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ABSTRACT

In recent years, deep learning have achieved significant success across various do-
mains, such as natural language processing and computer vision. Despite their
advancement, most of the deep neural networks assign uniform computation costs
to all inputs regardless of their complexity. Focusing on Transformer architecture,
our study addresses this challenge by introducing a sequence-level conditional
fine-tuning framework through adaptive layer skipping. The proposed framework
dynamically adjusts the computation based on the complexity of input sequence
and is tailored for modern accelerators like TPU/GPUs. We examined several
measurements on input complexity and found one to be very effective on guiding
the conditional computation. The experiment results on synthetic and real-world
datasets demonstrate the effectiveness of our methodology by achieving a substan-
tial reduction in training time while maintaining the same predictive performance.

1 INTRODUCTION

Transformer-based models are popular across domains such as NLP and CV, thanks to their ex-
ceptional capabilities on fitting complex high-dimensional data through over-parameterization. De-
spite their popularity, training such giant Transformers are computationally expensive, even for fine-
tuning on a small set of supervised data. Like other deep models, Transformers typically assumes
the computation cost are the same for all inputs regardless of their complexity, resulting in resource
inefficiency. This is unlike human cognition, which is believed to adjust computational effort based
on task complexity (Franco et al., 2021; Ragni et al., 2011), suggesting a need for models to similarly
adapt their computational cost, based on the input complexity.

Related Work Conditional computation, initially proposed by Bengio et al. (2015), is aimed to
tackle with the aforementioned problem. Conditional computation approach dynamically adjusts
computational resources by selectively activating a subset of the model’s parameters based on some
property of the input examples. This approach has also been broadly investigated within Transformer
architectures (Xin et al., 2020; Schwartz et al., 2020; Liu et al., 2021; Elbayad et al., 2019; Bapna
et al., 2020; Ainslie et al., 2023; Zeng et al., 2023; Wang et al., 2022; 2017; He et al., 2021).
Early exit is a common strategy that jointly trains multiple output classifiers across the Transformer
blocks (Xin et al., 2020; Schwartz et al., 2020; Liu et al., 2021; Elbayad et al., 2019; Wang et al.,
2022; He et al., 2021). Despite its efficacy during inference, this approach introduces significant
training overhead and necessitates the balancing of a weighted sum of loss terms, complicating
the training process. Our proposed methodology circumvents the need for training multiple output
classifiers and achieves efficiency improvements during training phase.
Token-wise routing emerges as another significant paradigm, facilitating conditional computation at
the token level (Ainslie et al., 2023; Zeng et al., 2023). This innovative approach offers a refined
allocation of computational resources, customizing the processing depth based on individual tokens.
However, these methods requires starting from scratch with pre-training, limiting their applicability
to existing pre-trained Transformer models. In contrast, our method is designed to be seamlessly

∗Work conducted during an internship at Google DeepMind.
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integrated with pre-trained Transformers without the need for re-training. Furthermore, the explo-
ration of arbitrary layer skipping (Wang et al., 2022; 2017) and the application of multi-task learning
to dynamically manage computational budgets for input processing (Bapna et al., 2020) represent
additional avenues of research.
Contribution In this paper, we explore the quantification of sequence-level input complexities and
introduce a novel fine-tuning framework capable of dynamically adjusting computational resource in
training time for supervised learning. This is achieved by allowing inputs to forward-pass a variable
number of Transformer blocks based on their assessed complexity. Our approach incorporates a
practical layer-skipping mechanism that incurs a small overhead. In addition, we identify an accurate
measurement for gauging input complexities, which is able to guide the layer-skipping of certain
input sequences. The proposed approach significantly reduces the training time by at least 25%,
while preserving predictive performance across both synthetic and real-world datasets.

2 PROBLEM FORMULATION

We consider the standard supervised fine-tuning setting. A pre-trained L-layer Transformer fθ,
where θ is its parameters, trained under objectives like masked language modeling, is adapted to
specific downstream tasks, such as sequence classification. A critical limitation in conventional
fine-tuning approaches is the uniform computational budget assigned to each training input, over-
looking the varying complexities inherent in different inputs. Our hypothesis posits that a careful
allocation of computational resources, depending on the complexity of individual sequence inputs,
could maintain model performance while significantly reducing overall computation. This hypothe-
sis leads us to the following research questions:

RQ1 How can we achieve sequence-wise conditional computation in a Transformer?
RQ2 What measurement could effectively gauge the complexity of each input sequence, thereby

guiding the conditional allocation of computational resources?

Dataset and Task We conduct experiments across both synthetic and real-world datasets:1

• Sequence Classification on ListOps: We use the ListOps dataset (Nangia and Bowman,
2018) for synthetic data analysis. It challenges NLP models with list operations that require
understanding and manipulation of hierarchical data structures. A simple input example is
[MAX 2 9 [MIN 4 7 ] 0] and its label is 9. The complexity of the input sequences are
controlled by the depth of parsed tree (2 for the example) and the function space of list
operations (e.g. {MAX, MIN}). We report the accuracy for classification.

• Item Retrieval on MovieLens: We use the MovieLens dataset (Harper and Konstan, 2015),
a real-world dataset widely adopted to benchmark recommendation systems. This dataset,
comprising extensive movie watching history from users, facilitates the analysis of models’
capacity to predict user preferences accurately. We focus on a standard retrieval task, i.e.
given the user’s watch history and some demographic features, predict the next movie the
user will watch. Following other works (Vančura and Kordı́k, 2021; Kim and Suh, 2019;
Shenbin et al., 2020), we report the recall at 10 and 50 for retrieved items.

Preliminary We work on the Pre-Layer Norm (Xiong et al., 2020) version of the Transformer
model, which is a typical choice by many work such as GPTs (Brown et al., 2020; Radford et al.,
2019; Raffel et al., 2020; Lieber et al., 2021). Given dataset D consisting of input token sequences
x = (x1, x2, . . . , xn) and labels y, the token sequences are firstly converted to initial representations
h0 = (e(x1), e(x2), . . . , e(xn)) by an embedding layer e(·). Then, at the l-th block, a Transformer
block executes a two-step computational process as follows:

h′
l ←hl−1 + MHAl(LNMHA

l (hl−1))

hl ←h′
l + FFNl(LNFFN

l (h′
l))

(1)

Here, FFN denotes the feed-forward network, MHA represents the multi-head attention mechanism,
and LN stands for layer normalization. Additionally, hl ∈ RB×N×D is the intermediate represen-
tation at the l-th block, where B is batch size, N is (maximum) sequence length, and D is hidden
dimension of the Transformer. For sequence classification and retrieval task, the representation of a
special token <cls> is used for downstream classifier.

1Details of the datasets are included in the appendix.
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3 RQ1: SEQUENCE-WISE CONDITIONAL COMPUTATION

Figure 1: Correlation between representation of the <cls> token at different Transformer blocks
for a complex input example (left) and a simple input example (right). The representation of a
simple input is essentially determined before the computation of the last layer. We use a fine-tuned
RoBERTa model to plot this figure on two sequences from ListOps dataset.

The computation within a Pre-Layer Norm Transformer block, as detailed in Eq. 1, can be succinctly
expressed as hl ← hl−1 + g(hl−1) for some function g. Here, g(hl−1) acts as a minor-scale
refinement w.r.t. hl (Xiong et al., 2020). To minimize computational overhead, a straightforward
strategy is to substitute the Transformer output with an intermediate representation. This section
explores the rationale and methodology for this approach.

Empirical evidence The intuition of this strategy is that the Transformer output are similar to its
intermediate representations. Figure 1 shows the correlation of hidden representation of <cls> to-
ken among all Transformer blocks. We take a complex and a simple input from ListOps (according
to the aforementioned complexity criterion) and find high correlations between representations of
adjacent blocks. For simple examples, most of the intermediate representations (except the first few)
have high similarity (over 0.5) with the output representation. However, this is not the case for com-
plex examples, where the intermediate representations are not similar to the output representation
until the last few blocks. This phenomenon is also described in Baldock et al. (2021). Given these
observations, we propose the following approach.

Sequence-wise adaptive layer skipping We consider the problem of how many Transformer
blocks an input example needs to pass forward, based on the example’s complexity. Suppose we
have a L-layer Transformer and a function φ that measures the complexity of an input sequence x.
i.e. φ : X → R where X is the set of all possible sequences. One can simply come up with a heuris-
tic rule γ to classify the numerical input complexity to be the number of Transformer blocks it should
pass through, i.e. γ : R→ L where L ⊂ {1, . . . , L} can be configured by users. Although versatile
and potentially optimal for CPU performance, this approach faces inefficiencies on TPU/GPUs due
to variable and conditional computation at runtime. As an alternative for TPU/GPUs, we propose a
ratio-based rule for a batch of examples to γP : R → L where P is a list of portions (sum to 1).
For instance, with P = (0.5, 0.5) and L = (12, 24), the simpler half of the batch pass through only
12 Transformer blocks while the others pass through all 24 blocks2. Essentially, the ratio-based rule
compares the complexity of inputs in one batch and filter out more complex examples by a fixed
ratio, making the computation graph to be static at runtime.

4 RQ2: MEASUREMENT OF SEQUENCE COMPLEXITY

A key requirement of the proposed method is the knowledge of each sequence’s complexity, an
aspect that has received limited attention in existing studies to the best of the authors’ knowledge.

2Therefore, this method is defined by user-specified hyperparameters.

3



Published as a conference paper at ICLR 2024

Quantifying sequence complexity Multiple heuristics exist for determining the sequence com-
plexity, as shown in Table 4. Firstly, Sequence length indicates the complexity especially for se-
quences that contains complex reasoning, such as ListOps. This is because longer sequences usually
contain more complex structure (Stadler and Neely, 1997). Some other study highlights the impor-
tance of capturing unique sequence evolution patterns in retrieval tasks, suggesting a measurement
of sequence diversity to quantify complexity (Cheng et al., 2016). Lastly, as pointed out by Bal-
dock et al. (2021), learning difficulty, the speed at which the model’s prediction converges for that
input sequences during training, can gauge the sequence complexity. However, one needs to train
a model until convergence to obtain the learning difficulty, making this measurement impractical to
use. Instead, to reduce the cost, we use training loss at a certain step as a proxy.
With adaptive layer skipping and different measurements of sequence complexities, we conduct
examples on MovieLens dataset. We fine-tune a 12-layer Transformer3 and allow the simpler half
of the input sequences to exit at the 6th layer. i.e. P = (0.5, 0.5) and L = (6, 12). As shown in
Table 1, we found using training loss to guide skipping outperforms other heuristics, showing the
effectiveness of training loss as an accurate complexity measurement. On the other hand, training
loss at an earlier stage is a more effective metric to gauge sequence complexity compared to its
counterparts at later stage.

loss@1k loss@10k loss@100k Sequence diversity Sequence length Random

Recall@10 0.2474 0.2352 0.2334 0.2235 0.2199 0.2176
Recall@50 0.5146 0.4932 0.4891 0.4819 0.4788 0.4748

Table 1: Performance of the proposed method using different measurements of sequence complexity
on MovieLens dataset. “loss@1k” denotes the training loss at 1000th step. “Random” is a dummy
baseline that uses randomly generated numbers as measurement.

To understand why loss at an early stage works better, we investigate how the example losses change
against the training stages. Figure 2 shows the training loss trajectory of a batch of examples in the
ListOps dataset, where the colors indicate the example difficulty (red: complex, blue: simple).
Losses at early stage (around 1000 steps) are most discriminative for example complexity. In con-
trast, losses at a later stage (e.g. 10000 steps) may be less informative because it is hard to distinguish
simple and medium examples any more and the distribution is pushed to two extremes.

Figure 2: Training loss trajectory of 64 examples in the ListOps dataset. Examples with larger learn-
ing difficulty (red) usually has a larger loss at early training step. Loss at early stage (around 1000
steps) are more discriminative. In contrast, it is hard to distinguish simple and medium examples at
a later stage (e.g. 10000 steps).

5 EMPIRICAL EXPERIMENT RESULTS

Baselines and proposed method We run experiments on the following methods:

1. Full fine-tuning of all parameters but at a high computation cost.

3Please see model details in the appendix.
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2. Drop last k layers of the pre-trained Transformer before fine-tuning.
3. Freeze first k layers (and embedding layer) during fine-tuning.
4. Skipping by loss@1k: Proposed adaptive layer skipping configured by P and L.

Results Table 2 and 3 shows the experiment results on the two datasets. On both ListOps and
MovieLens, our proposed method achieves better performance than baselines under the same or
even less amount of training time, suggesting the effectiveness of our method in performance-cost
trade-off. Surprisingly, the proposed method has better performance than full fine-tuning with less
computation cost. A potential explanation is that the adaptive skipping essentially divides the model
into multiple “experts” so that the deeper blocks learn to specialize in encoding more complex
examples.

Method Full fine-tuning Drop last k Freeze first k Skip by loss@1k
Configuration k = 12 k = 6 k = 12 k = 18 P = (0.5, 0.5),L = (12, 24)

Accuracy 0.8918 0.8697 0.8821 0.8477 0.7884 0.8991
Step-time (ms) 1664 849 1257 1173 924 1297

Table 2: Performance of proposed method and baselines on ListOps dataset by a 24-Layer Trans-
former. We run experiments for 3 random seeds and omit the standard error since the standard error
of accuracy is less than 0.001. This holds true for all following experiments.

Method Size Configuration Recall@10 Recall@50 Step-time (ms)

Full fine-tuning
L = 8, D = 64 0.1963 0.4570 45.8

L = 12, D = 128 0.2346 0.4892 120.4
L = 24, D = 256 0.2633 0.5055 511.9

Drop last k

L = 12, D = 128 k = 6 0.2123 0.4705 65.3
L = 12, D = 128 k = 3 0.2264 0.4827 92.0
L = 24, D = 256 k = 12 0.2353 0.4855 244.7
L = 24, D = 256 k = 6 0.2370 0.4834 345.7

Freeze first k

L = 12, D = 128 k = 9 0.1922 0.4500 61.2
L = 12, D = 128 k = 6 0.2168 0.4737 81.1
L = 24, D = 256 k = 18 0.2287 0.4803 225.2
L = 24, D = 256 k = 12 0.2439 0.4913 336.7

Skip by loss@1k

L = 12, D = 128
P = (0.5, 0.25, 0.25) 0.2421 0.5206 82.8L = (4, 8, 12)

L = 12, D = 128
P = (0.5, 0.5) 0.2474 0.5146 101.0L = (6, 12)

L = 24, D = 256
P = (0.5, 0.25, 0.25) 0.2716 0.5395 314.3L = (8, 16, 24)

L = 24, D = 256
P = (0.5, 0.5) 0.2759 0.5328 370.9L = (12, 24)

Table 3: Performance of proposed method and baselines on MovieLens dataset. Model sizes are
specified in appendix. The loss@1k labels are obtained by a 8-layer Transformer.

6 CONCLUSION AND LIMITATION

Conclusion In this work, we propose a novel framework to allow sequence-wise conditional com-
putation in Transformers through adaptive layer skipping. We develop an innovative measurement
of input sequence complexity that can guide the computation allocation. Experiment results on both
synthetic and real-world datasets demonstrate the effectiveness of our method by a substantial 25%
reduction in training time while achieving a strong predictive performance.
Limitation and future work A major limitation of our proposed method is the unavailability of
the complexity measure ”loss@1k” during inference, as it requires the label y to compute the training
loss, which is typically inaccessible. To circumvent this, we suggest developing a smaller predictor
to estimate complexity measurements, facilitating layer skipping guidance. Moreover, our fixed
ratio-based skipping strategy assumes a relatively big batch size to ensure consistent skipping for
the same input across various epochs. A more practical way is to adapt the ratio-based skipping into
a threshold-based method by setting quantile values of complexity as thresholds. We will address
these considerations in future work.
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A COMPLEXITY MEASUREMENTS

Measurement Complexity function φ

Sequence length len (x)
Sequence diversity 2

n(n−1)

∑
1≤i<j≤n e(xi)

⊤e(xj)

Loss at step t loss(fθt(x), y)

Table 4: Measurements of sequence complexities. x = (x1, x2, . . . , xn) denotes the input se-
quence. e(·) is the embedding function obtained by a pre-trained Transformer. fθt is a fine-tuned
Transformer after t steps of training. y is the label corresponding to x.

B EXPERIMENT DETAILS

B.1 LISTOPS

Dataset For the dataset corpora, we directly use the ListOps dataset release from
https://github.com/nyu-mll/spinn/blob/master/python/spinn/data/
listops/data_d20.txt. The maximum list depth is constrained to 20 and four list operations
are allowed: {MIN, MAX, FIRST, LAST}. We use 90,000 data points as training set and 10,000
data points as testing set.
Model We use the pre-trained Transformer checkpoints from the HuggingFace model hub. In
particular, we select the RoBERTa checkpoint andreasmadsen/efficient mlm m0.40 as
it is the most downloaded pre-LN Transformer checkpoint on the HuggingFace model hub. The
model has 24 layers, 16 attention heads, and 1024 hidden dimensions. All experiments are run on a
single NVidia A40 GPU. We train up to 5 epochs with learning rate of 1 · 10−5 and weight decay of
1 ·10−3. We fix the maximum length of 500 for the input sequences. A standard linear classification
head is attached to the Transformer encoder. The proposed measurements loss@1k is obtained by
fine-tuning a 12 layer RoBERTa checkpoint for 1000 steps. For our proposed method, we apply
the same adaptive layer skipping in testings sets. The implementation are based on TensorFlow and
HuggingFace libraries.

B.2 MOVIELENS

Dataset We use the standard MovieLens dataset for our training corpora and convert the user
interactions into sequence data. The dataset contains 25,000,000 data points (sequences). And we
use 20,000,000 for training and 5,000,000 for testing. For sequences larger than maximum sequence
length (200), we preserve the latest sub-sequence as inputs.

Size Layers Heads Hidden Dimensions

M 8 4 64
L 12 8 128

XL 24 16 256

Table 5: Three sizes are used in our experiments on the MovieLens dataset.

Model We pre-train standard Transformers of three different sizes for our experiments on Movie-
Lens. The sizes of them are specified in Table 5. All experiments are run on 32 TPUs with a total
batch size of 8192. We train up to 100,000 steps with learning rate of 3 · 10−5 and fix a maximum
length of 200 for the input sequences. The pre-training objective is standard MLM objective, with a
mask ratio of 0.15. For downstream retrieval task, we train up to 300,000 steps with learning rate of
3·10−5 and also fixes a maximum length of 200 for the input sequences. The proposed measurement
loss@1k is obtained by fine-tuning a size-M Transformer for 1000 steps. For our proposed method,
we also apply the same adaptive layer skipping in testings sets. A two layer MLP retrieval tower is
attached to the Transformer encoder. The implementation are based on TensorFlow.

C EXTRA RESULTS
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loss@1k loss@2k loss@3k Sequence length Random

Method XL-12(.5) XL-12(.5) XL-12(.5) XL-12(.5) XL-12(.5)
Accuracy 0.8991 0.8882 0.8860 0.8770 0.8733

Table 6: Performance of the proposed method using different measurements of sequence complexity
on ListOps dataset. “loss@1k” denotes the training loss at 1000th step. “Random” is a dummy
baseline that uses randomly generated numbers as measurement.
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