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ABSTRACT

Large language models (LLMs) are increasingly being applied to high-stakes do-
mains with high consequences for errors such as healthcare, drug discovery, law,
and finance. However, they are often unstable and highly sensitive to prompt de-
sign, which can introduce contextual bias into their predictions. To mitigate this
bias, various calibration methods have been developed to prevent overconfident
and incorrect predictions. Existing techniques are either confidence-based, relying
on heuristics to quantify bias, or likelihood-based, which is theoretically grounded
but introduces unnecessary computational overhead. In this work, we introduce
QuadCal, a novel supervised likelihood-based calibration method that is up to
40% faster and outperforms the existing likelihood-based approach. Specifically,
QuadCal leverages Quadratic Discriminant Analysis (QDA), a supervised algo-
rithm that directly models class-conditioned distributions, making it more effi-
cient. We evaluated calibration methods on GPT-2 models and the more recent
Llama and Gemma’s instruction-tuned (IT) models, which are harder to calibrate.
Empirically, we show that on average over seven different natural language clas-
sification datasets, QuadCal outperforms existing methods on GPT-2 models and
is competitive with earlier methods on IT models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
classification tasks and domains. They are increasingly being adopted for many critical domains
such as healthcare, drug discovery, law, and finance (Naveed et al., 2023). The consequences of
wrong predictions in such high-stakes domains are very high, ranging from severe financial losses
and wrong judgements to clinical misdiagnoses. Therefore, it is essential to ensure the reliability
and trustworthiness of the LLM that are used in these domains.

A major breakthrough in improving the adaptability of LLMs has come from the observation of a
specific ability of LLMs known as in-context learning (ICL) (Brown et al., 2020). ICL enables
LLMs to perform new tasks by conditioning the pre-trained LLM on a text input containing a few
examples or instructions for the new task and then generating the next tokens as prediction. Notably,
ICL does not require parameter updates and learns only via the input prompts. This makes ICL a
great choice for adaptation to new domains where fine-tuning is expensive.

However, LLMs are often observed to be poorly calibrated (Chen et al., 2022), making them un-
reliable in automated systems or use in critical domains. A poorly calibrated model will provide
overconfident or underconfident predictions which will result in serious consequences in such do-
mains. Overconfidence is particularly severe in LLMs, and it has been observed that they tend to
‘hallucinate’ (Huang et al., 2025), that is, they provide highly confident but factually wrong answers.
This misleads the user and makes it difficult to rely on the model’s output. Similarly, underconfi-
dence can also be equally misleading and reduces the reliability of the downstream decision making
systems. For example, a poorly calibrated model might predict a chemical compound to be non-
toxic with a 90% confidence score. Ideally, 90% of such predictions would be safe, but in reality,
only 50% may turn out to be safe and the rest toxic. Conversely, underconfident scores will result in
discarding potential non-toxic compounds for further testing. Such miscalibrated predictions might
result in using those harmful compounds for further testing costing money and risking human life.
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Furthermore, in ICL, the predictions are made solely based on the prompt input, which we denote
as the context C. The model estimates the conditional probability P (y|C), where y is the predicted
output. This makes ICL vulnerable to contextual bias, where the format or examples of a prompt
and its ordering could cause instability due to variance in prediction (Zhao et al., 2021). Recently,
OptiSeq (Bhope et al., 2025) was proposed as a method for selecting the optimal ordering of exam-
ples for ICL. However, it requires us to evaluate all permutations of the ordering of the examples,
which can be computationally expensive and difficult to apply for large example sets. ICL is also
sensitive to prompt formatting, despite the prompts having the same intended meaning (He et al.,
2024). Subtle changes in the prompt, such as adding a white space or punctuation, can also cause
instability (Seleznyov et al., 2025).

To mitigate these challenges, various calibration techniques have been developed specifically for
ICL to handle contextual bias. The calibration methods for ICL broadly fall into two categories:
confidence-based calibration and likelihood-based calibration. The confidence-based calibration
methods estimate the model’s bias and rescale the confidence scores so that they better align with
the true probabilities. These methods are usually simple and easy to implement but are based on
heuristics to compute contextual bias. The likelihood-based calibration methods take a probabilistic
Bayesian approach by explicitly modeling the class-conditioned distributions of the model’s out-
puts. The Bayes’ theorem plays a fundamental role in probability theory (Bishop & Nasrabadi,
2006). In general, Bayesian approaches are preferred because they provide a principled framework
that takes prior knowledge into consideration and updates the posterior distribution accordingly. The
likelihood-based calibration methods focus on improving prediction accuracy by modeling the un-
derlying class distributions. Although these calibration methods can be computationally intensive
than confidence-based methods, their Bayesian approach makes them more reliable and theoretically
grounded.

We introduce QuadCal, a new calibration method which falls into the second category where we
model the class-conditioned distribution directly to improve the accuracy and, in turn the robust-
ness of the predictions. QuadCal takes a Gaussian approach for calibration, where we estimate the
probability density of the model’s outputs for each class and use it to make class predictions. This
improves reliability for high-stakes applications without altering the underlying confidence scores.
In addition, we also systematically evaluate existing calibration methods for ICL on various pre-
trained LLMs.

The main contributions of this paper are as follows:

• We propose QuadCal – a supervised alternative to the existing likelihood-based approach
for ICL calibration.

• We provide a systematic evaluation of existing calibration methods for ICL on recent
LLMs across diverse natural language tasks.

• Experiments show that QuadCal consistently matches or outperforms existing state-of-
the-art (SOTA) calibration methods for ICL.

• QuadCal is consistently faster than the existing likelihood-based approach across models,
shot settings, and datasets.

2 RELATED WORK

One of the earliest influential works on calibration for neural networks was by Guo et al. (2017),
who observed that although deep neural networks significantly improved performance compared
to shallow networks, they are often poorly calibrated. To address this, they introduced temperature
scaling, which is a widely used post-processing calibration method. They also provided an overview
of several calibration assessment metrics, including the reliability diagram, expected calibration
error (ECE), maximum calibration error (MCE), and negative log likelihood (NLL).

As pre-trained LLMs and ICL became more prevalent, new challenges emerged. One such challenge
is contextual bias, where model predictions can be heavily influenced by the prompt design. This
necessitated the development of calibration methods specifically for ICL. In general, model calibra-
tion can be performed either during training or post training of a model. With the introduction of
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many pre-trained LLMs and their ability to perform new tasks without any gradient updates through
ICL, post-training methods become the natural choice.

One of the first calibration methods focused on ICL was introduced by Zhao et al. (2021) called as
contextual calibration (CC). It uses content-free test inputs such as “N/A” to estimate the model’s
inherent bias toward or against each of the classes, which could then be used to rescale the confidence
scores for real inputs. Following this, Fei et al. (2023) proposed domain calibration (DC) which uses
random in-domain words instead of content-free test inputs to handle domain-label bias. Here, the
domain-label bias is defined as the distance between the model’s prior predictions with random
English words and predictions with random in-domain words. The confidence scores for real inputs
are then rescaled as in CC. More recently, Zhou et al. (2023) have proposed batch calibration (BC)
to address contextual bias by using the input examples (batch) itself instead of content-free tokens
or in-domain words. Here, bias is calculated by taking a mean of the predicted probabilities for each
of the classes in that batch followed by rescaling the confidence scores for real inputs. All these
methods fall into the first category of calibration methods for ICL, where we estimate the bias and
rescale the confidence scores to better align with true probabilities.

A more theoretically grounded approach for calibration was proposed by Han et al. (2022) with the
introduction of prototypical calibration (ProCa) which estimates prototypical clusters for each of
the labels. When a new input is provided, the calibration is done by estimating the likelihood of
it belonging to each of the prototypical clusters. ProCa falls in the second category of calibration
methods for ICL where the likelihood is estimate and the decision boundary is shifted to improve
prediction accuracy. Although CC, BC and DC are easy to implement and effective, Bayesian ap-
proaches are more theoretically sound since it explicitly estimates the class-conditional probabilities
and calibrates the output based on likelihood.

3 QUADCAL: BAYESIAN CALIBRATION WITH QDA

3.1 BACKGROUND

Motivated by the insights discussed above, we introduce QuadCal - a Gaussian approach to calibra-
tion that is faster and more efficient than the existing Gaussian-based calibration method, ProCa. In
ProCa, prototypical clusters are built in a two-step process:

• A Gaussian Mixture Model (GMM) is first trained on a small random subset of samples to
build n clusters, where n is the number of classes.

• Once the clusters are built, they are mapped to the n classes using Munkres (Hungarian)
algorithm (Kuhn, 1955).

One of the shortcomings of ProCa is that it relies on GMM – an unsupervised clustering algorithm
that requires the computationally expensive Munkres algorithm to map the n clusters to n labels.
This step is avoidable in a supervised setting, where the ground-truth labels are readily available.
Although the Munkres algorithm is optimal, it is computationally expensive for multiclass settings
with a complexity of O(n3), where n is the number of classes. Moreover, GMM inherently uses the
iterative Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to estimate the parame-
ters of the Gaussian components, further adding to the computational overhead.

To address these limitations, we propose QuadCal, a supervised Bayesian approach to calibra-
tion that directly models the class-conditioned distribution of the data, thus avoiding both the iter-
ative GMM procedure and the post-hoc cluster-to-label mapping required in ProCa. QuadCal uses
Quadratic Discriminant Analysis (QDA) (Hastie et al., 2009), a supervised classification method
that models each class as a multivariate Gaussian distribution with its own mean and covariance.
Figure 1 illustrates how QDA models two classes with distinct means and covariances, separated by
a quadratic decision boundary.

Unlike Linear Discriminant Analysis (LDA), which assumes equal covariance across all classes,
making it suitable only for homoscedastic data, QDA makes a more relaxed assumption. QDA
allows each class to have its own covariance, making it well-suited for heterogeneous, real-world
datasets. Each class is modeled as a multivariate Gaussian with its own mean µk and covariance Σk
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of class k:
P (X|y = k) =

1

(2π)
d
2 |Σk|

1
2

exp(−1

2
(X − µk)

TΣ−1
k (X − µk))

where X ∈ Rd and d is the number of features of X . Once µk and Σk are estimated, the quadratic
discriminant function is given as:

δk(x) = −1

2
log|Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk) + logπk

where πk is the prior probability of class k, and the classification is then given by:
ŷ = argmax

k
δk(x)

Figure 1: Illustration of class distributions mod-
eled by QDA. Each class is a Gaussian with its
own mean and covariance.

From a theoretical perspective, GMM could
model more complex and multi-modal class dis-
tributions because it assumes that each class may
consist of a mixture of multiple Gaussians, poten-
tially making it more effective than QDA, which
assumes a single Gaussian per class. However,
ProCa enforces a restriction of exactly n clusters,
where n is the number of classes, reducing the in-
herent flexibility of GMM. By using QDA, which
estimates the Gaussian parameters directly, Quad-
Cal avoids the computational overhead in ProCa
while being functionally similar.

3.2 METHOD

To train the QDA model for QuadCal, we first construct an estimate set via stratified sampling of
the training set of the target task for ICL, so that each class is well-represented. More details on
the construction of the estimate set are provided in Section 4. The estimate set is then provided as
input to a pre-trained LLM to obtain the probability outputs for each class label. We then apply a log
transformation to these probabilities for numerical stability and to satisfy the Gaussian assumptions,
following the approach used in ProCa. We then model the class-conditioned distribution P (X|y =
k), where X ∈ Rn is the log probability vector over n classes, and k ∈ {1, ..., n} represents
the classes. For each class, the mean µk and covariance Σk is estimated directly from the log-
probabilities and the class prior is computed from the estimate set. Finally, for classification, each
sample is assigned to the class with the highest discriminant score computed using the QDA model.

4 EXPERIMENTAL SETUP

General setup:
We largely follow the experimental setup of ProCa for a fair comparison. We evaluate QuadCal
across a diverse set of natural language tasks such as sentiment, topic and entailment classification.
The datasets considered are SST-2 (2 classes) (Socher et al., 2013), SST-5 (5 classes) (Socher et al.,
2013), MR (2 classes) (Pang & Lee, 2005), all of which are sentiment classification tasks; Subj (2
classes) (Pang & Lee, 2004), a subjectivity classification task; AGNews (4 classes) (Zhang et al.,
2015) which is a news topic classification task; RTE (2 classes) (Dagan et al., 2005), a textual en-
tailment task; and TREC (6 classes) (Voorhees & Tice, 2000) which is a question classification task.
The Amazon Polarity dataset (Zhang et al., 2015) was excluded due to computational constraints.
We use the same prompt formats as in the original setup.

We included GPT-2-Large (0.8B) (Radford et al., 2019) and GPT-2-XL (1.5B) (Radford et al., 2019)
from OpenAI to allow fair comparison with ProCa. It has been observed that instruction-tuned mod-
els are particularly difficult to calibrate (Zhu et al., 2023) and hence we chose two recent instruction-
tuned models from both the Google (Team et al., 2025) and Meta (Grattafiori et al., 2024) families.
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Among them, we picked those with comparable sizes to GPT-2 models to allow for fair comparison:
Llama-3.2-IT (1B), Llama-3.2-IT (3B), Gemma-3-IT (1B) and Gemma-3-IT (4B).

We evaluated all models under 0-shot, 1-shot, 4-shot and 8-shot ICL settings. We compare QuadCal
with three other calibration methods discussed in Section 2 – CC, BC and ProCa. Each experiment
was repeated with five random seeds and the model performance was measured using classification
accuracy. For all the datasets, the full test set was used for evaluation, except for AGNews, for which
we randomly sampled 2000 examples.

Estimate set construction:
For both ProCa and QuadCal, we use stratified sampling instead of random sampling as used in
ProCa. ProCa’s GMM-based approach always generates n clusters even with the estimate set having
only representation from n − 1 classes. This is problematic since it completely and silently misses
the underrepresented class, leading to incorrect cluster-to-class mapping during the Munkres step.
This is particularly an issue for smaller datasets like RTE and TREC and reduces the quality of
calibration. By using stratified sampling, every class is well represented, leading to more reliable
prototypical clusters in ProCa and better class-conditioned distributions in QuadCal. The estimate
set size is fixed as 100.

Runtime analysis:
To empirically evaluate the computational efficiency of QuadCal relative to ProCa, we designed
a small experimental setup comparing the two methods across three datasets- SST-2 (2 classes),
AGNews (4 classes), and TREC (6 classes) under 0-shot, 4-shot and 8-shot settings. This allows us
to assess run time across varying numbers of classes and ICL shots. We chose to evaluate the larger
models within each family for this analysis, and all the experiments were run with three random
seeds.

For both methods, we report the end-to-end run time, including both the time required to train the
GMM + Munkres (for ProCa) or QDA (for QuadCal) models and their inference time taken for
calibration. It is to be noted that training GMM + Munkres or QDA models is a one-time cost, and
if pre-trained models are available, the run time required for future evaluations would be further
reduced. Moreover, when the output probabilities for the estimate set is already computed, both the
training and inference for ProCa or QuadCal can be executed entirely on CPU. Nevertheless, we
make a relative comparison here under identical experimental conditions.

All experiments for this analysis were run on a single node of a cluster using HTCondor. To ensure
that no other jobs influenced the run time, we exclusively requested for all GPUs of the node, along
with 5 CPU cores and 20 GB of system memory per job. The node is equipped with 4x A100 (40GB)
and 512 GB of RAM.

Significance testing:
We performed significance testing to determine when QuadCal or ProCa is truly better than the other
and not due to random chance. For each combination of model, shot, and dataset, we performed
statistical tests on the accuracies obtained across five random seeds. We used a paired t-test to assess
whether the mean difference in accuracy was significant for the two methods. Additionally, even
if the mean difference is small, to check if a method is consistently better than the other, we did a
binomial test. To consider both the magnitude and the direction of differences, for our analysis, we
considered a result to be significant if it was significant in either the paired t-test or the binomial
test. When the results are significant, it indicates either a higher mean accuracy or it consistently
performs better than the other across the different runs. The null hypothesis for both tests is that
there is no difference between the two methods and the significance was determined at α = 0.05.

5 RESULTS

5.1 OVERALL PERFORMANCE

An overview of the average performance (macro-average accuracy) of the calibration methods across
the considered pre-trained LLMs and various ICL shot settings is provided in Table 1. On average,
QuadCal consistently matches or outperforms the other calibration methods, showing its effective-
ness in improving test accuracy. In particular, QuadCal achieves the highest average accuracy
for all shot settings for the GPT-2 models and for Gemma-3-1B-IT. Across all models, CC gen-
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Table 1: Macro-average accuracy (%) of ICL (uncalibrated) and calibration methods (CC, BC,
ProCa, QuadCal) across different pre-trained LLMs and ICL shot settings. First best results are
in bold and second best are underlined. The full dataset-specific accuracies used to compute the
macro-average, as well as macro-median accuracy (%), are reported in Appendix A.

Macro-average accuracy (%)
Model Shots ICL CC BC ProCa QuadCal

GPT-2 Large (0.8B)

0 50.25 56.81 63.22 60.55 63.70
1 43.19 57.25 60.82 57.00 62.26
4 46.02 55.80 64.31 59.58 66.26
8 50.83 59.10 67.57 64.30 68.45

GPT-2 XL (1.5B)

0 46.21 56.12 62.54 61.12 64.04
1 44.95 56.65 63.12 62.36 64.59
4 46.31 57.54 64.83 62.55 65.19
8 49.09 57.15 66.48 63.26 66.88

Llama-3.2-1B-IT

0 59.18 60.87 67.34 64.02 66.51
1 64.88 64.34 71.11 69.02 70.94
4 63.68 67.58 71.59 71.48 71.11
8 66.97 67.93 72.08 68.81 72.99

Llama-3.2-3B-IT

0 65.69 67.53 69.94 67.83 70.58
1 75.22 75.65 77.37 74.47 76.85
4 74.19 76.69 79.33 77.66 78.93
8 74.11 77.44 80.06 78.61 79.78

Gemma-3-1B-IT

0 63.77 62.40 68.17 64.95 68.55
1 67.31 68.92 69.54 68.94 71.88
4 65.87 69.07 68.67 69.27 72.95
8 66.84 70.20 70.40 73.19 75.09

Gemma-3-4B-IT

0 70.97 69.54 71.15 70.43 71.04
1 75.26 77.21 76.76 77.26 77.13
4 76.69 79.45 78.08 78.89 79.99
8 78.61 81.16 80.15 80.74 81.10

erally underperforms compared to the other calibration methods. BC is the closest competitor to
QuadCal, making it the strongest alternative to QuadCal. Overall, these results suggest that BC is
the preferred choice under confidence-based calibration methods and QuadCal is the best candidate
amongst likelihood-based calibration methods by providing reliable improvements across diverse
models and shot settings.

5.2 EFFECT OF MODEL SIZE

To assess the effect of model size on calibra-
tion, we consider the difference between the best
performing calibration method (highlighted in
bold) and the uncalibrated methods in Table 1.
We observe that as the model size increases,
the calibration improvement decreases for
instruction-tuned (IT) models. For instance,
the average performance gain after calibration
using the best calibration method for the smaller
IT models - Llama-3.2-1B-IT and Gemma-3-1B-
IT is roughly 6-7 percentage points (pp), whereas
the average performance gain for the correspond-
ing larger IT models is only 2̃-4 pp. This clearly
suggests that larger IT models benefit less from
post-hoc calibration and are already better cali-
brated.
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Figure 2: Performance gain (in percentage
points) after calibration with the best method
for each case, across ICL shot settings and pre-
trained LLMs. Solid lines represent larger mod-
els, and dotted lines represent smaller models.
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Interestingly, for the GPT-2 models, which are not instruction-tuned, although GPT-2 XL (1.5B) is
nearly twice the size of GPT-2-Large (0.8B), calibration still provides a significant average perfor-
mance gain of roughly 18 pp. Unlike the IT models, the increase in model size did not guarantee
better calibration, suggesting that larger GPT-2 models are not inherently better calibrated unlike the
IT models.

5.3 TASK-LEVEL PERFORMANCE

Detailed results for each model across the seven datasets under different shot settings for all cali-
bration methods are provided in Table 2, Table 3 and Table 4, along with corresponding figures in
Appendix A. Across almost all models and shot settings, QuadCal consistently performs the best
on the AGNews dataset, which is a topic classification task. Similarly, on TREC, a question classi-
fication task, QuadCal consistently achieves the highest accuracy for GPT-2 models. For IT models,
the effect varies by model size. Smaller IT models benefit most from likelihood-based calibration
methods, especially QuadCal, while larger IT models see a stronger effect from confidence-based
calibration methods, especially CC.

For the binary subjectivity classification dataset Subj, confidence-based calibration generally per-
forms best, with BC frequently achieving the highest accuracy for the GPT-2 models. For Gemma
models, in the 0-shot settings, confidence-based methods perform best, while in higher shot set-
tings, for almost all cases, QuadCal performs the best. For Llama models, the smaller mod-
els benefit the most from BC across all shot settings, and the larger model performs better with
likelihood-based calibration. This indicates that the effectiveness of the calibration depends both on
the model size and the shot settings.

For sentiment classification tasks (SST-2, SST-5, and MR), like other tasks, the GPT-2 models ben-
efit the most from calibration. For GPT-2, all calibration methods except CC perform competitively
on SST-2, a binary sentiment dataset, BC and ProCa generally outperform QuadCal on MR, a
binary movie review dataset, whereas on the fine-grained five-class SST-5 dataset, QuadCal gen-
erally performs better. For larger IT models, especially on binary sentiment datasets, calibration
generally provides little to no improvement, and when there is a gain, they are typically marginal.
However, for SST-5, calibration is beneficial as the number of shots increases, indicating that ad-
ditional context helps. For the smaller Llama model, likelihood-based methods generally perform
best. On the other hand, for the smaller Gemma model, confidence-based methods are better for
SST-5 and QuadCal performs the best for SST-2 but for MR, there is no clear trend across shots
or calibration methods.

Conversely, some datasets did not benefit from calibration. This indicates that they are either
difficult to calibrate or the models are already well-calibrated for that task. This includes RTE, a
textual entailment task dataset, which proves to be the most difficult to calibrate across all models
and shots, as well as sentiment analysis for bigger IT models and RTE for GPT-2 models.

5.4 RUNTIME ANALYSIS

QuadCal is consistently faster than ProCa across models of varying sizes, shot settings, and
datasets with different number of classes. The run time for both methods increases with an increase
in the number of shots and the size of the model. Figure 3 illustrates the run time comparison
between QuadCal and ProCa on the TREC dataset, which has the highest number of classes, across
different models and shot settings.

Interestingly, the run time difference between QuadCal and ProCa narrows as the number of shots
increases. From Table 5, we can see that the average speedup is the highest for 0-shot settings,
ranging approximately from 13% to 40%. Even in higher-shot settings, QuadCal maintains its
efficiency, albeit smaller, ranging approximately from 1.5% to 7%. The time taken could be further
reduced by having a pre-trained QDA or GMM + Munkres model for QuadCal and ProCa respec-
tively.
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Figure 3: Computation time taken (in seconds) for QuadCal vs ProCa for the TREC dataset with six
classes across different models and shot settings. QuadCal consistently shows to be faster.

5.5 SIGNIFICANCE TESTING

As mentioned in Section 4, we consider the results to be significant if they have higher mean accu-
racy or if one method performs consistently better than the other, as determined by either the paired
t-test or the binomial test. In such a setting, we can have three types of outcomes: (i) QuadCal is
significantly better than ProCa, (ii) ProCa is significantly better than QuadCal and (iii) no signifi-
cant difference, where neither test indicates an advantage of one method over the other in terms of
performance. This approach will ensure that we consider both the magnitude and the consistency of
the performance differences between the two methods.

With six LLMs, four different shot settings and seven datasets, we evaluated a total of 168 exper-
imental settings. Out of these, QuadCal outperformed ProCa in 44 cases, representing approxi-
mately 26% of the settings. Among these, 39 cases were significant according to the binomial test,
and 38 cases were significant according to the paired t-test. We observe that QuadCal shows consis-
tently and significantly better performance than ProCa across most models, particularly on datasets
such as AG News, TREC, SST-5, and SST-2, for various shot settings. It also performs significantly
better on MR under 0-shot settings for Llama-3.2-3B-IT and Gemma-3-1B-IT, on Subj under 8-shot
settings for Gemma-3-4B-IT and on RTE under 8-shot and 1-shot settings for Gemma-3-1B-IT and
Gemma-3-4B-IT, respectively.

Conversely, ProCa performed significantly better than QuadCal for 13 cases, representing ap-
proximately 8% of the settings. Among these, 13 cases were significant according to the binomial
test, and 10 cases were significant according to the paired t-test. Interestingly, ProCa performs
significantly better than QuadCal on the Subj dataset, especially under low-shot settings for the
smaller models across all the model families. It also performs better on SST-2 under 0-shot for the
GPT-2 Large model and under 1-shot and 4-shot settings for Gemma-3-4B-IT model, on MR under
low-shot settings for both the GPT-2 models and the larger Gemma model, on RTE under 8-shot
and 1-shot settings for the smaller GPT-2 and Llama models, respectively. Although less frequent,
these results highlight that ProCa can achieve higher accuracy under certain models, shot settings
and datasets.

In the remaining experimental settings, no significant performance difference was observed be-
tween QuadCal and ProCa, representing approximately 66% of all cases. This suggests that for
many combinations of models, shot settings, and datasets, the performance of QuadCal and ProCa
is comparable.

6 DISCUSSION AND LIMITATIONS

Which calibration method to choose? As observed in Section 5, the effectiveness of a calibra-
tion method depends on several factors, including model size, model family, and the specific task
or dataset. Smaller IT models and models without instruction-tuning benefit the most from calibra-
tion, whereas larger IT models benefit less from post-hoc calibration, suggesting they are already
better calibrated. QuadCal consistently performs best on AGNews, TREC, and SST-5, and often
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achieves higher accuracy on SST-2 and MR. This indicates that QuadCal remains effective for tasks
with multiple classes that are well-distinguished and adequately represented, as confirmed by sig-
nificance testing. Overall, BC and QuadCal consistently improve accuracy over uncalibrated mod-
els and frequently provide the best performance, making them reliable choices for most scenarios.
While confidence-based methods may be computationally efficient, likelihood-based methods offer
a Bayesian approach that is theoretically grounded and particularly suitable when reliability is criti-
cal, even if it comes with a slightly higher computational cost. However, this cost is often one-time
if the task is well-defined and the calibration model is pre-trained, and among the likelihood-based
calibration methods, QuadCal is up to 40% more computationally efficient than ProCa.

Limitations
Some of the limitations of QuadCal are inherited from ProCa and, more generally, from likelihood-
based calibration methods. In particular, QuadCal requires an estimate set from the target task to
train the QDA model, and assumes a fixed label space. Any change in the label space will necessitate
retraining of the QDA model for calibration. QDA also becomes computationally expensive as
the number of classes increases, since it requires estimating the covariance matrix and computing
its inverse for each class. Alternatively, LDA could be explored for better efficiency, although it
assumes the same covariance for all classes. Furthermore, like ProCa, QuadCal shifts the decision
boundary and does not directly calibrate the confidence scores. This prevents the use of standard
calibration assessment metrics such as ECE. Additionally, QuadCal focuses solely on mitigating
contextual bias, and any inherent bias in the pre-trained LLM is left unaddressed.

7 CONCLUSION

We introduced QuadCal, a supervised likelihood-based calibration method for in-context learning
that uses QDA to efficiently model class-conditioned distributions. Across a range of natural lan-
guage classification tasks and various pre-trained LLMs, including instruction-tuned (IT) models,
QuadCal matches or outperforms existing calibration methods, while being up to 40% faster than
ProCa. Our results indicate that the GPT-2 models and smaller IT models benefit the most from
calibration. By providing a faster Bayesian approach for calibration, QuadCal improves reliability
in high-stakes domains where miscalibrated predictions could have significant consequences.
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A APPENDIX

Table 2: Accuracy(%) of GPT-2 models on seven text classification datasets under various ICL shot
settings. Performance is reported for different calibration techniques (CC, BC, ProCa and QuadCal),
ICL denotes the uncalibrated baseline. Results are the mean accuracy over 5 random seeds (mean ±
standard deviation). ‘Avg’ and ‘Med’ represents macro-average and macro-median accuracy across
datasets, respectively.

Shots Method SST-2 SST-5 MR Subj AGNews RTE TREC Avg Med
GPT-2-Large 0.8B

ICL 72.10.0 26.20.0 70.20.0 62.10.0 33.50.0 53.10.0 34.60.0 50.25 53.07
CC 80.40.0 41.70.0 75.00.0 54.50.0 59.30.0 54.90.0 32.00.0 56.81 54.87

0-shot BC 85.30.0 39.70.0 81.30.0 70.20.0 66.50.0 54.50.0 45.00.0 63.22 66.45
ProCa 85.30.4 36.94.7 82.20.5 68.71.0 57.53.2 52.72.4 40.67.3 60.55 57.54
QuadCal 83.40.9 40.51.7 80.90.8 66.22.5 68.32.0 51.13.9 55.53.9 63.70 66.19
ICL 56.010.9 28.410.4 53.34.4 50.51.5 28.85.3 52.60.8 32.73.4 43.19 50.45
CC 75.712.9 40.03.6 68.712.1 61.42.2 65.05.8 50.22.9 39.78.1 57.25 61.40

1-shot BC 82.91.9 38.72.3 79.20.8 65.84.9 64.26.4 51.52.1 43.44.5 60.82 64.23
ProCa 82.92.4 31.43.3 78.63.1 64.74.3 53.28.5 50.82.3 37.414.3 57.00 53.25
QuadCal 82.62.3 38.91.2 76.62.4 61.64.3 67.34.6 51.02.4 57.75.3 62.26 61.62
ICL 52.72.0 31.58.5 59.48.5 60.310.7 33.75.3 52.12.8 32.46.9 46.02 52.13
CC 70.310.9 42.32.3 70.115.3 58.510.3 56.65.4 50.53.6 42.37.1 55.80 56.62

4-shot BC 87.02.4 43.21.6 81.82.5 75.83.2 65.97.2 51.41.9 45.12.5 64.31 65.86
ProCa 86.32.7 34.91.8 79.45.2 75.93.7 53.014.6 51.82.9 35.88.5 59.58 53.03
QuadCal 86.73.5 43.51.2 79.24.0 74.03.0 67.34.9 48.23.5 64.91.7 66.26 67.30
ICL 72.017.4 31.27.0 61.89.9 57.98.7 40.96.7 54.11.5 38.06.0 50.83 54.13
CC 83.812.0 40.05.5 72.77.6 63.411.0 52.610.8 54.21.5 47.07.7 59.10 54.20

8-shot BC 88.03.1 42.73.4 83.51.4 79.85.5 72.63.0 54.01.8 52.43.0 67.57 72.60
ProCa 88.62.1 35.13.9 83.91.5 78.66.5 59.512.0 54.30.9 50.17.0 64.30 59.51
QuadCal 89.41.1 42.11.1 82.22.7 78.26.6 72.82.7 47.92.9 66.65.2 68.45 72.78

GPT-2-XL 1.5B
ICL 58.60.0 28.40.0 58.90.0 57.60.0 41.50.0 49.80.0 28.60.0 46.21 49.82
CC 69.30.0 22.60.0 67.00.0 72.90.0 67.70.0 50.50.0 42.80.0 56.12 66.98

0-shot BC 83.60.0 40.00.0 80.60.0 71.60.0 68.10.0 48.00.0 45.80.0 62.54 68.10
ProCa 82.92.5 39.03.9 81.90.4 72.01.5 59.93.6 49.80.5 42.47.3 61.12 59.85
QuadCal 83.71.1 41.62.8 81.70.6 70.90.8 68.60.4 50.12.8 51.71.7 64.04 68.63
ICL 59.714.0 26.28.5 51.40.6 54.48.6 40.210.1 53.60.9 29.16.5 44.95 51.35
CC 76.42.2 30.25.7 69.45.0 62.07.0 65.03.8 52.90.8 40.53.4 56.65 62.05

1-shot BC 83.24.0 39.42.4 80.11.3 73.14.0 70.53.9 49.81.3 45.81.5 63.12 70.55
ProCa 90.11.5 38.43.7 84.21.2 71.05.1 67.12.7 49.51.8 36.48.4 62.36 67.12
QuadCal 86.52.9 41.64.0 78.92.6 70.54.5 71.63.2 50.84.3 52.24.4 64.59 70.55
ICL 66.313.7 31.47.4 56.55.9 53.45.0 40.913.0 52.03.3 23.85.7 46.31 51.99
CC 79.910.2 33.53.5 67.78.9 68.08.7 59.96.4 52.80.6 41.14.5 57.54 59.92

4-shot BC 90.10.8 40.73.0 77.311.4 74.110.0 72.85.6 51.41.7 47.43.6 64.83 72.84
ProCa 89.80.8 35.15.0 78.311.9 74.39.8 68.78.0 51.51.5 40.27.5 62.55 68.66
QuadCal 90.30.8 42.81.5 76.111.2 73.311.2 74.14.9 47.93.2 51.91.8 65.19 73.31
ICL 57.09.0 30.67.9 65.212.7 57.911.3 42.94.2 52.92.2 37.25.0 49.09 52.90
CC 73.911.5 28.73.4 74.28.3 68.38.3 55.914.0 53.20.3 45.91.7 57.15 55.92

8-shot BC 87.31.9 39.22.8 80.75.8 79.93.2 76.33.5 51.51.3 50.62.9 66.48 76.27
ProCa 87.51.9 36.44.0 80.46.1 78.43.1 69.47.7 51.41.7 39.56.6 63.26 69.38
QuadCal 86.52.5 43.41.2 77.06.9 79.43.4 78.63.0 49.04.2 54.44.6 66.88 77.02

Usage of LLMs
The free version of ChatGPT was primarily used to refine and polish the text, which was originally
written by the authors. No text generated by ChatGPT was directly included. It was also used for
coding tasks, particularly for visualizations. The code to draw the ellipse in Figure 1 was generated
by ChatGPT. For other plots, either the authors wrote the initial draft of the code and refined it with
ChatGPT, or ChatGPT provided the initial draft which was then refined by the authors. Essentially,
it was used as an alternative to search engines for coding tasks.
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Table 3: Accuracy(%) of Llama models on seven text classification datasets under various ICL shot
settings. Performance is reported for different calibration techniques (CC, BC, ProCa and QuadCal),
ICL denotes the uncalibrated baseline. Results are the mean accuracy over 5 random seeds (mean ±
standard deviation). ‘Avg’ and ‘Med’ represents macro-average and macro-median accuracy across
datasets, respectively.

Shots Method SST-2 SST-5 MR Subj AGNews RTE TREC Avg Median
Llama-3.2-IT 1B

ICL 86.70.0 38.50.0 84.20.0 62.40.0 47.60.0 57.00.0 37.80.0 59.18 57.04
CC 89.70.0 46.60.0 85.20.0 53.60.0 61.60.0 49.10.0 40.20.0 60.87 53.60

0-shot BC 89.10.0 41.70.0 85.70.0 63.20.0 69.10.0 66.40.0 56.20.0 67.34 66.43
ProCa 90.20.6 41.42.2 86.50.5 63.20.1 56.38.6 65.90.6 44.76.4 64.02 63.16
QuadCal 89.11.0 45.33.5 86.20.3 59.61.1 69.93.2 60.95.4 54.52.0 66.51 60.94
ICL 88.73.5 41.25.4 84.03.7 60.35.8 76.53.9 50.61.7 52.84.8 64.88 60.28
CC 85.77.6 35.46.8 84.74.1 63.52.5 78.27.7 49.41.4 53.57.3 64.34 63.52

1-shot BC 90.42.1 43.12.7 85.62.3 69.24.1 84.01.1 66.11.8 59.41.6 71.11 69.17
ProCa 89.32.2 39.26.3 86.22.3 68.84.3 82.71.7 67.21.8 49.88.7 69.02 68.83
QuadCal 91.80.9 44.51.6 86.81.5 63.93.3 84.20.9 61.73.0 63.72.6 70.94 63.88
ICL 92.90.8 42.26.5 83.34.7 59.17.7 70.311.7 49.32.0 48.67.1 63.68 59.10
CC 93.21.4 38.95.2 86.51.8 69.710.0 80.04.2 51.75.9 53.113.9 67.58 69.65

4-shot BC 93.40.3 42.42.7 86.52.3 73.97.5 80.25.2 63.43.0 61.25.4 71.59 73.90
ProCa 91.12.7 38.66.6 87.51.1 72.87.3 80.72.4 64.92.3 64.66.1 71.48 72.85
QuadCal 93.70.3 44.94.7 87.32.2 72.59.0 83.11.0 62.71.4 53.626.3 71.11 72.51
ICL 92.52.0 45.53.9 87.12.9 54.62.9 80.44.7 52.26.0 56.311.6 66.97 56.32
CC 92.81.1 39.94.4 89.01.0 64.47.4 79.25.7 51.26.7 59.08.7 67.93 64.40

8-shot BC 93.01.3 42.43.1 88.51.4 70.64.6 83.01.9 64.52.7 62.64.4 72.08 70.57
ProCa 90.12.3 36.08.6 87.51.4 67.310.7 82.32.4 65.02.9 53.511.0 68.81 67.29
QuadCal 93.20.9 45.91.9 88.31.5 68.16.5 83.71.8 63.25.6 68.63.3 72.99 68.64

Llama-3.2-IT 3B
ICL 91.20.0 48.10.0 87.20.0 49.40.0 53.00.0 75.10.0 55.80.0 65.69 55.80
CC 89.20.0 48.00.0 84.20.0 49.40.0 73.20.0 72.90.0 55.80.0 67.53 72.92

0-shot BC 91.00.0 44.20.0 87.30.0 49.60.0 77.70.0 75.10.0 64.60.0 69.94 75.09
ProCa 90.40.8 36.53.6 86.00.9 50.00.5 73.34.8 72.32.7 66.35.2 67.83 72.35
QuadCal 91.00.2 46.72.1 87.30.2 49.90.5 78.71.0 71.50.9 69.06.7 70.58 71.48
ICL 93.81.3 46.71.3 89.21.2 72.75.5 84.11.3 76.12.0 63.95.7 75.22 76.10
CC 92.22.9 46.12.3 87.22.4 69.84.6 83.23.0 75.31.7 75.74.1 75.65 75.72

1-shot BC 94.11.0 46.81.0 89.61.0 77.32.8 85.30.8 77.31.8 71.44.3 77.37 77.26
ProCa 93.21.6 41.75.8 89.70.8 75.33.3 84.11.5 76.52.2 60.85.8 74.47 76.46
QuadCal 94.40.9 47.83.5 88.72.1 74.83.3 85.51.0 74.62.3 72.25.1 76.85 74.75
ICL 95.70.3 45.52.1 90.50.8 55.83.0 82.72.3 78.82.5 70.35.0 74.19 78.84
CC 95.30.6 39.83.2 89.01.7 77.78.9 84.42.0 77.33.6 73.34.2 76.69 77.70

4-shot BC 95.70.3 45.81.6 90.50.8 81.73.7 84.41.1 80.61.5 76.63.2 79.33 81.73
ProCa 95.20.3 39.02.6 89.82.1 82.83.5 84.10.8 79.23.5 73.66.8 77.66 82.84
QuadCal 95.50.4 48.01.6 90.10.8 83.64.0 85.20.6 79.82.0 70.37.0 78.93 83.59
ICL 95.90.3 45.62.1 90.51.3 53.52.4 82.52.4 78.94.0 71.83.0 74.11 78.91
CC 95.40.5 37.13.4 89.12.0 81.45.3 84.31.9 77.07.9 77.81.9 77.44 81.42

8-shot BC 95.80.3 46.52.5 91.10.5 85.14.1 84.90.9 80.41.9 76.61.3 80.06 84.94
ProCa 94.71.1 46.26.7 89.81.4 86.01.9 84.41.7 80.91.0 68.45.7 78.61 84.38
QuadCal 95.50.4 48.81.8 90.70.5 87.33.6 85.01.1 79.72.2 71.33.6 79.78 85.05
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Table 4: Accuracy(%) of Gemma models on seven text classification datasets under various ICL
shot settings. Performance is reported for different calibration techniques (CC, BC, ProCa and
QuadCal), ICL denotes the uncalibrated baseline. Results are the mean accuracy over 5 random
seeds (mean ± standard deviation). ‘Avg’ and ‘Med’ represents macro-average and macro-median
accuracy across datasets, respectively.

Shots Method SST-2 SST-5 MR Subj AGNews RTE TREC Avg Median
Gemma-3-IT 1B

ICL 86.70.0 39.50.0 82.80.0 61.80.0 37.00.0 68.60.0 70.00.0 63.77 68.59
CC 82.70.0 42.50.0 78.40.0 62.40.0 42.90.0 67.90.0 60.00.0 62.40 62.40

0-shot BC 86.90.0 40.40.0 83.60.0 62.40.0 65.70.0 69.30.0 69.00.0 68.17 69.00
ProCa 84.01.2 37.22.2 79.61.2 62.30.4 57.02.4 67.22.0 67.42.7 64.95 67.22
QuadCal 87.20.5 41.51.5 82.10.7 59.60.4 70.32.9 66.81.6 72.42.8 68.55 70.31
ICL 89.81.8 45.00.7 83.80.6 53.71.6 75.22.7 61.71.5 62.04.9 67.31 62.00
CC 90.12.3 46.00.9 84.60.8 60.58.2 75.13.9 60.41.7 65.83.7 68.92 65.76

1-shot BC 90.01.7 44.61.6 84.10.4 61.74.5 77.42.4 63.81.2 65.24.1 69.54 65.24
ProCa 90.01.2 39.73.8 85.11.4 63.45.8 77.52.2 63.01.6 63.82.6 68.94 63.80
QuadCal 90.51.3 43.72.5 84.70.7 64.66.7 82.01.2 66.12.7 71.75.0 71.88 71.68
ICL 89.73.5 45.01.9 85.70.6 61.08.5 70.75.5 60.63.5 48.512.6 65.87 60.95
CC 91.01.6 44.82.3 86.40.5 68.66.5 73.43.0 59.93.1 59.47.3 69.07 68.57

4-shot BC 90.13.0 44.91.3 85.90.6 71.46.9 74.23.7 62.53.6 51.711.5 68.67 71.41
ProCa 91.11.5 41.63.5 85.60.3 73.47.6 73.02.6 63.52.6 56.77.2 69.27 72.95
QuadCal 91.50.9 44.73.6 85.70.6 73.76.3 80.02.3 64.95.5 70.24.4 72.95 73.71
ICL 90.21.5 44.32.4 84.12.5 62.26.3 81.41.1 60.92.7 44.910.4 66.84 62.18
CC 90.42.8 43.63.9 84.73.8 78.47.3 78.51.9 60.62.4 55.36.6 70.20 78.37

8-shot BC 90.41.4 44.92.2 84.71.9 77.93.0 81.50.8 63.52.6 50.06.9 70.40 77.88
ProCa 91.31.7 42.85.4 86.60.8 82.01.8 80.41.4 65.81.2 63.44.6 73.19 80.43
QuadCal 92.00.9 44.42.4 86.60.5 82.12.5 81.72.1 68.11.4 70.72.5 75.09 81.71

Gemma-3-IT 4B
ICL 90.30.0 45.60.0 86.50.0 50.00.0 80.00.0 74.00.0 70.40.0 70.97 74.01
CC 91.80.0 30.30.0 88.10.0 50.00.0 80.50.0 74.70.0 71.40.0 69.54 74.73

0-shot BC 90.90.0 43.90.0 87.20.0 50.50.0 80.50.0 74.70.0 70.40.0 71.15 74.73
ProCa 91.41.4 40.92.9 87.80.3 49.90.8 81.10.6 73.71.9 68.40.8 70.43 73.65
QuadCal 91.81.3 44.81.6 86.51.1 49.90.4 82.00.8 76.40.8 66.15.4 71.04 76.39
ICL 95.90.3 50.02.9 90.61.0 59.95.0 80.72.2 75.91.4 74.00.5 75.26 75.88
CC 95.80.3 50.82.5 90.80.9 73.612.2 78.03.9 76.51.1 74.91.5 77.21 76.53

1-shot BC 95.90.2 50.32.8 90.60.9 69.34.6 81.21.9 76.11.4 74.00.6 76.76 76.10
ProCa 95.80.2 48.94.2 90.80.8 75.27.8 81.62.0 76.11.5 72.31.9 77.26 76.10
QuadCal 95.20.8 48.24.9 90.21.6 72.16.7 84.11.5 78.31.0 71.82.8 77.13 78.34
ICL 96.00.4 47.71.1 91.41.1 69.310.1 80.84.1 80.62.0 71.26.4 76.69 80.58
CC 96.00.5 47.05.0 91.31.0 82.83.2 80.92.6 80.72.0 77.54.9 79.45 80.90

4-shot BC 96.00.4 48.71.0 91.31.1 76.26.5 81.93.1 80.62.0 71.86.5 78.08 80.58
ProCa 96.10.2 44.94.3 91.30.5 82.73.4 83.51.5 80.52.0 73.24.5 78.89 82.66
QuadCal 95.20.6 50.32.5 91.30.4 83.03.3 84.41.2 80.52.2 75.18.2 79.99 83.01
ICL 95.40.9 49.11.5 90.92.1 72.510.5 85.61.5 80.71.8 76.03.1 78.61 80.65
CC 95.50.4 48.06.0 91.31.5 86.83.8 86.80.3 81.42.2 78.43.2 81.16 86.80

8-shot BC 95.50.8 51.50.7 91.01.9 82.04.8 85.81.2 80.51.6 74.83.0 80.15 81.99
ProCa 95.60.5 46.95.3 91.30.8 87.23.3 85.90.7 81.02.0 77.24.7 80.74 85.92
QuadCal 95.40.2 49.03.2 91.30.5 89.02.4 85.01.2 80.72.2 77.25.4 81.10 85.04
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Table 5: Computation time (in seconds) of QuadCal and ProCa across different models, shot set-
tings, and datasets. The average speedup (%) across datasets highlights the efficiency of QuadCal,
particularly in low-shot settings.

SST-2 AGNews TREC
Model Shots ProCa QuadCal ProCa QuadCal ProCa QuadCal Avg speedup (%)

0 2.98 1.91 4.56 3.01 4.27 2.08 40.4%
GPT-2 XL 4 5.34 5.10 9.25 8.51 4.87 3.76 11.8%

8 9.01 8.81 16.44 15.81 7.02 5.94 7.1%
0 4.06 3.02 7.03 5.42 5.15 3.40 27.5%

Llama-3.2-3B-IT 4 10.08 9.75 16.49 16.04 8.29 7.30 6.0%
8 16.64 16.33 29.92 29.77 12.10 11.09 3.6%
0 6.49 5.61 11.38 10.33 7.71 6.35 13.5%

Gemma-3-4B-IT 4 17.63 17.52 29.85 29.58 13.95 13.18 2.3%
8 29.13 28.82 54.92 54.45 21.08 20.47 1.6%
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Figure 4: Accuracy(%) of the GPT-2-Large (0.8B) model across [0, 1, 4, 8]-shot settings for seven
natural language classification datasets. The four different calibration methods are compared against
the uncalibrated ICL baseline.
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Figure 5: Accuracy(%) of the GPT-2-XL (1.5B) model across [0, 1, 4, 8]-shot settings for seven
natural language classification datasets. The four different calibration methods are compared against
the uncalibrated ICL baseline.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0-shot 1-shot 4-shot 8-shot

80

85

90

95

Ac
cu

ra
cy

 (%
)

SST-2

0-shot 1-shot 4-shot 8-shot

30

35

40

45

50

Ac
cu

ra
cy

 (%
)

SST-5

0-shot 1-shot 4-shot 8-shot

80

85

90

Ac
cu

ra
cy

 (%
)

MR

0-shot 1-shot 4-shot 8-shot50

60

70

80

Ac
cu

ra
cy

 (%
)

Subj

0-shot 1-shot 4-shot 8-shot
50

60

70

80

Ac
cu

ra
cy

 (%
)

AG News

0-shot 1-shot 4-shot 8-shot

50

60

70

Ac
cu

ra
cy

 (%
)

RTE

0-shot 1-shot 4-shot 8-shot

40

60

80

Ac
cu

ra
cy

 (%
)

TREC

Model: Llama-3.2-1B-IT

Methods
ICL CC BC ProCa QuadCal

Figure 6: Accuracy(%) of the Llama-3.2-IT 1B model across [0, 1, 4, 8]-shot settings for seven
natural language classification datasets. The four different calibration methods are compared against
the uncalibrated ICL baseline.
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Figure 7: Accuracy(%) of the Llama-3.2-IT 3B model across [0, 1, 4, 8]-shot settings for seven
natural language classification datasets. The four different calibration methods are compared against
the uncalibrated ICL baseline.
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Figure 8: Accuracy(%) of the Gemma-3-IT 1B model across [0, 1, 4, 8]-shot settings for seven
natural language classification datasets. The four different calibration methods are compared against
the uncalibrated ICL baseline.
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Figure 9: Accuracy(%) of the Gemma-3-IT 4B model across [0, 1, 4, 8]-shot settings for seven
natural language classification datasets. The four different calibration methods are compared against
the uncalibrated ICL baseline.
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