o Perception) modestly improves attention of VLMs to the legend and lower caption, helping
 422 the model read that the bars indicate shares of global exports. EVisRAG, with evidence-guided rea-
 423 soning, further concentrates attention on the top bar region and correctly identifies Thailand as the
 424 leading exporter.

425 To quantify perception, we manually annotate evidence regions in more than 100 cases and compute
 426 the visual evidence attention ratio, defined as the percentage of attention mass falling inside the
 427 annotated evidence box. As shown in Figure 3a, EVisRAG achieves the highest reasoning accuracy
 428 and the highest visual evidence attention ratio among all baselines. The scatter also reveals a clear
 429 positive trend: higher attention to the evidence region is associated with higher answer accuracy.
 430

5.4 VISUAL EVIDENCE DENSITY COMPARISON

431 We perform a visual evidence density analysis to evaluate the robustness of our method under vary-
 432 ing numbers of images and different evidence densities. As shown in Figure 4, for each question,
 433 we retrieve the top-1 to top-5 images as context, which we refer to as references. Within these refer-
 434 ences, image tokens that provide information supporting the answer are defined as Evidence. It can
 435 be observed that as the number of retrieved images increases, the total number of Evidence tokens
 436 also rises. However, the overall evidence density decreases rapidly. We compare the performance
 437 of our method with Qwen-7B (backbone) and OpenVLthinker (the strongest baseline) in terms of
 438 F1 score across different evidence densities. Our method consistently outperforms both baselines at
 439

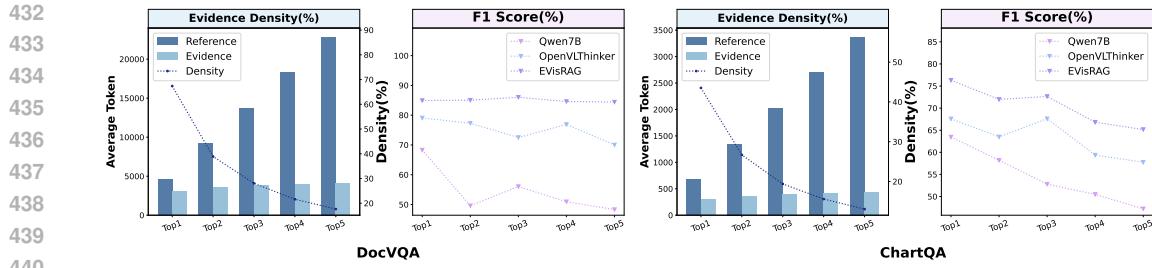


Figure 4: Performance comparison on different visual evidence density. Despite increasing noise with more retrieved images, EVisRAG maintains stable.

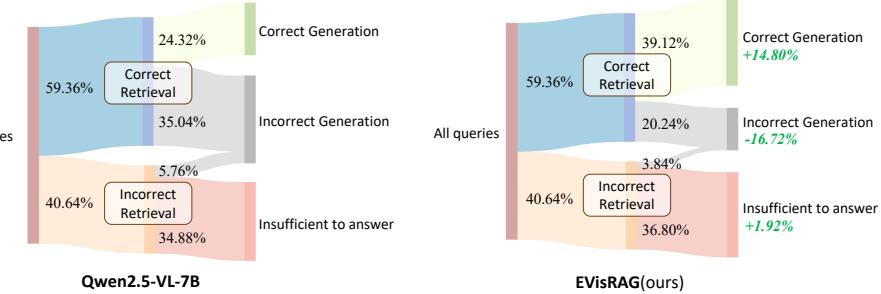


Figure 5: Model performance comparisons in different retrieval scenarios on ChartQA. Compared with the backbone, EVisRAG remains more faithful to the retrieved content in both correct and incorrect retrieval scenarios.

all density levels, demonstrating its superior generalizability in multi-image scenarios. Furthermore, on the DocVQA dataset, our approach maintains stable performance even as the evidence density decreases, highlighting its strong ability to resist hallucination effects.

5.5 IMPACT OF TRAINING ON MODEL PERFORMANCE

As shown in Figure 5, we examine the model’s reasoning under varying degrees of contextual sufficiency to evaluate its balance between informativeness and hallucination. Before training, the baseline Qwen2.5-VL-7B displays a strong hallucination tendency even with correct retrieval—only 24.32% of queries yield correct generations, whereas 35.04% produce incorrect responses. Under incorrect retrieval, it predominantly abstains, reflecting a conservative strategy typical of smaller models. After training with our method, EVisRAG achieves a markedly better performance: the correct-generation rate in correctly retrieved contexts rises substantially, while a modest increase in abstention under incorrect retrieval is accompanied by a controlled reduction in incorrect generations. Overall, the trained model exhibits strengthened evidence-sensitive reasoning and reduced hallucination in underdetermined scenarios.

6 CONCLUSION

In this paper, we propose EVisRAG, a novel framework which enables vision-language models (VLMs) to observe–then–localize multi-image evidence during the thinking process to improve precise visual perception in multi-image scenarios with complex visual content. Specifically, EVisRAG introduces Reward-Scaled Group Relative Policy Optimization (RS-GRPO), which applies reward signals to specific token spans. This reward scope design improves the stability of long chain-of-thought (CoT) training and enables more accurate grounding of visual information throughout the reasoning process. Empirical results validate that EVisRAG effectively extracts key evidence from rich visual content, leading to improved reasoning accuracy. By equipping VLMs with fine-grained perceptual alignment across multiple images, EVisRAG marks a promising step toward more advanced and reliable visual retrieval-augmented generation (RAG) systems.

486 REFERENCES
487

488 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
489 Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scal-
490 ing reinforcement learning on advanced reasoning models, 2025. URL <https://hkunlp.github.io/blog/2025/Polaris>.
491

492 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
493 retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference on*
494 *Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

495 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
496 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *CoRR*, abs/2502.13923, 2025.
497

498 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
499 An early exploration to complex vision-language reasoning via iterative self-improvement. *CoRR*,
500 abs/2503.17352, 2025.

501 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and
502 Pierre Colombo. Colpali: Efficient document retrieval with vision language models. *CoRR*,
503 abs/2407.01449, 2024a.

504 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
505 Colombo. Colpali: Efficient document retrieval with vision language models, 2024b. URL
506 <https://arxiv.org/abs/2407.01449>.
507

508 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
509 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
510 via reinforcement learning. *CoRR*, abs/2501.12948, 2025.

511 Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu,
512 Sedigheh Eslami, Scott Martens, Bo Wang, Nan Wang, and Han Xiao. jina-embeddings-v4:
513 Universal embeddings for multimodal multilingual retrieval, 2025. URL <https://arxiv.org/abs/2506.18902>.
514

515 Hailey Joren, Jianyi Zhang, Chun-Sung Ferng, Da-Cheng Juan, Ankur Taly, and Cyrus Rashtchian.
516 Sufficient context: A new lens on retrieval augmented generation systems. In *The Thirteenth*
517 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
518 OpenReview.net, 2025.
519

520 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
521 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
522 ation for knowledge-intensive NLP tasks. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Had-
523 sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Process-
524 ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
525 2020, December 6-12, 2020, virtual*, 2020.

526 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
527 and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *CoRR*,
528 abs/2501.05366, 2025.

529 Ming Lingfeng, Li Yadong, Chen Song, Xu Jianhua, Zhou Zenan, and Chen Weipeng. Ocean-
530 r1: An open and generalizable large vision-language model enhanced by reinforcement learning.
531 <https://github.com/VLM-RL/Ocean-R1>, 2025. Accessed: 2025-04-03.
532

533 Chengzhi Liu, Zhongxing Xu, Qingyue Wei, Juncheng Wu, James Zou, Xin Eric Wang, Yuyin Zhou,
534 and Sheng Liu. More thinking, less seeing? assessing amplified hallucination in multimodal
535 reasoning models. *CoRR*, abs/2505.21523, 2025.

536 Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu Liu,
537 Yan Ma, Xiaoyi Dong, et al. MMLONGBENCH-DOC: benchmarking long-context document
538 understanding with visualizations. In *Advances in Neural Information Processing Systems 38:
539 Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024*, 2024.

540 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 541 mark for question answering about charts with visual and logical reasoning. In Smaranda Mure-
 542 san, Preslav Nakov, and Aline Villavicencio (eds.), *Findings of the Association for Computational*
 543 *Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022*, pp. 2263–2279. Association for Com-
 544 putational Linguistics, 2022.

545 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 546 Infographicvqa. In *IEEE/CVF Winter Conference on Applications of Computer Vision, WACV*
 547 *2022, Waikoloa, HI, USA, January 3-8, 2022*, pp. 2582–2591. IEEE, 2022.

548

549 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,
 550 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with
 551 rule-based large-scale reinforcement learning. *CoRR*, abs/2503.07365, 2025.

552

553 Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-
 554 thought prompting for large multimodal models. In *IEEE/CVF Conference on Computer Vision*
 555 *and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 14420–14431.
 556 IEEE, 2024.

557

558 Chunyi Peng, Zhipeng Xu, Zhenghao Liu, Yishan Li, Yukun Yan, Shuo Wang, Zhiyuan Liu, Yu Gu,
 559 Minghe Yu, Ge Yu, et al. Learning to route queries across knowledge bases for step-wise retrieval-
 560 augmented reasoning. *CoRR*, abs/2505.22095, 2025.

561

562 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 563 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 564 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.

565

566 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 567 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Ad-
 568 vances in Neural Information Processing Systems 36: Annual Conference on Neural Information
 569 Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

570

571 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 572 optimization algorithms. *CoRR*, abs/1707.06347, 2017.

573

574 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 575 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 576 cal reasoning in open language models. *CoRR*, abs/2402.03300, 2024.

577

578 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 579 Zhang, Kangjia Zhao, Qianqian Zhang, et al. VLM-R1: A stable and generalizable r1-style large
 580 vision-language model. *CoRR*, abs/2504.07615, 2025.

581

582 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 583 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 584 learning. *CoRR*, abs/2503.05592, 2025.

585

586 Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito.
 587 Sliddevqa: A dataset for document visual question answering on multiple images. In Brian
 588 Williams, Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI Conference on Artifi-
 589 cial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial In-
 590 telligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
 591 EAAI 2023, Washington, DC, USA, February 7-14, 2023*, pp. 13636–13645. AAAI Press, 2023.

592

593 Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny. Hierarchical multimodal transformers for
 594 multipage docvqa. *Pattern Recognit.*, 144:109834, 2023.

595

596 Qiuchen Wang, Ruixue Ding, Zehui Chen, Weiqi Wu, Shihang Wang, Pengjun Xie, and Feng Zhao.
 597 Vidorag: Visual document retrieval-augmented generation via dynamic iterative reasoning agents.
 598 *CoRR*, abs/2502.18017, 2025a.

594 Quchen Wang, Ruixue Ding, Yu Zeng, Zehui Chen, Lin Chen, Shihang Wang, Pengjun Xie,
 595 Fei Huang, and Feng Zhao. VRAG-RL: empower vision-perception-based RAG for visually
 596 rich information understanding via iterative reasoning with reinforcement learning. *CoRR*,
 597 abs/2505.22019, 2025b.

598 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
 599 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
 600 visual reasoning self-improvement. *CoRR*, abs/2504.07934, 2025c.

601 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 602 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Advances
 603 in Neural Information Processing Systems 35: Annual Conference on Neural Information Pro-
 604 cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*,
 605 2022.

606 Jinming Wu, Zihao Deng, Wei Li, Yiding Liu, Bo You, Bo Li, Zejun Ma, and Ziwei Liu. Mmsearch-
 607 r1: Incentivizing lmms to search. *CoRR*, abs/2506.20670, 2025.

608 Tsung-Han Wu, Giscard Biamby, Jerome Quenum, Ritwik Gupta, Joseph E Gonzalez, Trevor Dar-
 609 rell, and David M Chan. Visual haystacks: A vision-centric needle-in-a-haystack benchmark.
 610 *arXiv preprint arXiv:2407.13766*, 2024.

611 LLM-Core-Team Xiaomi. Mimo-vl technical report, 2025. URL <https://arxiv.org/abs/2506.03569>.

612 Shilin Xu, Yanwei Li, Rui Yang, Tao Zhang, Yueyi Sun, Wei Chow, Linfeng Li, Hang Song, Qi Xu,
 613 Yunhai Tong, et al. Mixed-r1: Unified reward perspective for reasoning capability in multimodal
 614 large language models. *CoRR*, abs/2505.24164, 2025.

615 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 616 Weilin Zhao, Zihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding
 617 Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong
 618 Sun. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint arXiv:2408.01800*, 2024.
 619 URL <https://arxiv.org/abs/2408.01800>.

620 Zheng Yaowei, Lu Junting, Wang Shenzhi, Feng Zhangchi, Kuang Dongdong, and Xiong Yuwen.
 621 Easry1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyoga/EasyR1>, 2025.

622 Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Junhao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
 623 Xu Han, Zhiyuan Liu, et al. Visrag: Vision-based retrieval-augmented generation on multi-
 624 modality documents. In *The Thirteenth International Conference on Learning Representations,
 625 ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.

626 Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin Zhao, Fan Yang, Ming Tang, and Jinqiao
 627 Wang. Vision-r1: Evolving human-free alignment in large vision-language models via vision-
 628 guided reinforcement learning. *CoRR*, abs/2503.18013, 2025.

629 Daoan Zhang, Junming Yang, Hanjia Lyu, Zijian Jin, Yuan Yao, Mingkai Chen, and Jiebo Luo.
 630 Cocot: Contrastive chain-of-thought prompting for large multimodal models with multiple image
 631 inputs. *CoRR*, abs/2401.02582, 2024a.

632 Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan,
 633 Esther Cheng, Jie Liu, Qunshu Lin, et al. Map-neo: Highly capable and transparent bilingual
 634 large language model series. *CoRR*, abs/2405.19327, 2024b.

635 Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. Ddcot: Duty-distinct chain-of-
 636 thought prompting for multimodal reasoning in language models. In Alice Oh, Tristan Naumann,
 637 Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural In-
 638 formation Processing Systems 36: Annual Conference on Neural Information Processing Systems*
 639 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

640 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 641 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *CoRR*,
 642 abs/2403.13372, 2024.

648 **A APPENDIX**
649650 **A.1 DATASETS**
651652 We evaluated five VQA benchmarks: InfoVQA, DocVQA, and SlideVQA were obtained from the
653 VisRAG release (Yu et al., 2025) , ChartQA from its test split (Masry et al., 2022), and ViDoSeek
654 from ViDoRAG (Wang et al., 2025a). Each dataset provides ground-truth answer image IDs. For
655 each question, we retrieved the top-3 images using VisRAG-Ret as contexts. Following Joren et al.
656 (2025), we labeled it sufficient if all ground-truth images were included, otherwise insufficient. The
657 number of questions and sufficient context ratio in the dataset are shown in Table 3.
658659 **Table 3: Datasets used in our experiments.**
660661

Name	#Questions	Description	Sufficient Context Ratio
ChartQA	1250	Visual and Logical Reasoning about Charts	59.36%
InfoVQA	718	Question Answering on Infographic Images	92.90%
DocVQA	591	Document Visual Question Answering	83.59%
SlideVQA	556	Question Answering based on Multiple Slides	89.93%
ViDoSeek	1142	Retrieval and Reasoning on Visually Rich Documents	84.24%

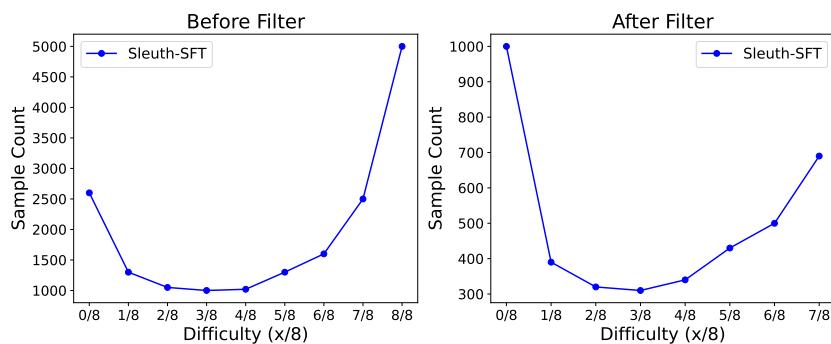
667 **A.2 DATA CONSTRUCTION OF GOLDEN REASONING TRAJECTORIES**
668669 For model training, we collected 30,000 samples from the ChartQA (Masry et al., 2022) and In-
670 fographicsVQA (Mathew et al., 2022) datasets, which were randomly divided into two subsets for
671 SFT and GRPO in an 8:2 ratio. During the retrieval stage, VisRAG-Ret retrieves the top five can-
672 didate images for each query. While evaluation uses only the top three images as context, training
673 leverages a variable number of retrieved images (top-1 to top-5) for data augmentation. Reasoning
674 trajectories are constructed by generating candidate chains of thought with Qwen2.5-VL-72B and
675 Qwen2.5-VL-7B (Bai et al., 2025), followed by a filtering process that retains only those trajectories
676 yielding correct answers. This procedure generated 60,000 high-quality samples for SFT training,
677 from which we extracted evidence as Ground Truth Evidence.
678679 In the GRPO phase, we adopt a curriculum learning strategy following (An et al., 2025). Specifically,
680 the SFT-trained model generates eight candidate completions for each sample, which are ranked
681 according to their scores. Completions with perfect scores are excluded to mitigate overfitting. In
682 addition, we incorporate 400 more challenging multi-hop examples from MMLongBench (Ma et al.,
683 2024). The final GRPO training set consists of 4,000 carefully curated samples, organized to ensure
684 a smooth progression from simple to complex instances, with a deliberate emphasis on more difficult
685 cases to strengthen the model’s reasoning robustness. The distributions of data difficulty before and
686 after filtering are illustrated in Figure 6.
687700 **Figure 6: Data Difficulty Distribution of Before-Filtering and After-Filtering.**
701

Table 4: Overall Performance of EvidenceCOT and Other MCOT.

Methods	Single-hop						Multi-hop				Average	
	ChartQA		InfoVQA		DocVQA		SlideVQA		ViDoSeek		Acc	F1
	Acc	F1										
MCOT												
COBOT	49.52	46.71	31.34	26.96	40.95	32.66	35.25	29.52	33.80	33.93	38.17	33.96
CCOT	50.32	48.54	36.91	35.29	41.96	39.83	51.80	46.51	36.16	41.38	43.43	42.31
DDCOT	51.68	45.55	43.73	33.53	62.10	57.98	54.14	40.37	42.21	49.04	50.77	45.29
Evidence-Guided Prompt(Ours)	62.72	54.13	65.94	62.73	70.05	65.27	66.73	61.77	46.50	56.20	62.39	60.02

A.3 MORE DETAILS ON THE FINE-GRAINED REWARD

In addition to stabilizing training to ensure accurate perceptual grounding and evidence-guided reasoning in VLMs, we further introduce five reward components, namely:

Perception reward. For text-only language models, using only answer accuracy as the reward signal together with GRPO training can elicit emergent “aha moments” and strengthen reasoning abilities (Guo et al., 2025). For VLMs, however, directly optimizing answer accuracy may improve reasoning while failing to improve perceptual accuracy (Liu et al., 2025). To optimize perceptual grounding and reasoning at the same time during training, we introduce a fine-grained perception reward:

$$R_{\text{perception}} = \frac{\sum_{i=1}^n r_i}{\sum_{i=1}^n (y_i \cdot k_{\text{pos}} + (1 - y_i) \cdot 1)}, r_i = \begin{cases} k_{\text{pos}} * f_1(e_i^{\text{pred}}, e_i^{\text{gold}}), & \text{if } y_i = 1 \\ \mathbb{I}(e_i^{\text{pred}} = \text{"no relevant information"}), & \text{if } y_i = 0 \end{cases} \quad (11)$$

The perception reward assesses whether the model extracts useful visual information. For each image, the evidence recorded by the model is compared with the corresponding gold evidence. For images that contain information relevant to the question, the reward is the F1 score between the predicted and gold evidence. For images that are irrelevant, the reward equals 1 if the model correctly indicates the absence of evidence and 0 otherwise. The final perception reward is the normalized sum of the image level rewards.

Derivation reward. We employ the F1-score between the predicted answer and the gold truth as the reasoning reward, where the gold truth is set to the fixed response “insufficient to answer” when the context is incomplete.

$$R_{\text{derivation}} = f_1(a^{\text{pred}}, a^{\text{gold}}), a^{\text{gold}} = \begin{cases} a^{\text{gold}}, & \text{if sufficient context} \\ \text{"insufficient to answer"}, & \text{if insufficient context} \end{cases} \quad (12)$$

where a^{pred} denotes the model’s predicted answer, a^{gold} denotes the ground-truth answer, and Acc_{evi} indicates whether the model’s evidence predictions for all images are correct (assigned 1 if all are correct, and 0 otherwise).

Format reward. Beyond the accuracy-based reward, we also incorporate a format reward model that compels the model to follow our CoT design by sequentially performing observation, evidence recording, reasoning, and answering, with each stage encapsulated by its corresponding special tag (<observe>, <evidence>, <think>, <answer>).

$$R_{\text{format}}(a_i) = \begin{cases} 1, & \text{if the format of } a_i \text{ is correct} \\ 0, & \text{otherwise} \end{cases} \quad (13)$$

A.4 IMPACT OF EVIDENCE-GUIDED REASONING

To evaluate the effectiveness of Evidence-Guided Reasoning, which explicitly encourages the VLM to first observe and record visual evidence before reasoning, we conducted two additional experiments. First, we compared our reasoning paradigm against three MCOT baselines, which also avoid additional training but attempt to enhance perception and reasoning by enforcing fixed prompting

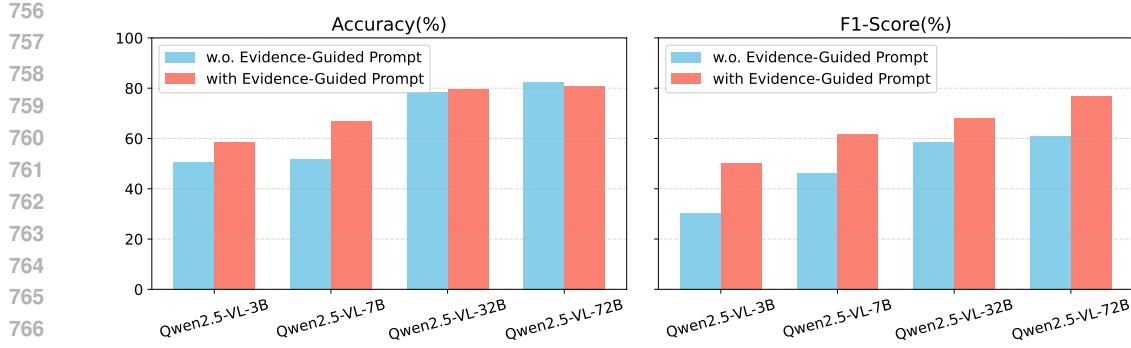


Figure 7: Performance comparison of Evidence-Guided Prompt Approach across different model sizes on the SlideVQA dataset.

patterns. As shown in Table 4, our approach consistently outperforms the baselines across five datasets. Although these MCOT strategies also prompt the model to improve perception by extensively describing image details, they tend to neglect the actual question. This often amplifies hallucinations by encouraging excessive descriptions. In contrast, our method records only question-relevant visual evidence, ensuring conciseness and enabling a more coherent and effective reasoning process. The three MCOT baselines are summarized as follows:

DDCOT (Zheng et al., 2023). A prompting strategy that decomposes complex questions into sub-questions and explicitly distinguishes between those requiring visual information and those that do not, thereby mitigating hallucinations and enhancing multimodal reasoning.

CCOT (Mitra et al., 2024). A prompting approach that leverages scene graphs as compact linguistic representations to enrich both image and task prompts, enabling LMMs to handle a wider range of vision-language tasks.

COCOT (Zhang et al., 2024a). A prompting strategy that improves the model’s ability to capture fine-grained details in multi-image tasks by guiding it to explicitly identify similarities and differences between images.

Moreover, we further evaluated the generality of the Evidence-Guided Prompting approach across models of different scales. As illustrated in Figure 7, even without additional training, prompting the model to first record visual evidence and then reason upon it consistently improves both perception and reasoning across four different model sizes. This demonstrates the broad applicability and robustness of our proposed paradigm. prompt templates used by the EVisRAG are shown in Figure 11.

A.5 MORE IMPLEMENTATION DETAILS

We acknowledge the contributions of LLaMA-Factory and EasyR1 (Yaowei et al., 2025) for releasing the training frameworks utilized in our SFT and GRPO experiments. We adopt Qwen2.5-VL-7B (Bai et al., 2025) as the backbone model for our proposed EVisRAG. EVisRAG is trained on 8x NVIDIA A100-80GB GPUs, with hyperparameters as shown in Tables 5 and 6.

A.6 MORE IMPLEMENTATION DETAILS OF THE BASELINE METHODS

In this section, we provide comprehensive implementation details and prompt templates of the baseline methods evaluated in our study.

General VLMs. We assessed general vision-language models across different scales, namely Qwen2.5-VL-7B and Qwen2.5-VL-32B (Bai et al., 2025), as well as MiMo-VL-7B-RL (Xiaomi, 2025).

VisRAG-Gen. We additionally evaluate two generation strategies described in VisRAG (Yu et al., 2025).

810

811

812 Table 5: SFT hyperparameters.

813

Epoch	1
Data type	bf16
Learning rate	5e-7
Global batch size	32
Scheduler	Cosine
Warmup ratio	0.1
Num train epochs	1
Image max pixels	3920000

821

822

823

824

825

826 *Page Concatenation.* Page Concatenation forms a single composite image by horizontally concatenating the top- k retrieved pages and feeds it to a single-image VLM. In our implementation, we
827 adopt Qwen2.5-VL-7B (Bai et al., 2025) as the backbone VLM to ensure a fair comparison with
828 other strong VRAG systems.

829 *Weighted Selection.* Weighted Selection instead generates an answer for each retrieved page independently and selects the final output based on the highest confidence, where the confidence weight
830 combines the generation likelihood and the normalized retrieval score. For this method, we use
831 the official implementation and pretrained MiniCPM-V-2 (Yao et al., 2024) model released by the
832 authors. Together, these two variants represent the canonical generation pipelines of VisRAG and
833 serve as competitive baselines in our evaluation.

834 **Vision-Language Reasoning Models (VLRMs).** We compare five fine-tuned VLRMs, all initialized
835 from Qwen2.5-VL-7B-Instruct, each employing distinct strategies to enhance reasoning capabilities:

836

837 *Vision-R1-7B.* Vision-R1-7B (Zhan et al., 2025) introduces a reinforcement learning-based fine-
838 tuning approach that incentivizes reasoning through vision-guided feedback. It circumvents the
839 need for human-curated preference data by adopting a criterion-driven reward function.

840 *OpenVLThinker-7B.* OpenVLThinker-7B (Deng et al., 2025) follows an iterative two-stage training
841 scheme, alternating between supervised fine-tuning (SFT) and reinforcement learning (RL). Starting
842 from distilled reasoning competencies in text-only domains, the model progressively refines its rea-
843 soning by generating its own training data through RL and then using that data to further supervised
844 fine-tune itself.

845 *MM-Eureka-7B.* MM-Eureka-7B (Meng et al., 2025) extends rule-based reinforcement learning
846 (RL) to multimodal reasoning by incorporating new algorithms such as Online Filter, ADORA,
847 and DAPO, which enhance reasoning efficiency and stability across multimodal tasks.

848 *Ocean-R1-7B.* Ocean-R1-7B (Lingfeng et al., 2025) builds upon a structured chain-of-thought eval-
849 uation framework that leverages knowledge graph exploration (e.g., OCEAN) to provide rich offline
850 feedback, thereby aligning generated reasoning paths with factual knowledge.

851 *ThinkLite-VL-7B.* ThinkLite-VL-7B (Wang et al., 2025c) employs Monte Carlo Tree Search
852 (MCTS)-guided sample selection to identify and train on genuinely challenging examples from a
853 small dataset (11k samples), achieving state-of-the-art visual reasoning performance with high data
854 efficiency.

855

856 **VRAGs (Visual Retrieval-Augmented Generation).** We further examine three advanced VRAG
857 methods, all built upon the Qwen2.5-VL-7B-Instruct architecture:

858

859 *R1-Router.* R1-Router (Peng et al., 2025) employs a dynamic routing mechanism trained via Step-
860 wise Group Relative Policy Optimization (Step-GRPO). R1-Router generates intermediate queries
861 during the model’s reasoning process and directs them selectively to the most appropriate knowl-
862 edge base (e.g., text, image, table KB), harnessing the evolving reasoning state. This fine-grained

Table 6: GRPO hyperparameters.

Epoch	4
Rollout batch size	32
Global batch size	32
Max grad norm	1.0
Data type	bf16
Learning rate	1e-6
Weight decay	1e-2
Warmup ratio	0.0
Rollout temperature	1.2
epsilon	0.2
epsilon_high	0.28
Image max pixels	1568000

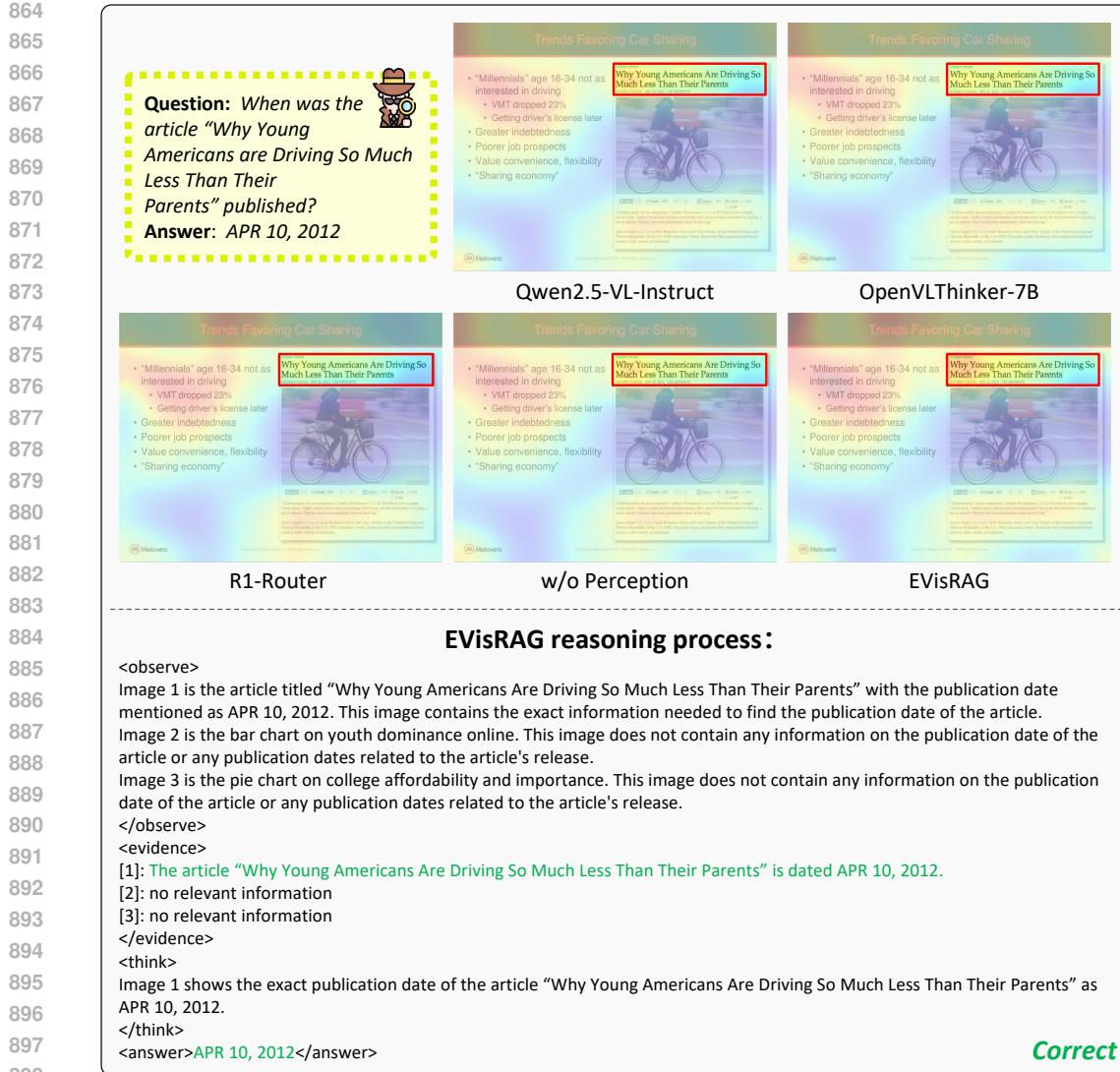


Figure 8: A Evidence Attention Case Study on SlideVQA.

routing capability enhances retrieval efficiency and reasoning precision by minimizing unnecessary retrievals while adaptively integrating external evidence.

MMSearch-R1. MMSearch-R1 (Wu et al., 2025) integrates multimodal search into the reasoning loop, employing cross-modal retrieval mechanisms to fetch contextually aligned information in both visual and textual forms.

VRAG-RL. VRAG-RL (Wang et al., 2025b) incorporates a reinforcement learning-based fine-tuning schema, enabling the model to progressively gather visual evidence from coarse to fine granularity and support multi-turn reasoning via an optimized retrieval-and-generation pipeline.

The prompt templates employed for each baseline are shown in Figure 12. For the three MCOT-based comparisons (DDCOT, CCOT, and COCOT), we adapted their original prompting strategies into an end-to-end chain-of-thought generation framework compatible with our setup. Their corresponding prompt templates are detailed in Figures 13, 14, and 15, respectively.

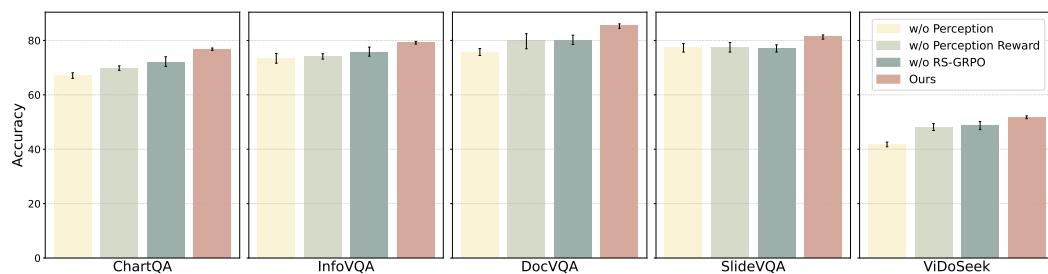


Figure 9: Ablation study(%): “w/o Perception” trains the model with a standard think-then-answer approach on the same data. “w/o Perception Reward” uses only answer correctness as the reward, omitting the additional Perception Reward. “w/o RS-GRPO” sums all rewards and applies them to every token, corresponding to the standard GRPO algorithm. Results are averaged over 5 runs with different random seeds, and error bars indicate 95% bootstrap confidence intervals.

A.7 EXTENDED ABLATION WITH BOOTSTRAP CONFIDENCE INTERVALS

Figure 9 presents an extended visualization of the ablation study in Table 2, where we report 95% *bootstrap confidence intervals* computed from five runs using different random seeds. The intervals are estimated via 10,000 bootstrap resamples for each method–dataset pair, providing a more reliable characterization of uncertainty compared to reporting only the mean and standard deviation.

Across all five benchmarks, the full EVisRAG model consistently achieves the highest accuracy, with its confidence intervals being well separated from those of the ablated variants in nearly all cases. This non-overlapping behavior indicates that the performance gains from Perception modeling, Perception Reward, and RS-GRPO are statistically significant rather than fluctuations due to random initialization. Moreover, the bootstrap intervals of our complete method are noticeably narrower, demonstrating more stable optimization dynamics. In contrast, removing any of the proposed components not only reduces accuracy but also increases variance, highlighting the necessity and robustness of each part of our reward design and training paradigm.

A.8 MORE VISUAL ATTENTION CASES OF EVisRAG

We present in Figure 8 a qualitative comparison of attention alignment with question-relevant visual evidence. The query asks: When was the article “Why Young Americans are Driving So Much Less Than Their Parents” published? A human reader would first attend to the headline to verify topical relevance, then shift gaze to the metadata directly beneath it, where the publication date “APR 10, 2012” appears. As shown in the figure, EVisRAG places greater attention mass on these evidence regions than the baselines, and in its reasoning trace, explicitly observes and records the date ”APR 10, 2012,” yielding the correct answer. This case illustrates that EVisRAG enhances perception during reasoning by aligning attention with task-critical visual evidence.

A.9 EVIDENCE-GUIDED REASONING OPTIMIZATION VIA RS-GRPO

To evaluate the effectiveness of our proposed Reward-Scaled Group Relative Policy Optimization (RS-GRPO), we compare its training dynamics with the standard GRPO baseline. As shown in Figure 10a, RS-GRPO consistently achieves higher answer rewards throughout training. While both methods exhibit fluctuations in early stages, RS-GRPO demonstrates a more stable upward trend and converges to a substantially higher reward level. This indicates that the fine-grained reward signals applied to in-scope tokens allow RS-GRPO to better align visual perception with reasoning, leading to more reliable improvements. Overall, these results confirm that RS-GRPO provides more effective optimization than GRPO, enabling EVisRAG to achieve superior reasoning quality.

A.10 INFERENCE EFFICIENCY OF EVisRAG

The results in Figure 10b compare inference accuracy, latency, and output length on the ViDoSeek dataset across different approaches. Baseline models such as Qwen2.5-VL-7B-Instruct and Open-

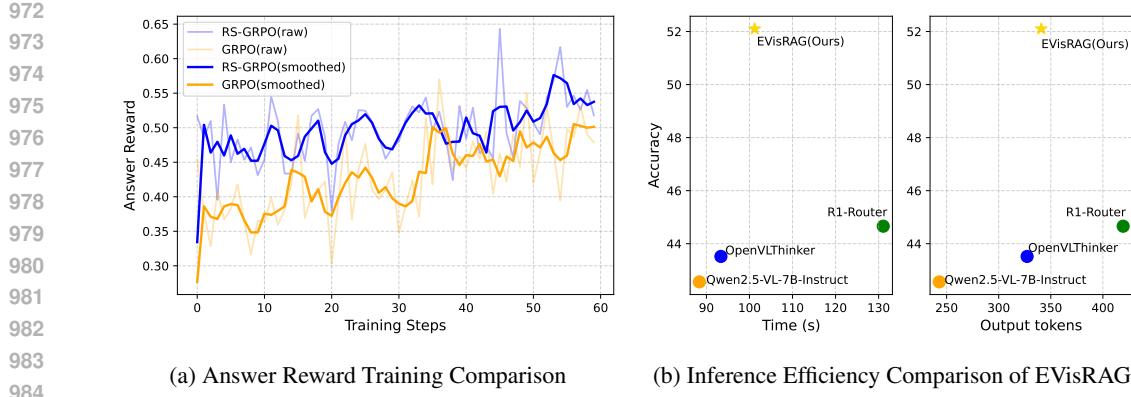


Figure 10: Training and Inference Efficiency Comparison of EVisRAG

Table 7: Performance on natural-image QA.

	In Distribution (all images as input)			Out of Distribution (top-3 recall)	
	2 images	3 images	5 images	10 images	50 images
Qwen7b	64.67	64.44	62.00	57.8	56.2
EVisRAG(Ours)	86.22 <small>+21.55</small>	85.33 <small>+20.89</small>	83.11 <small>+21.11</small>	71.6 <small>+13.8</small>	64.5 <small>+8.3</small>

VLthinker exhibit relatively low inference time (around 90–95 seconds) and short outputs (approximately 270–330 tokens), but their accuracy remains below 44%. R1-Router does not improve accuracy while incurring the highest computational cost: it requires the longest inference time (about 120 seconds) and produces the most verbose outputs (over 400 tokens) for a similar accuracy level. In contrast, our proposed EVisRAG, which adopts a single-step generation strategy, achieves a substantial accuracy gain of over 52% with only a modest increase in latency (around 100 seconds) and a moderate number of output tokens (about 300). These results show that EVisRAG delivers significantly better reasoning quality without sacrificing efficiency or introducing excessive verbosity, demonstrating its practicality for real-world applications.

A.11 EXPERIMENTS ON NATURAL IMAGES

To further assess the generalizability of our method beyond document images, we additionally evaluate it on natural-image retrieval and reasoning under large-scale settings. We adopt the Visual Haystacks dataset (Wu et al., 2024) as both training and evaluation data. From the 2-image, 3-image, and 5-image configurations, we first select the same 100 questions for each setting, resulting in 300 training examples in total, and use the remaining 900 questions in each configuration as test data. In addition, we evaluate on the 10-image and 50-image configurations, using all 1,000 questions in each as test examples. For the 10- and 50-image settings, we employ `clip-vit-large-patch14-336` (Radford et al., 2021) to retrieve the top-3 most relevant images, which are then fed into the model.

We compare our trained model against the original *Qwen7B* model as the baseline. As shown in Table 7, our approach achieves more than 20% absolute accuracy improvement in the in-distribution settings (2, 3, and 5 images). In the out-of-distribution settings (10 and 50 images), even when relying on a relatively small CLIP model with imperfect retrieval quality, our method still yields on average more than 10% absolute improvement. These results demonstrate that our approach remains highly effective on natural-image tasks and is not limited to document-centric scenarios.

A.12 ROBUSTNESS TO DIFFERENT RETRIEVERS

To examine whether our approach depends on a specific retrieval module, we further evaluate the trained model under multiple independent retrievers. Although our method is trained with VisRAG-

Table 8: Performance of EVisRAG and Qwen7b with different retrievers on ViDoSeek.

	Sufficient Ratio	qwen7b-Acc	qwen7b-F1	evisrag-Acc	evisrag-F1
VisRAG-ret (Yu et al., 2025)	84.24	42.56	42.48	52.10 <small>+9.5</small>	65.78 <small>+23.3</small>
Colpali-v1.3 (Faysse et al., 2024b)	84.33	42.23	40.95	50.79 <small>+8.6</small>	63.82 <small>+22.9</small>
jina-embeddings-v4 (Günther et al., 2025)	85.11	40.72	53.02	49.37 <small>+8.7</small>	64.01 <small>+11.0</small>

Ret as the retrieval component, at inference time we replace the retriever with two alternative models of different architectures and scales: Colpali-v1.3 and Jina-embeddings-v4. For each retriever, we obtain the top-3 relevant images and feed them into our QA model without any retraining or adaptation. The results in Table 8 demonstrate that our method yields consistent and substantial improvements across all retrievers, which confirm that our approach is retriever-agnostic.

A.13 CASE STUDIES OF EVISRAG

In this section, we present three case studies illustrating EVisRAG’s effectiveness: (i) single-hop QA, (ii) multi-hop QA, and (iii) alignment of attention with question-relevant visual evidence, each compared against strong baselines.

We begin with the single-hop case illustrated in Figure 16, drawn from the DocVQA dataset. In this example, the question asks for the name of the chemist listed in the document. EVisRAG correctly perceives and records the visual evidence, identifying that Richard W. Mann is annotated with the title chief chemist, and subsequently produces the correct answer, Richard W. Mann. In contrast, both OpenVLThinker and R1-Router misperceive the visual annotations during reasoning, mistakenly attributing the role of chemist to other individuals and thus generating incorrect answers.

We next analyze the multi-hop case in Figure 17 from the SlideVQA dataset. The question asks for the number of major languages in the country that governs mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). Answering requires integrating evidence from two slides: one identifies the country as China. The other enumerates China’s major languages, including Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien–Taiwanese), Xiang, Gan, and Hakka, a total of eight. EVisRAG correctly records the provenance of each piece of evidence and produces the correct answer, demonstrating both reliable visual perception and cross-page reasoning. In contrast, OpenVLThinker and R1-Router fail: OpenVLThinker infers the correct subgoal but, having missed the second slide’s list, predicts that no answer exists. R1-Router locates both slides but misperceives the list and counts seven instead of eight.

Finally, we examine a failure case from the ViDoSeek dataset (Figure 18) to highlight a remaining limitation of EVisRAG. The question asks which type of ISO standard for traditional Chinese medicine has the largest number of published standards in the regional report. EVisRAG correctly identifies the slide containing the relevant statistics and accurately parses fine-grained categories and counts from the bar chart, even recognizing that “Quality and safety of single herb (including seeds and seedlings)” attains the highest value among the subtypes. However, the question refers to the higher-level taxonomy on the slide, for which the correct answer is Chinese medicine. Because EVisRAG implicitly resolves the notion of “type” at the finer-grained subtype level, it bases its reasoning on the wrong semantic abstraction and consequently outputs an incorrect answer. This case shows that although our model can accurately perceive and organize detailed visual evidence, it may still produce errors due to a wrong understanding of the problem.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090 You are an AI Visual QA assistant. I will provide you with a question and several images.
 1091 Please follow the four steps below:
 1092
Step 1: Observe the Images
 1093 First, analyze the question and consider what types of images may contain relevant
 1094 information. Then, examine each image one by one, paying special attention to aspects
 1095 related to the question. Identify whether each image contains any potentially relevant
 1096 information.
 1097 Wrap your observations within <observe></observe> tags.
 1098
Step 2: Record Evidences from Images
 1099 After reviewing all images, record the evidence you find for each image within
 1100 <evidence></evidence> tags.
 1101 If you are certain that an image contains no relevant information, record it as: [i]: no
 1102 relevant information(where i denotes the index of the image).
 1103 If an image contains relevant evidence, record it as: [j]: [the evidence you find for the
 1104 question](where j is the index of the image).
 1105
Step 3: Reason Based on the Question and Evidences
 1106 Based on the recorded evidences, reason about the answer to the question.
 1107 Include your step-by-step reasoning within <think></think> tags.
 1108
Step 4: Answer the Question
 1109 Provide your final answer based only on the evidences you found in the images.
 1110 Wrap your answer within <answer></answer> tags.
 1111 Avoid adding unnecessary contents in your final answer, like if the question is a yes/no
 1112 question, simply answer "yes" or "no".
 1113 If none of the images contain sufficient information to answer the question, respond
 1114 with <answer>insufficient to answer</answer>.
 1115
Formatting Requirements:
 1116 Use the exact tags <observe>, <evidence>, <think>, and <answer> for structured output.
 1117 It is possible that none, one, or several images contain relevant evidence.
 1118 If you find no evidence or few evidences, and insufficient to help you answer the
 1119 question, follow the instruction above for insufficient information.
 1120
 Question and images are provided below. Please follow the steps as instructed.
 1121 Question: {query}
 1122
 1123
 1124
 1125 Figure 11: The Prompt Template for EVisRAG(SFT&GRPO)
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

You are an AI assistant. I will provide a question and some images.

Put your reasoning process within `<think></think>`.

Please answer the questions based on the multiple pictures given to you, and put your final answer in `<answer></answer>`.

Please try to remove irrelevant content in the final answer.

If you think there are no relevant information from the picture that can help you answer the question, answer `<answer>insufficient to answer</answer>` after your thinking.

Question: {query}

Figure 12: The Prompt Template for baselines.

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

You are an AI assistant. I will provide a query and some images. Follow these two steps:

In the first step:

Please think step-by-step about the preliminary knowledge to answer the question, deconstruct the question as completely as possible down to necessary sub-questions based on context, questions and options. Then with the aim of helping humans answer the original question, try to answer the sub-questions. The expected answering form is as follows:

Sub-questions:

1. <sub-question 1>
2. <sub-question 2>

...

Sub-answers:

1. <sub-answer 1> or 'Uncertain'
2. <sub-answer 2> or 'Uncertain'

...

For a question, assume that you do not have any information about the picture, but try to answer the sub-questions and prioritize whether your general knowledge can answer it, and then consider whether the context can help. If sub-questions can be answered, then answer in as short a sentence as possible. If sub-questions cannot be determined without information in images, please formulate corresponding sub-answer into "Uncertain".

In the second step:

Put your final answer in `<answer></answer>` based on the scene graphs.

Please try to remove irrelevant content in the final answer. Like if the question is asking for yes or no, then only answer `<answer>yes</answer>` after your thinking.

If you think there are no relevant information from the picture that can help you answer the question, answer `<answer>insufficient to answer</answer>` after your thinking.

Question: {query}

Figure 13: The Prompt Template for DDCOT

1184

1185

1186

1187

1188
1189
1190
1191
1192

You are an AI assistant. I will provide a query and some images. Follow these two steps:

1193
1194 **In the first step:**
1195 For the provided images and its associated question, **generate a scene graph** for each
1196 images includes the following:

- 1197 1. Objects that are relevant to answering the question
- 1198 2. Object attributes that are relevant to answering the question
- 1199 3. Object relationships that are relevant to answering the question

1200
1201 Then reason the answer of question based on scene graphs.
1202 Put these process within <think></think>.

1203 **In the second step:**
1204 Put your your final answer in <answer></answer> based on the scene graphs.
1205 Please try to remove irrelevant content in the final answer. Like if the question is asking
1206 for yes or no, then only answer <answer>yes</answer> after your thinking.
1207 If you think there are no relevant information from the picture that can help you
1208 answer the question, answer <answer>insufficient to answer</answer> after your
1209 thinking.

1210 Question: {query}
1211
1212

Figure 14: The Prompt Template for CCOT

1213
1214
1215
1216
1217
1218
1219
1220
1221

You are an AI assistant. I will provide a query, and some images. Follow these two steps:

1222
1223 **In the first step:**
1224 Find the **similarities and differences** of these images.
1225 Output separately all the same points and all the differences you find.
1226 Then reason the answer of question based on your findings.
1227 Put these process within <think></think>.

1228 **In the second step:**
1229 Put your your final answer in <answer></answer>.
1230 Please try to remove irrelevant content in the final answer. Like if the question is asking
1231 for yes or no, then only answer <answer>yes</answer> after your thinking.
1232 If you think there are no relevant information from the picture that can help you
1233 answer the question, answer <answer>insufficient to answer</answer> after your
1234 thinking.

1235 Question: {query}
1236
1237

Figure 15: The Prompt Template for COCOT

1238
1239
1240
1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Question: Who the only chemist is in the list?
Ground Truth: Richard W. Mann

Evidence

EVisRAG reasoning process:

<observe>

Image 1 is the cover of the book "Evaluating the Safety of Food Chemicals" by the National Academy of Sciences. It does not contain any information on any chemist's name, their profession, or any list of individuals and their occupations that could help identify the only chemist in the list. This image does not contain any relevant information.

Image 2 is the list of guests with their titles and affiliations. It does not contain any information on the profession of the individuals, their specific roles as chemists, or any list that confirms who the only chemist is in the list. No direct information on the profession of each individual as a chemist or any other professional title that confirms their role in chemistry.

Image 3 is the list of names with their titles and affiliations. It shows that Richard W. Mann is listed as the "Chief Chemist" from the Great Western Sugar Co. No other individual in the list is titled as a chemist or has a title that directly confirms their profession as a chemist. No other profession or title confirms any other individual as the only chemist in the list.

</observe>

<evidence>

[1]: no relevant information

[2]: no relevant information

[3]: Richard W. Mann is listed as the "Chief Chemist" from the Great Western Sugar Co.

</evidence>

<think>

Based on the evidence from Image 3, the only chemist in this list is Richard W. Mann.

</think>

<answer>Richard W. Mann</answer>

Correct

OpenVLThinker reasoning process:

<think>

Okay, so I need to figure out who the only chemist is in the list provided. Let me start by looking at the images given. The first image is a book titled "Evaluating the Safety of Food Chemicals" by the National Academy of Sciences. That doesn't really help me with the list, but it might be related to the topic.

Moving on to the second image, it's a list of guests with their titles and affiliations. I'll go through each one to see if anyone is a chemist. The list includes people like Mr. Joseph F. Abbott, Miss Charlotte Adams, Mrs. Edith M. Barber, and so on. None of these names have "chemist" in their titles.

The third image is a list of names and their roles. It starts with Richard W. Mann, who is a MSG Plant in Johnstown, Colorado. Then there's Carl Peters, who is a Beet Grower Director. William Stewart is an Owner of KLMO. Ed Lehman is an Owner of Longmont Times Call. John Meyer is the President of Longmont National Bank. Robert Whyte is the President of St. Vrain Valley Bank. Reggie Batt is the President of First National Bank. Arthur G. Salberg is the President of First National Johnstown. Dr. R. K. Oldemeyer is a Director of Agricultural Research. Larry Flanders is a Company Attorney. Lloyd Dickens is a Farmer-Director of Production Credit. A. Frank Barnes is a Farmer. Harold Nesbitt is a Manager of A.S.C. Office. Art Stromquist is a Farmer.

Looking through this list, the only person with a role that could be related to chemistry is Dr. R. K. Oldemeyer, who is a Director of Agricultural Research. However, the question is specifically about a chemist, not an agricultural researcher. So, I need to see if anyone else has a chemist title.

After going through the list, I don't see any other chemists. The other roles are various business and agricultural positions.

Therefore, the only chemist mentioned is Dr. R. K. Oldemeyer, but the question is asking for the only chemist in the list, which implies there's only one. Since the list doesn't mention any other chemists, the answer should be Dr. R. K. Oldemeyer.

</think>

The only chemist mentioned in the list is Dr. R. K. Oldemeyer, who is a Director of Agricultural Research. However, the question asks for the only chemist in the list, which implies there's only one. Since the list doesn't mention any other chemists, the answer should be Dr. R. K. Oldemeyer.

<answer>Dr. R. K. Oldemeyer</answer>

Incorrect

R1-Router reasoning process:

<think>

The question asks for the only chemist in a list. The information provided includes a list of individuals with their respective titles and affiliations. The list includes various professionals from different fields, including chemists. The relevant information can be found in the list of individuals, where titles such as "Chief Chemist" and "Chemist" are present.

</think>

<answer>

The only chemist in the list is Dr. Walter H. Eddy, who is listed as an American Public Health Association member. This information is based on the list of individuals provided, where Dr. Walter H. Eddy is listed with the title "American Public Health Association" next to his name.

</answer>

Incorrect

Figure 16: A Case Study on DocVQA

1296

1297 **Question:** *How many major languages are there*
 1298 *in the country that has control over mainland*
 1299 *China and the largely self-governing territories of*
 1300 *Hong Kong (since 1997) and Macau (since 1999)?*

1301 **Ground Truth:** 8

1302

EVisRAG reasoning process:

1303 <observe>

1304 Image 1 is the Country Profile of the People's Republic of China (PRC). It mentions that the PRC has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). This image contains the information needed to identify the country and its major languages.

1305 Image 2 is the China Fact Sheet. It lists the major languages in China as Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, Gan, and Hakka dialects. This image contains the exact information needed to find the number of major languages.

1306 Image 3 is the map on Ethnolinguistic Groups in Afghanistan. This image does not contain any information on the major languages in the country that has control over mainland China and its territories, nor does it contain any information on the number of major languages in China or its control over the mentioned territories.

1307 </observe>

1308 <evidence>

1309 [1]: The People's Republic of China (PRC) has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999).

1310 [2]: The major languages in the People's Republic of China (PRC) are Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, Gan, and Hakka dialects.

1311 [3]: no relevant information

1312 </evidence>

1313 <think>

1314 Image 2 lists the major languages in the People's Republic of China as Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, Gan, and Hakka dialects. This image contains the exact information needed to find the number of major languages in the country that has control over mainland China and its territories.

1315 </think>

1316 <answer>8</answer>

1317 **Correct**

1318

1319 <think>

1320 Okay, so I need to figure out how many major languages are spoken in the country that has control over mainland China and the self-governing territories of Hong Kong and Macau. Let me start by looking at the images provided.

1321 First, I'll look at the Country Profile image. It mentions that the People's Republic of China (PRC) has control over mainland China and the self-governing territories of Hong Kong and Macau. That's the country we're looking for.

1322 Next, I'll check the China Fact Sheet image. It lists the major languages spoken in China. The list includes Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, Gan, and Hakka dialects. So, the question is asking about the number of major languages. The image mentions several dialects, but it doesn't specify how many are considered major.

1323 However, the image doesn't provide a clear cut-off point for what constitutes a major language versus a dialect.

1324 Given that the image lists multiple dialects, it's possible that each one is considered a major language. However, the image doesn't provide a definitive number. It's also worth noting that the image doesn't mention any other languages besides these Chinese dialects. Therefore, based on the information provided, the number of major languages is not explicitly stated. The image suggests multiple dialects, but it doesn't give a specific number. So, the answer would be that there are multiple major languages, but the exact number is not provided.

1325 </think>

1326 The image mentions several dialects, but it doesn't specify how many are considered major languages. Therefore, the number of major languages is not explicitly stated.

1327 <answer>insufficient to answer</answer>

1328 **Incorrect**

1329

1330 <think>

1331 The question asks for the number of major languages in the country that has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). The images provided show information about China, including its official name, capital city, area, population, literacy rate, GDP per capita, major languages, currency, and time zone.

1332 The images do not contain information about Afghanistan, which is unrelated to the question.

1333 The relevant information from the images is: 1. The People's Republic of China (PRC) has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). 2. The major languages in China are Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, Gan, and Hakka dialects. Based on the information provided, the answer to the question is:

1334 </think>

1335 <answer>

1336 There are 7 major languages in the country that has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). These languages are Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, and Gan. Hakka dialects are also considered major languages in China.

1337 </answer>

1338 **Incorrect**

1339

R1-Router reasoning process:

1340 <think>

1341 The question asks for the number of major languages in the country that has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). The images provided show information about China, including its official name, capital city, area, population, literacy rate, GDP per capita, major languages, currency, and time zone.

1342 The images do not contain information about Afghanistan, which is unrelated to the question.

1343 The relevant information from the images is: 1. The People's Republic of China (PRC) has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). 2. The major languages in China are Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, Gan, and Hakka dialects. Based on the information provided, the answer to the question is:

1344 </think>

1345 <answer>

1346 There are 7 major languages in the country that has control over mainland China and the largely self-governing territories of Hong Kong (since 1997) and Macau (since 1999). These languages are Mandarin, Yue (Cantonese), Wu (Shanghainese), Minbei (Fuzhou), Minnan (Hokkien-Taiwanese), Xiang, and Gan. Hakka dialects are also considered major languages in China.

1347 </answer>

1348 **Incorrect**

1349

Figure 17: A Case Study on SlideVQA

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

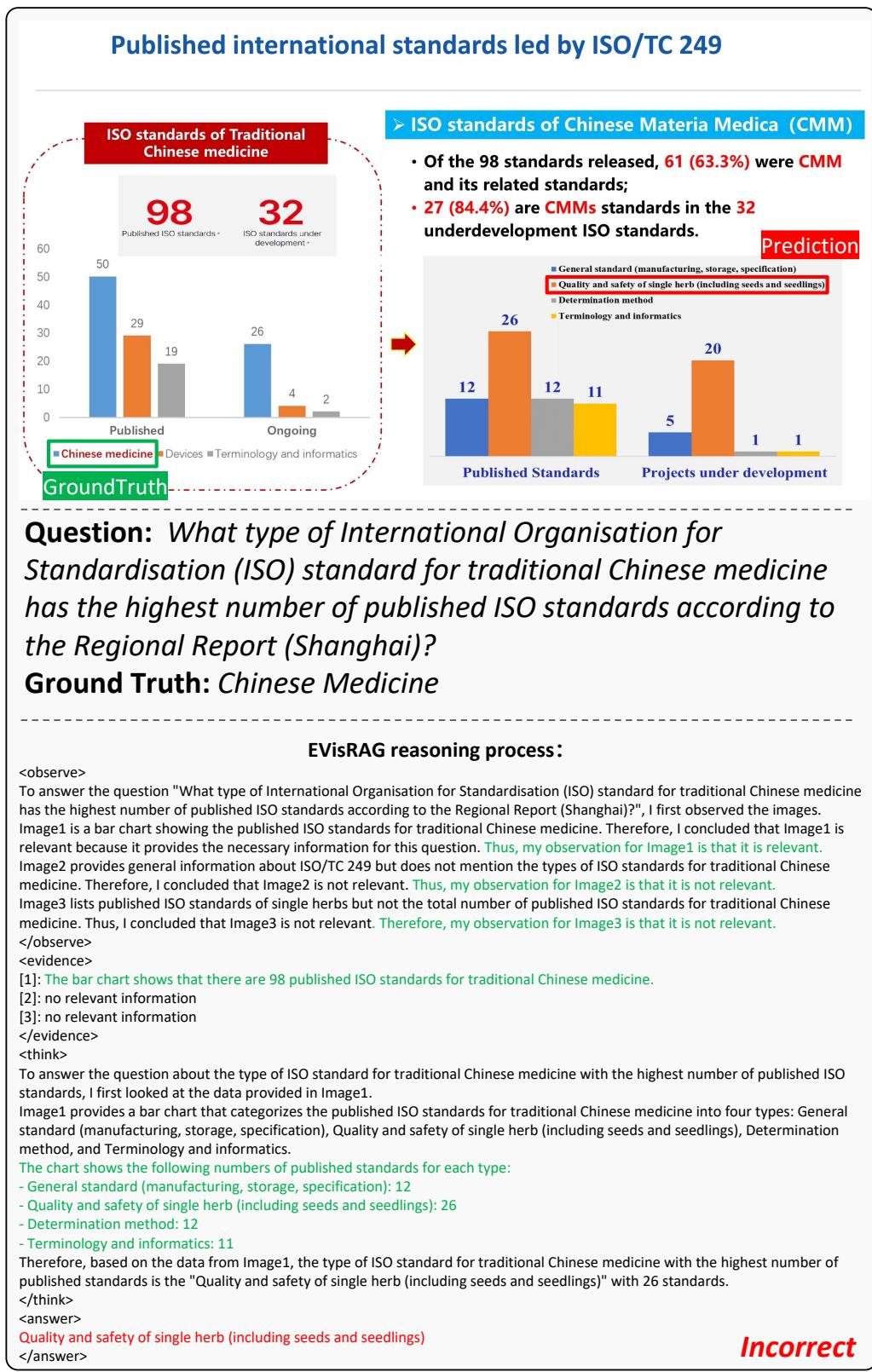


Figure 18: A Failure Case Study on ViDoSeek