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ABSTRACT

We investigate size-induced distribution shifts in graphs and assess their impact
on the ability of graph neural networks (GNNs) to generalize to larger graphs
relative to the training data. Existing literature presents conflicting conclusions on
GNNs’ size generalizability, primarily due to disparities in application domains
and underlying assumptions concerning size-induced distribution shifts. Motivated
by this, we take a data-driven approach: we focus on real biological datasets
and seek to characterize the types of size-induced distribution shifts. Diverging
from prior approaches, we adopt a spectral perspective and identify that spectrum
differences induced by size are related to differences in subgraph patterns (e.g.,
average cycle lengths). We further find that common GNNs cannot capture these
subgraph patterns, resulting in performance decline when testing on larger graphs.
Based on these spectral insights, we introduce and compare three model-agnostic
strategies aimed at making GNNs aware of important subgraph patterns to enhance
their size generalizability: self-supervision, augmentation, and size-insensitive
attention. Our empirical results reveal that all strategies enhance GNNs’ size
generalizability, with simple size-insensitive attention surprisingly emerging as
the most effective method. Notably, this strategy substantially enhances graph
classification performance on large test graphs, which are 2-10 times larger than
the training graphs, resulting in an improvement in F1 scores by up to 8%.

1 INTRODUCTION

Graph neural networks (GNNs) (17; 28; 12; 40; 37; 19) have gained widespread popularity in graph
classification tasks owing to their outstanding performance. Though most GNNs can process graphs
of varying sizes, it remains under-explored whether they can generalize to graphs larger than those
encountered during training (size generalizability). Size generalization in GNNs holds significant
importance across multiple domains. For instance, in graph algorithmic reasoning (36; 29), GNNs
are expected to learn complex algorithms from small examples and generalize that reasoning to larger
graphs, as obtaining exact solutions for larger graphs is challenging. In the realm of biology, datasets
exhibit a wide range of graph sizes, spanning from small molecules to large compounds. Evaluating
whether learned knowledge is influenced by graph size is crucial, as size-dependent information may
potentially have a detrimental impact on performance when employing pre-training strategies (13).

Existing literature presents conflicting conclusions on GNNs’ size generalizability. On one hand,
several studies (21; 35; 26) have provided support for the ability of GNNs to effectively generalize
across varying sizes. For instance, a theoretical study (21) established that spectral GNNs exhibit
robust transferability between graphs with different sizes and topologies, provided that these graphs
discretize the same underlying space in some generic sense. Other works further provided empirical
evidence supporting the strong size generalizability of GNNs in the domains of algorithmic task
learning (35) and physics simulations (26). On the other hand, several studies (38; 6; 4) have observed
performance degradation when a size shift exists between the training and test data. For instance, a
recent work (38) showed theoretically and empirically that the difference in degree patterns between
small and large graphs contributes to this performance decline. There have also been proposals of
novel models (4) and regularization techniques (6) to enhance the size generalizability of GNNs.
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These conflicts mainly arise from disparities in application domains and underlying assumptions
concerning size-induced distribution shifts.

Motivated by these conflicts, we take a data-driven approach: we focus on real biological datasets
and seek to characterize the types of size-induced distribution shifts. This characterization provides
valuable insights into the size generalizability of GNNs. Specifically, we adopt a spectral perspective
and identify the connections between the spectrum differences induced by varying graph sizes and
the differences in subgraph patterns, particularly cycles. We find that breaking cycles in graphs
amplifies the spectrum difference between smaller and larger graphs, whereas extending cycle lengths
in smaller graphs to align with those in larger graphs reduces this difference. Furthermore, we
observe that conventional GNNs struggle to generalize effectively without explicit cycle information,
leading to performance degradation on larger graphs. To address this, we propose and compare
three model-agnostic strategies aimed at equipping GNNs with cycle information to enhance size
generalizability: self-supervision, augmentation, and size-insensitive attention. Our empirical results
demonstrate that all strategies enhance GNNs’ size generalizability, with simple size-insensitive
attention surprisingly emerging as the most effective method. Although prior research has established
GNNs’ limitations in counting cycles (8), the primary focus of this paper is to delve into how this
limitation influences the size generalizability of GNNs.

In sum, our paper makes the following contributions:

• New Observations. We characterize the types of distribution shifts caused by various graph sizes
in biological networks, offering insights for designing a size-agnostic GNN.

• Spectral Analysis. Unlike prior work, we leverage spectral analysis to deepen our understanding
of the size generalizability of GNNs.

• Model Agnostic Strategies. To make GNNs aware of important size-related subgraph patterns
(e.g., average cycle lengths), we propose and compare three model-agnostic strategies that improve
size-generalizability of GNNs. We find that simple size-insensitive attention is the most effective
strategy among the three.

2 NOTATIONS AND PRELIMINARIES

In this section, we begin by introducing the notations and definitions used throughout the paper. Next,
we provide an introduction to the fundamentals of GNNs.

2.1 NOTATIONS & DEFINITIONS

Let G(V , E) be an undirected and unweighted graph with N nodes, where V denotes the node set, and
E denotes the edge set. The neighborhood of a node vi is defined as the set of all nodes that connect
to vi: Ni = {vj |(vj , vi) 2 E}. The graph is represented by its adjacency matrix A 2 RN⇥N , and it
has a degree matrix D, where the ith diagonal element di corresponds to the degree of node vi.

Cycle basis. An important concept we use to study cycles is cycle basis (27). A cycle basis is defined
as the smallest set of cycles where any cycle in the graph can be expressed as a sum of cycles from
this basis, similar to the concept of a basis in vector spaces. Here, the summation of cycles is defined
as “exclusive or” of the edges. We represent the cycle basis for a graph as C and refer to the jth cycle
in this cycle basis as Cj . The cycle basis can be found using the algorithm CACM 491 (25).

2.2 GRAPH LEARNING TASK

In this paper, we focus on the graph classification task, where each node vi is associated with a feature
vector x(0)

i , and the feature matrix X(0) is constructed by arranging the node feature vectors as rows.
When using a GNN for the graph classification task, we further denote the node representation matrix
at the l-th layer as X(l), and the representation of node vi as x(l)

i .

Supervised Graph Classification. Each graph Gi is associated with a ground truth label yGi sampled
from a label set L̂. Given a subset of labeled graphs (from a label set L̂), the goal is to learn a
mapping fG : (A,X(0))i 7! yGi between each graph Gi and its ground truth label yGi 2 L̂. The
graph classification loss is given by L = 1

|Gtrain|
P

Gi2Gtrain
CrossEntropy (xGi , yGi ), where Gtrain is

the training graph set and xGi is the representation of graph Gi.
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Evaluation of Size Generalizability. Following prior work (6; 38), we evaluate the size general-
izability of GNNs by testing their classification performance on graphs whose sizes are larger than
those in the train set. We obtain the small training graphs and large test graphs from the same dataset.

2.3 GRAPH NEURAL NETWORKS

GNNs can be designed from either the spatial perspective or the spectral perspective. Despite the
difference in the design perspectives, a recent work (1) has shown that spectral GNNs and spatial
GNNs are related and that spectral analysis of GNNs’ behavior can provide a complementary point
of view to understand GNNs in general. Most spatial GNNs (17; 34; 28; 12) use the message passing
framework (11), which consists of three steps: neighborhood propagation, message combination
and global pooling. Spectral GNNs (5; 10; 22) utilize the spectral properties of a propagation
matrix T to perform the graph classification. The propagation matrix T is usually a function of the
adjacency matrix A, such as the normalized adjacency matrix T = (D+ I)�1/2(A+ I)(D+ I)�1/2,
or the normalized graph Laplacian matrix L̂. Since we consider an undirected graph with a real
and symmetric adjacency matrix, the propagation matrix T is also real and symmetric. Then, we
can perform the eigendecomposition on the propagation matrix T: T = U⇤UT , where U is an
orthogonal matrix whose columns Ui are orthonormal and are the eigenvectors of T, and ⇤ is a
matrix whose diagonal elements are the eigenvalues of T, sorted from large to small by their absolute
values. The set of eigenvectors {Ui} form the orthonormal basis of Rn. The goal of a spectral
GNN is to learn a proper spectral filter: f(⇤) = c0I+ c1⇤+ c2⇤2 + · · ·+ ci⇤i + · · · , where ci
are the learnable coefficients. The convolution at each layer can be viewed as or is equivalent to:
X(l+1) = �(Uf(⇤)UTX(l)W(l)), where W(l) is a learnable weight matrix, and �(·) is a nonlinear
function (e.g., ReLU). The graph representation is obtained from the node representations at the last
convolution layer: xG = Pooling ({x(Last)

i }), where the Pooling function is performed on the
set of all the node representations, and it can be Global_mean or Global_max or other more
complex pooling functions (39; 18).

3 SPECTRAL ANALYSIS OF SIZE-INDUCED DISTRIBUTION SHIFTS

In this section, we first show that the independence of the eigenvalue distribution of the propagation
matrix T from the graph size is the key to achieving size generalizability of GNNs (§ 3.1). Next,
focusing on biologically data, we empirically verify that the eigenvalue distribution of the propagation
matrix depends on the graph size (§ 3.2). Finally, we explore the subgraph patterns responsible for
the spectral disparities between small and large graphs, unveiling two key findings in § 3.3:
• Breaking cycles in graphs amplifies the spectrum difference between smaller and larger graphs.
• Extending cycle lengths in smaller graphs to match larger ones reduces the spectrum difference.

3.1 GRAPH SPECTRUM AND SIZE GENERALIZABILITY OF GNNS

To understand how GNNs generalize over graphs with different sizes, we examine the formulation of
graph representations. In the context of spectral GNNs, graph representations rely on the eigenvalues
of the propagation matrix. Consequently, the connection between graph representations and graph size
reduces to the connection between the graph’s spectrum and its size. More formally, we theoretically
show the following proposition in Appendix A.

Proposition 1 When graphs of various sizes exhibit distinct eigenvalue distributions for the propaga-

tion matrix, the representations learned by spectral GNNs correlate with the graph size.

The proposition suggests that for GNNs to achieve effective generalization to larger graphs, the
disparity in the spectrum between small and large graphs should be small.

3.2 SIZE-RELATED SPECTRUM DIFFERENCES IN REAL-WORLD DATA

We now investigate how the eigenvalue distribution of the normalized adjacency matrix varies with
graph size in real-world data. As indicated in Proposition 1, the spectrum discrepancy between small
and large graphs affects the size generalizability of GNNs.

Datasets. We explore five pre-processed biological datasets (BBBP, BACE, NCI1, NCI109, and
PROTEINS) from the Open Graph Benchmark (14) and TuDataset (23). More details about the
datasets are provided in Appendix B.
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Figure 1: Pairwise graph distance of eigenvalue distributions: Graphs are sorted from small to large,
and the (i,j)-th pixel in the plot represents the Wasserstein distance between the i-th and j-th graphs.
Dark blue represents a small distance (high similarity), while light red represents a large distance (low
similarity). We find that eigenvalue distributions show a strong correlation with the graph size.

Table 1: Average Wasserstein distance between graphs of ‘similar sizes’ and graphs of ‘different
sizes’ based on eigenvalue distributions, respectively. The relative difference is computed by the
difference of the Wasserstein distance normalized by the Wasserstein distance of similar graphs.

BBBP BACE PROTEINS NCI109 NCI1
Different Size 0.00566 0.00411 0.00765 0.00563 0.00566
Similar Size 0.00184 0.00149 0.00261 0.00215 0.00215

Relative Difference 208% 177% 193% 162% 164%

Setup. Figure 1 illustrates the pairwise distances of the graphs arranged in ascending order of size,
where the distances are calculated using the Wasserstein distance (31). We represent the graphs
by their empirical distributions of the eigenvalues that are obtained from the normalized adjacency
matrix as suggested in (17): T = (D+ I)�1/2(A+ I)(D+ I)�1/2. Using the normalized Laplacian
matrix leads to similar observations. We note that the eigenvalues do not scale with the graph size,
and they are bounded between [-1,1]. Dark blue represents a small distance (high similarity) while
light red represents a large distance (low similarity).

Results. As can be seen in the three subplots in Figure 1, there is a wide blue band along the diagonal,
which indicates that graphs of similar size have more similar eigenvalue distributions than graphs
of different sizes. This suggests a strong correlation between the eigenvalue distributions and the
graph size. To verify the observation quantitatively, we compute the distance of graphs with ‘similar
size’ and graphs of ‘different sizes’ in Table 1. For each graph, we consider the 20 most ‘similar
graphs’ in terms of size, and treat the remaining graphs as graphs of ‘different sizes’. The table shows
that the Wasserstein distances of eigenvalue distributions between the graphs of different sizes are
significantly larger than the distances between graphs of similar size. Based on the empirical results
and Proposition 1, the correlation between the eigenvalue distributions and the graph size results
in the correlation of the final graph representation and the graph size, which prevents GNNs from
generalizing over larger size.

3.3 KEY FINDINGS: SIZE-RELATED DIFFERENCES IN SUBGRAPH PATTERNS

In this subsection, we aim to identify the subgraph patterns that explain the spectrum differences
between small and large graphs. Our empirical analysis pinpointed several peaks in the graph
spectrum that match the spectrum of cycles. This motivated us to examine how cycle properties differ
in small and large graphs and how these differences are revealed in the spectrum. Specifically, we aim
to answer two questions: (Q1) How does the existence of cycles in the graphs influence the spectrum
differences? (Q2) How do the variations in cycle lengths contribute to differences in the spectrum? In
our analysis, we investigate the properties of the cycles in the cycle basis of each graph.

3.3.1 EXISTENCE OF CYCLES & SPECTRUM: THE IMPACT OF BREAKING CYCLES

To understand how the existence of cycles in the graphs influences the spectrum differences, we break
all basis cycles with minimal edge removal while maintaining the same number of disconnected
components, according to the details and algorithm given in Appendix D.1. We analyze the impact of
breaking cycles by assessing the corresponding changes in the spectrum. By following the convention
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Figure 2: Pairwise graph distance measured by the Wasserstein distance of eigenvalue distributions
after breaking cycles and aligning cycle lengths on the NCI109 dataset. Breaking cycles amplifies
the correlation between eigenvalue distribution and graph size, while aligning cycle lengths reduces
the correlation.

Table 2: Average Wasserstein distance of eigenvalue distributions between graphs of similar size
and graphs of different sizes after breaking cycles and aligning cycle lengths. Relative difference
is computed as in Table 1. We use " (#) to denote the increase (decrease) in the relative difference
compared to not taking the corresponding action. Breaking cycles results in a larger relative difference,
while aligning cycle lengths reduces the relative difference.

Breaking cycles Aligning cycle lengths
Datasets Different sizes Similar size � relative difference Different sizes Similar size � relative difference
BBBP 0.00545 0.00152 " 50% 0.00565 0.00211 # 41%
BACE 0.00420 0.00148 " 6% 0.00417 0.00176 # 41%
NCI1 0.00547 0.00173 " 53% 0.00566 0.00242 # 31%
NCI109 0.00548 0.00174 " 52% 0.00568 0.00245 # 31%
PROTEINS 0.00670 0.00212 " 31% 0.00763 0.00302 # 41%

of Section 3.2, in the center of Figure 2, we plot the pairwise graph distance based on eigenvalue
distributions of graphs with different sizes after breaking cycles. The blue band along the diagonal of
the plot becomes darker and narrower, suggesting a larger spectrum difference between small and
large graphs and a stronger correlation between the spectrum and graph size. To evaluate the effects
quantitatively, we further compute the changes in the relative spectrum difference and present the
results in Table 2. These results indicate that failing to consider cycle information can lead to more
significant differences in the spectrum between graphs of varying sizes, potentially causing GNNs to
struggle with generalizing effectively to larger graphs.

3.3.2 CYCLE LENGTH & SPECTRUM: ALIGNING CYCLE LENGTHS

In Section 3.3.1, we showed that cycle information is crucial for GNNs to achieve size generalizability.
We now further explore what cycle information helps reduce the spectrum difference between small
and large graphs. To facilitate our exploration, we divide each real-world dataset into two subsets:
one subset contains small graphs, and the other subset containts graphs of significantly larger size.
Further details regarding this dataset split can be found in Appendix B. Using this dataset split, we
observe a significant difference in the cycle lengths for small and large graphs (Appendix D.1). As
described in Appendix D.1, to reduce that difference, we align the average cycle lengths between
small and large graphs by randomly inserting redundant nodes to increase the cycle lengths in small
graphs. The rightmost heatmap in Figure 2 shows how the correlation of eigenvalue distributions and
graph size changes after aligning cycle lengths. We observe a lighter blue band along the diagonal,
which suggests a weaker correlation between the spectrum and graph size. Furthermore, Table 2
quantitatively presents the changes in the relative spectrum difference between small and large graphs.
We observe that aligning cycle lengths results in reduced disparities in the spectrum between graphs
of different sizes. This indicates that GNNs capable of generalizing across varying cycle lengths may
exhibit better size generalizability. In Appendix D.2, we show that our approach of aligning the cycle
lengths is more effective at reducing the spectrum disparities than randomly adding the same number
of nodes and edges.
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4 METHODOLOGY: PROPOSED MODEL-AGNOSTIC STRATEGIES FOR GNNS

Our findings in Section 3 suggest that GNNs with better ability to identify cycles and generalize over
cycle lengths may have better size generalizability on biological graphs. However, recent work (8)
has found that most GNNs are incapable of learning cycle information. Inspired by these, we propose
three model-agnostic strategies to help GNNs learn the cycle information.

4.1 STRATEGY 1: SIZE-INSENSITIVE ATTENTION

One way to incorporate cycle information into GNNs is by encoding it in the features and leveraging
them within the attention mechanism to guide the learning process. Specifically, for each graph G,
we obtain its cycle basis C. Then, for each node vi 2 G, we calculate the average length of the cycle
basis to which it belongs:

`i =

8
<

:

P|C|
j=1 |Cj |· {vi2Cj}P|C|

j=1 {vi2Cj}
if vi belongs to some cycles

0 otherwise,
(1)

where {condition} is an indicator function that outputs 1 when the condition is met and 0 otherwise.
Then we manually construct a two-dimensional feature vector for each node vi based on its associated
cycle information:

ci = [ {vi2cycle}, `i]. (2)

We use the structural feature matrix C = [c1; . . . ; cN ] 2 RN⇥2 for attention. Since attention weights
often diminish with increasing graph size due to the utilization of Softmax, we propose scaling the
attention weights by the graph size and employing Global_max as the global pooling operation to
mitigate the impact of graph size. Mathematically, our final graph representation is given by:

k = Softmax(Cw>
A) ·N, xG = Global_max(Diag(k) ·X(Last)), (3)

where w>
A is a learnable vector, and Diag(·) creates a diagonal matrix using the vector as its elements.

We note that when we train on small graphs and test on large graphs, some structural features may
not be seen in the training, such as certain cycle lengths in the large graphs. We rely on the attention
mechanism to generalize to those cases.

4.2 STRATEGY 2: SELF-SUPERVISED AUXILIARY TASK

Our second proposed strategy utilizes a self-supervised auxiliary task to enhance the node represen-
tations with cycle-related information. The auxiliary task is to predict whether a node belongs to a
cycle. We do not utilize cycle lengths as labels because large test graphs may have cycle lengths not
present in the training data. Formally, let X(Last) denote the node representations obtained after the
last graph convolution. The conventional way of learning is to directly apply a pooling operator and
then minimize the loss function for label supervision as below:

Llabel = CrossEntropy(Linear(Pooling(X(Last)), yG)), (4)
where yG is the ground truth label for the graph. In this approach, we incorporate an additional loss
that aims to diffuse cycle-related information into the node representations through supervision:

Lcycle = CrossEntropy(MLP(X(Last)),ycycle), (5)
where ycycle is an indicator vector denoting whether a node belongs to a cycle. To sum up, the total
loss is given by:

L = Llabel + �Lcycle, (6)
where � is a hyperparameter tuned via cross-validation.

4.3 STRATEGY 3: AUGMENTATION

This approach aims to reduce the discrepancy between small and large graphs through direct augmen-
tation for the small training graphs. We augment the training graphs by extending the cycle lengths
such that the average cycle length and standard deviation align with those in large graphs. To achieve
this augmentation, we use the algorithm detailed in Appendix D.1. Additionally, we replicate the
features from the nodes with the lowest degrees in the same cycle to populate the features for the
newly added nodes. Last, we feed the augmented training graphs to GNNs for graph classification.
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5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our proposed strategies. We aim
to answer the following research questions: (RQ1) Effectiveness of cycle-aware strategies: Do
cycle-aware strategies effectively enhance the size generalizability of GNNs? And if so, which one
proves to be more effective? (RQ2) Comparison with other baselines: How does the most efficient
cycle-aware strategy compare to other baseline strategies?

5.1 SETUP

Dataset. We use the same biological datasets as in Section 3.2.

Data Preprocessing and Important Training Details. In order to analyze size generalizability,
we have four splits for each dataset: train, validation, small_test, and large_test, where large_test
contains graphs with significantly larger sizes. We generate the splits as follows. First, we sort the
samples in the dataset by their size. Next, We take the train, validation, and small_test split from
the 50% smallest graphs in the dataset. An intuitive way of getting the large_split is to take the
top k largest graphs. However, doing so would result in severe label skewness (class imbalances)
between the small_test and the large_test as demonstrated by Table 5 in Appendix C. To avoid such a
severe label shift, we select the same number of graphs per class as in the small_test subset, starting
from the largest graph within each class. This way guarantees that the label distribution between
small_test and large_test is the same, while ensuring that the graph size in the latter is 2-10 times
larger. Nevertheless, the smallest 50% samples still have significant class imbalance. To address this
issue, we use upsampling during training throughout the experiments, and we use F1 as the metric
to measure the model performance. More details about data preprocessing, hyperparameters, and
training can be found in Appendix C and Appendix F.

Baselines. We use six neural network models as our GNN backbones. Each model consists of
three layers, with a global max pooling layer employed in the final layer. The baseline models
are: Multilayer Perceptron (MLP), GCN (17), GAT (28), GIN (34), FAGCN (5), and GNNML3 (2).
We integrate six model-agnostic strategies with these GNN backbones. For our three proposed
strategies, we use (1) +SSL to denote the use of self-supervised auxiliary task, (2) +AugCyc to
denote the use of cycle-length augmentation, and (3) +SIA to denote the use of structural-based
size-insensitive attention. We also compare with other model-agnostic strategies: (4) thresholded
SAG pooling (18; 20) (+SAGPool), an attention-based pooling method effective for generalizing to
large and noisy graphs; (5) SizeShiftReg (6) (+SSR), a regularization based on the idea of simulating
a shift in the size of the training graphs using coarsening techniques; (6) RPGNN (24) (+RPGNN), an
expressive model for arbitrary-sized graphs; (7) two versions of CIGA (+CIGAv1 & +CIGAv2) (4),
a causal model good at handling out-of-distribution problems on graphs. Besides these model-agnostic
strategies, our baselines also include an expressive model SMP (30) (SMP), which excels at the cycle
detection task.

5.2 (RQ1) EFFECTIVENESS OF CYCLE-AWARE STRATEGIES

In this section, we aim to evaluate the effectiveness of our proposed cycle-aware strategies in
enhancing the size generalizability of GNNs and determine the most effective strategy.

As mentioned in Section 2.2, we evaluate the size generalizability of GNNs by training them on small
graphs and testing their graph classification performance on large graphs. Better size generalizability
translates into better performance on large graphs. Table 3 showcases the size generalizability results
for our three proposed cycle-aware strategies, which we evaluate across five distinct datasets and six
different backbone models. Notably, to better compare different strategies, the last column gives the
average improvements compared with the original model evaluated across all datasets.

First, all of our proposed strategies consistently lead to improvements in large test datasets without
sacrificing the performance on small graphs. On average, these enhancements can reach up to 8.4%,
affirming the effectiveness of cycle information in improving GNN size generalizability, as discussed
in Section 3. Second, it is worth noting that cycle lengths provide more valuable information for
enhancing size generalizability of GNNs. This is evident from the consistently better performance of
the strategies +AugCyc and +SIA compared to the +SSL strategy on large test graphs, which solely
predicts whether a node belongs to a cycle in the auxiliary task. Third, the simple attention-based
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Table 3: Size generalizability evaluated by the graph classification performance on small and large
test graphs. The performance is reported by the average F1 scores and its standard deviation. The
rightmost column denotes the average improvements compared with the original performance using
the same backbone model across five different datasets. The largest average improvement within the
same model and small/large category is highlighted in orange. All strategies enhance GNNs’ size
generalizability, with +SIA surprisingly emerging as the most effective method.

Datasets BBBP BACE PROTEINS NCI1 NCI109 Avg Improv
Models Small Large Small Large Small Large Small Large Small Large Small Large
MLP 90.36±0.71 55.61±3.37 61.06±5.79 21.06±7.89 36.15±2.28 21.55±1.34 36.43±3.89 3.36±2.87 35.87±4.23 4.65±3.72 - -
MLP+SSL 90.90±1.76 62.56±5.48 58.57±8.85 23.01±11.95 35.00±2.8 20.88±1.64 34.71±1.33 2.86±0.78 37.29±4.69 6.34±4.78 -0.68 +1.88
MLP+AugCyc 90.72±2.70 57.86±4.74 59.88±7.33 26.50±14.97 37.29±0.0 22.22±0.0 36.98±2.29 2.64±2.1 40.59±3.86 8.41±3.71 +1.12 +2.28
MLP+SIA 90.38±1.05 62.79±7.55 60.85±7.83 21.79±15.07 40.68±3.56 33.57±11.87 35.42±3.83 3.26±2.55 39.20±2.96 12.2±5.05 +1.33 +5.48

GCN 91.37±0.59 68.59±7.47 63.68±6.63 28.72±14.26 72.35±2.58 40.57±7.67 54.91±2.37 28.80±7.57 60.83±1.92 30.45±4.34 - -
GCN+SSL 92.66±1.21 73.24±5.71 64.92±4.44 32.84±16.08 72.46±1.58 41.21±6.66 57.43±3.23 32.58±10.08 60.50±3.09 27.35±11.42 +0.97 +2.01
GCN+AugCyc 91.41±1.33 68.08±7.65 63.83±5.44 35.65±7.70 72.87±3.68 54.73±8.24 53.85±3.71 27.39±8.33 62.78±2.98 33.62±3.58 +0.32 +4.47
GCN+SIA 91.32±0.73 71.66±6.99 64.35±9.76 24.24±17.03 73.84±3.65 58.74±9.49 59.78±1.65 45.70±6.70 60.32±2.90 38.78±4.55 +1.29 +8.40

GAT 91.27±1.43 68.35±7.02 69.73±2.05 42.23±11.18 72.25±4.25 43.86±6.82 58.22±2.86 49.36±4.12 64.39±3.29 38.36±8.93 - -
GAT+SSL 91.65±0.92 74.24±7.34 71.20±2.04 40.88±10.81 74.20±1.46 49.30±5.56 59.47±2.89 51.85±4.03 66.79±3.56 42.20±6.71 +1.49 +3.26
GAT+AugCyc 92.41±1.29 69.57±2.89 68.39±6.06 40.73±13.4 74.99±1.89 59.80±7.27 56.23±3.85 49.37±7.52 64.07±3.46 45.25±9.19 +0.05 +4.51
GAT+SIA 91.88±2.12 74.87±5.62 69.64±6.79 43.87±7.98 75.35±3.28 62.71±4.98 61.42±1.07 55.73±12.98 63.27±3.15 45.97±7.74 +1.14 +8.20

GIN 88.28±2.39 66.67±5.55 57.02±6.48 22.97±10.26 74.55±4.27 50.20±5.36 62.17±3.86 44.26±7.03 62.42±2.77 33.23±6.77 - -
GIN+SSL 91.13±1.32 68.67±9.75 56.46±8.59 23.91±10.64 75.47±1.15 48.14±4.00 61.18±3.53 46.47±9.86 63.11±4.05 35.0±11.43 +0.58 +0.97
GIN+AugCyc 92.56±1.17 77.69±5.63 58.30±5.29 23.89±13.17 74.56±2.92 51.02±8.42 62.70±0.94 46.76±5.34 64.56±5.45 37.16±5.86 +1.65 +3.84
GIN+SIA 92.70±0.45 75.99±4.74 61.30±6.77 24.42±16.37 74.88±4.24 51.36±7.76 62.83±1.07 42.82±8.92 63.00±4.24 41.65±4.19 +2.05 +3.78

FAGCN 90.58±1.72 64.93±7.62 62.96±2.12 24.65±11.71 70.03±5.20 42.34±6.61 43.51±4.29 10.16±7.80 55.78±3.5 22.65±12.87 - -
FAGCN+SSL 91.55±2.51 67.56±5.48 64.67±3.88 35.46±16.52 66.97±1.75 48.06±8.33 46.42±6.08 12.11±5.39 56.04±4.29 23.99±10.57 +0.56 +4.49
FAGCN+AugCyc 91.30±2.26 71.44±6.45 57.68±3.38 26.41±23.39 68.85±16.12 44.39±16.89 39.48±4.99 10.98±5.45 55.30±3.46 24.59±9.19 -2.05 +2.62
FAGCN+SIA 90.17±2.83 74.65±9.13 62.40±3.36 30.35±13.48 71.30±5.79 48.94±10.62 46.95±5.71 10.99±7.50 52.82±6.28 19.08±5.32 +0.16 +3.86

GNNML3 92.01±1.56 64.18±6.99 62.31±4.90 32.94±12.86 71.59±3.5 40.74±15.0 63.73±4.67 51.75±9.05 59.39±3.76 33.80±11.19 - -
GNNML3+SSL 92.96±1.54 64.18±8.62 65.65±5.69 31.78±12.72 74.41±3.21 56.81±3.49 63.91±3.34 48.84±10.07 61.01±2.44 35.13±9.49 +1.78 +2.67
GNNML3+AugCyc 91.38±2.92 69.82±5.51 63.36±2.78 32.59±10.32 70.54±5.00 38.79±5.21 62.30±3.27 55.57±11.73 58.18±3.17 41.30±14.75 -0.65 +2.93
GNNML3+SIA 92.70±0.81 70.43±6.36 64.57±2.72 37.73±7.68 69.32±3.79 48.94±10.62 63.91±5.81 48.85±12.11 61.58±3.98 49.70±17.85 +0.61 +6.45

strategy +SIA achieves the best overall performance improvements in all scenarios. On average, the
+SIA strategy enhances both in-distribution and out-of-distribution generalization, while +SSL and
+AugCyc excel particularly in out-of-distribution generalization. Additionally, +SIA achieves the
highest average improvements on large test graphs. We attribute this to the challenges GNNs face in
effectively learning cycle information, as shown in recent literature (8). Furthermore, in Appendix E,
we conduct an ablation study further demonstrating that the attention mechanism, without considering
the cycle information, cannot improve the size generalizability of GNNs.

5.3 (RQ2) COMPARISON WITH OTHER BASELINES

We now compare our best-performing strategy, +SIA, with other approaches and present their
respective graph classification performances in Table 3. We find that +SIA consistently achieves the
best performance compared with other baseline methods. While +SAGPool, +RPGNN, +SSR, and
+CIGA also enhance the size generalizability of GNNs, the improvements are less pronounced than
those of +SIA. Additionally, it’s worth noting that +SAGPool and +CIGAv1 show sensitivity to
hyperparameters. While not explicitly designed for size generalizability, the expressive model SMP
demonstrates strong performance on the BBBP dataset due to its cycle detection ability, validating
our empirical insights.

6 RELATED WORK

Literature on GNNs’ size generalization presents conflicting views. Empirical studies highlight
GNNs’ size generalizability in physics simulation (26) and algorithmic reasoning (35). Levie et al.
(21) theoretically showed that spectral GNNs robustly transfer between graphs with varied sizes when
discretizing the same underlying space. Meanwhile, some arguments suggest that GNNs may require
additional assistance to achieve size generalizability. For instance, Yan et al. (36) and Velivckovic et
al. (29) found that neural networks effectively generalize to larger graphs than those used in training
when attention weights are properly supervised. Conversely, some argue that GNN performance
degrades with size shifts between training and test data, leading to the proposal of various models to
mitigate this challenge. For instance, Yehudai et al. (38) argued that this performance degradation can
be attributed to the changes in the local degree patterns. Knyazev et al. (18) found that using attention
with proper thresholding can improve the size generalizability of GNNs. Buffelli et al. (6) simulated
a size shift in the training graphs via graph coarsening and proposed a regularization that makes the
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Table 4: Size generalizability evaluated with other baselines, following the same rule as in Table 3.
+SIA consistently and significantly outperforms other strategies regarding size generalizability.

Datasets BBBP BACE PROTEINS NCI1 NCI109 Avg Improv
Models Small Large Small Large Small Large Small Large Small Large Small Large
MLP 90.36±0.71 55.61±3.37 61.06±5.79 21.06±7.89 36.15±2.28 21.55±1.34 36.43±3.89 3.36±2.87 35.87±4.23 4.65±3.72 - -
MLP+SAGPool 89.42±5.84 52.52±14.98 65.82±9.42 13.04±5.02 42.54±12.82 20.84±7.84 45.41±13.21 12.32±15.78 42.18±9.88 15.35±12.31 +5.10 +1.57
MLP+RPGNN 90.44±1.03 55.10±7.64 57.80±8.53 21.26±8.20 45.60±2.69 20.71±1.41 35.34±4.35 13.45±25.12 38.60±2.37 10.44±18.77 +1.58 +2.95
MLP+SSR 91.07±0.67 57.02±9.04 60.35±5.36 25.42±4.02 37.15±2.48 22.77±4.28 34.42±1.89 1.27±0.63 38.68±4.70 6.96±4.65 +0.36 +1.44
MLP+CIGAv1 88.15±1.05 54.14±6.07 58.18±10.81 24.99±14.41 34.68±4.23 18.23±2.50 33.52±7.85 8.93±7.48 32.79±1.20 3.19±0.01 -2.51 +0.65
MLP+CIGAv2 88.08±3.84 61.70±13.15 57.46±4.71 18.43±16.73 38.28±4.23 24.87±5.62 35.77±7.55 4.22±6.89 38.45±3.68 4.55±1.28 -0.37 +1.51
MLP+SIA 90.38±1.05 62.79±7.55 60.85±7.83 21.79±15.07 40.68±3.56 33.57±11.87 35.42±3.83 3.26±2.55 39.20±2.96 12.2±5.05 +1.33 +5.48

GCN 91.37±0.59 68.59±7.47 63.68±6.63 28.72±14.26 72.35±2.58 40.57±7.67 54.91±2.37 28.80±7.57 60.83±1.92 30.45±4.34 - -
GCN+SAGPool 92.05±3.95 67.06±5.18 57.59±6.65 42.74±14.7 68.75±5.09 32.98±3.26 58.56±8.30 38.73±20.94 62.87±16.7 30.93±10.59 -0.66 +3.06
GCN+RPGNN 92.27±0.81 68.69±6.58 63.70±1.06 33.86±13.91 74.74±3.75 24.61±10.08 58.88±2.03 34.68±10.77 63.10±1.86 39.69±5,88 +1.91 +0.88
GCN+SSR 91.19±1.14 68.15± 6.38 66.01± 2.51 31.64±9.96 73.51± 2.91 43.33±5.19 59.60±2.62 35.01±7.13 59.78±2.71 33.11±6.44 +1.39 +2.82
GCN+CIGAv1 90.55±1.32 66.55±5.80 66.66±5.72 28.51±8.64 72.64±1.81 54.67±6.08 58.52±4.88 40.82±11.14 59.09±3.50 25.82±7.81 +0.86 +3.85
GCN+CIGAv2 89.45±3.60 69.71±8.20 65.02±1.80 35.42±12.36 72.15±3.86 60.12±6.84 57.89±3.74 35.42±10.75 58.12±5.37 28.51±10.10 -0.10 +6.41
GCN+SIA 91.32±0.73 71.66±6.99 64.35±9.76 24.24±17.03 73.84±3.65 58.74±9.49 59.78±1.65 45.70±6.70 60.32±2.90 38.78±4.55 +1.29 +8.40

GAT 91.27±1.43 68.35±7.02 69.73±2.05 42.23±11.18 72.25±4.25 43.86±6.82 58.22±2.86 49.36±4.12 64.39±3.29 38.36±8.93 - -
GAT+SAGPool 89.90±2.15 60.39±17.18 66.10±6.44 46.40±15.45 73.85±8.60 38.60±6.34 55.25±1.43 52.71±3.02 65.32±3.42 43.20±19.94 -1.09 -0.17
GAT+RPGNN 91.76±1.69 65.85±5.37 69.97±2.17 39.27±13.50 72.89±3.35 38.49±6.14 59.31±5.51 58.18±5.76 65.52±1.94 44.15±5.76 -0.75 +0.76
GAT+SSR 91.98±0.66 74.83±4.35 66.03±3.83 41.41±11.8 74.72±3.51 44.81±8.59 60.68±1.95 49.64±5.26 66.73±1.65 41.14±4.41 +0.86 +1.93
GAT+CIGAv1 89.53±1.51 67.35±8.74 67.18±5.12 39.88±18.64 73.28±4.87 48.56±5.42 59.52±3.27 54.35±11.85 66.82±2.03 50.62±4.85 +0.09 +3.72
GAT+CIGAv2 90.92±1.43 72.08±7.09 66.57±4.91 40.93±19.35 74.68±7.54 60.88±3.48 56.88±24.40 54.28±22.63 66.78±3.20 52.62±7.98 -0.01 +7.73
GAT+SIA 91.88±2.12 74.87±5.62 69.64±6.79 43.87±7.98 75.35±3.28 62.71±4.98 61.42±1.07 55.73±12.98 63.27±3.15 45.97±7.74 +1.14 +8.20

GIN 88.28±2.39 66.67±5.55 57.02±6.48 22.97±10.26 74.55±4.27 50.20±5.36 62.17±3.86 44.26±7.03 62.42±2.77 33.23±6.77 - -
GIN+SAGPool 91.56±1.32 71.20±11.86 62.22±7.45 26.17±17.98 68.73±13.46 35.77±21.54 65.50±4.50 45.66±3.56 59.29±5.83 44.64±9.53 +0.57 +1.22
GIN+RPGNN 89.59±1.33 69.23±8.05 57.23±7.07 16.28±9.31 71.63±5.85 45.11±15.98 61.59±4.12 48.86±5.88 62.27±2.33 44.04±7.06 -0.43 +1.24
GIN+SSR 89.00±1.77 68.84±6.01 59.83±2.34 21.28±19.26 72.46±2.86 55.46±15.95 62.54±1.30 48.73±8.62 61.05±3.37 35.63 ±7.29 +0.09 +2.52
GIN+CIGAv1 91.01±1.59 74.85±10.41 60.58±7.15 23.78±17.58 75.32±16.25 54.83±9.87 61.94±1.08 45.85±5.83 61.55±12.55 35.88±7.77 +1.19 +3.57
GIN+CIGAv2 90.66±1.72 75.80±14.30 63.02±1.80 22.42±12.36 73.25±5.42 53.35±8.76 64.42±5.35 45.37±5.12 59.52±4.68 38.42±5.68 +1.29 +3.61
GIN+SIA 92.70±0.45 75.99±4.74 61.30±6.77 24.42±16.37 74.88±4.24 51.36±7.76 62.83±1.07 42.82±8.92 63.00±4.24 41.65±4.19 +2.05 +3.78

FAGCN 90.58±1.72 64.93±7.62 62.96±2.12 24.65±11.71 70.03±5.20 42.34±6.61 43.51±4.29 10.16±7.80 55.78±3.5 22.65±12.87 - -
FAGCN+SAGPool 88.08±7.26 62.67±15.01 62.78±4.28 31.50±12.13 72.41±4.85 50.09±16.49 45.66±4.51 11.21±2.60 58.04±22.06 15.43±4.69 +0.28 +1.23
FAGCN+RPGNN 90.43±2.58 69.58±11.71 61.00±51.91 20.94±12.62 68.71±3.58 43.58±12.21 44.55±5.82 12.22±5.95 57.03±1.08 21.86±13.32 -0.23 +0.69
FAGCN+SSR 88.95±2.16 70.12±9.49 64.12±2.57 22.37±7.80 67.92±3.00 42.27±8.69 47.47±2.77 14.69±8.22 55.66±3.37 22.35±9.35 +0.25 +1.41
FAGCN+CIGAv1 91.08±1.48 69.29±3.35 62.66±5.72 28.51±8.64 68.58±6.19 57.79±10.45 40.93±10.69 9.45±11.16 48.07±5.70 15.11±5.82 +1.19 +3.57
FAGCN+CIGAv2 92.08±1.70 68.37±9.67 60.37±4.65 22.29±15.00 69.45±4.97 60.28±12.24 44.27±6.74 15.88±10.25 50.25±4.44 16.22±7.74 -1.29 +3.66
FAGCN+SIA 90.17±2.83 74.65±9.13 62.40±3.36 30.35±13.48 71.30±5.79 48.94±10.62 46.95±5.71 10.99±7.50 52.82±6.28 19.08±5.32 +0.16 +3.86

GNNML3 92.01±1.56 64.18±6.99 62.31±4.90 32.94±12.86 71.59±3.5 40.74±15.0 63.73±4.67 51.75±9.05 59.39±3.76 33.80±11.19 - -
GNNML3+SAGPool 89.62±3.84 63.25±27.87 59.35±7.27 37.30±12.49 65.67±7.11 34.79±20.12 65.34±1.94 54.29±3.58 60.38±7.23 46.61±15.23 -1.73 +2.73
GNNML3+RPGNN 92.57±1.45 72.30±9.54 61.85±3.67 27.54±12.03 70.48±2.46 38.61±14.61 64.60±2.14 50.25±8.65 60.22±2.40 36.88±15.93 +0.14 +0.43
GNNML3+SSR 91.86±1.30 69.96±5.50 64.95±2.82 26.56±4.68 74.33±1.85 49.02±7.42 63.19±4.35 54.30±10.33 63.27±2.74 45.74±11.47 +1.41 +4.43
GNNML3+CIGAv1 91.25±4.67 72.80±5.88 64.23±2.10 34.95±15.92 73.89±4.73 52.01±12.59 61.89±4.53 45.25±7.80 60.95±3.44 38.80±12.36 +0.64 +4.08
GNNML3+CIGAv2 89.61±1.46 67.17±5.94 64.19±5.36 27.28±12.79 75.07±2.64 54.50±9.29 60.28±4.56 46.25±10.42 60.60±1.16 42.19±12.61 +0.14 +2.80
GNNML3+SIA 92.70±0.81 70.43±6.36 64.57±2.72 37.73±7.68 69.32±3.79 48.94±10.62 63.91±5.81 48.85±12.11 61.58±3.98 49.70±17.85 +0.61 +6.45

SMP 92.30±2.62 80.25±5.98 61.32±5.69 28.71±6.55 76.87±1.90 45.69±15.96 51.09±6.39 22.98±16.26 49.15±6.92 30.73±11.30 - -

model robust to the shift. Bevilacqua et al. (4) used a causal model to learn approximately invariant
representations that better extrapolate between train and test data. Chen et al. (7) utilized structural
causal models for robust out-of-distribution generalization in graph data through invariant subgraph
identification and label prediction. Chu et al. (9) proposed a Wasserstein barycenter matching (WBM)
layer to address the slow uncontrollable convergence rate w.r.t. graph size. Zhou et al. (41) studied
the size OOD problem in the task of link prediction. Ji et al. (16) curated OOD datasets for AI-aided
drug discovery. Our study stands out as the first to utilize spectral analysis to characterize the types
of size-induced distribution shifts, shedding light on the underlying causes that hinder GNNs from
effectively generalizing to large graphs. Some expressive models also exhibit robustness in size
generalization. Murphy et al. (24) proposed an expressive model-agnostic framework that learns
graph representations invariant to graph isomorphism given variable-length inputs. Clement et al. (30)
proposed an expressive graph neural network that performs well on difficult structural tasks, such as
cycle detection and diameter computation. Our study validates that expressive models excelling in
cycle-related tasks demonstrate good size generalizability.

7 CONCLUSION

In conclusion, our work extensively characterizes size-induced distribution shifts and evaluates their
impact on GNNs’ generalizability to significantly larger test graphs compared to the training set.
Spectral analysis on real-world biological data reveals a strong correlation between graph spectrum
and size, which hinders GNNs’ size generalization. We identify the pivotal role of cycle-related
information in reducing spectral differences between small and large graphs. Motivated by these
findings, we introduce three model-agnostic strategies—self-supervision, augmentation, and size-
insensitive attention—to enhance GNNs’ size generalizability. Empirical results show that all three
strategies improve GNNs’ size generalizability, with +SIA being the most effective. This research
provides valuable insights for enhancing GNN generalization across varying graph sizes.
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