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ABSTRACT

We explore value-based multi-agent reinforcement learning (MARL) in the popular
paradigm of centralized training with decentralized execution (CTDE). CTDE has
an important concept, Individual-Global-Max (IGM) principle, which requires
the consistency between joint and local action selections to support efficient local
decision-making. However, in order to achieve scalability, existing MARL methods
either limit representation expressiveness of their value function classes or relax
the IGM consistency, which may suffer from instability risk or may not perform
well in complex domains. This paper presents a novel MARL approach, called
duPLEX dueling multi-agent Q-learning (QPLEX), which takes a duplex dueling
network architecture to factorize the joint value function. This duplex dueling
structure encodes the IGM principle into the neural network architecture and thus
enables efficient value function learning. Theoretical analysis shows that QPLEX
achieves a complete IGM function class. Empirical experiments on StarCraft II
micromanagement tasks demonstrate that QPLEX significantly outperforms state-
of-the-art baselines in both online and offline data collection settings, and also
reveal that QPLEX achieves high sample efficiency and can benefit from offline
datasets without additional online exploration1.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has broad prospects for addressing many
complex real-world problems, such as sensor networks (Zhang & Lesser, 2011), coordination
of robot swarms (Hüttenrauch et al., 2017), and autonomous cars (Cao et al., 2012). However,
cooperative MARL encounters two major challenges of scalability and partial observability in
practical applications. The joint state-action space grows exponentially as the number of agents
increases. The partial observability and communication constraints of the environment require each
agent to make its individual decisions based on local action-observation histories. To address these
challenges, a popular MARL paradigm, called centralized training with decentralized execution
(CTDE) (Oliehoek et al., 2008; Kraemer & Banerjee, 2016), has recently attracted great attention,
where agents’ policies are trained with access to global information in a centralized way and executed
only based on local histories in a decentralized way.

Many CTDE learning approaches have been proposed recently, among which value-based MARL
algorithms (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Wang et al., 2019b) have
shown state-of-the-art performance on challenging tasks, e.g., unit micromanagement in StarCraft II
(Samvelyan et al., 2019). To enable effective CTDE for multi-agent Q-learning, it is critical that
the joint greedy action should be equivalent to the collection of individual greedy actions of agents,
which is called the IGM (Individual-Global-Max) principle (Son et al., 2019). This IGM principle
provides two advantages: 1) ensuring the policy consistency during centralized training (learning
the joint Q-function) and decentralized execution (using individual Q-functions) and 2) enabling

∗Equal contribution.
1Videos available at https://sites.google.com/view/qplex-marl/.
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scalable centralized training of computing one-step TD target of the joint Q-function (deriving joint
greedy action selection from individual Q-functions). To realize this principle, VDN (Sunehag et al.,
2018) and QMIX (Rashid et al., 2018) propose two sufficient conditions of IGM to factorize the joint
action-value function. However, these two decomposition methods suffer from structural constraints
and limit the joint action-value function class they can represent. As shown by Wang et al. (2020a),
the incompleteness of the joint value function class may lead to poor performance or potential risk of
training instability in the offline setting (Levine et al., 2020). Several methods have been proposed
to address this structural limitation. QTRAN (Son et al., 2019) constructs two soft regularizations
to align the greedy action selections between the joint and individual value functions. WQMIX
(Rashid et al., 2020) considers a weighted projection that places more importance on better joint
actions. However, due to computational considerations, both their implementations are approximate
and based on heuristics, which cannot guarantee the IGM consistency exactly. Therefore, achieving
the complete expressiveness of the IGM function class with effective scalability remains an open
problem for cooperative MARL.

To address this challenge, this paper presents a novel MARL approach, called duPLEX dueling multi-
agent Q-learning (QPLEX), that takes a duplex dueling network architecture to factorize the joint
action-value function into individual action-value functions. QPLEX introduces the dueling structure
Q = V + A (Wang et al., 2016) for representing both joint and individual (duplex) action-value
functions and then reformalizes the IGM principle as an advantage-based IGM. This reformulation
transforms the IGM consistency into the constraints on the value range of the advantage functions
and thus facilitates the action-value function learning with linear decomposition structure. Different
from QTRAN and WQMIX (Son et al., 2019; Rashid et al., 2020) losing the guarantee of exact
IGM consistency due to approximation, QPLEX takes advantage of a duplex dueling architecture
to encode it into the neural network structure and provide a guaranteed IGM consistency. To our
best knowledge, QPLEX is the first multi-agent Q-learning algorithm that effectively achieves high
scalability with a full realization of the IGM principle.

We evaluate the performance of QPLEX in both didactic problems proposed by prior work (Son et al.,
2019; Wang et al., 2020a) and a range of unit micromanagement benchmark tasks in StarCraft II
(Samvelyan et al., 2019). In these didactic problems, QPLEX demonstrates its full representation
expressiveness, thereby learning the optimal policy and avoiding the potential risk of training
instability. Empirical results on more challenging StarCraft II tasks show that QPLEX significantly
outperforms other multi-agent Q-learning baselines in online and offline data collections. It is
particularly interesting that QPLEX shows the ability to support offline training, which is not
possessed by other baselines. This ability not only provides QPLEX with high stability and sample
efficiency but also with opportunities to efficiently utilize multi-source offline data without additional
online exploration (Fujimoto et al., 2019; Fu et al., 2020; Levine et al., 2020; Yu et al., 2020).

2 PRELIMINARIES

2.1 DECENTRALIZED PARTIALLY OBSERVABLE MDP (DEC-POMDP)

We model a fully cooperative multi-agent task as a Dec-POMDP (Oliehoek et al., 2016) defined
by a tuple M = 〈N ,S,A, P,Ω,O, r, γ〉, where N ≡ {1, 2, . . . , n} is a finite set of agents and
s ∈ S is a finite set of global states. At each time step, every agent i ∈ N chooses an action
ai ∈ A ≡ {A(1), . . . ,A(|A|)} on a global state s, which forms a joint action a ≡ [ai]

n
i=1 ∈ A ≡ An.

It results in a joint reward r(s,a) and a transition to the next global state s′ ∼ P (·|s,a). γ ∈ [0, 1) is
a discount factor. We consider a partially observable setting, where each agent i receives an individual
partial observation oi ∈ Ω according to the observation probability function O(oi|s, ai). Each agent
i has an action-observation history τi ∈ T ≡ (Ω ×A)∗ and constructs its individual policy πi(a|τi)
to jointly maximize team performance. We use τ ∈ T ≡ T n to denote joint action-observation
history. The formal objective function is to find a joint policy π = 〈π1, . . . , πn〉 that maximizes a
joint value function V π(s) = E [

∑∞
t=0 γ

trt|s0 = s,π]. Another quantity of interest in policy search
is the joint action-value function Qπ(s,a) = r(s,a) + γEs′ [V

π(s′)].

2.2 DEEP MULTI-AGENT Q-LEARNING IN DEC-POMDP

Q-learning algorithms is a popular algorithm to find the optimal joint action-value function
Q∗(s,a) = r(s,a)+γEs′ [maxa′ Q∗ (s′,a′)]. Deep Q-learning represents the action-value function
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with a deep neural network parameterized by θ. Mutli-agent Q-learning algorithms (Sunehag et al.,
2018; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020) use a replay memory D to store the
transition tuple (τ ,a, r, τ ′), where r is the reward for taking action a at joint action-observation his-
tory τ with a transition to τ ′. Due to partial observability, Q (τ ,a;θ) is used in place of Q (s,a;θ).
Thus, parameters θ are learnt by minimizing the following expected TD error:

L(θ) = E(τ ,a,r,τ ′)∈D

[(
r + γV

(
τ ′;θ−

)
−Q (τ ,a;θ)

)2]
, (1)

where V
(
τ ′;θ−

)
= maxa′ Q

(
τ ′,a′;θ−

)
is the one-step expected future return of the TD target

and θ− are the parameters of the target network, which will be periodically updated with θ.

2.3 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION (CTDE)

CTDE is a popular paradigm of cooperative multi-agent deep reinforcement learning (Sunehag et al.,
2018; Rashid et al., 2018; Wang et al., 2019a; 2020b;c;d). Agents are trained in a centralized way
and granted access to other agents’ information or the global states during the centralized training
process. However, due to partial observability and communication constraints, each agent makes its
own decision based on its local action-observation history during the decentralized execution phase.
IGM (Individual-Global-Max; Son et al., 2019) is a popular principle to realize effective value-based
CTDE, which asserts the consistency between joint and local greedy action selections in the joint
action-value Qtot(τ ,a) and individual action-values [Qi(τi, ai)]

n
i=1:

∀τ ∈ T , argmax
a∈A

Qtot(τ ,a) =

(
argmax

a1∈A
Q1(τ1, a1), . . . , argmax

an∈A
Qn(τn, an)

)
. (2)

Two factorization structures, additivity and monotonicity, has been proposed by VDN (Sunehag
et al., 2018) and QMIX (Rashid et al., 2018), respectively, as shown below:

QVDN
tot (τ ,a) =

n∑
i=1

Qi(τi, ai) and ∀i ∈ N , ∂Q
QMIX
tot (τ ,a)

∂Qi(τi, ai)
> 0.

Qatten (Yang et al., 2020) is a variant of VDN, which supplements global information through
a multi-head attention structure. It is known that, these structures implement sufficient but not
necessary conditions for the IGM constraint, which limit the representation expressiveness of joint
action-value functions (Mahajan et al., 2019). There exist tasks whose factorizable joint action-value
functions can not be represented by these decomposition methods, as shown in Section 4. In contrast,
QTRAN (Son et al., 2019) transforms IGM into a linear constraint and uses it as soft regularization
constraints. WQMIX (Rashid et al., 2020) introduces a weighting mechanism into the projection of
monotonic value factorization, in order to place more importance on better joint actions. However,
these relaxations may violate the exact IGM consistency and may not perform well in complex
problems.

3 QPLEX: DUPLEX DUELING MULTI-AGENT Q-LEARNING

In this section, we will first introduce advantage-based IGM, equivalent to the regular IGM principle,
and, with this new definition, convert the IGM consistency of greedy action selection to simple
constraints on advantage functions. We then present a novel deep MARL model, called duPLEX
dueling multi-agent Q-learning algorithm (QPLEX), that directly realizes these constraints by a
scalable neural network architecture.

3.1 ADVANTAGE-BASED IGM

To ensure the consistency of greedy action selection on the joint and local action-value functions, the
IGM principle constrains the relative order of Q-values over actions. From the perspective of dueling
decomposition structure Q = V +A proposed by Dueling DQN (Wang et al., 2016), this consistency
should only constrain the action-dependent advantage term A and be free of the state-value function
V . This observation naturally motivates us to reformalize the IGM principle as advantage-based IGM,
which transforms the consistency constraint onto advantage functions.
Definition 1 (Advantage-based IGM). For a joint action-value function Qtot: T ×A 7→ R and
individual action-value functions [Qi : T × A 7→ R]ni=1, where ∀τ ∈ T , ∀a ∈ A, ∀i ∈ N ,

(Joint Dueling) Qtot(τ ,a) = Vtot(τ ) +Atot(τ ,a) and Vtot(τ ) = max
a′

Qtot(τ ,a
′), (3)

(Individual Dueling) Qi(τi, ai) = Vi(τi) +Ai(τi, ai) and Vi(τi) = max
a′
i

Qi(τi, a
′
i), (4)
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Figure 1: (a) The dueling mixing network structure. (b) The overall QPLEX architecture. (c) Agent
network structure (bottom) and Transformation network structure (top).

such that the following holds

argmax
a∈A

Atot(τ ,a) =

(
argmax

a1∈A
A1(τ1, a1), . . . , argmax

an∈A
An(τn, an)

)
, (5)

then, we can say that [Qi]
n
i=1 satisfies advantage-based IGM for Qtot.

As specified in Definition 1, advantage-based IGM takes a duplex dueling architecture, Joint Dueling
and Individual Dueling, which induces the joint and local (duplex) advantage functions byA = Q−V .
Compared with regular IGM, advantage-based IGM transfers the consistency constraint on action-
value functions stated in Eq. (2) to that on advantage functions. This change is an equivalent
transformation because the state-value terms V do not affect the action selection, as shown by
Proposition 1.
Proposition 1. The advantage-based IGM and IGM function classes are equivalent.

One key benefit of using advantage-based IGM is that its consistency constraint can be directly
realized by limiting the value range of advantage functions, as indicated by the following fact.
Fact 1. The constraint of advantage-based IGM stated in Eq. (5) is equivalent to that when ∀τ ∈ T ,
∀a∗ ∈ A∗(τ ), ∀a ∈ A \A∗(τ ), ∀i ∈ N ,

Atot(τ ,a
∗) = Ai(τi, a

∗
i ) = 0 and Atot(τ ,a) < 0, Ai(τi, ai) ≤ 0, (6)

where A∗(τ ) = {a|a ∈ A, Qtot(τ ,a) = Vtot(τ )}.

To achieve a full expressiveness power of advantage-based IGM or IGM, Fact 1 enables us to develop
an efficient MARL algorithm that allows the joint state-value function learning with any scalable
decomposition structure and just imposes simple constraints limiting value ranges of advantage
functions. The next subsection will describe such a MARL algorithm.

3.2 THE QPLEX ARCHITECTURE

In this subsection, we present a novel multi-agent Q-learning algorithm with a duplex dueling
architecture, called QPLEX, which exploits Fact 1 and realizes the advantage-based IGM constraint.
The overall architecture of QPLEX is illustrated in Figure 1, which consists of two main components
as follows: (i) an Individual Action-Value Function for each agent, and (ii) a Duplex Dueling
component that composes individual action-value functions into a joint action-value function under
the advantage-based IGM constraint. During the centralized training, the whole network is learned
in an end-to-end fashion to minimize the TD loss as specified in Eq. (1). During the decentralized
execution, the duplex dueling component will be removed, and each agent will select actions using
its individual Q-function based on local action-observation history.

Individual Action-Value Function is represented by a recurrent Q-network for each agent i, which
takes previous hidden state ht−1i , current local observations oti, and previous action at−1i as inputs
and outputs local Qi(τi, ai).
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Duplex Dueling component connects local and joint action-value functions via two modules: (i)
a Transformation network module that incorporates the information of global state or joint history
into individual action-value functions during the centralized training process, and (ii) a Dueling
Mixing network module that composes separate action-value functions from Transformation into
a joint action-value function. Duplex Dueling first derives the individual dueling structure for
each agent i by computing its value function Vi(τi) = maxai

Qi(τi, ai) and its advantage function
Ai(τi, ai) = Qi(τi, ai)− Vi(τi), and then computes the joint dueling structure by using individual
dueling structures.

Transformation network module uses the centralized information to transform local dueling structure
[Vi(τi), Ai(τi, ai)]

n
i=1 to [Vi(τ ), Ai(τ , ai)]

n
i=1 conditioned on the joint action-observation history, as

shown below, for any agent i, i.e., Qi(τ , ai) = wi(τ )Qi(τi, ai) + bi(τ ), thus,

Vi(τ ) = wi(τ )Vi(τi) + bi(τ ), and Ai(τ , ai) = Qi(τ , ai)− Vi(τ ) = wi(τ )Ai(τi, ai), (7)

where wi(τ ) > 0 is a positive weight. This positive linear transformation maintains the consistency
of the greedy action selection and alleviates partial observability in Dec-POMDP (Son et al., 2019;
Yang et al., 2020). As used by QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019), and Qatten
(Yang et al., 2020), the centralized information can be the global state s, if available, or the joint
action-observation history τ .

Dueling Mixing network module takes the outputs of the transformation network as input, e.g.,
[Vi, Ai]

n
i=1, and produces the values of joint Qtot, as shown in Figure 1a. This dueling mixing

network uses individual dueling structure transformed by Transformation to compute the joint
value Vtot(τ ) and the joint advantage Atot(τ ,a), respectively, and finally outputs Qtot(τ ,a) =
Vtot(τ ) +Atot(τ ,a) by using the joint dueling structure.

Based on Fact 1, the advantage-based IGM principle imposes no constraints on value functions.
Therefore, to enable efficient learning, we use a simple sum structure to compose the joint value:

Vtot(τ ) =

n∑
i=1

Vi(τ ) (8)

To enforce the IGM consistency of the joint advantage and individual advantages, as specified by
Eq. (6), QPLEX computes the joint advantage function as follows:

Atot(τ ,a) =

n∑
i=1

λi(τ ,a)Ai(τ , ai), where λi(τ ,a) > 0. (9)

The joint advantage function Atot is the dot product of advantage functions [Ai]
t
i=1 and positive

importance weights [λi]ni=1 with joint history and action. The positivity induced by λi will continue to
maintain the consistency flow of the greedy action selection and the joint information of λi provides
the full expressiveness power for value factorization. To enable efficient learning of importance
weights λi with joint history and action, QPLEX uses a scalable multi-head attention module (Vaswani
et al., 2017):

λi(τ ,a) =

K∑
k=1

λi,k(τ ,a)φi,k(τ )υk(τ ), (10)

where K is the number of attention heads, λi,k(τ ,a) and φi,k(τ ) are attention weights activated by
a sigmoid regularizer, and υk(τ ) > 0 is a positive key of each head. This sigmoid activation of λi
brings sparsity to the credit assignment of the joint advantage function to individuals, which enables
efficient multi-agent learning (Wang et al., 2019b).

With Eq. (8) and (9), the joint action-value function Qtot can be reformulated as follows:

Qtot(τ ,a) = Vtot(τ ) +Atot(τ ,a) =

n∑
i=1

Qi(τ , ai) +

n∑
i=1

(λi(τ ,a)− 1)Ai(τ , ai). (11)

It can be seen that Qtot consists of two terms. The first term is the sum of action-value functions
[Qi]

n
i=1, which is the joint action-value function QQatten

tot of Qatten (Yang et al., 2020) (which is
the Qtot of VDN (Sunehag et al., 2018) with global information). The second term corrects for
the discrepancy between the centralized joint action-value function and QQatten

tot , which is the main
contribution of QPLEX to realize the full expressiveness power of value factorization.
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Figure 2: (a) Payoff matrix for a harder one-step game. Boldface means the optimal joint action
selection from the payoff matrix. The strikethroughs indicate the original matrix game proposed by
QTRAN. (b) The learning curves of QPLEX and other baselines. (c) The learning curve of QPLEX,
whose suffix aLbH denotes the neural network size with a layers and b heads (multi-head attention)
for learning importance weights λi (see Eq. (9) and (10)), respectively.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

In practice, QPLEX can utilize common neural network structures (e.g., multi-head attention modules)
to achieve superior performance by approximating the universal approximation theorem (Csáji et al.,
2001). We will discuss the effects of QPLEX’s duplex dueling network with different configurations
in Section 4.1. As introduced by Son et al. (2019) and Wang et al. (2020a), the completeness of
value factorization is very critical for multi-agent Q-learning and we will illustrate the stability and
state-of-the-art performance of QPLEX in online and offline data collections in the next section.

4 EXPERIMENTS

In this section, we first study didactic examples proposed by prior work (Son et al., 2019; Wang et al.,
2020a) to investigate the effects of QPLEX’s complete IGM expressiveness on learning optimality and
stability. To demonstrate scalability on complex MARL domains, we also evaluate the performance of
QPLEX on a range of StarCraft II benchmark tasks (Samvelyan et al., 2019). The completeness of the
IGM function class can express richer joint action-value function classes induced by large and diverse
datasets or training buffers. This expressiveness can provide QPLEX with higher sample efficiency to
achieve state-of-the-art performance in online and offline data collections. We compare QPLEX with
state-of-the-art baselines: QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag
et al., 2018), Qatten (Yang et al., 2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al.,
2020). In particular, the second term of Eq. (11) is the main difference between QPLEX and Qatten.
Thus, Qatten provides a natural ablation baseline of QPLEX to demonstrate the effectiveness of
this discrepancy term. The implementation details of these algorithms and experimental settings are
deferred to Appendix B. We also conduct two ablation studies to study the influence of the attention
structure of dueling architecture and the number of parameters on QPLEX, which are deferred to be
discussed in Appendix E. Towards fair evaluation, all experimental results are illustrated with the
median performance and 25-75% percentiles over 6 random seeds.

4.1 MATRIX GAMES

QTRAN (Son et al., 2019) proposes a hard matrix game, as shown in Table 4a of Appendix C. In this
subsection, we consider a harder matrix game in Table 2a, which also describes a simple cooperative
multi-agent task with considerable miscoordination penalties, and its local optimum is more difficult
to jump out. The optimal joint strategy of these two games is to perform action A(1) simultaneously.
To ensure sufficient data collection in the joint action space, we adopt uniform data distribution.
With this fixed dataset, we can study the optimality of multi-agent Q-learning from an optimization
perspective, ignoring the challenge of exploration and sample complexity.

As shown in Figure 2b, QPLEX, QTRAN, and WQMIX, which possess a richer expressiveness
power of value factorization can achieve optimal performance, while other algorithms with limited
expressiveness (e.g., QMIX, VDN, and Qatten) fall into a local optimum induced by miscoordination
penalties. In the original matrix proposed by QTRAN, QPLEX and QTRAN can also successfully
converge to optimal joint action-value functions. These results are deferred to Appendix C. QTRAN
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Figure 3: (a) A special two-state MMDP used to demonstrate the training stability of the multi-agent
Q-learning algorithms. r is a shorthand for r(s,a). (b) The learning curves of ‖Qtot‖∞ in a specific
two-state MMDP.

achieves superior performance in the matrix games but suffers from its relaxation of IGM consistency
in complex domains (such as StarCraft II) shown in Section 4.3.

In the theoretical analysis of QPLEX, Proposition 2 exploits the universal function approximation of
neural networks. QPLEX allows the scalable implementations with various neural network capacities
(different layers and heads of attention module) for learning importance weights λi (see Eq. (9)
and (10)). As shown in Figure 2c, by increasing the neural network size for learning λi (e.g.,
QPLEX-3L10H), QPLEX possesses more expressiveness of value factorization and converges faster.
However, learning efficiency becomes challenging for complex neural networks. To effectively
perform StarCraft II tasks ranging from 2 to 27 agents, we use a small multi-head attention module
(i.e., QPLEX-1L4H) in complex domains (see Section 4.3). Please refer to Appendix B for more
detailed configurations.

4.2 TWO-STATE MMDP

In this subsection, we focus on a Multi-agent Markov Decision Process (MMDP) (Boutilier, 1996)
which is a fully cooperative multi-agent setting with full observability. Consider a two-state MMDP
proposed by Wang et al. (2020a) with two agents, two actions, and a single reward (see Figure 3a).
Two agents start at state s2 and explore extrinsic rewards for 100 environment steps. The optimal
policy of this MMDP is simply executing the action A(1) at state s2, which is the only coordination
pattern to obtain the positive reward. To approximate the uniform data distribution, we adopt a
uniform exploration strategy (i.e., ε-greedy exploration with ε = 1). We consider the training stability
of multi-agent Q-learning algorithms with uniform data distribution in this special MMDP task. As
shown in Figure 3b, the joint state-value function Qtot learned by baseline algorithms using limited
function classes, including QMIX, VDN, and Qatten, will diverge. This instability phenomenon of
VDN has been theoretically investigated by Wang et al. (2020a). By utilizing richer function classes,
QPLEX, QTRAN, and WQMIX can address this numerical instability issue and converge to the
optimal joint state-value function.

4.3 DECENTRALIZED STARCRAFT II MICROMANAGEMENT BENCHMARK

A more challenging set of empirical experiments are based on StarCraft Multi-Agent Challenge
(SMAC) benchmark (Samvelyan et al., 2019). We first investigate empirical performance in a
popular experimental setting with ε-greedy exploration and a limited first-in-first-out (FIFO) buffer
(Samvelyan et al., 2019), named online data collection setting. To demonstrate the offline training
potential of QPLEX, we also adopt the offline data collection setting proposed by Levine et al. (2020),
which can be granted access to a given dataset without additional online exploration.

4.3.1 TRAINING WITH ONLINE DATA COLLECTION

We evaluate QPLEX in 17 benchmark tasks of StarCraft II, which contains 14 popular tasks proposed
by SMAC (Samvelyan et al., 2019) and three new super hard cooperative tasks. To demonstrate the
overall performance of each algorithm, Figure 4 plots the averaged median test win rate across all 17
scenarios and the number of scenarios in which the algorithm outperforms, respectively. Figure 4a
shows that, compared with other baselines, QPLEX constantly and significantly outperforms baselines
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Figure 4: (a) The median test win %, averaged across all 17 scenarios. (b) The number of scenarios
in which the algorithms’ median test win % is the highest by at least 1/32 (smoothed).

over the whole training process and exceeds at least 10% median test win rate averaged across all 17
scenarios. Moreover, Figure 4b illustrates that, among all 17 tasks, QPLEX is the best performer on
up to eight tasks, underperforms on just two tasks, and ties for the best performer on the rest tasks.
After 0.8M timesteps, the number of tasks that QPLEX achieves the best performance gradually
decreases to five, because, in several easy tasks, other baselines also reach almost 100% test win rate
as shown in Figure 5. The overall evaluation diagram of the original SMAC benchmark (14 tasks)
corresponding to Figure 4 is deferred to Figure 8 in Appendix D.

Figure 5 shows the learning curves on nine tasks in the online data collection setting and the results
of other eight maps are deferred to Figure 7 in Appendix D. From Figure 5, we can observe that
QPLEX significantly outperforms other baselines with higher sample efficiency. On the super hard
map 5s10z, the performance gap between QPLEX and other baselines exceeds 30% in test win rate,
and the visualized strategies of QPLEX and QMIX in this map are deferred to Appendix F. Most
multi-agent Q-learning baselines including QMIX, VDN, and Qatten achieve reasonable performance
(see Figure 5). However, as Figure 4 suggests, QTRAN performs the worst in these comparative
experiments, even though it performs well in the didactic games. From a theoretical perspective, the
online data collection process utilizes an ε-greedy exploration process, which requires individual
greedy action selections to build an effective training buffer. QTRAN may suffer from its relaxation
of IGM consistency (soft constraints of IGM) in the online data collection phase, while the duplex
dueling architecture of QPLEX (hard constraint of IGM) provides effective individual greedy action
selections, making it suitable for data collection with ε-greedy exploration.

Moreover, although WQMIX (OW-QMIX and CW-QMIX) outperforms QMIX in some tasks (il-
lustrated in Figure 5, e.g., 2c_vs_64zg and bane_vs_bane), WQMIX show very similar overall
performance as QMIX across 17 StarCraft II benchmark tasks. In contrast, QPLEX achieves signifi-
cant improvement in convergence performance in a lot of hard and super hard maps and demonstrates
high sample efficiency across most scenarios (see Figure 5).

4.3.2 TRAINING WITH OFFLINE DATA COLLECTION

Recently, offline reinforcement learning has been regarded as a key step for real-world RL applications
(Dulac-Arnold et al., 2019; Levine et al., 2020). Agarwal et al. (2020) presents an optimistic
perspective of offline Q-learning that DQN and its variants can achieve superior performance in
Atari 2600 games (Bellemare et al., 2013) with sufficiently large and diverse datasets. In MARL,
StarCraft II benchmark has the same discrete action space as Atari. We conduct a lot of experiments
on the StarCraft II benchmark tasks to study offline multi-agent Q-learning in this subsection. We
adopt a large and diverse dataset to make the expressiveness power of value factorization become the
dominant factor to investigate. We train a behavior policy of QMIX and collect all its experienced
transitions throughout the training process (see the details in Appendix C). As shown in Figure 13 in
Appendix G, QPLEX significantly outperforms other multi-agent Q-learning baselines and possesses
the state-of-the-art value factorization structure for offline multi-agent Q-learning. QMIX and Qatten
cannot always maintain stable learning performance, and VDN suffers from offline data collection and
leads to weak empirical results. QTRAN may perform well in certain cases when its soft constraints,
two `2-penalty terms, are well minimized. With offline data collection, individual greedy action
selections do not need to build a training buffer, but they still need to compute the one-step TD target
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Figure 5: Learning curves of StarCraft II with online data collection.

for centralized training. Therefore, compared with QTRAN, QPLEX still has theoretical advantages
regarding the IGM principle in the offline data collection setting.

5 CONCLUSION

In this paper, we introduced QPLEX, a novel multi-agent Q-learning framework that allows central-
ized end-to-end training and learns to factorize a joint action-value function to enable decentralized
execution. QPLEX takes advantage of a duplex dueling architecture that efficiently encodes the
IGM consistency constraint on joint and individual greedy action selections. Our theoretical analysis
shows that QPLEX achieves a complete IGM function class. Empirical results demonstrate that it
significantly outperforms state-of-the-art baselines in both online and offline data collection settings.
In particular, QPLEX possesses strong ability of supporting offline training. This ability provides
QPLEX with high sample efficiency and opportunities of utilizing offline multi-source datasets. It
will be an interesting and valuable direction to study offline multi-agent reinforcement learning in
continuous action spaces (such as MuJoCo (Todorov et al., 2012)) with QPLEX’s value factorization.
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A OMITTED PROOFS IN SECTION 3

Definition 1 (Advantage-based IGM). For a joint action-value function Qtot: T ×A 7→ R and
individual action-value functions [Qi : T × A 7→ R]ni=1, where ∀τ ∈ T , ∀a ∈ A, ∀i ∈ N ,

(Joint Dueling) Qtot(τ ,a) = Vtot(τ ) +Atot(τ ,a) and Vtot(τ ) = max
a′

Qtot(τ ,a
′), (3)

(Individual Dueling) Qi(τi, ai) = Vi(τi) +Ai(τi, ai) and Vi(τi) = max
a′
i

Qi(τi, a
′
i), (4)

such that the following holds
argmax
a∈A

Atot(τ ,a) =

(
argmax

a1∈A
A1(τ1, a1), . . . , argmax

an∈A
An(τn, an)

)
, (5)

then, we can say that [Qi]
n
i=1 satisfies advantage-based IGM for Qtot.

Let the action-value function class derived from IGM is denoted by

Q̃ =
{(
Q̃tot ∈ R|T ||A|

n

,
[
Q̃i ∈ R|T ||A|

]n
i=1

) ∣∣∣ Eq. (2) is satisfied
}
,

where Q̃tot and
[
Q̃i

]n
i=1

denote the joint and individual action-value functions induced by IGM,
respectively. Similarly, let

Q̂ =
{(
Q̂tot ∈ R|T ||A|

n

,
[
Q̂i ∈ R|T ||A|

]n
i=1

) ∣∣∣ Eq. (3), (4), (5) are satisfied
}

denote the action-value function class derived from advantage-based IGM. Ṽtot and Ãtot denote the

joint state-value and advantage functions, respectively.
[
Ṽi

]n
i=1

and
[
Ãi

]n
i=1

denote the individual
state-value and advantage functions induced by advantage-IGM, respectively. According to the
duplex dueling architecture Q = V +A stated in advantage-based IGM (see Definition 1), we derive
the joint and individual action-value functions as following: ∀τ ∈ T , ∀a ∈ A, ∀i ∈ N ,

Q̂tot(τ ,a) = V̂tot(τ ) + Âtot(τ ,a) and Q̂i(τi, ai) = V̂i(τi) + Âi(τi, ai).

Proposition 1. The advantage-based IGM and IGM function classes are equivalent.

Proof. We will prove Q̃ ≡ Q̂ in the following two directions.

Q̃ ⊆ Q̂ For any
(
Q̃tot,

[
Q̃i

]n
i=1

)
∈ Q̃, we construct Q̂tot = Q̃tot and

[
Q̂i

]n
i=1

=
[
Q̃i

]n
i=1

. The
joint and individual state-value/advantage functions induced by advantage-IGM

V̂tot(τ ) = max
a′

Q̂tot(τ ,a
′) and Âtot(τ ,a) = Q̂tot(τ ,a)− V̂tot(τ ),

V̂i(τi) = max
a′
i

Q̂i(τi, a
′
i) and Âi(τi, ai) = Q̂i(τi, a

′
i)− V̂i(τi), ∀i ∈ N ,

are derived by Eq. (3) and Eq. (4), respectively. Because state-value functions do not affect the greedy
action selection, ∀τ ∈ T , ∀a ∈ A,

argmax
a∈A

Q̃tot(τ ,a) =

(
argmax

a1∈A
Q̃1(τ1, a1), . . . , argmax

an∈A
Q̃n(τn, an)

)
⇒ argmax

a∈A
Q̂tot(τ ,a) =

(
argmax

a1∈A
Q̂1(τ1, a1), . . . , argmax

an∈A
Q̂n(τn, an)

)
⇒ argmax

a∈A

(
Q̂tot(τ ,a)− V̂tot(τ )

)
=(

argmax
a1∈A

(
Q̂1(τ1, a1)− V̂1(τ1)

)
, . . . , argmax

an∈A

(
Q̂n(τn, an)− V̂n(τn)

))
⇒ argmax

a∈A
Âtot(τ ,a) =

(
argmax

a1∈A
Â1(τ1, a1), . . . , argmax

an∈A
Ân(τn, an)

)
.

Thus,
(
Q̂tot,

[
Q̂i

]n
i=1

)
∈ Q̂, which means that Q̃ ⊆ Q̂.
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Q̂ ⊆ Q̃ We will prove this direction in the same way. For any
(
Q̂tot,

[
Q̂i

]n
i=1

)
∈ Q̂, we construct

Q̃tot = Q̂tot and
[
Q̃i

]n
i=1

=
[
Q̂i

]n
i=1

. Because state-value functions do not affect the greedy action
selection, ∀τ ∈ T , ∀a ∈ A,

argmax
a∈A

Âtot(τ ,a) =

(
argmax

a1∈A
Â1(τ1, a1), . . . , argmax

an∈A
Ân(τn, an)

)
⇒ argmax

a∈A

(
Âtot(τ ,a) + V̂tot(τ )

)
=(

argmax
a1∈A

(
Â1(τ1, a1) + V̂1(τ1)

)
, . . . , argmax

an∈A

(
Ân(τn, an) + V̂n(τn)

))
⇒ argmax

a∈A
Q̂tot(τ ,a) =

(
argmax

a1∈A
Q̂1(τ1, a1), . . . , argmax

an∈A
Q̂n(τn, an)

)
⇒ argmax

a∈A
Q̃tot(τ ,a) =

(
argmax

a1∈A
Q̃1(τ1, a1), . . . , argmax

an∈A
Q̃n(τn, an)

)
.

Thus,
(
Q̃tot,

[
Q̃i

]n
i=1

)
∈ Q̃, which means that Q̂ ⊆ Q̃. The action-value function classes derived

from advantage-based IGM and IGM are equivalent.

Fact 1. The constraint of advantage-based IGM stated in Eq. (5) is equivalent to that when ∀τ ∈ T ,
∀a∗ ∈ A∗(τ ), ∀a ∈ A \A∗(τ ), ∀i ∈ N ,

Atot(τ ,a
∗) = Ai(τi, a

∗
i ) = 0 and Atot(τ ,a) < 0, Ai(τi, ai) ≤ 0, (6)

where A∗(τ ) = {a|a ∈ A, Qtot(τ ,a) = Vtot(τ )}.

Proof. We derive that ∀τ ∈ T , ∀a ∈ A, ∀i ∈ N , Âtot(τ ,a) ≤ 0 and Âi(τi, ai) ≤ 0 from Eq. (3)
and Eq. (4) of Definition 1, respectively. According to the definition of argmax operator, Eq. (3),
and Eq. (4), ∀τ ∈ T , let Â

∗
(τ ) denote argmaxa∈A Âtot(τ ,a) as follows:

Â
∗
(τ ) = argmax

a∈A
Âtot(τ ,a) = argmax

a∈A
Q̂tot(τ ,a)

=
{
a|a ∈ A, Q̂tot(τ ,a) = V̂tot(τ )

}
=
{
a|a ∈ A, Q̂tot(τ ,a)− V̂tot(τ ) = 0

}
=
{
a|a ∈ A, Âtot(τ ,a) = 0

}
. (12)

Similarly, ∀τ ∈ T , ∀i ∈ N , let Â∗i (τi) denote argmaxai∈A Âi(τi, ai) as follows:

Â∗i (τi) = argmax
ai∈A

Âi(τi, ai) = argmax
ai∈A

Q̂i(τi, ai)

=
{
ai|ai ∈ A, Q̂i(τi, ai) = V̂i(τi)

}
=
{
ai|ai ∈ A, Âi(τi, ai) = 0

}
. (13)

Thus, ∀τ ∈ T , ∀a∗ ∈ Â
∗
(τ ), ∀a ∈ A \ Â

∗
(τ ),

Âtot(τ ,a
∗) = 0 and Âtot(τ ,a) < 0; (14)

∀τ ∈ T , ∀i ∈ N , ∀a∗i ∈ Â∗(τi), ∀ai ∈ A \ Â∗(τi),

Âi(τi, a
∗
i ) = 0 and Âi(τi, ai) < 0. (15)

Recall the constraint stated in Eq. (5), ∀τ ∈ T ,

argmax
a∈A

Âtot(τ ,a) =

(
argmax

a1∈A
Â1(τ1, a1), . . . , argmax

an∈A
Ân(τn, an)

)
.
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We can rewrite the constraint of advantage-based IGM stated in Eq. (5) as ∀τ ∈ T ,

Â
∗
(τ ) =

{
〈a1, . . . , an〉

∣∣ai ∈ Â∗i (τi),∀i ∈ N} . (16)

Therefore, combining Eq. (14), Eq. (15), and Eq. (16), we can derive ∀τ ∈ T , ∀a∗ ∈ Â
∗
(τ ),

∀a ∈ A \ Â
∗
(τ ), ∀i ∈ N ,

Âtot(τ ,a
∗) = Âi(τi, a

∗
i ) = 0 and Âtot(τ ,a) < 0, Âi(τi, ai) ≤ 0. (17)

In another way, combining Eq. (14), Eq. (15), and Eq. (17), we can derive Eq. (16) by the definition

of Â
∗

and
[
Â∗
]n
i=1

(see Eq. (12) and Eq. (13)). In more detail, the closed set property of Cartesian

product of [a∗i ]
n
i=1 has been encoded into the Eq. (16) and Eq. (17) simultaneously.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

Proof. We assume that the neural network of QPLEX can be large enough to achieve the universal
function approximation by corresponding theorem (Csáji et al., 2001). Let the action-value function
class that QPLEX can realize is denoted by

Q =
{(
Qtot ∈ R|T ||A|

n

,
[
Qi ∈ R|T ||A|

]n
i=1

) ∣∣∣ Eq. (7), (8), (9), (10), (11) are satisfied
}
.

In addition, Qtot, V tot, Atot,
[
Q
′
i

]n
i=1

,
[
V
′
i

]n
i=1

,
[
A
′
i

]n
i=1

,
[
Qi

]n
i=1

,
[
V i

]n
i=1

, and
[
Ai

]n
i=1

denote
the corresponding (joint, transformed, and individual) (action-value, state-value, and advantage)
functions, respectively. In the implementation of QPLEX, we ensure the positivity of important
weights of Transformation and joint advantage function, [wi]

n
i=1 and [λi]

n
i=1, which maintains the

greedy action selection flow and rules out these non-interesting points (zeros) on optimization. We
will prove Q̂ ≡ Q in the following two directions.

Q̂ ⊆ Q For any
(
Q̂tot,

[
Q̂i

]n
i=1

)
∈ Q̂, we construct Qtot = Q̂tot and

[
Qi

]n
i=1

=
[
Q̂i

]n
i=1

and derive V tot, Atot,
[
V i

]n
i=1

, and
[
Ai

]n
i=1

by Eq.(3) and Eq. (4), respectively. Note that in the
construction of QPLEX,

Vi(τ ) = wi(τ )Vi(τi) + bi(τ ) and Ai(τ , ai) = wi(τ )Ai(τi, ai)

and

Qtot(τ ,a) = Vtot(τ ) +Atot(τ ,a) =

n∑
i=1

Vi(τ ) +

n∑
i=1

λi(τ ,a)Ai(τ , ai).

In addition, we construct transformed functions connecting joint and individual functions as follows:
∀τ ∈ T , ∀a ∈ A, ∀i ∈ N ,

Q
′
i(τ ,a) =

Qtot(τ ,a)

n
, V
′
i(τ ) = argmax

a∈A
Q
′
i(τ ,a), and A

′
i(τ ,a) = Q

′
i(τ ,a)− V

′
i(τ ),

which means that according to Fact 1,

wi(τ ) = 1, bi(τ ) = V
′
i(τ )− V i(τi), and λi(τi,a) =


A
′
i(τi,a)

Ai(τi, ai)
> 0, when Ai(τi, ai) < 0,

1, when Ai(τi, ai) = 0.

Thus,
(
Qtot,

[
Qi

]n
i=1

)
∈ Q, which means that Q̂ ⊆ Q.
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Q ⊆ Q̂ For any
(
Qtot,

[
Qi

]n
i=1

)
∈ Q, with the similar discussion of Fact 1, ∀τ ∈ T , ∀i ∈ N , let

A∗i (τi) denote argmaxai∈AAi(τi, ai), where

A∗i (τi) =
{
ai|ai ∈ A, Ai(τi, ai) = 0

}
.

Combining the positivity of [wi]
n
i=1 and [λi]

n
i=1 with Eq. (7), (8), (9), and (11), we can derive

∀τ ∈ T , ∀i ∈ N , ∀a∗i ∈ A
∗
(τi), ∀ai ∈ A \ A

∗
(τi),

Ai(τi, a
∗
i ) = 0 and Ai(τi, ai) < 0

⇒ A
′
i(τ , a

∗
i ) = wi(τ )Ai(τi, a

∗
i ) = 0 and A

′
i(τ , ai) = wi(τ )Ai(τi, ai) < 0

⇒ Atot(τ ,a
∗) = λi(τ ,a

∗)A
′
i(τi, a

∗
i ) = 0 and Atot(τ ,a) = λi(τ ,a)A

′
i(τi, a

∗
i ) < 0,

where a∗ = 〈a∗1, . . . , a∗n〉 and a = 〈a1, . . . , an〉. Notably, these a∗ forms

A∗(τ ) =
{
〈a1, . . . , an〉

∣∣ai ∈ A∗i (τi),∀i ∈ N} , (18)

which is similar to Eq. (16) in the proof of Fact 1. We construct Q̂tot = Qtot and
[
Q̂i

]n
i=1

=
[
Qi

]n
i=1

.
According to Eq. (18), the constraints of advantage-based IGM stated in Fact 1 (Eq. (3), Eq. (4), and

Eq. (6)) are satisfied, which means that
(
Q̂tot,

[
Q̂i

]n
i=1

)
∈ Q̂ and Q ⊆ Q̂.

Thus, when assuming neural networks provide universal function approximation, the joint action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

B EXPERIMENT SETTINGS AND IMPLEMENTATION DETAILS

B.1 STARCRAFT II

We consider the combat scenario of StarCraft II unit micromanagement tasks, where the enemy units
are controlled by the built-in AI, and each ally unit is controlled by the reinforcement learning agent.
The units of the two groups can be asymmetric, but the units of each group should belong to the same
race. At each timestep, every agent takes action from the discrete action space, which includes the
following actions: no-op, move [direction], attack [enemy id], and stop. Under the control of these
actions, agents move and attack in continuous maps. At each time step, MARL agents will get a
global reward equal to the total damage done to enemy units. Killing each enemy unit and winning
the combat will bring additional bonuses of 10 and 200, respectively. We briefly introduce the SMAC
challenges of our paper in Table 1.

B.2 IMPLEMENTATION DETAILS

We adopt the PyMARL (Samvelyan et al., 2019) implementation of state-of-the-art baselines: QTRAN
(Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag et al., 2018), Qatten (Yang et al.,
2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al., 2020). The hyper-parameters of these
algorithms are the same as that in SMAC (Samvelyan et al., 2019) and referred in their source codes.
QPLEX is also based on PyMARL, whose special hyper-parameters are illustrated in Table 2 and
other common hyper-parameters are adopted by the default implementation of PyMARL (Samvelyan
et al., 2019). Especially in the online data collection, we take the advanced implementation of
Transformation of Qatten in QPLEX. To ensure the positivity of important weights of Transformation
and joint advantage function, we add a sufficiently small amount ε′ = 10−10 on [wi]

n
i=1 and [λi]

n
i=1.

In addition, we stop gradients of local advantage function Ai to increase the optimization stability of
the max operator of dueling structure. This instability consideration due to max operator has been
justified by Dueling DQN (Wang et al., 2016). We approximate the joint action-value function as

Qtot(τ ,a) ≈
n∑

i=1

Qi(τ , ai) +

n∑
i=1

(λi(τ ,a)− 1) Ãi(τ , ai),

where Ãi denotes a variant of the local advantage function Ai by stoping gradients.
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Map Name Ally Units Enemy Units
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
5m_vs_6m 5 Marines 6 Marines

10m_vs_11m 10 Marines 11 Marines
27m_vs_30m 27 Marines 30 Marines
3s5z_vs_3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 2 Marauders & 8 Marines
2s_vs_1sc 2 Stalkers 1 Spine Crawler
3s_vs_5z 3 Stalkers 5 Zealots
6h_vs_8z 6 Hydralisks 8 Zealots

bane_vs_bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings
2c_vs_64zg 2 Colossi 64 Zerglings

corridor 6 Zealots 24 Zerglings
5s10z 5 Stalkers & 10 Zealots 5 Stalkers & 10 Zealots
7sz 7 Stalkers & 7 Zealots 7 Stalkers & 7 Zealots

1c3s8z_vs_1c3s9z 1 Colossus, 3 Stalkers & 8 Zealots 1 Colossus, 3 Stalkers & 9 Zealots

Table 1: The StarCraft multi-Agent challenge (SMAC; Samvelyan et al., 2019) benchmark.

QPLEX’s architecuture configurations Didactic Examples StarCraft II
The number of layers in w, b, λ, φ, υ 2 or 3 1

The number of heads in the attention module 4 or 10 4
Unit number in middle layers of w, b, λ, φ, υ 64 ∅

Activation in the middle layers of w, υ Relu ∅
Activation in the last layer of w, υ Absolute Absolute
Activation in the middle layers of b Relu ∅

Activation in the last layer of b None None
Activation in the middle layers of λ, φ Relu ∅

Activation in the last layer of λ, φ Sigmoid Sigmoid

Table 2: The network configurations of QPLEX’s architecture.

Our training time on an NVIDIA RTX 2080TI GPU of each task is about 6 hours to 20 hours,
depending on the agent number and the episode length limit of each map. The percentage of episodes
in which MARL agents defeat all enemy units within the time limit is called test win rate. We pause
training every 10k timesteps and evaluate 32 episodes with decentralized greedy action selection to
measure test win rate of each algorithm. After training every 200 episodes, the target network will
be updated once. We call this update period an Iteration for didactic tasks. In the two-state MMDP,
Optimal line of Figure 3b is approximately

∑99
i=0 γ

i = 63.4 in one episode of 100 timesteps.

Training with Online Data Collection We have collected a total of 2 million timestep data for
each task and test the model every 10 thousand steps. We use ε-greedy exploration and a limited
first-in-first-out (FIFO) replay buffer of size 5000 episodes, where ε is linearly annealed from 1.0 to
0.05 over 50k timesteps and keep it constant for the rest training process. To utilize the training buffer
more efficiently, we perform gradient updates twice with a batch of 32 episodes after collecting every
episode for each algorithm.

Training with Offline Data Collection To construct a diverse dataset, we train a behavior policy
of QMIX (Rashid et al., 2018) or VDN (Sunehag et al., 2018) and collect its 20k or 50k experienced
episodes throughout the training process. The dataset configurations are shown in Table 3. We
evaluate QPLEX and four baselines over six random seeds, which includes three different datasets
and tests two seeds on each dataset. We train 300 epochs to demonstrate our learning performance,
where each epoch trains 160k transitions with a batch of 32 episodes. Moreover, the training process
of behavior policy is the same as that discussed in PyMARL (Samvelyan et al., 2019).
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Map Name Replay Buffer Size Behaviour Test Win Rate Behaviour Policy
2s3z 20k episodes 95.8% QMIX
3s5z 20k episodes 92.0% QMIX

1c3s5z 20k episodes 90.2% QMIX
2s_vs_1sc 20k episodes 98.1% QMIX
3s_vs_5z 20k episodes 94.4% VDN

2c_vs_64zg 50k episodes 80.9% QMIX

Table 3: The dataset configurations of the offline data collection setting.

C OMITTED FIGURES AND TABLES IN SECTION 4.1 AND 4.2

a2
a1 A(1) A(2) A(3)

A(1) 8 -12 -12
A(2) -12 0 0
A(3) -12 0 0

(a) Payoff of matrix game

a2

a1 A(1) A(2) A(3)

A(1) 8.0 -12.1 -12.1
A(2) -12.2 -0.0 -0.0
A(3) -12.1 -0.0 -0.0

(b) Qtot of QPLEX

a2

a1 A(1) A(2) A(3)

A(1) 8.0 -12.0 -12.0
A(2) -12.0 -0.0 0.0
A(3) -12.0 0.0 0.0

(c) Qtot of QTRAN

a2
a1 A(1) A(2) A(3)

A(1) -8.0 -8.0 -8.0
A(2) -8.0 -0.0 -0.0
A(3) -8.0 -0.0 -0.0

(d) Qtot of QMIX

a2
a1 A(1) A(2) A(3)

A(1) -6.2 -4.9 -4.9
A(2) -4.9 -3.6 -3.6
A(3) -4.9 -3.6 -3.6

(e) Qtot of VDN

a2
a1 A(1) A(2) A(3)

A(1) -6.2 -4.9 -4.9
A(2) -4.9 -3.5 -3.5
A(3) -4.9 -3.5 -3.5

(f) Qtot of Qatten

Table 4: (a) Payoff matrix of the one-step game. Boldface means the optimal joint action selection
from payoff matrix. (b-f) The joint action-value functions Qtot of QPLEX, QTRAN, QMIX, VDN,
and Qatten. Boldface means greedy joint action selection from joint action-value functions.
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Figure 6: The learning curves of QPLEX and other baselines on the origin matrix game.
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D EXPERIMENTS ON STARCRAFT II WITH ONLINE DATA COLLECTION
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Figure 7: The learning curves of StarCraft II with online data collection on remaining scenarios.
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et al., 2019). (b) The number of scenarios in which the algorithms’ median test win % is the highest
by at least 1/32 (smoothed).
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E ABLATION STUDIES WITH ONLINE DATA COLLECTION

In this section, we conduct two ablation studies to investigate why QPLEX works, which includes: (i)
QPLEX without the multi-head attention structure of dueling architecture, and (ii) QMIX with the
same number of parameters as QPLEX. For these studies, Figure 9 plots the averaged median test
win rate % over the tasks of the StarCraft II benchmark mentioned in Section 4.3.1. Detailed learning
curves on each task are shown in Figure 10 and 11, respectively.

Multi-head attention structure of importance weights λi (see Eq. (9) and (10)) allows QPLEX to adapt
its scalable implementation to different scenarios, e.g., didactic games or StarCraft II benchmark
tasks. Section 4.1 demonstrates the importance of this attention structure, which can provide QPLEX
more expressiveness of value factorization to perform better on the didactic matrix games. In this
ablation study, we aim to test whether this multi-head attention is necessary for this StarCraft II
domain. Specifically, we use a one-layer forward model instead of this multi-head attention structure
in QPLEX, which is called QPLEX-wo-duel-atten. Figure 9a shows that QPLEX-wo-duel-atten
achieves similar performance as QPLEX, which indicates that the the superiority of QPLEX over
other MARL methods is largely due to the duplex dueling architecture (see Figure 1), instead of the
multi-head attention trick.
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Figure 9: Ablation studies on QPLEX with the median test win %, averaged benchmark scenarios.

QPLEX uses more parameters in the value factorization architecture of neural networks due to its
multi-head attention structure. We introduce Large QMIX with a similar number of parameters with
QPLEX, to investigate whether the superiority of QPLEX over QMIX is due to the increase in the
number of parameters. Figure 9b shows that QMIX with a larger network cannot fundamentally
improve its performance, and QPLEX still significantly outperforms Large QMIX by a large margin.
This result also confirms that the main effect of QPLEX comes from its novel value factorization
structure (duplex dueling architecture) rather than the number of parameters.
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Figure 10: The learning curves of median test win rate % for QPLEX, QPLEX’s ablation QPLEX-
wo-duel-atten, QMIX, and Qatten with online data collection.
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Figure 11: Learning curves of median test win rate % for QPLEX, QMIX, and Large QMIX with
online data collection.
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F A VISUALIZATION OF THE STRATEGIES LEARNED IN 5S10Z

(a) Strategy of QPLEX on 5s10z (b) Strategy of QMIX on 5s10z

Figure 12: Visualized strategies of QPLEX and QMIX on 5s10z map of StarCraft II benchmark. Red
marks represent learning agents, and blue marks represent build-in AI agents.

As shown in Figure 12, both MARL agents and opponents contain 5 ranged soldiers (denoted by a
circle) and 10 melee soldiers (denoted by line) on 5s10z map. The ranged soldiers have stronger
combat capabilities and need to be protected strategically. QPLEX uses 10 melee soldiers to build
lines of defense against the enemy, while QMIX fails to coordinate melee soldiers such that ranged
soldiers have to fight against the enemy directly.

G EXPERIMENTS ON STARCRAFT II WITH OFFLINE DATA COLLECTION

0 100 200 300
Epoches

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 R
at

e 
% 3s_vs_5z

0 100 200 300
Epoches

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 R
at

e 
% 1c3s5z

0 100 200 300
Epoches

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 R
at

e 
% 2s_vs_1sc

0 100 200 300
Epoches

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 R
at

e 
% 2s3z

0 100 200 300
Epoches

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 R
at

e 
% 3s5z

0 100 200 300
Epoches

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 R
at

e 
% 2c_vs_64zg

QPLEX QTRAN QMIX VDN Qatten

Figure 13: Deferred learning curves of StarCraft II with offline data collection on tested scenarios.
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H ABLATION STUDIES ABOUT QPLEX WITH DIFFERENT NETWORK
CAPACITIES IN STARCRAFT II

We trade off the expressiveness and learning efficiency of the multi-head attention network module
for estimating importance weights λi (see Eq. (9) and (10) in Section 3.2). It is generally sufficient for
QPLEX to use a simple multi-head attention with a small number of heads and layers (as evaluated in
StarCraft II tasks) to achieve the state-of-the-art performance shown in Figure 4. However, in some
didactic corner-cases with an adequate and uniform dataset, a harder matrix game illustrated in Figure
2a requires very high precision in estimating the action-value function in order to differentiate the
optimal solution from the sub-optimal solutions. For this matrix game, a multi-head attention structure
with more layers and heads has a more representational capacity and results in better performance, as
demonstrated by the ablation study illustrated in Figure 2c in Section 4.1.
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Figure 14: Ablation study about QPLEX
with different network capacities in Star-
Craft II.

In contrast, StarCraft II micromanagement benchmark
tasks contain much more complicated agents with large
state-action spaces and range from 2 to 27 agents. To
support the superior training scalability of QPLEX, we
used a multi-head attention with just one layer and four
heads. To evaluate the effect of the choice of layer and
the number of heads, we conducted an ablation study in
Starcraft II benchmark tasks. For simplicity, we follow
the notation of Figure 2, i.e., use QPLEX-aLbH to de-
note QPLEX with a layers and b heads of importance
weights λi. As shown in Figure 14, using more heads,
QPLEX-1L10H, does not change the performance, but
using more layers, QPLEX-2L4H, may slightly degen-
erate the learning efficiency of QPLEX in this complex
domain. Detailed learning curves on these tasks are
shown in Figure 15. This is because using more layers significantly increase the number of parame-
ters and requires more samples for learning, which may offset the benefits of higher expressiveness it
brings. This ablation study shows that a simple attention neural network with just one layer and four
heads has enough expressiveness to handle these complex StarCraft II tasks.
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Figure 15: Deferred figures of median test win rate % for QPLEX-1L4H, QPLEX-1L10H, and
QPLEX-2L4H with online data collection.
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I ABLATION STUDIES ABOUT QTRAN

Both QPLEX and QTRAN aim to provide a richer factorized acton-value function class. The main
difference between QPLEX and QTRAN is that QPLEX uses a duplex dueling architecture to realize
the IGM principle (a hard constraint). In contrast, QTRAN uses two penalties as soft constraints to
approximate the IGM principle. Moreover, from the perspective of implementation, QTRAN does
not have a Transformation module (see Section 3.2) on the individual Q-functions and cannot utilize
a multi-head attention module on the joint Q-function directly (because QTRAN does not take the
duplex dueling architecture as QPLEX).
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Figure 16: Ablation study about QTRAN
with online data collection.

To test whether QPLEX outperforms QTRAN because
of these factors, we conducted an ablation study by re-
moving the Transformation module and replacing the
multi-head attention module with a simple one-layer
forward model in the QPLEX’s dueling architecture,
which is denoted as QPLEX-wo-trans-atten. In addi-
tion, we also introduce a variant of QTRAN, which
also uses the Transformation module for individual Q-
functions, denoted as QTRAN-w-trans. Our experiments
are evaluated on the tasks of the StarCraft II benchmark
mentioned in Section 4.3.1.

Figure 16 illustrates the averaged median test win rate %
over all tested scenarios. Detailed learning curves on
these tasks are shown in Figure 17. These empirical results show that QPLEX-wo-trans-atten
significantly outperforms QTRAN and QTRAN-w-trans, which implies that the outperformance
of QPLEX over QTRAN is largely due to its duplex dueling architecture. It can also be seen that
QTRAN-w-trans cannot significantly improve the performance of QTRAN, which implies that
QTRAN cannot benefit a lot from an extra Transformation module empirically.

As discussed in Section E, Figure 9a can be regarded as an ablation study of QPLEX-wo-atten,
which just removes the multi-head attention module from dueling architecture. That ablation study
shows that a simple neural network implementation of QPLEX’s dueling structure has enough
expressiveness to handle these StarCraft II tasks in the online data collection setting, even if this
structure can provide QPLEX with excellent performance in didactic matrix games using an adequate
and uniform dataset (see Section 4.1). Thus, compared with QPLEX-wo-atten in Figure 9a, Figure 16
shows that Transformation (abbreviated as -trans) is a useful module for QPLEX empirically, which
indicates an another QPLEX’s advantage, i.e., QPLEX can equip a Transformation module to improve
QPLEX’s empirical performance, whereas QTRAN may not by directly using it. Moreover, we
would like to emphasize that, unlike the multi-head attention module, the Transformation module is
actually a necessary module for QPLEX to realize IGM, as shown in Figure 1 and by the proof of
Proposition 2. Therefore, it is actually fair to evaluate QPLEX with the Transformation module.
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Figure 17: Figures of median test win rate % for QPLEX, QPLEX’s ablation QPLEX-wo-trans-atten,
QTRAN, and QTRAN-w-trans with online data collection.

26



Published as a conference paper at ICLR 2021

J A COMPARISON TO WQMIX IN PREDATOR-PREY

WQMIX (Rashid et al., 2020) is a recent advanced multi-agent Q-learning algorithm. We compare
QPLEX with WQMIX in a toy game, predator-prey, which is introduced by WQMIX and aims to
test coordination between agents in a partially-observable setting.
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Figure 18: Learning curves of median test return for QPLEX, QTRAN, QMIX, and WQMIX
(OW-QMIX and CW-QMIX) in the toy predator-prey task.

Predator-prey is a multi-agent coordinated game used by WQMIX (Rashid et al., 2020) with miscoor-
dination penalties. In order to collect the experience with the positive reward of agents’ coordinated
actions, extensive exploration can benefit multi-agent Q-learning algorithms to solve this kind of tasks.
WQMIX shapes the data distribution with an importance weight to boost efficient learning, which can
also be regarded as a type of biased exploration. To support QPLEX with effective exploration, we
use an ε-greedy strategy which is also discussed in the paper of WQMIX. This strategy’s ε is linearly
annealed from 1 to 0.05 over 1 million timesteps, increased from the 50k used in SMAC (Samvelyan
et al., 2019). As shown in Figure 18, besides WQMIX and QTRAN, QPLEX can solve this task by
using the introduced ε-greedy exploration strategy. Moreover, QMIX can also solve this task by using
the same ε-greedy strategy as QPLEX, but QPLEX enjoys higher sample efficiency.
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