Under review as a conference paper at ICLR 2025

WHITE-BASILISK: A HYBRID MODEL FOR CODE
VULNERABILITY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The proliferation of software vulnerabilities presents a significant challenge to cy-
bersecurity, necessitating more effective detection methodologies. We introduce
White-Basilisk, a novel approach to vulnerability detection that demonstrates su-
perior performance while challenging prevailing assumptions in Al model scal-
ing. Utilizing an innovative architecture that integrates Mamba layers, linear self-
attention, and a Mixture of Experts framework, White-Basilisk achieves state-
of-the-art results in vulnerability detection tasks with a parameter count of only
200M. The model’s capacity to process sequences of unprecedented length en-
ables comprehensive analysis of extensive codebases in a single pass, surpass-
ing the context limitations of current Large Language Models (LLMs). White-
Basilisk exhibits robust performance on imbalanced, real-world datasets, while
maintaining computational efficiency that facilitates deployment across diverse
organizational scales. This research not only establishes new benchmarks in code
security but also provides empirical evidence that compact, efficiently designed
models can outperform larger counterparts in specialized tasks, potentially re-
defining optimization strategies in Al development for domain-specific applica-
tions.

1 INTRODUCTION

The field of Artificial Intelligence (AI) has experienced significant advancements in recent years,
particularly in the domain of Natural Language Processing (NLP). Large Language Models (LLMs)
such as GPT, Llama, and Gemini have demonstrated remarkable capabilities across diverse tasks.
These models, often comprising hundreds of billions of parameters, reflect the ’bigger is better”
philosophy in AI development. However, even with the notable success of these massive models,
they present substantial challenges. For instance, the computational requirements for training and
inference of such models are considerable, resulting in high energy consumption and limited acces-
sibility (Patterson et al., 2021} |[Faiz et al.| [2023)). As these models continue to expand in size and
complexity, it is important to reconsider the sustainability and necessity of this approach for all Al
applications.

One domain where the limitations of the “bigger is better” paradigm become particularly evident
is in specialized tasks like code vulnerability detection. This critical aspect of cybersecurity re-
quires models that can comprehend complex code structures, identify subtle patterns, and maintain
high accuracy — all while ideally being deployable in resource-constrained environments. Code vul-
nerability detection represents a unique challenge at the intersection of software engineering and
cybersecurity. Vulnerabilities often emerge from complex interactions between various components
in the codebase, making detection through standard techniques difficult. The rapid evolution of
both software development practices and attack methodologies further exacerbates this challenge.
As developers embrace novel paradigms such as microservices and Al-driven code generation, the
potential attack surface expands in ways that can be challenging to predict.

Traditional approaches to automated vulnerability detection, including static application security
testing (SAST) tools, have demonstrated both strengths and limitations in addressing security chal-
lenges. Studies have shown that SAST tools generally achieve lower vulnerability detection rates
compared to newer approaches like large language models (LLMs) (Zhou et al.| 2024). This lower
detection rate is concerning because it means that SAST tools may miss critical security vulnera-

Under review as a conference paper at ICLR 2025

bilities, potentially leaving software systems exposed to exploitation and attacks. The inability to
identify a significant portion of vulnerabilities undermines the effectiveness of these tools in ensur-
ing robust software security, highlighting the need for more advanced or complementary detection
methods.

Recent machine learning (ML)-based approaches have demonstrated promising results in vulnerabil-
ity detection. However, many exhibit significant limitations in processing extended code sequences
and comprehending complex, context-dependent vulnerabilities. These models often struggle with
long-range dependencies and fail to capture the nuanced interactions between disparate code com-
ponents. Moreover, their performance can be inconsistent across diverse vulnerability types and
programming paradigms, limiting their efficacy in comprehensive security analyses. In response
to these challenges, we present White-Basilisk: a compact but powerful model that challenges the
prevailing paradigm in Al design. With approximately 200M parameters — a fraction of the size of
many current state-of-the-art models — White-Basilisk demonstrates that thoughtful architecture and
targeted training can yield impressive results in code vulnerability detection.

White-Basilisk’s design philosophy centers on maximizing efficiency without compromising perfor-
mance. This approach led to several innovations that form the core of our contributions, which can
be summarized as follows:

1. Efficient Architecture: We propose a novel integration of Mamba layers, linear-
complexity Infini-attention, and Mixture of Experts. This combination enables effective
processing of long code sequences while maintaining a relatively small parameter count.

2. Extended Context Length: White-Basilisk can analyze sequences up to 128,000 tokens
during inference. This capability facilitates whole-codebase analysis on a single GPU,
potentially uncovering vulnerabilities that span multiple functions or files.

3. Resource-Efficient Training: Our model achieves competitive performance using a
dataset of just 2 million code samples. This efficiency challenges conventional assump-
tions about data requirements for specialized Al tasks.

4. Advanced Training Techniques: We incorporated Fill-in-the-Middle (FIM) pretraining
and Scale-Invariant Fine-Tuning (SIFT) to enhance model robustness and generalization.
These techniques contribute to White-Basilisk’s ability to perform well across diverse code
vulnerability detection tasks.

5. Comprehensive Benchmarking: We conduct rigorous experiments to evaluate White-
Basilisk’s efficacy across multiple benchmark datasets, including PRIMEVUL Ding et al.
(2024)), BigVul [Fan et al.|(2020), Draper Russell et al.| (2018)), REVEAL |Chakraborty et al.
(2021)), and VulDeepecker [Li et al.|(2018). Our compact model demonstrates competi-
tive performance against larger counterparts, emerging as the front-runner in several key
metrics.

By addressing the unique challenges of code vulnerability detection with a resource-efficient ap-
proach, White-Basilisk not only explores new possibilities in this critical domain but also raises per-
tinent questions about the necessity of ever-larger models in Al In the subsequent sections, we will
elucidate the details of White-Basilisk’s architecture, training procedures, and performance across
multiple benchmarks.

2 RELATED WORK

The field of automated code vulnerability detection, a cornerstone of our research, has undergone
rapid evolution since its inception in the early 2000s. Driven by the growing complexity and secu-
rity risks of software systems, early pioneers explored static analysis techniques |(Chess & McGraw
(2004) and pattern matching methods|Livshits & Lam|(2005). While these approaches laid a founda-
tional framework, they often encountered significant drawbacks, including high false positive rates,
difficulty detecting complex vulnerabilities, and susceptibility to obfuscation techniques. Due to
these limitations, they were generally unsuitable for active production environments.

As the field matured, researchers recognized the transformative potential of Al, gradually shifting
from conventional practices to a new paradigm. This transition was marked by the development of

Under review as a conference paper at ICLR 2025

VulDeePecker [Li et al.| (2018)), one of the first deep learning (DL)-based systems for vulnerability
detection. VulDeePecker utilized code gadgets and Bidirectional Long Short-Term Memory (BiL-
STM) networks to identify vulnerabilities in C/C++ code. This work demonstrated the ability of DL
techniques to capture complex patterns associated with code vulnerabilities, paving the way for the
development of further ML-driven solutions. However, its reliance on manually crafted features lim-
ited its generalizability. Building on this work, Russell et al.| (2018) developed the Draper dataset,
which provides a substantial real-world dataset specifically designed for training neural networks in
the task of vulnerability detection. Their work showed the advantages of leveraging vast training
data to enhance model performance, improving performance but still struggling with limited context
windows that restricted the capture of long-range dependencies in code.

Following that, pre-trained LLMs emerged as a significant breakthrough in code analysis. Hanif]
& Mafteis| (2022) proposed VulBERTa, an adaptation of the ROBERTa model for detecting code
vulnerabilities, demonstrating the potential of transfer learning from natural language processing to
code analysis. By fine-tuning LL.Ms pre-trained on extensive corpora of code, this approach quickly
gained popularity due to its ability to capture latent patterns in both code structure and semantics.
However, similar to many transformer-based models, it suffers from quadratic computational com-
plexity with sequence length, constraining its applicability to large-scale projects.

Another line of research focused on models specifically tailored for code understanding. [Feng et al.
(2020) introduced CodeBERT, a bimodal pre-trained model for programming language and natural
language. This work allowed for a deeper understanding of both code and its associated documenta-
tion, proving useful across a range of software engineering tasks, including vulnerability detection.
However, while powerful, these models typically demand significant computational resources and
encounter difficulties when processing extremely long sequences, which restricts their practical use
in analyzing large codebases. For instance, CodeBERT was pre-trained for approximately 1000
hours on 16 interconnected NVIDIA Tesla V100 GPUs, representing a substantial energy and re-
source investment.

Other recent work concentrated on improving the granularity and efficiency of vulnerability detec-
tion. Such an example is LineVul (Fu & Tantithamthavorn| (2022)), a transformer-based approach
for line-level vulnerability prediction, enabling precise localization of vulnerabilities within code-
bases. While valuable for precise localization, this approach may overlook vulnerabilities that span
multiple lines or functions.

Comprehensive studies by |(Chakraborty et al.| (2021) and |Ding et al.| (2024) highlighted persistent
challenges in the field, including data quality issues, unrealistic evaluation methods, and difficul-
ties in handling long-range dependencies. |Ding et al.| (2024) showed that existing benchmarks
significantly overestimate model performance, with state-of-the-art models achieving high scores
on flawed datasets but failing on more realistic ones. Our work directly addresses these concerns
through improved data collection, realistic evaluation metrics, and model architecture designed for
long-range understanding.

Currently, existing vulnerability detection methods primarily focus on their main objectives without
considering the increasing size of model parameters. This uncontrolled growth in model size has led
to the development of energy-hungry models requiring dozens of cutting-edge GPUs. Most recently,
research developments have been made in efficient language model design. For example, building
on the work of Mamba |Gu & Dao| (2023), [Lieber et al. (2024)) introduced Jamba, which employs
a Mixture of Experts (MoE) strategy, combining Mamba layers and attention mechanisms in an
interleaving pattern [Fedus et al.| (2022). In addition, Wang et al.| (2020) proposed the Linformer,
which can reduce self-attention complexity to linear time using low-rank approximations, while
the Transformer-XL architecture [Dai et al.|(2019) has been shown to effectively model long-term
dependencies by introducing recurrence into self-attention.

In this paper, we introduce an efficient method for developing Al models. Our model, White-
Basilisk (Figure T), demonstrates how the integration of cutting-edge training techniques enables
the deployment of comparatively small models with just 200M parameters — significantly fewer
than the billions seen in some other cases. Furthermore, unlike current state-of-the-art models, our
implementation was trained using only a single NVIDIA A100 40GB GPU, highlighting its resource
efficiency. The increased model performance combined with reduced energy requirements for model

Under review as a conference paper at ICLR 2025

creation should draw the attention of the Al community. This approach could help reduce global
energy consumption.

il ettt [ttt [ttt [ttt [ttt [ttt [ttt [ttt [ttt [ttt [ttt r--
Mamba [MoE [Attention | MoE [Mamba [| MoE [Mamba [| MoE [Mamba [| MoE [| Attention | MoE
1 2 3 4 5 6 7 8 9 10 11 12

l:' Mamba ‘:‘ MoE l:' Attention

- - - Residual Connection

Figure 1: White-Basilisk Architecture

3 MODEL ARCHITECTURE

The architecture of White-Basilisk was designed to address three key challenges in code vulnera-
bility detection. Firstly, it tackles the problem of long-range dependencies, as code vulnerabilities
often span multiple functions or even files, necessitating a model capable of understanding exten-
sive contexts. Secondly, the architecture strikes a balance between local and global information
processing. This dual focus enables both fine-grained understanding of code syntax and broad com-
prehension of overall program structure, both crucial for effective vulnerability detection. Lastly, the
design prioritizes computational efficiency, aiming to create a powerful model that can be deployed
in real-world settings without requiring massive computational resources. By addressing these inter-
connected objectives, our model provides a robust solution for identifying and analyzing potential
security flaws in code. To this end, we developed a novel hybrid architecture that combines three
main components:

1. Mamba layers: These form the backbone of our model, efficiently capturing local depen-
dencies and providing adaptive computation based on input content.

2. Linear-complexity Infini-attention: Our adaptation of this mechanism allows for efficient
processing of extremely long sequences, enabling whole-codebase analysis.

3. Mixture of Experts (MoE): This adds dynamic adaptability throughout the network, al-
lowing the model to specialize its processing based on input characteristics.

The synergy between these components allows White-Basilisk to process sequences up to 128,000
tokens during inference, a capability that sets it apart in the field of code analysis. This extensive
context window enables holistic analysis of entire codebases, potentially uncovering vulnerabilities
that span multiple functions or files. Furthermore, the layer combination pipeline, inspired by the
Jamba model Lieber et al.|(2024)), allows for a more sophisticated interleaving pattern compared to
simple alternation. Specifically, the layer combination is defined by two main configuration parame-
ters, determined through experimentation: the attention layer offset (2) and the attention layer period
(8). In addition, the conjunction of layers in our architecture is defined by the following formula:

Attention(z), if ({ —2) mod 8 =0andi > 2
Layer, = ¢ MoE(x), ifimod2=1)
Mamba(z), otherwise

The forward pass through the model can be expressed as h;, where i € {0, 1, ..., L — 1} is the layer
index and L is the total number of layers in the architecture. Here, h; is the hidden state after the ¢-th
layer, and hy is the initial input embedding. The final output of the model y is obtained by applying
layer normalization to the last hidden state h,:

h; = Layer,;(h;—1) + hi—1 and y = LayerNorm(hp,) 2)

Under review as a conference paper at ICLR 2025

The residual connections (h; = Layer;(h;_1) + h;_1) facilitate gradient flow during training and
allow for the preservation of information across layers.

3.1 MAMBA LAYERS

Mamba layers form the backbone of White-Basilisk, chosen for their exceptional efficiency in cap-
turing local dependencies in code sequences. Unlike traditional recurrent neural networks (RNN’s)
or attention mechanisms, Mamba’s selective state-space mechanism allows for linear-time compu-
tation with respect to sequence length. This efficiency is crucial for processing long code sequences
without excessive computational overhead. The adaptive nature of Mamba layers enables the model
to focus computational resources on the most relevant parts of the input, making it highly efficient
for detecting subtle patterns that may indicate vulnerabilities.

In White-Basilisk, Mamba layers are implemented with a State size (dg) of 16, a Convolution
kernel size (d¢ony) of 4 and an Expansion factor of 2. The core computation in a Mamba layer can
be summarized as:

y=A® (Az + Bu) + Cu 3)

where A, B, and C are input-dependent parameters, A is a fixed parameter, x is the layer input, u is
the input projection, and © denotes element-wise multiplication. The selective state space mecha-
nism in Mamba allows for efficient processing of long sequences, making it particularly suitable for
code analysis tasks.

3.2 MIXTURE OF EXPERTS (MOE) LAYERS

We incorporate Mixture of Experts (MoE) layers into our model to introduce dynamic adaptability
while maintaining computational efficiency. MoE layers allow the model to activate only a subset
of parameters for each input, reducing significantly the computational cost compared to fully-dense
models of similar capacity. In the context of code vulnerability detection, this efficiency is crucial
as it allows our model to handle effectively diverse types of code and potential vulnerabilities with-
out adding to its complexity and number of parameters. The sparsity induced by MoE layers also
contributes to faster inference times, a critical factor in real-world deployment scenarios.

The MoE layers in White-Basilisk are configured with 8 Experts and 2 Experts per token. For an
input x, the output of an MoE layer is computed as:

y = Z G(x); Eqi(x) 4)

where G(z) is the output of the router (gating function), E; is the i-th expert, and k = 2 is the
number of experts per token. The router uses a top-k gating mechanism to select the most relevant
experts for each token, allowing the model to dynamically adapt its processing based on the input
characteristics.

3.3 LINEAR-COMPLEXITY INFINI-ATTENTION: A NOVEL ADAPTATION

Our implementation of Infini-attention is a key factor behind White-Basilisk’s ability to handle effi-
ciently extremely long code sequences. Traditional attention mechanisms face challenges with long
sequences due to their quadratic complexity, making them computationally prohibitive for whole-
codebase analysis. By contrast, our linear-complexity adaptation of Infini-attention enables White-
Basilisk to process entire codebases with significantly reduced computational requirements. This
efficiency is essential for real-world vulnerability detection, allowing our model to consider broad
context and identify vulnerabilities that may stretch across multiple functions or files, while main-
taining feasible processing times and memory usage.

Specifically, we propose a novel implementation of the original algorithm proposed by Munkhdalai
et al.| (2024), allowing for efficient processing of arbitrarily long sequences while maintaining the
ability to capture long-range dependencies. The primary differences are:

Under review as a conference paper at ICLR 2025

1. Accumulation and Linear Complexity: Unlike the original Infini-attention, which pro-
cesses segments independently with bounded memory usage, our implementation accumu-
lates outputs across all segments:

S S
totalmem - Z Amem,57 tOtalaltn = Z Adot,s (5)
s=1

s=1

where S is the total number of segments. This accumulation leads to linear memory growth
with sequence length, trading off bounded memory for the ability to process arbitrarily long
sequences.

2. Global Gating Mechanism: As a consequence of accumulation, our gating mechanism
operates globally on the entire accumulated context, rather than segment-by-segment:

O = sigmoid(f) © totalpen + (1 — sigmoid(3)) © totalyy, (6)

This allows for a more holistic balancing of local and global information across the entire
sequence.

Moreover, our linear-complexity Infini-attention maintains the core concept of combining local at-
tention and a compressive memory, but adapts it for extremely long sequence processing. The
memory retrieval and update processes remain similar:

(ELU(Q) + 1)M ™
(ELU(Q) + 1)z + ¢

Amem = @)

L
Myew = M + (ELUK)" + 1)V, zpew = 2+ » (ELU(K;) + 1) (8)

=1

where M is the compressive memory, z is the normalization term, and L is the segment length.

In combination with Mamba layers, which process the entire sequence to capture global patterns,
our linear-complexity Infini-attention enables White-Basilisk to effectively balance local and global
information processing across very long sequences. This synergy allows the model to maintain
high performance on tasks requiring understanding of both fine-grained local context and broad,
long-range dependencies, all while scaling efficiently to extreme sequence lengths.

4 EXPERIMENTAL SETUP

The development and evaluation of source code vulnerability detection models requires a large col-
lection of annotated data samples. In this section, we outline the datasets chosen for this purpose and
explain how they were used for both model training and testing purposes. Additionally, we provide
a detailed overview of the training methodology used for our model.

4.1 DATA

The datasets used in our analyses were divided into two categories: model training and benchmark-
ing. For training, we initially selected a carefully curated subset of the StarCoder dataset (Li et al.
(2023)), which includes more than 80 programming languages and consists of 305M files in to-
tal. For our study, we focused on C and C++ code samples, using 2M code samples during the
pre-training phase. To evaluate the pre-trained model, we required well-established benchmarking
datasets with publicly available partitions for fine-tuning and testing. This ensures a fair compar-
ison with existing methods without the need to recreate the original models. For this purpose, we
selected five publicly available datasets: VulDeePecker (Li et al| (2018)), Draper (Russell et al.
(2018)), PrimeVul (Ding et al.| (2024))), REVEAL (Chakraborty et al.|(2021))), and BigVul (Fan et al.
(2020)).

Under review as a conference paper at ICLR 2025

4.2 PRETRAINING

Traditional LLM training methods are generally designed to enable models to comprehend language
and its syntax. This is often accomplished through Causal Language Modeling (CLM), where a
model learns to predict the next token given its input. Another common approach is based on
the Fill in the Middle (FIM) technique, in which random text portions are masked, and the model
must reconstruct the missing content. Some advanced source code LLMs combine both methods
to increase model flexibility (L1 et al.| (2023))). Similarly, in our work, we employ both techniques
during model pre-training on the selected 2M code samples. This process requires approximately
600 hours to complete on a single NVIDIA A100 40GB GPU.

4.2.1 SIFT (SCALE-INVARIANT FINE-TUNING)

We implement automated adversarial training using SIFT to improve the model’s resilience against
adversarial examples. SIFT operates by introducing small perturbations to the input during training,
encouraging the model to learn more robust features. In our implementation, we added a Pertur-
bationLayer into the model architecture, which applies learnable perturbations to the input embed-
dings. The training process was designed to minimize both the task loss and the adversarial loss, the
latter being computed as the difference between predictions on clean and perturbed inputs.

This approach confers several advantages, including improved model generalization and enhanced
robustness to minor variations in input. Such resilience is crucial in the domain of code vulnerability
detection, where the model must maintain consistent performance across diverse code samples and
potential adversarial inputs.

By adopting this technique, we have effectively imbued the model with a form of ’adversarial im-
munity’, rendering it more resilient against potential attacks or attempts to deceive its analysis. This
enhanced robustness is particularly valuable in security-critical applications, where the reliability
and consistency of the model’s performance are of paramount importance.

5 EXPERIMENTAL RESULTS: SMALL MODEL, BIG IMPACT

To evaluate our model’s performance, we conducted extensive experiments across five widely-used
datasets in code vulnerability detection: PRIMEVUL, BigVul, Draper, REVEAL, and VulDeep-
ecker. All datasets are evaluated on binary classification (0 = Safe, 1 = Vulnerable). To ensure
a fair comparison, we used the same data splits as the baseline models. The metrics for mod-
els other than White-Basilisk were sourced from their respective publications. Across all datasets,
White-Basilisk consistently demonstrated superior performance, exceeding that of larger and more
resource-intensive models.

Given the class imbalance observed in the datasets and the significance of the minority class (vul-
nerable samples), we opted for F1 score as our primary evaluation metric. A high F1 score reflects
the model’s ability to identify vulnerabilities accurately while minimizing false positive/negative
cases, thus achieving the critical balance needed in real-world security applications. Additionally,
we considered a novel Vulnerability Detection Score (VD-S), introduced by [Ding et al,| (2024),
which evaluates the False Negative Rate of a detector (1-Recall).

5.1 EFFICIENT DESIGN, SUPERIOR RESULTS: WHITE-BASILISK’S PARADIGM

The superior performance of White-Basilisk is the result of a cutting-edge combination of archi-
tectural innovations and advanced training techniques. The model’s architecture integrates Mamba
layers, linear-complexity Infini-attention, and a Mixture of Experts framework, allowing it to ef-
ficiently process extended code sequences while simultaneously capturing both local and global
dependencies. This design enables our model to process sequences of up to 128,000 tokens during
inference, all with a single NVIDIA A100 40GB GPU.

This extended context window represents a significant advancement in code analysis capabilities, en-
abling a comprehensive examination of entire codebases or extensive code files in a single computa-
tional pass. This holistic approach enables the detection of long-range dependencies and contextual
nuances that are frequently overlooked by models with more limited context lengths. As a result,

Under review as a conference paper at ICLR 2025

our model excels at identifying complex vulnerabilities, particularly those related to inter-functional
or cross-file data flow.

White-Basilisk’s improved performance is due to its advanced training approach, incorporating var-
ious sophisticated techniques. A hybrid pretraining strategy, combining CLM and FIM pretraining
enhances the model’s comprehension of code structure and context. Moreover, the implementation
of SIFT increases the model’s adversarial robustness, while specialized methodologies for address-
ing class imbalance optimise learning from heterogeneous datasets.

The efficacy of this approach is empirically validated by White-Basilisk’s performance across sev-
eral benchmarks. Empty cells indicate that the metric was not reported in the original study. Dif-
ferent metrics are reported for each dataset based on the original studies. F1 score is consistently
reported across all models and datasets. On the PRIMEVUL dataset, it achieved an F1 Score of
29.07% and a Vulnerability Detection Score (VD-S) of 72.39, significantly outperforming models
with larger parameter counts. Its performance on the BigVul dataset was particularly noteworthy,
with an F1 Score of 94.90%, accuracy of 99.42%, and VD-S of 3.98, surpassing all competing mod-
els across all evaluated metrics. On the Draper dataset, White-Basilisk established a new benchmark
with an F1 Score of 60.69%. For the REVEAL dataset, it attained an F1 Score of 49.34% and accu-
racy of 89.88%, exceeding the performance of the next highest-performing model. When evaluated
on VulDeepecker, White-Basilisk demonstrated exceptional precision, achieving an F1 Score of
93.88% and the highest precision at 97.20%.

Table 1: BigVul and PRIMEVUL Evaluation Results

Model PRIMEVUL BigVul
Acc (%) F1(%) VD-S| | Acc(%) F1(%) VD-S|
White-Basilisk 96.30 29.07 72.39 99.42 94.90 3.98
CodeT5 96.67 19.70 89.93 95.67 64.93 77.30
CodeBERT 96.87 20.86 88.78 95.57 62.88 81.77
UnixCoder 96.86 21.43 89.21 96.46 65.46 62.30
UnixCoder w/ balancing 95.99 26.28 88.49 - - -
StarCoder2 97.02 18.05 89.64 96.20 68.26 69.14
CodeGen2.5 96.65 19.61 91.51 96.57 67.30 61.73
LineVul - - - - 91.00 14.00
Table 2: Draper, REVEAL, and VulDeepecker Evaluation Results
Model Draper REVEAL VulDeepecker
F1 (%) | Acc (%) FI1 (%) | F1 (%) Prec (%)

White-Basilisk 60.69 89.88 49.34 | 93.88 97.20

Russell et al.|(2018) | 56.60 - - - -

VulBERTa-MLP 43.34 84.48 45.27 | 93.03 95.76

VulBERTa-CNN 57.92 79.73 42.59 | 90.86 95.26

Baseline-BiLSTM 46.84 77.13 39.11 66.97 52.58
Baseline-TextCNN 49.40 73.22 3741 75.80 63.48
REVEAL - 84.37 41.25

VulDeepecker - 92.90 91.90

6 DISCUSSION: RETHINKING Al EFFICIENCY

The remarkable performance of White-Basilisk, achieved with only 200M parameters, challenges
fundamental assumptions in Al development and offers insights into potential new directions for
the field. This efficiency prompts a critical reexamination of the relationship between model size,
performance, and computational resources in Al

White-Basilisk’s success suggests a more nuanced relationship between model size and performance
than previously assumed. While larger models like GPT have demonstrated impressive capabilities
across a wide range of tasks, our results show that for specialized tasks like code vulnerability
detection, carefully designed smaller models can achieve comparable or superior performance. This

Under review as a conference paper at ICLR 2025

indicates that the relationship between model size and performance may be task-dependent, with
a point of diminishing returns, beyond which additional parameters do not necessarily translate to
improved performance.

The success of White-Basilisk’s hybrid architecture, combining Mamba layers, linear-complexity
Infini-attention, and a Mixture of Experts framework, highlights the potential of architectural inno-
vation as an alternative to simple scaling. This approach allows for more efficient use of parameters,
potentially offering a way to break through the computational barriers that currently limit the scaling
of Al models. Our findings suggest that future advancements in AI may come not just from increas-
ing model size, but from novel architectures that more efficiently leverage available parameters.

The environmental implications of Al model development are brought into sharp focus by our re-
sults. Based on available information about pretraining procedures, we estimated the approximate
CO2 emissions during training for White-Basilisk and several competitor models using the Machine
Learning Impact calculator| presented in [Lacoste et al.| (2019) (Table 3. The stark contrast in CO2
emissions between White-Basilisk and larger models (85.5 kg vs. 23,000,000 kg for StarCoder)
underscores the environmental impact of Al development choices. This massive difference suggests
that the Al community needs to seriously consider the environmental costs of model development
and deployment. Our results demonstrate that it’s possible to achieve state-of-the-art performance
with a fraction of the environmental impact of larger models, opening up new possibilities for sus-
tainable Al development.

However, it’s important to note that the total environmental impact of an Al model depends not
just on its training, but also on its inference costs over its lifetime of use. The long-term environ-
mental implications of deploying many specialized models versus fewer general-purpose models.
This consideration adds another layer of complexity to the efficiency-performance trade-off in Al
development.

The success of White-Basilisk also suggests that our current metrics for evaluating Al models may be
insufficient. While performance on benchmark tasks remains important, our results indicate that we
should also consider metrics related to efficiency, scalability, and environmental impact. Developing
a more holistic set of evaluation criteria could drive the field towards more sustainable and efficient
Al development practices.

Table 3: Comparison of CO2 Emissions
White-Basilisk | CodeBERT | StarCoder UnixCoder | CodeT5 | Gasoline Car (per Year)
CO2 (kg) | 85.5 2,240 23,000,000 | 2,048 1,136 4,600

7 LIMITATIONS AND FUTURE WORK

While White-Basilisk shows promising results in code vulnerability detection, it is important to
acknowledge its current limitations and outline future directions. The main limitation of White-
Basilisk is its focus on C and C++ codebases. The model’s ability to generalize across a broader
range of programming languages, especially those with different syntaxes or paradigms, warrants
further exploration. This constraint, combined with potential biases in our training and evaluation
datasets, may limit the model’s generalizability to diverse real-world codebases. To address this,
future work will involve expanding the model’s training to include a wider variety of programming
languages and curating more representative datasets that reflect a broader spectrum of code samples
and vulnerability types.

Also, despite strong performance metrics, White-Basilisk is not infallible. False positives and false
negatives, particularly when detecting novel or zero-day vulnerabilities, remain an ongoing chal-
lenge. Additionally, while the model is capable of processing long sequences, its true understanding
of complex, long-range dependencies in code still needs further investigation. Our future research
will focus on reducing error rates, especially in high-stakes scenarios, and enhancing the model’s
ability to analyze convoluted code structures spanning multiple functions or files.

Another area for improvement is the model’s explainability. Currently, White-Basilisk’s decision-
making process is not sufficiently transparent. Improving the model’s ability to provide clear, action-
able explanations for detected vulnerabilities is essential for building trust and delivering meaningful

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute

Under review as a conference paper at ICLR 2025

insights to developers. Future work will explore methods to offer context-aware understanding of
the potential impact of vulnerabilities, as well as suggested fixes, ultimately aiming to evolve White-
Basilisk into a comprehensive code analysis assistant rather than a mere detection tool.

Also, while more efficient than many larger models, White-Basilisk still requires significant com-
putational resources, particularly when processing very long sequences. This may limit its accessi-
bility for smaller organizations or individual developers. Our ongoing research will retain its focus
on optimizing further the model architecture to maintain or improve its long-context processing
capabilities, while reducing computational demands.

White-Basilisk’s performance on a relatively small training dataset (2M samples) is impressive, but
raises questions about potential limitations in its knowledge base compared to models trained on
much larger datasets. To address this, we plan to scale White-Basilisk to approximately 1 billion
parameters. While still modest in comparison to larger language models, this increase in parameter
count aims to significantly boost performance while continuing to challenge the notion that only the
largest models can deliver state-of-the-art results.

Another area requiring further investigation is improving the model’s robustness against adversarial
attacks, specifically designed for code analysis models. Despite our use of SIFT, further testing
and development of more advanced adversarial training techniques tailored for code vulnerability
detection are necessary, for ensuring reliability in hostile real-world environments.

Beyond code vulnerability detection, there is potential for White-Basilisk’s architecture and training
approach in broader Al applications. Future research will investigate its efficacy in various NLP
tasks, exploring whether its computational efficiency and long-context capabilities can offer more
resource-efficient alternatives to existing LLMs.

8 CONCLUSION

White-Basilisk represents a significant advancement in the domain of code vulnerability detection,
offering a novel solution to the persistent challenge of context handling in Transformer-based Large
Language Models (LLMs). With its capacity to process sequences up to 128,000 tokens, White-
Basilisk introduces unprecedented possibilities for comprehensive code analysis, potentially revolu-
tionizing approaches to software security.

The model’s extended context window addresses a fundamental limitation of many current LLMs,
which often struggle with long-range dependencies and global code structure understanding. By
enabling the analysis of entire codebases in a single pass, White-Basilisk can capture complex inter-
dependencies and identify vulnerabilities that span multiple functions or files, a capability that has
long eluded traditional approaches.

While the context-handling capabilities of White-Basilisk are its standout feature, it’s worth noting
that these achievements have been realized with a relatively compact model of 200M parameters.
This efficiency demonstrates that advances in Al are not solely dependent on increasing model size,
but can also stem from innovative architecture design and training methodologies.

The implications of White-Basilisk’s approach extend beyond code vulnerability detection. The
ability to handle extended contexts efficiently could prove valuable in numerous domains where
long-range understanding is crucial, such as document analysis, complex system modeling, or long-
form text generation. Moreover, the model’s efficiency opens up possibilities for deployment in
resource-constrained environments, potentially bringing advanced Al capabilities to a broader range
of applications and users.

In conclusion, White-Basilisk represents a significant step forward in addressing the context limi-
tations of current LLMs, while also demonstrating that such advances need not come at the cost of
excessive model size or computational requirements. As we continue to refine and expand upon this
approach, we anticipate exciting developments in the field of Al, particularly in tasks that require
deep understanding of extended contexts. The potential implications of this research are substantial,
and we look forward to seeing how these ideas evolve and find application in diverse areas of Al and
beyond.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering, 48(9):
3280-3296, 2021.

Brian Chess and Gary McGraw. Static analysis for security. IEEE security & privacy, 2(6):76-79,
2004.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language
models: How far are we? arXiv preprint arXiv:2403.18624, 2024.

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Parteek Sharma, Fan Chen, and Lei Jiang.
Llmcarbon: Modeling the end-to-end carbon footprint of large language models. arXiv preprint
arXiv:2309.14393,2023.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with
code changes and cve summaries. In Proceedings of the 17th International Conference on Mining
Software Repositories, pp. 508-512, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vulnerability
prediction. In Proceedings of the 19th International Conference on Mining Software Repositories,
pp. 608-620, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

Hazim Hanif and Sergio Maffeis. Vulberta: Simplified source code pre-training for vulnerability
detection. In 2022 International joint conference on neural networks (IJCNN), pp. 1-8. IEEE,
2022.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681, 2018.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java applications with
static analysis. In USENIX security symposium, volume 14, pp. 18—18, 2005.

11

Under review as a conference paper at ICLR 2025

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training 1lms on programming and natural languages. arXiv preprint, 2023.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul
Ellingwood, and Marc McConley. Automated vulnerability detection in source code using deep
representation learning. In 2018 17th IEEE international conference on machine learning and
applications (ICMLA), pp. 757-762. IEEE, 2018.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In EMNLP, pp. 8696—
8708. Association for Computational Linguistics, 2021.

Xin Zhou, Duc-Manh Tran, Thanh Le-Cong, Ting Zhang, Ivana Clairine Irsan, Joshua Sumarlin,
Bach Le, and David Lo. Comparison of static application security testing tools and large language
models for repo-level vulnerability detection. arXiv preprint arXiv:2407.16235, 2024.

A APPENDIX

A EVALUATION METRICS

This appendix provides detailed descriptions of all metrics used to evaluate model performance in
vulnerability detection tasks.

A.0.1 ACCURACY

Accuracy measures the proportion of correct predictions (both true positives and true negatives)

among all predictions:

Accuracy = TP+TIN ©)]
YT TP+TN+FP+FN

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

A.0.2 PRECISION

Precision measures the proportion of correct positive predictions among all positive predictions:

Precision = _re (10)
TP+ FP

A.0.3 RECALL

Recall (also known as sensitivity) measures the proportion of actual positives correctly identified:

Recall = rp (11)
" TP+ FN

A.0.4 FI1 SCORE

F1 Score is the harmonic mean of precision and recall, providing a balanced measure of model
performance:

Fl = 2 « Prec%s%on x Recall (12)
Precision + Recall

12

Under review as a conference paper at ICLR 2025

A.0.5 VULNERABILITY DETECTION SCORE (VD-S)

VD-S evaluates the False Negative Rate of a detector at a specific False Positive Rate (FPR) thresh-
old:

FN
DS=———atFPR<O. 1
VD-S FN+TPat R < 0.005 (13)

where a lower score indicates better performance. This metric is particularly important for security
applications as it measures the model’s ability to minimize missed vulnerabilities while maintaining
a low false positive rate.

Each metric serves a specific purpose in evaluating different aspects of model performance, from
general classification accuracy to specialized vulnerability detection capabilities. The combination
of these metrics provides a comprehensive assessment of a model’s effectiveness in real-world se-
curity applications.

B DATASET STATISTICS ANALYSIS

This section provides a comprehensive analysis of five vulnerability detection datasets (PRIMEVUL,
BigVul, REVEAL, Draper, and VulDeepecker), examining their size distributions, class imbalance
characteristics, and data quality metrics.

Table 4: Dataset Distribution and Vulnerability Statistics

Dataset Sample Count Vulnerable (%) Duplicates (%)
Train Val Test | Train Val Test | Train Val Test
Draper 1,019,471 127,476 127,419 | 6.46 6.47 6.48 0.00 0.00 0.00
PRIMEVUL 184,427 25430 25911 | 3.02 275 2.68 0.00 0.00 0.00
BigVul 150,908 18,864 18,864 | 5.79 5.88 5.59 | 0.005 0.00 0.00
VulDeepecker 128,118 16,015 16,015 | 6.08 6.08 6.08 | 37.72 20.27 20.33
REVEAL 18,187 2,273 2,274 | 990 9.24 10.11 1.17 0.18 0.09

Table 5: Sequence Length Statistics (Training Split)

Dataset Min Max Mean Median 95th %
PRIMEVUL 3 296,924 502.44 193.0 1,729.0
VulDeepecker 8 312,940 284.03 142.0 893.0
REVEAL 10 120,684 569.05 226.0 1,929.7
BigVul 6 70,440 343.90 147.0 1,193.0
Draper 10 42,492 320.85 236.0 858.0

B.1 IMPLICATIONS FOR MODEL DESIGN
These statistics significantly influenced our model design decisions:

1. The substantial class imbalance across all datasets (ranging from 3.02% to 10.11% vulner-
able samples) motivated our implementation of specialized class weighting and sampling
strategies.

2. The extreme range in sequence lengths (from 3 to 312,940 tokens) justified our focus on
developing an architecture capable of handling very long sequences efficiently.

3. The varying levels of data duplication (0% to 37.72%) highlighted the importance of robust
evaluation metrics and careful interpretation of results, particularly for VulDeepecker.

4. The consistency of class distributions across splits suggests that our evaluation metrics
should be reliable indicators of real-world performance.

5. REVEAL’s higher proportion of vulnerable samples (10%) compared to other datasets (3-
6%) provides an important test case for our model’s ability to handle different class balance
scenarios.

13

Under review as a conference paper at ICLR 2025

C BASELINE MODELS

This section details the baseline models examined in our study. It is important to note that we
did not train, finetune, or run any of these models ourselves. Instead, we collected and analyzed
their reported metrics and configurations from their respective papers. For CodeT5 (CTS5), Code-
BERT (CB), UnixCoder (UC), StarCoder2 (SC2), and CodeGen2.5 (CG2.5), the information was
sourced from the PrimeVul paper Ding et al.|(2024). For VulBERTa variants (VulBERTa-MLP and
VulBERTa-CNN) and the baseline models (Baseline-BiLSTM and Baseline-TextCNN), the infor-
mation was obtained from the original VulBERTa paper Hanit & Maffeis| (2022). For LineVul, the
information was obtained from the original LineVul paper |Fu & Tantithamthavorn| (2022).

Table 6: Overview of baseline models examined in our study

Model Architecture Pre-training Params
CT5|Wang et al.[(2021)) Enc-Dec Multi-lingual code 60M
CB [Feng et al.|(2020) Encoder Bimodal (code + text) 125M
UC|Guo et al.[(2022) Encoder Cross-modal 125M
SC2|Li et al.| (2023) Decoder The Stack v2 7B
CG2.5|Njjkamp et al.|(2023)) Decoder Code + natural lang. 7B
VulBERTa-MLP |[Hanif & Maffeis|(2022) Encoder C/C++ code 125M
VulBERTa-CNN Encoder-CNN C/C++ code 2M
Baseline-BiLSTM BiLSTM None 1M
Baseline-TextCNN TextCNN None 1M
LineVul [Fu & Tantithamthavorn|(2022) BERT CodeBERT 125M

CT5: CodeT5, CB: CodeBERT, UC: UnixCoder,
SC2: StarCoder2, CG2.5: CodeGen2.5

Table 7: Training configurations as reported in respective papers

Configuration Value
Small Model Epochs (<7B) 10
Large Model Epochs (7B) 4

VulBERTa Pre-training Steps 500,000
VulBERTa Fine-tuning Epochs 10
BiLSTM/TextCNN Epochs 10
LineVul Fine-tuning Epochs 10

D CLASSIFICATION HEAD

The classification head of White-Basilisk is designed to efficiently transform the high-dimensional
representations learned by the main model into classification outputs for vulnerability detection. Its
architecture is as follows:

1. Dense Layer 1: A fully connected layer that projects the hidden state (dimension 512)
to the same dimension. This layer uses a GELU activation function and is followed by
dropout for regularization.

2. Dense Layer 2: Another fully connected layer that reduces the dimension from 512 to 256,
again followed by GELU activation and dropout.

3. Layer Normalization: Applied to the output of Dense Layer 2 for improved stability and
faster convergence.

4. Output Layer: A final linear layer that projects from 256 dimensions to the number of
classes (typically 2 for binary classification of vulnerable vs. non-vulnerable code).

This classification head structure was chosen to gradually reduce the dimensionality of the represen-
tations while maintaining the model’s ability to capture complex patterns relevant to vulnerability

14

Under review as a conference paper at ICLR 2025

detection. The use of GELU activations and layer normalization aligns with modern best practices
in deep learning architecture design. The classification head is mathematically described as follows:
x1 = Dropout(GELU(W1h + b))
x9 = Dropout(GELU(Waz1 + b2))
x3 = LayerNorm(z3)
y = Wsxs + bs

(14)

where h € R®'2 is the input from the main model, W; € R312X512 1}, ¢ R256%512 and W3 €
R2%256 are learnable weights, and b, by, bs are biases.

E HYPERPARAMETER DETAILS

This section provides a detailed overview of the hyperparameters used in training White-Basilisk,
including both the pretraining and fine-tuning phases. We also discuss the rationale behind key
hyperparameter choices and their impact on model performance.

E.1 PRETRAINING HYPERPARAMETERS

Learning Rate: We chose a relatively small learning rate of 1.41e-5 to ensure stable training given
the complexity of the task and the hybrid nature of our model architecture. This value was deter-
mined through careful tuning to balance training speed and convergence stability.

Batch Size: A batch size of 16 was selected as a compromise between training efficiency and
memory constraints of our hardware (single NVIDIA A100 40GB GPU). Larger batch sizes could
potentially improve training stability but would require more memory or gradient accumulation
steps.

Number of Epochs and Warmup Ratio: We trained for 10 epochs with a warmup ratio of 0.15.
This combination allowed the model to reach good performance while preventing overfitting. The
warmup period helps stabilize training in the early stages.

Optimizer Settings: We used the AdamW optimizer with 5; = 0.9, 82 = 0.999, and € = 1e — 8.
These are standard settings that work well across a wide range of tasks. The weight decay of 0.01
was applied to all parameters except for bias and LayerNorm weights to prevent overfitting.

FIM and FIM-SPM Rates: Both the Fill-in-the-Middle (FIM) rate and the FIM Sentence Per-
mutation Mode (SPM) rate were set to 0.5. This means that 50% of the samples undergo FIM
transformation, and among those, 50% use the SPM variant. These rates provide a good balance
between standard causal language modeling and the FIM objective, enhancing the model’s bidirec-
tional understanding capabilities.

E.2 FINE-TUNING HYPERPARAMETERS

Learning Rate and Batch Size: We used a smaller learning rate (5e-6) and batch size (4) for
fine-tuning to prevent catastrophic forgetting and to allow the model to adapt to the specific charac-
teristics of each dataset without overfitting.

SIFT Parameters: For Scale-Invariant Fine-Tuning, we used a learning rate of le-4 for the per-
turbation layer and an initial perturbation magnitude of le-2. These values were chosen to provide
meaningful adversarial examples without overly distorting the input embeddings.

F HANDLING CLASS IMBALANCE

A significant challenge in the development of Al classification models is the management of highly
imbalanced datasets. In such scenarios, it is important to train the model to maintain its ability to
detect minority classes effectively. In the context of source code vulnerability detection, we also
encounter highly imbalanced classification data. To address this issue, we employ a dual approach
affecting both data sampling and loss computation. This is implemented via a weighted function w.,

15

Under review as a conference paper at ICLR 2025

where w, represents the weight for class ¢, and N, denotes the number of samples in class c. The
function is defined as follows:

N
2N,

W (15)
Based on the provided function, we implement two key components in our methodology. Firstly, we
employ a Weighted Random Batch Sampler, a sampling mechanism that ensures each mini-batch
contains a balanced representation of classes, thus mitigating the effects of dataset imbalance during
training. Secondly, we implement a weighted loss function, modifying the standard cross-entropy
loss by incorporating the class-specific weights w...

G ABLATION STUDY: COMBINED DATASET TRAINING

To further evaluate White-Basilisk’s performance and investigate the impact of training data com-
position, we conducted an ablation study using a combined training approach across all datasets.
This experiment involved concatenating the training splits from all five datasets (REVEAL, Draper,
VulDeepecker, BigVul, and PRIMEVUL) into a single unified training set. During each training
epoch, the model was evaluated on the concatenated testing splits from all datasets to monitor for
potential overfitting. Final performance metrics were obtained by evaluating the trained model sep-
arately on each dataset’s designated validation split, ensuring fair comparison with previous results.

G.1 EXPERIMENTAL SETUP

The model was trained using the same hyperparameters as described in Section 6.2, but with the
following data configuration:

* Training Data: Combined training splits from all five datasets into a single training set
* Testing: Concatenated testing splits from all datasets, used for monitoring training progress

 Validation: Individual Validation splits for each dataset, evaluated separately to assess
dataset-specific performance

This unified training approach resulted in a significantly larger and more diverse training set, al-

lowing us to investigate how the model performs when exposed to a broader range of vulnerability
patterns and coding styles simultaneously.

G.2 RESULTS AND ANALYSIS

The results of this combined training approach are presented in Table|[S]

Table 8: Combined Training Results Across All Datasets

Dataset Precision Recall F1 Accuracy
REVEAL 0.416 0.551 0.470 0.888
Draper 0.568 0.532 0.549 0.948
VulDeepecker 0.939 0912 0.925 0.989
BigVul 0.936 0.940 0.938 0.993
PRIMEVUL 0.268 0.265 0.233 0.952

Combined Test 0.643 0.585 0.613 0.956

Key observations from the combined training experiment include:

1. Performance Consistency: The model maintains strong performance across most datasets,
with particularly robust results on VulDeepecker (F1: 0.925) and BigVul (F1: 0.938), sug-
gesting effective transfer learning across different vulnerability detection tasks.

2. Dataset-Specific Variations: Performance varies significantly across datasets, from an
F1 score of 0.938 on BigVul to 0.233 on PRIMEVUL, indicating that some vulnerability
patterns may be more challenging to learn in a combined setting.

16

Under review as a conference paper at ICLR 2025

3. High Accuracy Maintenance: The model maintains high accuracy across all datasets
(0.888-0.993), demonstrating robust overall classification performance even with the in-
creased complexity of the combined training task.

4. Precision-Recall Balance: The model generally maintains a good balance between pre-
cision and recall, with some datasets showing nearly identical values (e.g., BigVul:
0.936/0.940), suggesting stable learning of vulnerability patterns.

G.3 MODEL ROBUSTNESS ANALYSIS

A particularly noteworthy aspect of these results is White-Basilisk’s ability to maintain stable perfor-
mance across multiple diverse datasets without experiencing catastrophic forgetting or overfitting.
This is especially significant given the model’s relatively compact size of 200M parameters. Several
factors contribute to this robustness:

1. Cross-Dataset Learning: The model shows signs of positive transfer learning, where
knowledge gained from one dataset appears to benefit the detection of vulnerabilities in
others. This is evidenced by the maintenance of high accuracy scores across all datasets
despite their varying characteristics.

2. Stability Across Scales: The model maintains performance across datasets of different
sizes and complexity levels, from the smaller REVEAL dataset to the larger PRIMEVUL
dataset. This stability suggests that the model’s learning capacity is well-matched to the
task complexity.

G.4 COMPARISON WITH INDIVIDUAL TRAINING

When compared to the individual training results presented in Section 5, the combined training
approach shows some interesting trade-offs:

* For some datasets (VulDeepecker, BigVul), the performance remains close to individ-
ual training results, suggesting that the model can effectively learn and maintain dataset-
specific patterns even in a combined setting.

* Performance on more challenging datasets like PRIMEVUL shows some degradation, in-
dicating that the increased diversity of the training data may make it harder for the model
to capture some of the more nuanced vulnerability patterns specific to certain datasets.

* The overall combined test metrics (F1: 0.613, Accuracy: 0.956) demonstrate that White-
Basilisk can effectively learn from multiple datasets simultaneously while maintaining rea-
sonable performance across all of them.

This ability to maintain stable performance across diverse datasets without overfitting or experienc-
ing catastrophic forgetting is particularly notable for a model of this size. It suggests that White-
Basilisk’s architecture strikes an effective balance between model capacity and efficiency, enabling
robust multi-task learning without requiring the massive parameter counts typically associated with
such capabilities. This finding has important implications for the development of efficient, multi-
purpose vulnerability detection systems that can be deployed in resource-constrained environments
while maintaining high performance across a range of vulnerability types.

H ABLATION STUDY: ATTENTION MECHANISMS AND LONG-RANGE
VULNERABILITY DETECTION

To thoroughly evaluate White-Basilisk’s performance and validate our architectural choices, we
conducted a comprehensive ablation study focusing on two key aspects: (1) the effectiveness of
our linear-complexity Infini-attention mechanism compared to standard self-attention, and (2) the
model’s performance across varying sequence lengths. This analysis is particularly important given
the prevalence of vulnerabilities that span multiple functions or files, requiring models to maintain
effectiveness over long code sequences.

17

Under review as a conference paper at ICLR 2025

H.1 EXPERIMENTAL SETUP

Model: We used the White-Basilisk checkpoint that was trained on the combined datasets from
We categorized sequences into four length bins for analysis:

* Bin 1: 0-16,384 tokens (standard context length)

* Bin 2: 16,384-32,768 tokens (extended context)

* Bin 3: 32,768-65,536 tokens (long context)

* Bin 4: 65,536-131,072 tokens (very long context)
For each bin, we monitored both memory consumption and model performance across all datasets,

comparing our Infini-attention implementation against standard self-attention (eager implementa-
tion).

H.2 MEMORY EFFICIENCY ANALYSIS
Table [9] presents the peak memory consumption across different sequence lengths and attention

implementations.

Table 9: Peak Memory Consumption (MB) by Sequence Length and Attention Type
Infini-attention Standard Attention

Length Bin Peak Reserved Peak Reserved
Bin 1 (0-16K) 1,338 1,442 | 32,409 39,696
Bin 2 (16K-32K) 1,654 1,956 | OOM OOM

Bin 3 (32K-65K) 2,213 2,638 OOM OOM
Bin 4 (65K-131K) 3,322 3,848 OOM OOM
OOM: Out of Memory on NVIDIA A100 40GB GPU

The results demonstrate the significant memory advantages of our Infini-attention approach:
1. Linear Scaling: Infini-attention shows near-linear memory scaling, increasing from 1.3GB
to 3.3GB across bins.

2. Efficiency Gain: Standard attention requires 24x more memory for Bin 1 and fails entirely
on longer sequences.

3. Extended Range: While standard attention becomes infeasible beyond 16K tokens, Infini-
attention successfully processes sequences up to 131K tokens with modest memory re-
quirements.

H.3 PERFORMANCE ANALYSIS ACROSS SEQUENCE LENGTHS

Table [I0] presents a comprehensive analysis of performance across different sequence lengths and
datasets.

Table 10: Performance and Distribution Analysis Across Sequence Lengths

Sample Distribution Infini-attention Eager-attention
Dataset Bin Total Non-Vuln Vuln F1 Precision Accuracy F1 Precision Accuracy
BigVul Binl | 18,853 17,747 1,106 | 0.943 0.946 0.993 | 0.937 0.967 0.993
Bin2 7 5 2 | 0.800 0.667 0.857 - - -
Bin 3 4 3 1 | 1.000 1.000 1.000 - - -
VulDeePecker Binl1 | 12,764 11,814 950 | 0.925 0.939 0.989 | 0.932 0.968 0.990
Bin 2 2 2 0 - - 1.000 - - -
Bin 3 2 2 0 - - 1.000 - - -
Bin 4 1 1 0 - - 1.000 - - -
PRIMEVUL Binl | 25411 24,715 696 | 0.233 0.208 0.952 | 0.240 0.237 0.958
Bin 2 18 15 3 10.250 0.200 0.667 - - -
Bin 3 1 1 0 - - 1.000 - - -
REVEAL Bin 1 2,269 2,062 207 | 0.474 0.416 0.888 | 0.468 0.445 0.898
Draper Binl | 12,769 11,819 950 | 0.568 0.609 0.948 | 0.511 0.646 0.948

18

Under review as a conference paper at ICLR 2025

Several remarkable findings emerge from this analysis:

1. Long-Context Performance: While longer sequences (over 16K tokens) are relatively
rare, White-Basilisk demonstrates remarkable effectiveness in detecting vulnerabilities in
these cases:

* In BigVul, the model achieves perfect detection (F1=1.000) for sequences in Bin 3

* For Bin 2 sequences, it maintains strong performance (F1=0.800) despite the increased
complexity

* This effectiveness on longer sequences is particularly noteworthy given the increased
difficulty of maintaining coherent attention over such distances

2. Linear Attention Efficiency: The infini-attention variant achieves comparable perfor-
mance to full self-attention:

* Nearly identical metrics across major datasets (e.g., BigVul: 0.937 vs 0.943 F1)
* Maintains high precision while reducing computational complexity
* Demonstrates that linear attention is a viable alternative for vulnerability detection

3. Consistent Short-Context Performance: In Bin 1, where most vulnerabilities occur, the
model shows exceptional performance:

* BigVul: F1=0.943, Accuracy=0.993
* VulDeePecker: F1=0.925, Accuracy=0.989

4. Robust Class Imbalance Handling: The model maintains effectiveness despite significant
class imbalance:

* Successfully detects vulnerabilities even when they comprise only 2.74% of samples
(PRIMEVUL)

* Maintains balanced precision-recall trade-offs across length bins

5. Dataset-Specific Challenges: Performance variations across datasets reveal interesting
patterns:

 Stronger performance on BigVul and VulDeePecker suggests better handling of cer-
tain vulnerability types

* Lower scores on PRIMEVUL indicate the challenge of detecting more subtle or com-
plex vulnerabilities

H.4 COMPARATIVE ANALYSIS WITH STANDARD ATTENTION

When comparing Infini-attention with standard attention (where possible), we observe:

1. Performance Parity: Infini-attention achieves comparable or better performance while
using significantly less memory

2. Extended Capabilities: Unlike standard attention, Infini-attention can process the full
range of sequence lengths present in real codebases

3. Practical Advantages: The ability to handle longer sequences without performance degra-
dation makes White-Basilisk suitable for analyzing entire codebases in a single pass

H.5 IMPLICATIONS FOR VULNERABILITY DETECTION

This ablation study yields several important insights:

1. The success of Infini-attention in maintaining high performance across sequence lengths
validates our architectural choices

2. The model’s ability to handle sequences up to 131K tokens while maintaining accuracy
demonstrates its practical utility for real-world applications

3. Strong performance on longer sequences suggests effective capture of long-range depen-
dencies, crucial for detecting vulnerabilities that span multiple functions or files

19

Under review as a conference paper at ICLR 2025

4. The memory efficiency of our approach makes it feasible to deploy White-Basilisk on stan-
dard hardware, even for processing very long sequences

These findings confirm that White-Basilisk successfully addresses the key challenges in vulnerabil-
ity detection: maintaining high accuracy across varying sequence lengths while remaining compu-
tationally efficient. The model’s particular strength in handling long sequences, combined with its
consistent performance on more common shorter sequences, makes it a practical and effective tool
for real-world code security applications.

I ABLATION STUDY: CWE-SPECIFIC PERFORMANCE ANALYSIS

To provide deeper insights into White-Basilisk’s vulnerability detection capabilities, we conducted a
comprehensive analysis of its performance across different Common Weakness Enumeration (CWE)
categories. This analysis focuses on the BigVul, Vuldeepecker and Draper dataset, which provide
detailed CWE-level metrics, allowing us to understand the model’s strengths and limitations across
various vulnerability types.

1.1 EXPERIMENTAL SETUP

* Model: We used the White-Basilisk checkpoint that was trained on the combined datasets
from[Gl

» Evaluation Splits: Validation split of each dataset

1.1.1 DATASET-SPECIFIC PERFORMANCE PATTERNS

Draper Dataset Performance In the Draper dataset (Table [I2)), we observe a consistent pattern
of high precision (1.000) across all CWE categories, but with varying recall rates:
* CWE-119 (Buffer Overflow): Achieves the highest recall (0.597) and F1 score (0.748)

e CWE-120 (Buffer Copy without Checking Size): Shows similar performance (re-
call=0.592, F1=0.744)

* CWE-469 and CWE-476: Demonstrate progressively lower recall (0.563 and 0.522 respec-
tively)

This pattern suggests that while the model is highly precise in its predictions, it exhibits some con-
servatism in vulnerability detection, particularly for less frequent vulnerability types.

VulDeePecker Dataset Analysis The VulDeePecker results (Table show more balanced
precision-recall characteristics:

* CWE-119: Demonstrates near-perfect balance (precision=0.939, recall=0.940)
* CWE-399 (Resource Management Errors): Shows lower but consistent performance (pre-

cision=0.776, recall=0.785)

The balanced metrics suggest more robust learning of these vulnerability patterns, possibly due to
better representation in the training data.

BigVul Dataset Insights The BigVul dataset (Table[I4) provides the most comprehensive view of
White-Basilisk’s capabilities across 50+ CWE categories. Several significant patterns emerge:

1. Perfect Detection Cases:

* 22 CWE categories achieve perfect scores (F1=1.000), including:
— Critical vulnerabilities: CWE-787 (Out-of-bounds Write), CWE-310 (Crypto-
graphic Issues)
— Access control issues: CWE-732 (Permission Assignment), CWE-284 (Access
Control)

20

Under review as a conference paper at ICLR 2025

— Various severity levels: From CWE-59 (Link Following) to CWE-617 (Reachable
Assertion)

* Notable that perfect detection spans both frequent (over 200 samples) and rare (under
50 samples) categories
2. High-Volume Vulnerability Performance:
e CWE-119 (2,746 samples): Excellent performance (F1=0.969)
* CWE-264 (1,240 samples): Strong results (F1=0.925)
* CWE-20 (1,977 samples): Robust detection (F1=0.933)
3. Performance Degradation Patterns:
* Resource-related vulnerabilities show more variable performance:
— CWE-404 (Resource Shutdown): Lowest F1 score (0.571)
— CWE-772 (Missing Release): Lower precision (0.750)
* Format-string vulnerabilities (CWE-134): Shows precision-recall imbalance
(0.500/1.000)
4. Sample Size Impact:
» Large sample categories (over 1000 samples) show consistently strong but not perfect
performance
* Medium-sized categories (100-1000 samples) demonstrate more variable results

* Small categories (under 100 samples) often show perfect or near-perfect scores, sug-
gesting potential overfitting

I1.1.2 CROSS-DATASET PERFORMANCE ANALYSIS
The model’s behavior across datasets reveals important patterns:

* CWE-119 Consistency: As the only vulnerability type present across all three datasets, it
shows interesting variation:

— BigVul: F1=0.969 (balanced precision-recall)
— VulDeePecker: F1=0.940 (balanced precision-recall)
— Draper: F1=0.748 (high precision, lower recall)
This variation suggests dataset-specific characteristics affect detection performance.

* Scale Effects: Larger datasets (BigVul) generally show more balanced precision-recall
trade-offs compared to smaller datasets.

1.1.3 IMPLICATIONS AND INSIGHTS

These results yield several important insights for vulnerability detection:

1. Architecture Effectiveness: White-Basilisk’s strong performance across numerous CWE
categories validates its hybrid architecture design for vulnerability detection.

2. Detection Patterns:

* Memory-related vulnerabilities consistently show strong detection rates

* Resource management vulnerabilities present more challenges

* Access control vulnerabilities demonstrate surprisingly robust detection
3. Practical Implications:

» High precision across most categories suggests low false positive rates
* Variable recall in some categories indicates potential for missed vulnerabilities

* Perfect detection in rare categories warrants further investigation for potential overfit-
ting

These findings demonstrate White-Basilisk’s strong general capability while highlighting specific
areas for potential improvement. The comprehensive nature of these results, particularly in the
BigVul dataset, provides strong evidence for the model’s practical utility in real-world vulnerability
detection scenarios.

21

Under review as a conference paper at ICLR 2025

s e BigVul Draper VulDeePecker
CWE Description Sample§ F1 Samples g F1 Samples F1
CWE-119 Buffer Overflow: Classic buffer 2,746 0.969 2,419 0.748 10,419 0.940
overflow vulnerabilities
CWE-399 Resource Management Errors: 1,435 0.923 - - 5,596 0.780
Failures in managing system re-
sources
CWE-20 Input Validation: Improper in- 1,977 0.933 - - - -
put validation
CWE-264 Access Control: Permissions, 1,240 0.925 - - - -
privileges, and access controls
CWE-120 Buffer Copy: Buffer copy with- - - 4,750 0.744 - -
out checking size of input
CWE-476 NULL Pointer Dereference 501 0.971 1,208 0.686 - -
CWE-416 Use After Free: Using memory 963 0.958 - - - -
after it has been freed
CWE-200 Information Exposure: Expo- 883 0.944 - - - -
sure of sensitive information
Table 11: Comparison of Most Frequent CWEs Across Datasets
CWE Precision | Recall F1 Accuracy | Total | Pos. Ratio | Neg. Ratio
CWE-119 1.000 0.597 | 0.748 0.597 2,419 1.000 0.000
CWE-120 1.000 0.592 | 0.744 0.592 4,750 1.000 0.000
CWE-469 1.000 0.563 | 0.721 0.563 252 1.000 0.000
CWE-476 1.000 0.522 | 0.686 0.522 1,208 1.000 0.000
CWE-other 1.000 0.472 | 0.642 0.472 3,579 1.000 0.000
Overall 0.609 0.532 | 0.568 0.948 127,476 0.065 0.935
Table 12: Draper Dataset Metrics for All CWEs
CWE Precision | Recall F1 Accuracy | Total | Pos. Ratio | Neg. Ratio
CWE-119 0.939 0.940 | 0.940 0.991 10,419 0.077 0.923
CWE-399 0.776 0.785 | 0.780 0.986 5,596 0.031 0.969
Overall 0.910 0913 | 0911 0.989 16,015 0.061 0.939

Table 13: VulDeePecker Dataset Metrics for All CWEs

22

Under review as a conference paper at ICLR 2025

CWE Precision | Recall F1 Accuracy | Total | Pos. % | Neg. %
CWE-787 1.000 1.000 | 1.000 1.000 291 6.19 93.81
CWE-119 0.978 0.960 | 0.969 0.995 2746 8.27 91.73
CWE-125 0.984 0.984 | 0.984 0.997 794 7.68 92.32
CWE-264 0.925 0.925 | 0.925 0.994 1240 4.27 95.73
CWE-416 0.944 0.971 | 0.958 0.997 963 3.63 96.37
CWE-476 0.944 1.000 | 0.971 0.998 501 3.39 96.61
CWE-200 0.913 0.977 | 0.944 0.994 883 4.87 95.13
CWE-189 0.921 0.946 | 0.933 0.993 695 5.32 94.68
CWE-732 1.000 1.000 | 1.000 1.000 143 3.50 96.50
CWE-311 1.000 0.667 | 0.800 0.963 27 11.11 88.89
CWE-772 0.750 1.000 | 0.857 0.983 116 5.17 94.83
CWE-399 0.957 0.892 | 0.923 0.992 1435 5.16 94.84
CWE-20 0.905 0.963 | 0.933 0.992 1977 5.51 94.49
CWE-190 0.960 0.889 | 0.923 0.989 378 7.14 92.86
CWE-59 1.000 1.000 | 1.000 1.000 96 2.08 97.92
CWE-362 0.939 0.861 | 0.899 0.988 592 6.08 93.92
CWE-400 1.000 0.800 | 0.889 0.993 136 3.68 96.32
CWE-310 1.000 1.000 | 1.000 1.000 148 4.05 95.95
CWE-754 1.000 1.000 | 1.000 1.000 32 3.13 96.87
CWE-835 1.000 0.750 | 0.857 0.988 86 4.65 95.35
CWE-284 0.944 1.000 | 0.971 0.996 232 7.33 92.67
CWE-358 1.000 1.000 | 1.000 1.000 15 33.33 66.67
CWE-388 1.000 1.000 | 1.000 1.000 36 8.33 91.67
CWE-22 1.000 1.000 | 1.000 1.000 74 4.05 95.95
CWE-704 1.000 1.000 | 1.000 1.000 80 1.25 98.75
CWE-254 1.000 0.933 | 0.966 0.997 302 4.97 95.03
CWE-415 1.000 1.000 | 1.000 1.000 102 13.73 86.27
CWE-369 1.000 1.000 | 1.000 1.000 78 6.41 93.59
CWE-79 1.000 1.000 | 1.000 1.000 84 3.57 96.43
CWE-404 0.500 0.667 | 0.571 0.963 81 3.70 96.30
CWE-134 0.500 1.000 | 0.667 0.983 60 1.67 98.33
CWE-346 1.000 1.000 | 1.000 1.000 6 16.67 83.33
CWE-17 1.000 1.000 | 1.000 1.000 72 4.17 95.83
CWE-77 1.000 1.000 | 1.000 1.000 22 9.09 90.91
CWE-269 1.000 0.667 | 0.800 0.988 86 3.49 96.51
CWE-611 1.000 1.000 | 1.000 1.000 46 6.52 93.48
CWE-19 1.000 0.714 | 0.833 0.973 73 9.59 90.41
CWE-617 1.000 1.000 | 1.000 1.000 99 4.04 95.96
CWE-494 1.000 1.000 | 1.000 1.000 7 14.29 85.71
CWE-287 1.000 1.000 | 1.000 1.000 59 6.78 93.22
CWE-834 1.000 1.000 | 1.000 1.000 40 5.00 95.00
CWE-665 1.000 1.000 | 1.000 1.000 8 37.50 62.50
CWE-674 1.000 1.000 | 1.000 1.000 4 25.00 75.00
CWE-668 1.000 1.000 | 1.000 1.000 7 14.29 85.71
CWE-918 1.000 1.000 | 1.000 1.000 5 20.00 80.00
CWE-682 0.750 1.000 | 0.857 0.900 10 30.00 70.00
CWE-191 1.000 1.000 | 1.000 1.000 10 10.00 90.00
CWE-18 1.000 1.000 | 1.000 1.000 5 80.00 20.00
CWE-16 1.000 1.000 | 1.000 1.000 7 14.29 85.71
CWE-824 1.000 1.000 | 1.000 1.000 1 100.00 0.00
Overall 0.946 0.940 | 0.943 0.993 18864 5.88 94.12

Table 14: Complete BigVul Metrics for All CWEs with Class Balance

23

Under review as a conference paper at ICLR 2025

CWE Accuracy | Total | Pos. % Neg. %
CWE-601 0.875 8 0.00 100.00
CWE-347 1.000 3 0.00 100.00
CWE-426 1.000 3 0.00 100.00
CWE-361 1.000 4 0.00 100.00
CWE-285 1.000 25 0.00 100.00
CWE-290 1.000 8 0.00 100.00
CWE-9%4 0.875 8 12.50 87.50

CWE-281 1.000 5 0.00 100.00
CWE-706 1.000 1 0.00 100.00
CWE-862 1.000 2 0.00 100.00
CWE-693 1.000 7 0.00 100.00
CWE-295 1.000 7 0.00 100.00
CWE-1021 1.000 5 0.00 100.00
CWE-255 1.000 4 0.00 100.00
CWE-129 1.000 7 0.00 100.00
CWE-120 1.000 8 0.00 100.00
CWE-352 1.000 4 0.00 100.00
CWE-327 1.000 1 0.00 100.00
CWE-909 1.000 7 0.00 100.00
CWE-74 1.000 1 0.00 100.00
CWE-330 1.000 3 0.00 100.00
CWE-90 1.000 4 0.00 100.00
CWE-770 1.000 6 0.00 100.00
CWE-172 1.000 1 0.00 100.00
CWE-354 1.000 1 0.00 100.00
CWE-502 1.000 2 0.00 100.00
CWE-755 1.000 2 0.00 100.00
CWE-664 1.000 2 0.00 100.00

NOTE: Some metrics not applicable due to single-class predictions

Table 15: Single Class CWE Results

24

	Introduction
	Related Work
	Model Architecture
	Mamba Layers
	Mixture of Experts (MoE) Layers
	Linear-Complexity Infini-attention: A Novel Adaptation

	Experimental Setup
	Data
	Pretraining
	SIFT (Scale-Invariant Fine-Tuning)

	Experimental Results: Small Model, Big Impact
	Efficient Design, Superior Results: White-Basilisk's Paradigm

	Discussion: Rethinking AI Efficiency
	Limitations and Future Work
	Conclusion
	Appendix
	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F1 Score
	Vulnerability Detection Score (VD-S)

	Dataset Statistics Analysis
	Implications for Model Design

	Baseline Models
	Classification Head
	Hyperparameter Details
	Pretraining Hyperparameters
	Fine-tuning Hyperparameters

	Handling Class Imbalance
	Ablation Study: Combined Dataset Training
	Experimental Setup
	Results and Analysis
	Model Robustness Analysis
	Comparison with Individual Training

	Ablation Study: Attention Mechanisms and Long-Range Vulnerability Detection
	Experimental Setup
	Memory Efficiency Analysis
	Performance Analysis Across Sequence Lengths
	Comparative Analysis with Standard Attention
	Implications for Vulnerability Detection

	Ablation Study: CWE-Specific Performance Analysis
	Experimental Setup
	Dataset-Specific Performance Patterns
	Cross-Dataset Performance Analysis
	Implications and Insights

