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Abstract

Randomized dimensionality reduction is a widely-
used algorithmic technique for speeding up large-
scale Euclidean optimization problems. In this pa-
per, we study dimension reduction for a variety of
maximization problems, including max-matching,
max-spanning tree, max TSP, as well as various
measures for dataset diversity. For these problems,
we show that the effect of dimension reduction is
intimately tied to the doubling dimension λX of
the underlying dataset X—a quantity measuring
intrinsic dimensionality of point sets. Specifically,
we prove that a target dimension of O(λX) suf-
fices to approximately preserve the value of any
near-optimal solution, which we also show is nec-
essary for some of these problems. This is in
contrast to classical dimension reduction results,
whose dependence increases with the dataset size
|X|. We also provide empirical results validat-
ing the quality of solutions found in the projected
space, as well as speedups due to dimensionality
reduction.
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1. Introduction
Dimensionality reduction is a key technique in data sci-
ence and machine learning that allows one to transform a
dataset of n points in a d-dimensional space into a dataset
where each point now lies in a much smaller t-dimensional
space. This reduction in dimensionality occurs while (ap-
proximately) preserving the dataset’s essential properties.
The benefits of such reduction are apparent—the total stor-
age of a d-dimensional dataset is O(nd). After dimension
reduction, the total storage is O(nt).

Another aspect is running time. After a dimension reduc-
tion, we may replace dependencies on d with a dependency
on t. This seemingly addresses the curse of dimensionality
which is used to describe the phenomenon that algorithms
scale poorly in high dimensions. Initially this seems very
promising, as many problems admit a polynomial time ap-
proximation scheme (PTAS) in a low-dimensional setting
(Bartal & Gottlieb, 2021; Cevallos et al., 2019; Kolliopoulos
& Rao, 2007). However, these algorithms typically have
severe dependency on the dimension d (e.g., could be dou-
bly exponential). We are thus interested in reducing the
dimension as much as possible, ideally even to constants.

Problems for which efficient algorithms are known to ex-
ist in low-dimensions, but are not known to exist in high-
dimensions, include network design problems, such as the
traveling salesperson (Arora, 1997; Kolliopoulos & Rao,
2007; Shenmaier, 2022), and diversity maximization prob-
lems (Cevallos et al., 2019; 2018), both of which are staples
of data analysis and operations research. However, this
discrepancy between low- and high-dimensional data ex-
ists primarily in the worst case. One can consider a beyond
worst-case analysis by attempting to identify tractable inputs
to the problem which are not necessarily low dimensional
(Awasthi et al., 2010; Ostrovsky et al., 2012). One way of
utilizing such properties is to design a dimension reduction
to uncover such structures that might not be easily used in
the original high dimension, see (Awasthi & Sheffet, 2012;
Cohen-Addad & Schwiegelshohn, 2017).

Dimensionality reduction techniques can be broadly cate-
gorized into two distinct types: data-dependent and data-
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oblivious. Data-dependent techniques, like Principal Com-
ponents Analysis (PCA) and t-SNE (van der Maaten & Hin-
ton, 2008), aim to produce “tailor-made” low-dimensional
representations via (frequently) computationally-intensive
procedures (possibly with quadratic running times). The
benefit of being data-dependent is that one can capture the
non-worst-case nature of “real world” datasets; the down-
side is that data-dependent methods are computationally
expensive, see (Boutsidis et al., 2009; Cohen et al., 2015;
Feldman et al., 2020) for applications of PCA to clustering
and subspace approximation.

In data-oblivious dimension reduction, the goal is
to produce—without even looking at the dataset—a
dimensionality-reducing map from Rd to Rt. These are con-
siderably more “lightweight” and simple to apply and indeed
vital for streaming and distributed models, where the applied
dimensionality reduction method is restricted to a small por-
tion of the entire input. Indeed, the Johnson-Lindenstrauss
(JL) transform (Johnson & Lindenstrauss, 1984), which can
be realized by a t× d matrix of independent N (0, 1/t) en-
tries (Indyk & Motwani, 1998; Dasgupta & Gupta, 2003),
is among the most popular examples. Despite being data-
oblivious, JL transforms are surprisingly powerful. They
preserve pairwise distances, and also center-based cluster-
ing (Makarychev et al., 2019; Izzo et al., 2021), linkage
clustering (Narayanan et al., 2021), subspaces (Charikar &
Waingarten, 2022), and cuts (Chen et al., 2023), to name a
few applications.

Among these works, (Indyk & Naor, 2007; Narayanan et al.,
2021) stand out in relating the performance of the JL trans-
form to the doubling dimension of the input dataset, in-
corporating elements of data-dependent and data-oblivious
dimension reduction. On the one hand, the dimensionality-
reducing map is still a JL transform; it is data-oblivious,
simple to apply, store and communicate. On the other hand,
the analysis is data-dependent—it ties the performance of
the map to a data-dependent quantity, the doubling dimen-
sion, which captures the intrinsic dimensionality and non-
worst-case nature of high-dimensional datasets. Formally,
the doubling dimension is the smallest number λ such that
for every ball of radius r, the input points in that ball can be
covered by 2λ balls of radius r/2 (Gupta et al., 2003) (see
also (Clarkson, 1999)). For arbitrary worst-case instances,
λ ≤ log n, as we can always cover n points with 2logn = n
balls for any choice of radius r. For any given instance,
however, the quantity may be substantially smaller. Perhaps
surprisingly, it is possible to prove data-dependent bounds
on the performance of data-oblivious dimension reduction,
deriving the benefits of both.

So far, this type of analysis (incorporating the doubling di-
mension to data-oblivious dimension reduction) has only
been done for facility location (Narayanan et al., 2021;

Huang et al., 2024), single-linkage clustering (Narayanan
et al., 2021), approximate nearest neighbors (Indyk & Naor,
2007) and k-center (Jiang et al., 2024).

We ask: For which problems can we design a data-oblivious
dimension reduction with data-dependent target dimension?
Can we identify a large collection of related geometric prob-
lems which admit such dimensionality reduction?

1.1. Our Contributions

In this paper, we identify a large class of problems, with a
special focus on network design (maximum weight match-
ing, max TSP, max spanning tree) and diversity maximiza-
tion problems (subgraph diversity maximization), for which
we are able to obtain a data-oblivious dimension reduction
with data-dependent target dimension. Maximum weight
matching, max TSP and max spanning tree are natural net-
work design problems where the weights describe profit
or rewards on the edges. Maximum diversity problems
arise in many application settings, from facility location to
network analysis, and have been a topic of study in both
computer science (Indyk et al., 2014) and operational re-
search (Martı́ et al., 2022). In general, such problems focus
on identifying a subset of elements from a given set such
that a diversity/distance measure is maximized. Different
problems in this family choose ways to measure the overall
diversity measure. Possibly the most notable problem is
the dispersion maximization, which maximizes the small-
est pairwise distance of the selected elements. But other
measures of using the sum of edge lengths in a subgraph
(clique, star, cycle, tree, matching, and pseudoforest) have
also been studied (Indyk et al., 2014). Taking diversity into
account in data analysis is also gaining traction in machine
learning (Gong et al., 2018) especially in generative mod-
els (Eigenschink et al., 2023; Naeem et al., 2020) and active
learning (Melville & Mooney, 2004; Yang et al., 2015).

Given input dataset with doubling dimension λ, we show
that reducing the dimension to roughly t = O(λ), using a
matrix of i.i.d. Gaussians drawn from N(0, 1

t ), preserves
solutions up to a factor of 1 + ε on the problems in Table 1
found by any algorithm with high probability. Furthermore,
we also show that the dependence on λ in the target dimen-
sion is tight for all of these problems — there are datasets
for which reducing the dimension below Ω(λ) introduces
large errors.

A particularly nice feature of our bounds is that the guar-
antee applies to all candidate solutions. We may thus use
any algorithm in the low dimensional space in post process-
ing. We are only aware of a comparable result for nearest
neighbor search (Indyk & Naor, 2007). Previous work in
this direction only preserved the value of the optimum (for
MST (Narayanan et al., 2021)) or restricted the candidate so-
lutions (for facility location (Narayanan et al., 2021; Huang
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Problem Target Dimension Reference
Max weight matching O(ε−2λ log 1

ε
) Thm 2.1

Ω(λ) Thm 3.1
Max TSP O(ε−2λ log 1

ε
) Thm 2.1

Ω(λ) Thm 3.5
Max k-hypermatching O(ε−2λk2 log k

ε
) Thm 2.3

Max spanning tree O(ε−2λ log 1
ε
) Thm B.5

Ω(λ) Thm B.6
Max k-coverage O(ε−2λ log 1

ε
) Cor B.4

Ω(λ) Thm B.6
Subgraph diversity O( 1

ε2
(λ log 1

ε
+ log k)) Cor A.2

Ω(λ) Thm A.3

Table 1. Summary of results for dimension reduction with 1 +
ε distortion using a matrix of i.i.d. Gaussians. The doubling
dimension of the input dataset is denoted by λ.

et al., 2024) and k-center (Jiang et al., 2024)).

Threshold Phenomena As another contribution, we iden-
tify an intriguing sharp threshold phenomenon for maximum
matching, and we believe a similar phenomena also occurs
for some of the other problems (e.g., maximum TSP). While
reducing the dimension to O(λ) (or O(log n) in general)
provides a (1 + ε)-approximation of maximum matching
for any constant ε > 0; there are datasets such that reducing
the dimension slightly below this bar causes a distortion of
at least

√
2 (by Theorem 3.1). Curiously, the approxima-

tion factor remains at most
√
2 all the way down to target

dimension O(1) (see Theorem 4.1). We are not aware of
any previous work establishing similar phenomena.

1.2. Preliminaries

For simplicity, we only consider random linear maps defined
by a matrix of Gaussians as in many prior works.

Definition 1.1. A Gaussian JL map is a t× d matrix with
i.i.d. entries drawn from N(0, 1

t ).

The following is a crucial lemma in our analysis, which
bounds the expansion of balls under a Gaussian JL map.

Lemma 1.2 (Lemma 4.2 in (Indyk & Naor, 2007)). Let
X ⊂ B(⃗0, 1) be a subset of the Euclidean unit ball. Then
there are universal constants c, C > 0 such that for t >
C ·ddim(X)+1, D > 1, and a Gaussian JL map G ∈ Rt×d,
Pr(∃x ∈ X, ∥Gx∥ > D) ≤ e−ctD2

.

2. Maximum Matching and Max-TSP for
Doubling Sets

In this section, we prove dimensionality reduction results for
maximum matching and maximum traveling salesman prob-
lem. Denote by optmax-match and optmax-tsp the optimum

of maximum matching and maximum TSP, respectively.

Theorem 2.1. Let 0 < ϵ < 1 and d, λ ∈ N, and Gaus-
sian JL map G ∈ Rt×d with suitable t = O(ϵ−2λ log 1

ϵ ).
Then for every set P ⊂ Rd with ddim(P ) = λ, with
probability at least 2/3, every (1 + ε)-approximate so-
lution for optmax-match(G(P )) or optmax-tsp(G(P )) is a
(1 + O(ε))-approximate solution to optmax-match(P ) or
optmax-tsp(P ), respectively. Moreover, O(1)-approximate
solutions are preserved as well.

The proof of the theorem is by the following lemma.

Lemma 2.2. Let 0 < ϵ < 1 and d, λ ∈ N, and a Gaussian
JL map G ∈ Rd×t with suitable t = O(ϵ−2λ log 1

ϵ ). Then,
for every set P ⊂ Rd with ddim(P ) = λ, with probability
≥ 9/10, we have, for every matching M of P ,∑
{p,q}∈M

∥Gp−Gq∥ ≤
∑

{p,q}∈M

∥p−q∥+ε·optmax-match(P ).

Proof of Theorem 2.1. Notice that for both problems,
opt(G(P )) ≥ (1 − ε) opt(P ) w.h.p. by the following.
Consider an optimal solution S in P (where S is either a
perfect matching or a tour of P ). We have

opt(G(P )) ≥ cost(G(S)) =
∑

{p,q}∈S

∥Gp−Gq∥,

which is w.h.p. ≥ (1− ε)
∑

{p,q}∈S ∥p− q∥ (e.g., by ana-
lyzing the expectation and applying Markov’s inequality).
Therefore, the result for maximum matching is immediate
from Lemma 2.2.

For maximum TSP, consider a tour S of G(P ). It decom-
poses to three matchings M1,M2,M3 (in fact, if n is even
then M3 is the empty set, and otherwise it contains a single
edge). Thus,

cost(G(S)) =

3∑
i=1

∑
{p,q}∈Mi

∥Gp−Gq∥

≤
3∑

i=1

∑
{p,q}∈Mi

∥p− q∥+ 3ε · optmax-match(P )

= cost(S) + 3ε · optmax-tsp(P ).

Rescaling ε concludes the proof.

Our result for max-matching generalizes to hypermatching,
where edges in the matching are replaced with k-hyperedges
(e.g., triangles). Formally, in the max k-hypermatching
problem, n is a multiple of k, and the goal is to partition
P into n/k sets S1, . . . , Sn/k, each of size k, to maximize∑n/k

i=1

∑
p,q∈Si

∥p− q∥.

3



Randomized Dimensionality Reduction for Euclidean Maximization and Diversity Measures

Theorem 2.3. Let 0 < ϵ < 1 and d, λ, k ∈ N, and Gaus-
sian JL map G ∈ Rt×d with suitable t = O(ϵ−2k2λ log k

ϵ ).
Then for every set P ⊂ Rd with ddim(P ) = λ, with proba-
bility at least 2/3, a (1+ ε)-approximation to the maximum
k-hypermatching of G(P ) is a (1 + O(ε))-approximation
to the maximum k-hypermatching of P .

The proof is essentially by picking ε′ = ε
k and applying

Theorem 2.1. The proof is provided in Appendix C.

2.1. Proving Lemma 2.2.

A key observation in our proof is the following.

Lemma 2.4. Let M be a maximum matching of a dataset P
with radius r. There exists a ball of radius r

2 that contains
every (p, q) ∈ M for which ∥p− q∥ ≤ r

4 .

Proof. Let (p, q), (x, y) ∈ M such that ∥p − q∥ ≤ r
4 and

∥x − y∥ ≤ r
4 . We claim that x, y ∈ B(p, r

2 ), from which
the lemma follows.

The proof is by contradiction. Suppose ∥p− x∥ > r
2 (wlog,

the same arguments hold for y), then there is a matching
M ′ with cost larger than M — it is the same as M , but with
a minor change, match the pairs (p, x), (q, y) (i.e., the pairs
are switched). Indeed, the difference between the cost of
M ′ and M is∑

(a,b)∈M ′

∥a− b∥ −
∑

(a,b)∈M

∥a− b∥

= ∥p− x∥+ ∥q − y∥ − (∥p− q∥+ ∥x− y∥)
> r

2 − 2 · r
4 = 0,

and M ′ has a larger cost, a contradiction.

Proof of Lemma 2.2. Let M be a maximum matching of P .
Denote by r the radius of P . We construct a sequence of
balls, such that intuitively, for every (p, q) ∈ M , there exists
a ball B in this sequence that contains p, q and ∥p− q∥ =
Ω(radius(B)).

The construction is as follows. Let B0 be the minimum
enclosing ball of P . Let P1 be the set of points whose
distance from their match in M is ≤ r

4 and B1 be a ball
of radius r

2 given by Lemma 2.4. In particular, P1 ⊂ B1.
Let M1 be the matching M induced on P1. Clearly, M1

is a maximum matching of P1 (whose radius ≤ r
2 ), so we

can apply Lemma 2.4 again, getting a ball B2 and P2 with
radius smaller by a factor of 2. Proceed in this manner, so
for every i ∈ Z+, Bi has radius ri = r

2i . By construction,

∀i ∈ Z+, ∀(p, q) ∈ Mi \Mi+1, ∥p− q∥ ≥ ri
4 . (1)

For every p ∈ P , denote the last level that contains p by ip,
i.e., the maximum i such that p ∈ Pi \ Pi+1, and denote the
radius of that level by rp.

Claim 2.5.
∑

p∈P rp ≤ 8 opt(P ).

Proof of Claim 2.5.

∑
p∈P

rp =

∞∑
i=0

∑
(p,q)∈Mi\Mi+1

(rp + rq)

≤
∞∑
i=0

∑
(p,q)∈Mi\Mi+1

8∥p− q∥ = 8opt(P ),

where the inequality is by Equation (1).

We will use a helpful probability statement.

Claim 2.6 (Claim C.2 of (Makarychev et al., 2019)). There
exists a universal constant c > 0 such that for all t < d, and
for a Gaussian JL map G ∈ Rt×d,

∀x ∈ Rd, r > 0, Pr(∥Gx∥ > (1 + r)∥x∥) ≤ e−cr2t.

We now analyze the error contributed by each ball. For
every i ∈ Z+, let Ni be an ϵri-net of P ∩ Bi. By stan-
dard arguments, it has size ≤ N := (2/ϵ)ddim(P ) (see
e.g., (Gupta et al., 2003)). For suitable target dimension
t = O(ε−2 logN) = O(ϵ−2 ddim(P ) log 1

ϵ ), the follow-
ing holds for a matrix G ∈ Rt×d of i.i.d. N(0, 1

t ): For
every α > 1, x ∈ Rd, by Claim 2.6,

Pr(∥Gx∥ > (1+ϵα)∥x∥) ≤ exp(−Ω(α2ε2t)) ≤ N−22−α2

.

By a union bound over all pairs x, y ∈ Ni, with probability
≥ 1− 2−α2

,

∀x, y ∈ Ni, ∥Gx−Gy∥ ≤ (1 + ϵα)∥x− y∥. (2)

Additionally, for every y ∈ Ni, we have by Lemma 1.2 that
with probability ≥ 1− e−ctα2

,

∀p ∈ P ∩B(y, ϵri), ∥G(p− y)∥ ≤ αεri. (3)

Thus, by a union bound, with probability ≥ 1 −
e−ctα2 |Ni| ≥ 1 − 2−α2

the above hold for all y ∈ Ni.
For every i, denote by αi the smallest α ≥ 1 for which
Equations (2) and (3) hold. Therefore, for every j ∈ N,

Pr(αi > 2j−1)

≤Pr(∃x, y ∈ Ni, ∥Gx−Gy∥ > (1 + ε2j−1)∥x− y∥)
+Pr(∃y ∈ Ni, p ∈ P ∩B(y, εri), ∥Gp−Gy∥ > 2j−1εri)

≤2 · 2−4j−1

.

Hence, Eαi ≤
∑∞

j=0 2
j Pr(αi ≥ 2j−1) ≤

∑∞
j=0 2

j2 ·
2−4j−1

= O(1).
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Next, we consider a random variable that captures the er-
ror accumulated by all the balls together. Denote X :=∑∞

i=0 αi|Pi|ri. We have,

EX =

∞∑
i=0

Eαi|Pi|ri = O(

∞∑
i=0

|Pi|ri)

= O(
∑
p∈P

rp) = O(opt(P )). (4)

By Markov’s inequality, w.p. > 9/10, we have X =
O(opt(P )). Assume this event holds.

Finally, we are ready to prove the lemma. Let M ′ be a
matching of P . We bound the cost of this matching on
G(P ). For every p ∈ P , consider level ip (recall, it is the
last level containing p). For every (p, q) ∈ M ′, assume
wlog that ip ≤ iq (so Biq ⊆ Bip). Denote by yp ∈ Nip

the nearest net-point to p in that level, and by yqp ∈ Nip

the nearest net-point to q in the same level ip. In particular,
p ∈ B(yp, εrp) and q ∈ B(yqp, ϵrp). By triangle inequality,∑

(p,q)∈M ′

∥Gp−Gq∥

≤
∑

(p,q)∈M ′

∥Gp−Gyp∥+ ∥Gq −Gyqp∥+ ∥Gyp −Gyqp∥

by Equations (2) and (3),

≤
∑

(p,q)∈M ′

2εαiprp + (1 + εαip)∥yp − yqp∥

since yp, yqp are in a ball of radius rp, and by triangle in-
equality,

≤
∑

(p,q)∈M ′

4εαiprp + ∥yp − p∥+ ∥ypq − q∥+ ∥p− q∥

≤
∑

(p,q)∈M ′

4εαiprp + 2ϵrp + ∥p− q∥

and by Equation (4),

=O(ε opt(P )) +
∑

(p,q)∈M ′

∥p− q∥.

This concludes the proof of Lemma 2.2.

3.
√
2 Approximation Lower Bound for Max

Matching and Max-TSP
The aim of this section is to derive a lower bound on the
dimension necessary for the maximum matching (and max
TSP) of a projected set of points to yield a better than

√
2

approximation for the optimal cost of the original point set.
Omitted proofs can be found in Appendix D.

Theorem 3.1. Let ε ∈ (0, 1), n = Ω(1/ε2) be even and
P = {e1, · · · , en} be the standard basis vectors in Rn. Let
G be a Gaussian JL map onto t dimensions. If C log(1/ε)

ε2 ≤
t ≤ log(n)

C log(1/ε) for a sufficiently large constant C, then with
probability ≥ 1− exp(−Ω(nε2))− 1/n50, we have

optmax-match(G(P )) ≥
(√

2− ε
)
· optmax-match(P ).

The proof is by demonstrating a matching with large cost
in the target dimension. Note that optmax-match(P ) =

√
2 ·

n/2, since all pairwise distances equal
√
2. After dimension

reduction, the points are i.i.d. distributed N(0, 1
t It), hence

are roughly mapped to be uniform on the unit sphere. Thus,
we expect points to have an antipodal match at distance 2,
so the matching would have size roughly 2 · n/2. However,
this holds on average, and it is unclear how to construct a
matching. We resolve this as follows.

Lemma 3.2. Let ε ∈ (0, 1), t ≥ C log(1/ε)
ε2 for a sufficiently

large constant C > 0. Let x1, · · · , xn be i.i.d. draws from
N (0, It). With probability ≥ 1 − exp(−Ω(nε2)), at least
1− ε fraction of the xi satisfy ∥xi∥2/

√
t ∈ 1± ε.

Lemma 3.3. Let ε ∈ (0, 1), n = Ω(ε−2) and C log(1/ε)
ε2 ≤

t ≤ log(n)
C log(1/ε) for a sufficiently large constant C > 0.

Let x1, · · · , xn/2 and y1, · · · , yn/2 be i.i.d. draws from
N (0, It). Consider a bipartite graph H = (A,B) with bi-
partition A = {x1, · · · , xn/2}, B = {y1, · · · , yn/2}. Put
an edge between xi ∈ A and yj ∈ B if ∥xi + yj∥2 ≤ ε

√
t.

With failure probability at most 1/n99, we have

|deg(x1)−E[deg(x1)]| ≤ εE[deg(x1)].

Lemma 3.4. Consider the setting of Lemma 3.3. If C is
a sufficiently large constant then H has a matching of size
≥ n/2(1− ε) with probability at least 1− 1/n50.

For the proof of Lemma 3.4, recall the linear programming
relaxation of the maximum matching problem on a bipartite
graph H = (A ∪B,E): max

∑
(i,j)∈E zij subject to

0 ≤ zij ≤ 1, ∀(i, j) ∈ E∑
j∈B

zij ≤ 1, ∀i ∈ A,
∑
i∈A

zij ≤ 1, ∀j ∈ B.

It is a classic fact that any feasible (possibly fractional)
solution to the above LP can be rounded to an integral
solution with cost at least as large as the fractional solu-
tion (even in polynomial time but we only need existence
here) (Chakrabarty). Using this, we can prove Lemma
Lemma 3.4, whose full proof is deferred to Appendix D.
The main idea is that we set each zij to be ((1 + ε)∆)−1

where ∆ = E[deg(x1)]. The capacity constraints are sat-
isfied since the capacity constraint for vertex xi sums to
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deg(xi)/((1 + ε)∆) ≤ 1 by our degree concentration of
Lemma 3.3. One can check that this assignment also leads
to a large matching.

Proof of Theorem 3.1. We will prove the theorem by
demonstrating a matching with large objective value in the
projected dimension. As noted earlier, optmax-match(P ) =√
2 · n/2. Furthermore, Gei for 1 ≤ i ≤ n are all inde-

pendent standard Gaussian vectors, scaled down by 1/
√
d.

Partition the Gei’s into two disjoint sets of size n/2. Lemma
3.4 implies that (with high probability) we can find a match-
ing of size ≥ n/2(1 − ε/100) among points across these
two sets, satisfying that the vertices on every edge of the
matching sum to a vector with ℓ2 norm at most ε/100. Fur-
thermore, Lemma 3.2 implies that at least a (1 − ε/1000)
fraction of vectors in both sets satisfy that their ℓ2 norms are
1± ε/100 (again with high probability). By a union bound,
at least a (1− ε/10) fraction of the edges in the matching
have both endpoints with ℓ2 norms in 1± ε. That is, we can
find n/2(1− ε/10) pairs of vectors (in the projected space)
such that every pair (x, y) satisfies (1) ∥x+ y∥2 ≤ ε/100,
(2) ∥x∥2, ∥y|2 ∈ 1 ± ε. By the reverse triangle inequality,
this implies

∥x− y∥2 ≥ | 2 · ∥x∥2 − ∥x+ y∥2|
= | 2(1± ε)− ∥x+ y∥2| ≥ 2− Ω(ε).

Thus, with high probability (more precisely with probability
at least 1 − exp

(
−Ω(nε2)− 1/n50

)
which follows from

combining the failure probabilities of Lemmas 3.4 and 3.2),
we have demonstrated that a matching of weight at least
n
2 (1− ε) · (2− Ω(ε)) ≥ OPT(P ) · (

√
2− Ω(ε)) exists in

the projected space.

We prove a similar lower bound as in Theorem 3.1 for the
maximum weight TSP problem. The theorem below follows
from carefully combining Theorem 3.1 on small subsets of
the input dataset to form a large cost tour.

Theorem 3.5. Let ε ∈ (0, 1), n = Ω(1/ε3) and P =
{e1, · · · , en} be the standard basis vectors in Rn. Let G
be a Gaussian JL map onto t dimensions. If C log(1/ε)

ε2 ≤
t ≤ log(n)

C log(1/ε) for a sufficiently large constant C, then with
probability ≥ 1− exp(−Ω(nε3))− 1/n25, we have

optmax-tsp(GP ) ≥
(√

2− ε
)
· optmax-tsp(P ).

4.
√
2-Approximation for Maximum Matching

We consider dimension reduction for maximum matching
without the doubling assumption. We provide a similar
result of 2-approximation for maximum TSP in Appendix E.

Theorem 4.1. Let ϵ > 0 and d ∈ N. There is a random lin-
ear map g : Rd → R, such that for every set P ⊂ Rd of even
size, the ratio E[optmax-match(g(P ))]/ optmax-match(P ) is
in [1,

√
2]. Moreover, for a Gaussian JL map G ∈ Rt×d

with t = O(ε−2), we have with probability at least 2/3
that optmax-match(G(P )) is a (

√
2 + ε)-approximation of

optmax-match(P ).

In order to prove this theorem, we use the following lemma,
which may be of independent interest. For a point set P ⊂
Rd, the 1-median of P finds a point c ∈ Rd that minimizes∑

p∈P ∥c− p∥.

Lemma 4.2. For every set P ⊂ Rd, the cost of the 1-median
of P is a

√
2-approximation to optmax-match(P ). That is,

max
matching M on P

∑
{u,v}∈M

∥u− v∥

≤min
c∈Rd

∑
p∈P

∥c− p∥ ≤
√
2 max

matching M on P

∑
{u,v}∈M

∥u− v∥.

Proof of Theorem 4.1. Let g ∈ Rd be a vector of i.i.d.
Gaussians distributed N(0, π/2). One could verify that
for every x ∈ Rd, E[|g⊤x|] = ∥x∥. Denote by c∗ a point
that realizes the 1-median of P , and by M∗ a maximum
matching of P . The following holds.

E
[

max
matching M

∑
{u,v}∈M

|g⊤u− g⊤v|
]

≥E
[ ∑
{u,v}∈M∗

|g⊤u− g⊤v|
]
=

∑
{u,v}∈M∗

∥u− v∥.

This immediately gives the lower bound of the claim. On
the other hand, we have

E
[
min
c∈R

∑
p∈P

|g⊤p− c|
]
≤ E

[∑
p∈P

|g⊤p− g⊤c∗|
]

=
∑
p∈P

∥p− c∗∥ = min
c∈Rd

∑
p∈P

∥p− c∥.

Together with Lemma 4.2, we now have

E
[

max
matching M

∑
{u,v}∈M

|g⊤u− g⊤v|
]

≤E
[
min
c∈R

∑
p∈P

|g⊤p− c|
]

≤min
c∈Rd

∑
p∈P

∥p− c∥ ≤
√
2

∑
{u,v}∈M∗

∥u− v∥.

The “moreover” part follows by standard analysis of the
expectation and variance of Chi-Squared distribution.

To prove Lemma 4.2, we use results on Tverberg graphs. A
weighted graph G = (V,E,w) is called a Tverberg graph

6
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if its vertex set V is a subset of Rd, the weight of every
edge e = {u, v} ∈ E is w(e) = ∥v − u∥2, and if one
places a diametrical ball B(uv) = B( v+u

2 , ∥v−u∥2

2 ) for
every edge e = {u, v} ∈ E, then these balls intersect, i.e.,⋂

{v,u}∈E B(vu) ̸= ∅. We will use the following result by
(Pirahmad et al., 2024).

Lemma 4.3 ((Pirahmad et al., 2024)). For every pointset
P ⊂ Rd of even size, there exists a perfect matching that is
a Tverberg graph.

Proof of Lemma 4.2. By triangle inequality,

min
c∈Rd

∑
p∈P

∥c− p∥ ≥ max
matching M

∑
{u,v}∈M

∥u− v∥.

It thus remains to prove the other direction.

Denote by M∗ a matching given by Lemma 4.3, and by p∗

a point in
⋂

{v,u}∈M∗ B(vu). Let {v, u} ∈ M∗. Therefore,

∥v − p∗∥+ ∥u− p∗∥ ≤
√
2
√
∥v − p∗∥2 + ∥u− p∗∥2

≤
√
2∥v − u∥,

where the first inequality is due to Cauchy–Schwarz inequal-
ity and the second inequality is because p∗ is inside the
ball with uv as diameter and the angle up∗v is not acute, as
illustrated in Figure 1. Thus,

p∗
u

v

Figure 1. A Tverberg graph and a point in the intersection of all
disks. The angle up∗v is not acute.

min
c∈Rd

∑
p∈P

∥c− p∥ ≤
∑
p∈P

∥p∗ − p∥

≤
∑

{u,v}∈M∗

√
2∥u− v∥ ≤

√
2 max

matching M

∑
{u,v}∈M

∥u− v∥,

concluding the proof.

5. Empirical Evaluation
We complement our theoretical results with an empirical
evaluation. Our goal is to convey two key messages: first,

randomized dimensionality reduction can be very effective
in reducing the runtime of geometric computation in high
dimensions. This is not surprising and indeed, many empiri-
cal and theoretical findings in the literature already validate
this hypothesis (this is the entire basis of the long line of
work on the JL lemma). Our contribution is simply showing
that the expected speedups are also possible for the various
geometric problems we study, including many well-studied
measures of dataset diversity maximization (to the best of
our knowledge, we are the first to consider these problems
under the lens of dimensionality reduction).

The second and the more salient point we demonstrate is that
the effects of doubling dimension is an empirically observ-
able phenomenon which can be quantitatively measured. In
particular, seemingly similar datasets living in the same am-
bient dimension, but with different ‘intrinsic dimensionality,’
(which we theoretically formalize in terms of the doubling
dimension) can behave wildly differently with respect to
dimensionality reduction. As expected, datasets with lower
intrinsic dimension can be projected to significantly smaller
dimension while still preserving ‘relevant’ (with respect to
the problem at hand) geometric information.

Datasets We use two real and one synthetic dataset. For
each dataset, we create a ‘low-intrinsic dimension’ version
and a ‘high-intrinsic dimension’ version. Both versions
will live in the same ambient dimension and ostensibly they
will be very similar, however, they will approximately cor-
respond to versions of the dataset with low/high doubling
dimension. We demonstrate that the ‘low-dimensional’ ver-
sions have much more desirable behavior with respect to
dimensionality reduction.

• Dataset 1: MNIST. We select 1000 randomly chosen im-
ages from the MNIST dataset (dimension 784 with entries
normalized to be in [0, 1]), restricted to the digit 2. We
fixed the digit 2 since it has been studied in prior works
as an example of a dataset with low-doubling dimension
(Tenenbaum et al., 2000; Narayanan et al., 2021). This
dataset is labeled MNIST ‘2’ in our figures. For the
‘high-intrinsic dimension’ version, we add i.i.d. Gaus-
sian entries to all coordinates (note the noise is of the
same scale as the original entries). This dataset is labeled
MNIST ‘2’ + Gaussian in our figures.

• Dataset 2: CIFAR-embeddings. We use penultimate layer
embeddings of pre-trained ResNet models (Yu et al., 2021;
Backurs et al., 2024) in R6144. We use 1000 randomly
chosen embeddings. These are the ‘high-intrinsic dimen-
sion’ version of the dataset. This is labeled Cifar-High
in our figures. For the ‘low-intrinsic dimension’, we only
keep the first 128 dimensions of these embeddings, but
rotate the resulting points to also lie in R6144 using a ran-
dom orthogonal matrix. This procedure simulates ‘hiding’
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Figure 2. Relative error versus projection dimension for maximum-matching.

truly low-dimensional data in high-dimension. Note that
this is not so obvious a-priori, since the rotation ensures
the vectors are dense vectors in R6144. This is labeled
Cifar-Low in our figures.

• Dataset 3: Synthetic. The ‘high-intrinsic dimension’
version of this dataset consists of the n basis vectors
in Rn. This is labeled High Doubling Dim in our
figures. The ‘low-intrinsic dimension’ version of the
dataset is the cumulative sums of the basis vectors, i.e.
e1, e1 + e2, . . . , e1 + . . . + en. These two versions ap-
pear to be similar, but it can be shown that their respec-
tive doubling dimensions are Ω(log n) and O(1), respec-
tively. They were also considered in the experiments of
(Narayanan et al., 2021). This is labeled Low-Doubling
Dim in our figures. We also consider a ‘Small’ version of
the ‘high-intrinsic dimension’ dataset, where we just take
the first n/2 basis vectors. This is labeled High Doubling
Dim (Small) in our figures. We set n = 1000 in our
experiments.

Note that throughout our figures, orange represents the
‘high-intrinsic dimensionality’ versions of our datasets and
blue represents the ‘low-intrinsic dimensionality’ versions.
Green is only used for our synthetic dataset, where we also
have a third version where we take half of the basis vec-
tors (the ‘high-intrinsic dimensionality’ case) as a separate
dataset version.

Optimization Problems We focus our attention to three
representative problems among the many that we study. We
pick maximum weight matching, remote-clique, and max
k-coverage. We selected these three since they are repre-
sentative of our main theoretical results. For maximum
matching, we experiment with the bipartite version by sim-
ply dividing our dataset in half. This allows us to use an
efficient exact solver using SciPy (Virtanen et al., 2020).
The other two problems correspond to well-studied dataset
diversity measures, many known to be NP-Hard to optimize
exactly (Erkut, 1990; Chandra & Halldórsson, 2001), so we
use a greedy algorithm as a proxy for finding the optimum.

Our greedy strategy builds the size k set in remote-clique
and max k-coverage iteratively, by picking the best choice
at every step. Such greedy heuristics have been extensively
used in the applied literature on diversity maximization
(see (Mahabadi & Narayanan, 2023) and references within),
and demonstrate that they produce solutions quite close
to the ground truth for real world datasets (Mahabadi &
Trajanovski, 2024; Gollapudi et al., 2024).

For each problem, we compute a solution (using the afore-
mentioned algorithms) in the original dimension. Then we
reduce the dimension of our datasets, varying the target di-
mension, and run the same computation on the projected
data. We then compare the values of the two solutions found
and measure the relative error between them. In all of our
results we plot the average over at least 20 independent trials
and one standard deviation error is shaded. We implement
our algorithms using Python 3.9.7 on an M1 MacbookPro
with 32GB of RAM.

Results: Effect of High vs Low Doubling Dimension
Our figures empirically demonstrate that the ‘high-intrinsic
dimensionality’ versions of all of our datasets require a
much larger projection dimension to achieve the same rel-
ative error compared to the ‘low-intrinsic dimensionality’
versions of our datasets. This is displayed in Figure 2 for
the max-matching problem and the same qualitative results
can be observed for our other two problems (see Figures 3
to 6 in Appendix F). As a sanity check, the relative errors
are decreasing in the projection dimension.

In Figure 2, we see for the MNIST dataset that the rela-
tive error achieved by projecting into 50 dimensions for the
‘high-intrinsic dimensionality’ version (orange curve) can
already be achieved at a much smaller projection dimension
(approximately 20) for the‘low-intrinsic dimensionality’ ver-
sion (blue curve). The same qualitative phenomena can be
observed across datasets and problems that we study.

We would like to especially highlight the third plot in Figure
2. There, the orange and green curves are virtually identical,
and both are much higher than the blue curve. However,
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the blue curve corresponds to a point set with twice the
cardinality than the point set for the green curve! Thus, for
the max-matching problem (and also for the two other prob-
lems we experiment on), the performance of dimensionality
reduction is not determined by the size of the point set, as
the naive application of the JL lemma suggests. Rather for
these problems, the doubling dimension is the quantity of
interest, as characterized by our theory.

Results: Speedups Due to Dimensionality Reduction
Lastly, we mention that, as expected, performing the com-
putation in the projected space is much more efficient. Our
Figures (see Figure 2 for maximum matching, Figures 3
and 4 for remote clique, and Figures 5 and 6 for max k-
coverage) already demonstrate that we can achieve small
relative error for high dimensional datasets, by projecting
them to dimensions as low as 20. Indeed, across datasets and
problems, optimizing for our three different objectives in
the original ambient dimension, versus optimizing for them
after projecting onto dimension 20 leads to speed ups of up
to two orders of magnitude. The speedups for computing
the objective in the projected space (taking into account the
time required to perform the dimensionality reduction) is
shown in Table 2.
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A. Remote Subgraph Diversity Measures
In this section, we consider remote subgraph problems, which include many well studied diversity measures. The goal is to
find a subset S ⊂ P of size k that maximizes a certain diversity measure of S. The diversity measures we consider satisfy
the following.

(P) Given a set of points S, compute the minimum/maximum of the sum of edges over a subgraph family, where all
elements of the graph family have the same number of edges.

Theorem A.1. Let 0 < ϵ < 1 and d, λ, k ∈ N, and Gaussian JL map G ∈ Rt×d with suitable t = O(ϵ−2(λ log 1
ϵ + log k)).

Then, for every set P ⊂ Rd with ddim(P ) = λ, with probability at least 2/3, the following holds. Let a diversity measure
div and denote by π the problem of finding a subset S ⊂ P of size k that maximizes div(S); if div satisfies Property (P),
then every (1 + ε)-approximate solution for π(G(P )) is a (1 +O(ε))-approximate solution to π(P ).

Corollary A.2. The theorem above holds for the following diversity measures of the set S:

• Remote-edge: minp,q∈S ∥p− q∥.

• Remote-clique:
∑

p,q∈S ∥p− q∥.

• Remote-tree: weight of a minimum spanning tree of S.

• Remote-star: minp∈S

∑
q∈S\p ∥p− q∥.

• Remote-cycle: length of a minimum TSP tour of S.

• Remote-matching: weight of a minimum perfect matching of S.

• Remote-pseudoforest:
∑

p∈S dist(p, S \ p).

The dependence on the doubling dimension is tight, as can be seen by the following.

Theorem A.3. Let n ∈ N , there exists a set P of n points, such that for a Gaussian JL map G onto dimension t. Let π be a

problem as defined in Theorem A.1. If π is defined for k = 2, then π(G(P )) ≥ Ω(
√

logn
t ) · π(P ) with high probability.

This theorem can be seen as a direct corollary of a similar statement for the diameter of the dataset; one can find a proof in
the full version of (Jiang et al., 2024).

Lemma A.4. Under the same conditions of Theorem A.3, the diameter is distorted by factor Ω(
√

logn
t ) with high probability.

Proof of Theorem A.3. For k = 2, the problems for which Theorem A.1 applies are identical to computing the diameter.
Applying Lemma A.4 concludes the proof.

A.1. Proof of Theorem A.1

The proof of Theorem A.1 uses the following two lemmas. For a point set P , the k-center problem finds a subset S ⊆ P
with |S| = k such that every point in P is within distance r from some point in S, with the goal of minimizing the radius r.
We denote by KCk(P ) the radius in the optimal k-center solution. The following lemma is well-known. See e.g. Lemma 2
in (Abbar et al., 2013).

Lemma A.5. Let d, k ∈ N and a point-set P ⊂ Rd. There exists a set S ⊂ P of k points such that for every x, y ∈ S, x ̸= y,
we have ∥x− y∥ ≥ KCk−1(P ).

The next lemma is implicit in (Jiang et al., 2024). We provide a proof at the end of this section for completeness.

Lemma A.6. Let 0 < ϵ < 1 and d, k ∈ N, and a Gaussian JL map G ∈ Rt×d with suitable t = O(ϵ−2(λ log 1
ϵ + log k)).

Then, for every set P ⊂ Rd with ddim(P ) = λ, with probability at least 2/3, for all x1, x2 ∈ P ,

∥Gx1 −Gx2∥ ∈ (1± ϵ)∥x1 − x2∥ ± ϵKCk(P ).

13



Randomized Dimensionality Reduction for Euclidean Maximization and Diversity Measures

Proof of Theorem A.1. Consider target dimension as in Lemma A.6, and suppose the event therein holds. Consider a remote
subgraph problem π with diversity measure div satisfying (P), and suppose that given a k-point set, div’s value is a sum
over a set of l edges. Assume that div is a minimization problem, as is the case for all problems in Corollary A.2. The proof
regarding maximization problems is by the same arguments.

Consider a set S̃ of size k given by Lemma A.5. Let Ẽ be a set of l pairs of points (edges) in S̃ that realize div(S̃). By
Lemma A.5, div(S̃) =

∑
(x,y)∈Ẽ ∥x− y∥ ≥ l ·KCk−1(P ). Therefore,

π(P ) ≡ max
S⊂P,|S|=k

div(S) ≥ l ·KCk−1(P ). (5)

Let S′ ⊂ P be a set of size k. Let E′, E∗ be sets of l pairs of points in S′ that realize div(G(S′)) and div(S′), respectively.

cost(G(S′)) ≡ div(G(S′)) ≡
∑

(x,y)∈E′

∥Gx−Gy∥

since div is a minimization problem,

≤
∑

(x,y)∈E∗

∥Gx−Gy∥

by Lemma A.6,

≤
∑

(x,y)∈E∗

(1 + ϵ)∥x− y∥+ ϵKCk−1(P )

≤(1 + ϵ) div(S′) + ϵl ·KCk−1(P )

by Equation (5),

≤(1 + ϵ) div(S′) + ϵπ(P ).

The other direction that div(G(S′)) ≥ (1− 2ϵ) div(S)− επ(P ) follows by the same arguments. Rescaling ϵ concludes the
proof.

To prove Lemma A.6, we use the following, which easily follows from (Gupta et al., 2003) (see also the full version of
(Jiang et al., 2024)).

Lemma A.7. For every P ⊂ Rd, 0 < ϵ < 1 and k ∈ N, there exists an ϵKCk(P )-net of P whose size is ≤ k(2/ϵ)ddim(P ).

Proof of Lemma A.6. Let N be an ϵ
20KCk(P )-net of P of size ≤ k(40/ϵ)ddim(P ) given by Lemma A.7. For a suitable

target dimension t = O(ϵ−2 log |N |), the following holds: First, by the JL Lemma, with high probability, all the pairwise
distances for points in N are preserved up to a factor OF 1 + ϵ. Additionally, for every y ∈ N , we have by Lemma 1.2 that
with probability 1− e−ct, every x ∈ P ∪B(y, ϵ

20KCk(P )) satisfies ∥G(x− y)∥ ≤ 6 ϵ
20KCk(P ). Thus, by a union bound,

this holds simultaneously for all y ∈ N with probability at least 1− e−ct|N | ≥ 9
10 . Suppose these events hold.

Consider two points x1, x2 ∈ P , and let y1, y2 ∈ N be their nearest net-points. Then, by triangle inequality,

∥Gx1 −Gx2∥
≤∥Gx1 −Gy1∥+ ∥Gx2 −Gy2∥+ ∥Gy1 −Gy2∥

since ∥G(xi − yi)∥ ≤ 6 ϵ
20KCk(P ),

≤12 ϵ
20KCk(P ) + (1 + ϵ)∥y1 − y2∥

by triangle inequality,

≤12 ϵ
20KCk(P ) + (1 + ϵ)(∥x1 − y1∥+ ∥x2 − y2∥+ ∥x1 − x2∥)
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since ∥xi − yi∥ ≤ ϵ
20KCk,

≤(14 + 2ϵ) ϵ
20KCk(P ) + (1 + ϵ)∥x1 − x2∥

and since ϵ < 1,

≤ϵKCk(P ) + (1 + ϵ)∥x1 − x2∥.

The other direction, that ∥Gx1 −Gx2∥ ≥ (1− ϵ)∥x1 − x2∥ − ϵKCk(P ), follows by the same arguments. This concludes
the proof of Lemma A.6.

B. Problems with Large Optimal Value
In this section we show that a large class of optimization problems, including many diversity measures, which have a ‘large’
optimal value can be preserved via dimensionality reduction in a black-box way. We consider optimization problem of the
form “pick the best subset of size k to maximize the ‘diversity’ from each point to the set” (formalized below).

Theorem B.1. Consider an optimization problem of the following form: given (P, k, f) as input where P ⊂ Rd, k ∈ N,
and f : Rk → R satisfying |f(x)− f(y)| ≤ L∥x− y∥∞, let

opt(P ) = max
S={s1,...,sk}⊆P,|S|=k

∑
p∈P

F (p, S),

where F (p, S) = f(vp) with vp ∈ Rk with (vp)i = ∥p − si∥ for all i. Let a Gaussian JL map G ∈ Rt×d with suitable
t = O(ε−2λ log((L+ 1)/ε)). For every P ⊂ Rd with ddim(P ) = λ, with probability at least 2/3,

| opt(P )− opt(G(P ))| ≤ O(ε|P | · diameter(P )).

Proof. Set ∆ = diameter(P ). Note that for any set of points P , the 1-center cost is Ω(∆). Thus, the k = 1 case of Lemma
A.6 implies that

Pr (∀x, y ∈ P, ∥Gx−Gy∥ ∈ ∥x− y∥+ ε∆/100) ≥ 2/3

if we project to O(ϵ−2 · λ log(1/ε)) dimensions (note we can replace multiplicative error with additive error since the
additive error is proportional to the diameter). We condition on this event.

Now let S and S′ be the maximizing sets for OPT(P ) and OPT(G(P )) respectively. Note that S′ is a random variable since
it depends on G. We will explicitly specify which set of k points is being used to evaluate f and in what space (the original
or projected space).

From above, we have that
|∥p− si∥ − ∥Gp−Gsi∥| ≤ ε∆/100,

for all points p and si so it follows that∣∣∣∣∣∣
∑
p∈P

F (p, S)−
∑
p∈P

F (Gp,G(S))

∣∣∣∣∣∣ ≤ L · |P | · ε∆/100

since f is assumed to satisfy the ℓ∞-Lipschitz condition. Similarly, we have∣∣∣∣∣∣
∑
p∈P

F (Gp,G(S′))−
∑
p∈P

F (p, S′)

∣∣∣∣∣∣ ≤ L · |P | · ε∆/100.

But by definition of optimality, we know∑
p∈P

F (p, S) ≥
∑
p∈P

F (p, S′)

≥
∑
p∈P

F (Gp,G(S′))− L · |P | · ε∆/100
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and similarly ∑
p∈P

F (Gp,G(S′)) ≥
∑
p∈P

F (Gp,G(S))

≥
∑
p∈P

F (p, S)− L · |P | · ε∆/100,

so we have

|OPT(P )− OPT(G(P ))|

=

∣∣∣∣∣∣
∑
p∈P

F (p, S)−
∑
p∈P

F (Gp,G(S′))

∣∣∣∣∣∣
≤L · |P | · ε∆/50.

The first part of the theorem follows by rescaling ε, and the ‘moreover’ part follows by the same arguments.

While Theorem B.1 is stated in quite general terms, there are many natural choices of functions f . We give a non-exhaustive
list below:

• f(x) = ∥x∥p which generalizes the Max k-coverage diversity measure (which corresponds to p = ∞). Note that in the
context of Theorem B.1, Max k-coverage picks out the largest distance from an input p to the set S, whereas the ℓp
formulation combines all distances in a smooth way.

• f(x) =
∑

i xi, which is a special case of the choice above, which in the context of Theorem B.1 averages the distance
from every input point to distances to all points in S.

• f(x) = median(xi), which can be thought of as picking the ‘typical’ distance from an input point to the set S, which
maybe more robust to outliers.

In many cases of f stated above, it is true that OPT(P ) = Ω(|P | · diameter(P )), leading to the following corollary.

Corollary B.2. Consider the setting of Theorem B.1. If opt(P ) = Ω(|P | · diameter(P )) then we can achieve

| opt(P )− opt(G(P ))| ≤ ε · opt(P )

with probability at least 2/3.

Remark B.3. This result extends to preserving approximate solutions by the same arguments.

We highlight two cases where Corollary B.2 holds:

• The maximum degree of the geometric graph defined by all pairwise distances between points in P under dimensionality
reduction. This corresponds to (P, 1, ∥x∥2) in Theorem B.1, where L = 1.

• The Max k-coverage diversity measure which also satisfies L = 1 in Theorem B.1. This generalizes the maximum
degree example, which is the k = 1 case.

Corollary B.4. Consider the maximum k-coverage problem:

opt(P ) = max
S⊆P,|S|=k

∑
p∈P

max
s∈S

∥p− s∥.

Let a Gaussian JL map G ∈ Rt×d with suitable t = O(ε−2λ log(1/ε)). For every set P ⊂ Rd with doubling dimension λ,
with probability at least 2/3,

|opt(P )− opt(G(P ))| ≤ ε · opt(P ).

Moreover, every (1 + ε)-approximate solution of opt(G(P )) is a (1 +O(ε))-approximate solution of opt(P ).
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Additionally, since the maximum degree of the graph is a special case of a spanning tree, by the same arguments we have
the following for maximum spanning tree.

Theorem B.5. Under the settings of Corollary B.4, with probability at least 2/3, the maximum spanning tree of G(P ) is a
(1 + ε)-approximation of the maximum spanning tree of P .

Moreover, the dependence in the doubling dimension is tight for these problems, essentially because the optimum value is
closely tied to the diameter of the set, so by Lemma A.4, we get the following.

Theorem B.6. Let n ∈ N , there exists a set P of n points, such that for a Gaussian JL map G onto dimension t, the cost of

maximum spanning tree, maximum degree, and maximum k-coverage is distorted by factor Ω(
√

logn
t ).

C. Proofs in Section 2: Max Matching and Max-TSP for Doubling Sets
Theorem 2.3. Let 0 < ϵ < 1 and d, λ, k ∈ N, and Gaussian JL map G ∈ Rt×d with suitable t = O(ϵ−2k2λ log k

ϵ ).
Then for every set P ⊂ Rd with ddim(P ) = λ, with probability at least 2/3, a (1 + ε)-approximation to the maximum
k-hypermatching of G(P ) is a (1 +O(ε))-approximation to the maximum k-hypermatching of P .

Proof. We consider Gaussian JL map as in Lemma 2.2, but with ε′ = O( εk ). As in the proof of Theorem 2.1, it is immediate
that w.h.p., opt(G(P )) ≥ (1− ε) opt(P ). Therefore, we focus on proving the other direction.

Consider an optimal k-hypermatching of G(P ). We can decompose it to m = O(k) matchings M1, . . . ,Mm. Thus, by
Lemma 2.2,

opt(G(P )) =

m∑
i=1

cost(G(Mi))

≤
m∑
i=1

cost(Mi) + ε′ optmax-match(P )

≤ opt(P ) + ε′m optmax-match(P )

≤ (1 +O(ε′k)) opt(P ) = (1 + ε) opt(P ).

D. Proofs in Section 3:
√
2 Approximation Lower Bound

First we begin with some helpful probability statements.

Lemma D.1. Suppose x ∼ N (0, It) and let γ = O(1). We have

Pr(∥x∥2 ≤ γ
√
t) ≥ exp(−O(t log(1/γ))).

Proof. Note that if |xi| ≤ γ for all i then we must have ∥x∥2 ≤ γ
√
t so we lower bound the probability that |xi| ≤ γ for all

i. From the density function of a Gaussian, we know that Pr(|xi| ≤ γ) = Θ(γ), so it follows that

Pr(∀i, |xi| ≤ γ) ≥ Θ(γ)t ≥ exp(−O(t log(1/γ))).

The following is a straightforward corollary of Lemma D.1.

Corollary D.2. Let γ ∈ (0, 1), t ≤ log(n)
C log(1/γ) for a sufficiently large constant C > 0. If x ∼ N (0, It) then

Pr(∥x∥2 ≤ γ
√
t) ≥ n−O(1/C).

Lemma D.3. Suppose x ∼ N (0, It), y ∼ N (0, It−1) and fix τ >
√
2. There exists an absolute constant C ′ > 0 such that

Pr (∥y∥2 ≤ τ) ≤ C ′t · Pr
(
∥x∥2 ≤ τ√

2

)
.
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Proof. We can decompose

Pr(∥y∥2 ≤ τ) = Pr(∥y∥2 ≤ τ/
√
2) + Pr(τ/

√
2 ≤ ∥y∥2 ≤ τ).

Note that the former is at least

Pr
(
∥y∥2 ≤ τ√

2

)
≥ exp(−τ2/4)

Tt−1
· Vol(Bt−1(0, τ/

√
2)),

where Bt−1(0, τ/
√
2) is a centered ball of radius τ/

√
2 in Rt−1 and Tt−1 is the normalization constant of the Gaussian

density function. On the other hand, if ∥y∥2 ≥ τ/
√
2, we can bound

Pr(τ/
√
2 ≤ ∥y∥2 ≤ τ) ≤ exp(−τ2/4)

Tt−1
· Vol(Bt−1(0, τ))

≤ C ′t exp(−τ2/4)

Tt−1
· Vol(Bt−1(0, τ/

√
2)) (6)

for some sufficiently large constant C ′. Thus it suffices to compare Pr(∥y∥2 ≤ τ/
√
2) and Pr(∥x∥2 ≤ τ/

√
2). However,

both ∥y∥22 and ∥x∥22 are chi-squared random variables (with ∥x∥22 having one more degree of freedom), and from their
density function, it suffices to show

2t
∫ τ/

√
2

0

xt/2−1e−x/2 dx ≥
∫ τ/

√
2

0

x(t−1)/2−1e−x/2 dx.

(Note that we have ignored the normalization constant since the ratio of the larger to the smaller can easily be seen to be
bounded by exp(O(t)).)

Indeed, point wise, the function xt/2−1 > x(t−1)/2−1 for all x > 1. To handle x ≤ 1, we have
∫ 1

0
xk dx = 1

k+1 so the 2t

multiplication term implies the left integral above is also larger over [0, 1]. Altogether, combining Pr(∥y∥2 ≤ τ/
√
2) ≤

exp(O(t)) Pr(∥x∥2 ≤ τ/
√
2) with Equation 6 completes the proof.

Lemma D.4. Let ε ∈ (0, 1) and S1, · · · , Sn be identically distributed and possibly correlated indicator variables satisfying

• ∀i,E[Si] = p,

• p ≥ 1/n0.1,

• ∀k ≥ 2 and distinct indices i1, . . . , ik,E[Si1Si2 . . . Sik ] ≤ (n0.001p)k, and

• n ≥ Ω(1/ε2).

Let S =
∑n

i=1 Si. We have

Pr(|S −E[S]| ≥ εE[S]) ≤ 1

n99
.

Proof. Fix m ≥ 2 an even integer. We first bound the moment E[Sm]. Note that for all i, j ≥ 1, Sj
i = Si since our variables

are indicators. Let 1 ≤ k ≤ m. Since our random variables are also identical, by symmetry, we only have to understand the
number of terms of the form E[S1 . . . Sk] that we get in the multinomial expansion. First, we can pick these k indices in

(
n
k

)
ways. Then by classic stars and bars, there are at most

(
m+k−1
k−1

)
≤

(
m+k
k

)
ways to assign these k indices all the m powers.

This gives us

E[Sm] ≤
m∑

k=1

(
n

k

)
·
(
m+ k

k

)
· (n0.001p)k

≤
m∑

k=1

(en
k

)k

·
(
2em

k

)k

· (n0.001p)k.
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Since S is non-negative, we know (e.g. see (Nil, 2021)) that

E[|S −E[S]|m] ≤ E[Sm],

which by Markov’s inequality implies

Pr(|S −E[S] ≥ λ) ≤ E[|S −E[S]|m]

λm
≤ E[Sm]

λm
.

Setting λ = εE[S] = εnp and using our estimate above,

Pr(|S −E[S] ≥ εE[S])

≤
m∑

k=1

(en
k

)k

·
(
2em

k

)k

· (n
0.001p)k

(εnp)m

=

m∑
k=1

(
2e2m

k2

)k

· n0.001k

nm−kpm−kεm

≤
m∑

k=1

(
2e2m

k2

)k

· 1

n0.9(m−k)−0.001kεm
since p ≥ n0.1.

Set m = n0.99 (assuming n0.99 is an even integer. We omit floor/ceiling signs and a rounding up or down by 1 to ensure
evenness, since both are inconsequential). We claim that for any k ≤ m,(

2e2m

k2

)k

· 1

n0.9(m−k)−0.001kεm
≤ 1

n100
.

This is true if and only if

n100(2e2m)k ≤ k2k · n0.9(m−k)−0.001kεm

⇐⇒ n100/k(2e2m) ≤ k2 · n0.9(m/k−1)−0.001εm/k

= k2(n0.9ε)m/k/n0.901.

Since n ≥ 1/ε2, we have n0.9ε ≥ n0.4, and for sufficiently large n, we have 2e2m ≤ n0.999, so it suffices to show

n100/k+1.9 ≤ k2n0.4m/k

⇐⇒ log n

(
100

k
+ 1.9

)
≤ 2 log(k) +

0.4m

k
· log n.

If 0.4m/k ≥ 100/k + 1.9 then we are done. Otherwise, we have .4m/k ≤ 100/k + 1.9 ≤ 100/k + 2 =⇒ k ≥
.4m− 100 ≥ n0.98 for sufficiently large n. Then 100/k + 1.9 ≤ 1.95 for sufficiently large n and we have

log n

(
100

k
+ 1.9

)
≤ 1.95 log n

and 2 log(k) ≥ 2 · (0.98) log n ≥ 1.95 log n, and we are done. Putting everything together, gives us

Pr(|S −E[S] ≥ εE[S]|) ≤ m

n100
≤ 1

n99

for sufficiently large n, as desired.

Lemma 3.3. Let ε ∈ (0, 1), n = Ω(ε−2) and C log(1/ε)
ε2 ≤ t ≤ log(n)

C log(1/ε) for a sufficiently large constant C > 0. Let
x1, · · · , xn/2 and y1, · · · , yn/2 be i.i.d. draws from N (0, It). Consider a bipartite graph H = (A,B) with bipartition
A = {x1, · · · , xn/2}, B = {y1, · · · , yn/2}. Put an edge between xi ∈ A and yj ∈ B if ∥xi + yj∥2 ≤ ε

√
t. With failure

probability at most 1/n99, we have
|deg(x1)−E[deg(x1)]| ≤ εE[deg(x1)].
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Proof. Ultimately our goal is to use the concentration inequality developed in Lemma D.4. Towards this, define the indicator
variables Si = 1{∥x1 + yi∥2 ≤ ε

√
t}. The degree of x1 is simply the sum of the Si variables. Note that Si’s are identically

distributed but not independent of each other since they all depend on x1. Furthermore, we know that ∀i,E[Si] = p ≥ 1/n0.1

from Corollary D.2 by setting C to be large enough in the definition of t. Thus we have checked the first two conditions of
Lemma D.4.

The most interesting condition to check is the third hypothesis. For any distinct indices i1, · · · , ik,

E[Si1 · · ·Sik ] = Pr(∀i1, . . . , ik, 1{∥x1 + yik∥2 ≤ ε
√
t}).

We first transform this the event Si1 · · ·Sik into an equivalent but easier to handle event. Let U be the orthogonal matrix
that sends x1 to a scalar multiple of e1, the first basis vector. Note that U is a random matrix that depends on x1 but not
on any of the other of the Gaussians that we have drawn. By considering the density function of a Gaussian, we know
that Uy1, · · · , Uyn/2 are i.i.d. Gaussians z1, · · · , zn/2, again all drawn from N (0, It) (this fact is also referred to as the
‘rotational invariance’ of Gaussians). Since U is an orthogonal matrix, we always have ∥x1 + yi∥2 = ∥Ux1 + Uyi∥2, so

Si = 1[∥x1 + yi∥2 ≤ ε
√
t]

= 1[∥Ux1 + Uyi∥2 ≤ ε
√
t] = 1[∥Ux1 + zi∥2 ≤ ε

√
t],

where we again note that Ux1 is a multiple of the vector e1. Now the crux is that for ∥x1 + yi∥2 ≤ ε
√
t to hold, it must also

be the case that ∥Ux1 + zi∥2 ≤ ε
√
t, which implies that ∥z̃i∥2 ≤ ε

√
t must also hold, where z̃i ∈ Rt−1 is the vector where

we simply remove the first coordinate of zi (∥Ux1 + zi∥22 is a sum of positive terms so if the sum is bounded, any partial
sum must also be bounded by the same quantity). Thus,

Pr(∀i1, . . . , ik, 1{∥x1 + yik∥2 ≤ ε
√
t})

≤Pr(∀i1, . . . , ik, 1{∥z̃ik∥2 ≤ ε
√
t}).

However, the latter probability consists of independent events since the zi’s are i.i.d. Gaussians N(0, It−1). Thus,

Pr(∀i1, . . . , ik, 1{∥x1 + yik∥2 ≤ ε
√
t})

≤ Pr(1{∥z̃1∥2 ≤ ε
√
t})k.

Since t = Ω(1/ε2) (and thus ε
√
t = Ω(1)), Lemma D.3 implies that

Pr(∥z̃1∥2 ≤ ε
√
t) ≤ C ′t Pr(∥x1 + yi1∥ ≤ ε

√
t) = C ′tp

for a absolute constant C ′ > 0. Now by setting C in the definition of t to be sufficiently large, we see that C ′tp ≤ n0.001p,
satisfying the third condition of Lemma D.4. Thus all the hypothesis of Lemma D.4 hold and we are done.

Lemma 3.2. Let ε ∈ (0, 1), t ≥ C log(1/ε)
ε2 for a sufficiently large constant C > 0. Let x1, · · · , xn be i.i.d. draws from

N (0, It). With probability ≥ 1− exp(−Ω(nε2)), at least 1− ε fraction of the xi satisfy ∥xi∥2/
√
t ∈ 1± ε.

Proof. From standard concentration bounds for chi-squared variables, (see (Wainwright, 2019)), we know that any fixed xi

satisfies ∥xi∥2/
√
t ∈ 1± ε with probability at least say 1− ε100. Since the xi are independent, a standard Chernoff bound

implies that at least a 1− ε/100 xi satisfy ∥xi∥2/
√
t ∈ 1± ε except with failure probability at most exp(−Ω(nε2)).

Lemma 3.4. Consider the setting of Lemma 3.3. If C is a sufficiently large constant then H has a matching of size
≥ n/2(1− ε) with probability at least 1− 1/n50.

Proof of Lemma 3.4. First we show that with high probability, all degrees of H are tightly concentrated. Indeed, using
Lemma 3.3 and a union bound over all the O(n) vertices implies that with probability at least 1− 1/n50, all vertices have
degrees within 1± ε of their expected degree. Condition on this event and set ∆ = E[deg(x1)]. For every (i, j) ∈ E, let
zij = ((1 + ε)∆)−1. We can verify that for any xi ∈ A,∑

j∈R

zij =
deg(xi)

(1 + ε)∆
≤ 1
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since we know that deg(xi) ≤ (1 + ε)∆ by our conditioning. Thus all the constraints on the vertices in A are satisfied and
similarly we can check that all the constraints on the vertices in B are also satisfied. Thus our assignment is feasible and it
has total value at least ∑

(i,j)∈E

zij =
∑
i∈A

∑
j∈B|(i,j)∈E

1

(1 + ε)∆

≥
∑
i∈A

1− ε

1 + ε
≥ |A|(1−O(ε)).

The lemma follows.

Theorem 3.5. Let ε ∈ (0, 1), n = Ω(1/ε3) and P = {e1, · · · , en} be the standard basis vectors in Rn. Let G be a
Gaussian JL map onto t dimensions. If C log(1/ε)

ε2 ≤ t ≤ log(n)
C log(1/ε) for a sufficiently large constant C, then with probability

≥ 1− exp(−Ω(nε3))− 1/n25, we have

optmax-tsp(GP ) ≥
(√

2− ε
)
· optmax-tsp(P ).

Proof. Split the basis vectors into k = 1/ε sets of εn points each. Label the sets X1, · · · , X1/ε. By Theorem 3.1, for every
consecutive pair Xi, Xi+1, there exists a matching in the projected space of total weight at least εn(2− ε) between the pair
(with the appropriate failure probability coming from Theorem 3.1). We condition on the event that such a matching exists
for all consecutive pairs in the projected space (this event happens with probability at least 1− exp(−Ω(nε3))− 1/n25 by
a union bound).

Given this, we explicitly demonstrate a large weight tour in the projected space. First by following the matchings across
all pairs of sets, we have εn edge disjoint paths, each with 1/ε edges. Each path has total weight at least (2 − ε)/ε by
our conditioning, so the total collection has weight at least n(2− ε). Connect the endpoints of these paths to form a tour.
The extra added connections can only increase the cost of the tour. Thus, we have demonstrated one possible tour in the
projected space of cost at least n(2− ε). However, any tour in the original space, including the optimal maximum cost tour,
has total weight n

√
2, since all distances are

√
2, proving the lower bound as desired.

E. 2-Approximation for Max TSP
We believe that maximum TSP behaves similarly to maximum matching, and a Gaussian JL map yields a (

√
2 + ε)-

approximation for maximum TSP with high probability. Such a result would be true assuming that for every set P ⊂ Rd,
there is tour that is a Tverberg graph. However, this is an open question about Tverberg graphs that is still unproven
(Pirahmad et al., 2024). We are still able to prove an unconditional bound, of (2 + ε)-approximation.

Theorem E.1. Let 0 < ε < 1, d ∈ N and a Gaussian JL map G ∈ Rt×d for suitable t = O(ε−2 log 1
ε ). For every P ⊂ Rd,

with probability at least 2/3, we have that optmax-tsp(G(P )) is a (2 + ε)-approximation of optmax-tsp(P ).

To prove this theorem, we use the following.

Lemma E.2 ((Indyk, 1999)). For every set P ⊂ Rd, the cost of a uniformly random tour is a (2 + ε)-approximation of
optmax-tsp(P ) with probability Ω(ε).

Proof of Theorem E.1. Consider a suitable number O(ε−1) of uniformly random tours. After applying G, these are still
uniformly random tours. Choose the number of random tours so with probability 2/3, one of them is a (2+ε)-approximation
of optmax-tsp(G(P )). By our choice of the target dimension and a union bound, with probability at least 2/3, the cost of all
of these tours is preserved up to factor 1 + ε. This concludes the proof.

F. Additional Experimental Results
See Table 2 for speedups obtained by dimensionality reduction for the problems we study, as well as Figures 3 to 6 for
omitted figures from Section 5.
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Problem Dataset
Speedup by Computing

in Projected Space

Maximum-Matching

MNIST 11.41x

CIFAR 75.07x

Basis Vectors 10.98x

Remote Clique

MNIST 6.01x

CIFAR 38.14x

Basis Vectors 7.50x

Maximum Coverage

MNIST 13.73x

CIFAR 121.34x

Basis Vectors 17.37x

Table 2. Speedups obtained by projecting the point sets onto dimension 20, compared to optimizing in the original ambient dimension.
For Remote Clique and Max Coverage, we set the value of k = 10, although the same qualitative results hold for any k. We average over
10 trials.
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Figure 3. Relative error versus projection dimension for remote-k-clique. We set k = 10 here (see Figure 4 for k = 20).
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Figure 4. Relative error versus projection dimension for remote-k-clique. We set k = 20.
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Figure 5. Relative error versus projection dimension for max-coverage. We set k = 10.
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Figure 6. Relative error versus projection dimension for max-coverage. We set k = 20.
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