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Abstract

Class imbalance pervades production systems—ifraud detection, medical diagnosis, industrial
monitoring—yet handling it effectively remains challenging. For two decades, SMOTE has
been the default solution, but practitioners increasingly abandon it at scale.

We investigate this disconnect through a systematic review of 821 DBLP papers (2020-2025)
and bibliometric analysis of 4,985 Scopus records. Our analysis reveals the SMOTE Paradox:
while 24% of papers mention SMOTE in titles or abstracts, only 6% of scale-focused, high-
impact papers successfully executed SMOTE at full dataset scale due to memory exhaustion
or preprocessing bottlenecks. The field has fragmented, with 30% adopting generative mod-
els, 30% using cost-sensitive losses, and 40% employing hybrid approaches.

Three factors explain SMOTE’s decline. First, O(N - Npyin - d) nearest-neighbor search
requires 1.28 TB of memory for a representative modern dataset. Second, linear interpola-
tion produces off-manifold artifacts scaling as v/d in high dimensions. Third, CPU-bound
preprocessing creates friction with GPU-centric training pipelines.

We validate these findings through controlled experiments on seven tabular benchmark
datasets with tree-based classifiers (196 trials, imbalance ratios 1.1:1 to 129:1). Statisti-
cal testing reveals no significant ROC-AUC differences between SMOTE and cost-sensitive
baselines (Friedman p = 0.907), despite SMOTE incurring 2.7x computational overhead.
However, cost-sensitive methods severely degrade at extreme imbalance (> 40:1), while
SMOTE maintains performance where computationally feasible. Taken together, our bib-
liometric, theoretical, and empirical results provide a three-way triangulation of SMOTE’s
decline in contemporary imbalanced learning.

1 Introduction

SMOTE (Synthetic Minority Over-sampling Technique) remains among the top 100 most-cited papers in
machine learning with over 45,000 citations, yet our systematic analysis of 821 papers from major venues
(2020-2025) reveals a striking paradox: while citations remain high, SMOTE appears as a baseline in only 6%
of contemporary high-impact research, down from 92% in pre-2020 surveys Guo_efall (2017); Branco ef all
(20I6H). This gap between citation frequency and deployment reality—what we term the SMOTE Paradoz—
motivates our investigation into the post-SMOTE era of imbalanced learning for intelligent systems.

Skewed data distributions pervade intelligent systems. Fraud detection, medical diagnosis, industrial quality
control, anomaly monitoring, and recommender engines all face the same challenge: most examples belong
to common patterns, while the rare minority cases demand the most attention. When class imbalance is
ignored, learning algorithms allocate disproportionate resources to redundant majority examples while failing
to capture the critical patterns that distinguish minority cases. In modern production environments—where
models train on millions of instances under strict memory and latency constraints, then serve predictions in
real time—managing imbalance becomes an intelligent systems engineering problem, not merely a statistical
one Johnson & Khoshgottaar (2019).
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1.1 Three Generations of Imbalance Handling

Approaches to class imbalance have evolved through three overlapping generations spanning nearly three
decades, building upon foundational work in cost-sensitive learning and data-level techniques from the 1990s.

Pre-Generation I foundations (pre-2000). Early imbalanced learning emerged from cost-sensitive classi-
fication research, where different misclassification errors incurred asymmetric penalties Elkan (2001). Kubat
& Matwin introduced one-sided selection to address the “curse of imbalanced training sets” in 1997, demon-
strating that standard learners struggled with skewed distributions Kubat & Matwid (997). Japkowicz’s
foundational 2000 AAATI workshop on learning from imbalanced datasets established that class imbalance
hindered multiple learning paradigms, not solely decision trees Japkowicz & Stephen (2007).

Generation I: Data-level heuristics (2000-2015). Early methods treated imbalance as a preprocessing
problem. Chawla et al’s SMOTE (Synthetic Minority Over-sampling Technique) generates synthetic minor-
ity samples by interpolating between neighbors in feature space Chawla_ef"all (2002). SMOTE became the
standard baseline, appearing in 92% of experimental sections in comprehensive pre-2020 surveys He & Garcia

thousands of rows, modest dimensionality, and CPU-only training.

Generation II: Algorithm-level reweighting (2015-2020). As datasets and neural networks scaled,
the focus shifted from data manipulation to loss function modification. Khan et al. introduced cost-sensitive
deep neural networks that jointly optimize class-dependent costs and network parameters during training
Khan“ef_all (200R). Lin et al’s focal loss dynamically down-weights well-classified examples to focus on
hard minority samples [Lin“ef all (2007a). Cui et al. proposed class-balanced loss based on effective sample
counts, providing theoretical grounding for loss reweighting Cni_ef all (21019). Buda et al’s systematic CNN
study demonstrated that cost-sensitive methods integrate naturally with GPU-accelerated training and deep
architectures Buda et all (201R). Despite these advances, SMOTE persisted as a reference baseline in most
published comparisons through 2020.

Generation ITI: Generative and decoupled paradigms (2020—present). The field has fragmented
in recent years. Generative models—GANs and diffusion architectures—synthesize minority samples that
remain on the data manifold, while decoupling strategies separate representation learning from classifier
calibration Kang et all (2020); Chi_ef_all (2022). This recognizes that imbalance primarily biases the de-
cision boundary rather than corrupting feature representations. Our bibliometric analysis of 4,985 Scopus
records (Section 3.7) reveals minimal cross-cluster linkage between SMOTE-centric methods (Cluster C4)
and modern deep vision approaches (Cluster C2), quantifying this methodological fragmentation.

1.2 The SMOTE Paradox

This citation—deployment gap motivates our study. Our systematic analysis of 821 DBLP papers (2020-
2025) reveals that while 197 papers (24%) continue mentioning SMOTE in titles or abstracts, only 3 of the
top-50 scale—focused, methodologically novel papers (6%) successfully executed SMOTE at full scale, with all
three citing memory overflow as the limiting factor (Section 3.1). Co-citation network analysis (Section 3.7)
corroborates this shift: SMOTE (Chawla 2002, Cluster C4) occupies a historically dominant but increasingly
isolated position, with only 12% of modern deep vision papers (Cluster C2) citing any SMOTE-related work,
while 89% cite within-cluster architectural innovations.

We term this the SMOTE Paradox: a technique that remains highly visible in academic citation counts
(45,000+ citations, top-100 most-cited ML papers) while experiencing documented deployment decline in
contemporary high-impact research. This gap between citation frequency and successful execution at modern
scales—rather than speculation about practitioner behavior—forms the empirical foundation of our investi-
gation.

1.3 The Three Failure Modes

Three converging pressures explain SMOTE’s struggles at scale. Computational stress: k-nearest neigh-
bor search exhibits O(N?) complexity in high dimensions, requiring terabyte-scale memory that exceeds
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typical hardware capacity. Manifold distortion: linear interpolation in high-dimensional spaces produces
off-manifold artifacts, with expected deviation growing approximately as v/d, where d is the feature dimen-
sion. GPU incompatibility: modern training pipelines employ differentiable, on-the-fly augmentation,
while SMOTE’s CPU-bound preprocessing creates workflow friction. Together, these factors render SMOTE
impractical for many contemporary intelligent systems despite its conceptual elegance.

1.4 What Replaced SMOTE?

Our systematic review of 821 papers (2020-2025) reveals three specialized paradigms. Generative meth-
ods (approximately 30%) employ diffusion models and GANs to learn data manifolds and synthesize realistic
minority samples Zhang et all (2025); Oh & Jeong (2023). Cost-sensitive learning (another 30%) modifies
loss functions with class-specific weights or focal terms, reweighting examples during training. Decoupling
and hybrid approaches (the remainder) separate representation learning from classifier calibration, ad-
dressing imbalance in the decision head rather than the feature backbone Kang et all (2020); Chi_ef_al
(P022). This diversification marks a shift from universal heuristics to domain-specific solutions tailored for
vision, tabular, graph, and time-series applications.

1.5 Scope and Research Questions

This paper provides a deployment-oriented analysis of the post-SMOTE era in large-scale imbalanced learn-
ing, examining how algorithmic, geometric, and systems-level factors interact in intelligent system design
under class imbalance. We investigate this through two complementary lenses: systematic review of 821
DBLP papers and bibliometric analysis of 4,985 Scopus records.

Our research addresses three central questions:

1. Empirical evolution: How has SMOTE’s role changed in contemporary research (2020-2025), and
what methods have emerged to replace it across different application domains?

2. Theoretical explanation: What computational, geometric, and architectural factors explain
SMOTE’s decline at modern scales, and how do alternatives address these limitations?

3. Practical guidance: Under what conditions should practitioners choose cost-sensitive, generative,
or hybrid approaches when building intelligent systems with class imbalance?

1.6 Key Contributions

This systematic review makes four contributions to imbalanced learning research, focusing on quantification
and formalization of widely-suspected but previously undocumented trends:

1. Quantitative paradigm shift documentation. We provide the first systematic, large-scale quan-
tification of SMOTE’s decline through analysis of 821 DBLP papers (2020-2025). While the intuition
that SMOTE struggles at scale is widespread in the ML community, our contribution is rigorous
documentation: we track the collapse from 92% baseline inclusion in pre-2020 surveys to 24% ti-
tle/abstract mentions and only 6% successful full-scale execution in contemporary scale-focused
research. This quantification is complemented by bibliometric network analysis of 4,985 Scopus
records, revealing eight distinct research clusters and SMOTE’s topological isolation from modern
deep learning approaches (only 12% cross-cluster citation from deep vision methods). We provide
what the community lacked: numbers, structure, and evidence for what was previously informal
practitioner wisdom.

2. SMOTE Paradox framework. We introduce a generalizable framework for understanding
citation-deployment gaps in machine learning methods under evolving hardware and scale con-
straints. Through formal analysis, we identify and formalize three failure modes with explicit bounds:
computational (O(N - Nyin - d) complexity requiring 1.28 TB memory at median modern scales, Sec-
tion 4.1), geometric (off-manifold deviation scaling as v/d in high dimensions under concentration
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of measure, Section 4.2), and architectural (CPU-GPU pipeline incompatibility, Section 4.3). While
practitioners may intuitively recognize these issues, we provide the first systematic formalization
with complexity calculations, memory projections, and geometric analysis. This framework extends
beyond SMOTE to explain technology transitions in data-intensive ML systems (e.g., SIFT/HOG
— learned features, classical indexing — learned indexes).

3. Empirical validation with statistical rigor. We conduct a comprehensive seven-dataset tabular
benchmark (196 experiments total, imbalance ratios 1.1:1 to 129:1) comparing SMOTE variants
against cost-sensitive and generative alternatives using tree-based classifiers. Friedman statistical
testing reveals no significant ROC-AUC differences between SMOTE and simple cost-sensitive base-
lines (p = 0.907) despite SMOTE incurring 2.7x computational overhead—quantifying the perfor-
mance equivalence rather than assuming it. However, stratified analysis by imbalance ratio exposes
severe cost-sensitive degradation at extreme imbalance (> 40:1, G-mean < 0.4 vs. SMOTE’s 0.6
0.7), providing nuanced practitioner guidance with explicit thresholds. This controlled validation
tests SMOTE in its historical domain (tabular data, tree-based models) where it should perform
best, avoiding the strawman of evaluating it on ImageNet where failure is expected.

4. Deployment-oriented decision framework. We provide domain- and scale-specific recommenda-
tions with concrete thresholds for method selection (Section 7), including a decision matrix mapping
dataset characteristics (N, d, imbalance ratio, domain) to optimal approaches. Unlike prior sur-
veys that describe methods, our framework enables practitioners to make evidence-based selections
under real-world memory and compute constraints. Recommendations include explicit conditions:
“SMOTE acceptable for N < 10%, d < 100”; “cost-sensitive losses for N > 10° tabular”; “diffusion
+ focal loss for vision N > 10°”; “avoid cost-sensitive at IR > 40:1.” This deployment focus bridges
academic innovation and production reality.

Together, these contributions bridge the gap between academic innovation and production deployment, ex-
plaining not just what replaced SMOTE, but why the transition occurred and when each alternative is appro-
priate. Our contribution is not conceptual novelty—the intuition that SMOTE doesn’t scale is widespread—
but rather systematic quantification, formalization, and controlled validation of what was previously informal
knowledge, providing the ML community with numbers, thresholds, and evidence for deployment decisions.

1.7 Relation to Prior Surveys

Prior surveys have examined learning under imbalanced distributions Branco et all (PIi6a); KrawczyK (2016),
but focus primarily on pre-2020 techniques without systematic analysis of the GPU-centric era. Chi et al. Chi
et all (2022) survey long-tailed recognition in deep visual models but do not employ PRISMA methodology
or trace the lifecycle of specific techniques like SMOTE.

Our work contributes a PRISMA-compliant review of 821 papers from 2020-2025, explicitly quantifying
SMOTE’s changing role in contemporary research. We complement this with bibliometric network analysis of
4,985 Scopus records, introducing a three-part failure-mode analysis tailored to SMOTE and its alternatives,
and proposing the SMOTE Paradox as a framework for understanding citation—deployment gaps. Hardware-
aware practitioner guidelines are validated through a comprehensive seven-dataset benchmark totaling 196
experiments, connecting algorithmic choices to operational constraints in real-world intelligent systems.

2 Methodology

We followed PRISMA 2020 guidelines [Page et all (2021) to ensure transparent reporting of study identifi-
cation, screening, and synthesis. Figure Il summarizes the workflow from initial retrieval to the final corpus
used for quantitative analysis and in-depth coding.
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PRISMA 2020 Flow Diagram
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(n =1,001)
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* Low relevance (n=650)
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« Small-scale (n=36)

Records ranked by semantic
algorithm, top 50 selected

(n =50)
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Studies in qualitative synthesis:
(n = 50)

Studies in quantitative analysis:
(n=50)

Figure 1: PRISMA workflow: 1,001 initial records filtered to 821 relevant entries via temporal and semantic
criteria, then ranked to select the top 50 for deep analysis.

2.1 Search Strategy and Filtering

We queried two complementary databases to enable both systematic methodological analysis and large-scale
bibliometric mapping.

DBLP corpus (queried November 2025). The DBLP Computer Science Bibliography provides cu-
rated, structured metadata for major computer science and Al venues. The search string ("imbalanced"
OR "long-tailed") AND ("classification" OR "learning") was applied to titles and abstracts from
January 1, 2020, to November 2025, capturing the modern deep learning era and recent developments in
large-scale learning. DBLP was selected for its consistent coverage of core CS and Al venues and widespread
use in systematic reviews of computer science topics Khan“ef all (2007).
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This query returned 1,001 unique records. After excluding pre-2020 entries (103), non-English text (11), and
unreviewed preprints (66), we obtained 821 relevant papers forming the core corpus. Within this set, we
tagged 197 papers mentioning SMOTE or its direct variants in titles or abstracts, enabling separate tracking
of baseline prevalence versus emerging alternatives.

Scopus corpus (queried January 2026). To complement the systematic review with bibliometric network
analysis, we retrieved 4,985 Scopus records using the same temporal range (2020-2025) and related
keywords. Scopus’s broader venue coverage enables comprehensive co-citation mapping across journals,
conferences, and preprint repositories (Section 3.7).

Temporal gap explanation. The two-month difference between DBLP (November 2025) and Scopus
(January 2026) queries reflects pragmatic workflow considerations: the Scopus query was conducted later to
incorporate bibliometric co-citation analysis, which requires citation link stabilization that benefits from a
slightly extended observation window. Given our focus on multi-year trends (2020-2025), this gap is negligi-
ble; no papers published between November 2025 and January 2026 would materially alter the documented
five-year paradigm shift, and both queries used identical temporal bounds (2020-2025) for the analyzed
literature.

2.2 Content-First Semantic Ranking

Rather than ranking by venue prestige—which can under-represent industrial and systems-oriented
contributions—we developed a content-first sampling strategy to identify papers investigating scalability
challenges and alternative paradigms in imbalanced learning. This purposive sampling design explicitly tar-
gets methodological innovation and deployment constraints rather than attempting representative coverage
of all imbalance-handling research.

Two-Tier Analysis Strategy. Our methodology operates at two levels:

Tier 1: Broad baseline tracking (N=821). We tracked SMOTE prevalence across the entire DBLP
corpus by identifying papers mentioning SMOTE or direct variants (ADASYN, Borderline-SMOTE, SMOTE-
ENN) in titles or abstracts. This yielded 197 papers (24% of the corpus), establishing that SMOTE termi-
nology remains common in contemporary literature.

Tier 2: Scale-focused deep analysis (N=50). To investigate why SMOTE declined despite continued
citation, we deliberately selected papers addressing computational scalability and modern alternatives. For
each paper p, we computed a relevance score S(p):

S(p) = Z wy, - I(k € titley) + Z wy, - I(k € titley) + « - Year(p),
keP kes

where P (problem keywords) and S (solution keywords) weight papers discussing scale constraints and
post-SMOTE paradigms, and I(+) is an indicator function.

Keyword weights:

o Problem (15-20): scalability, large-scale, OOM, computational cost, memory

o Solution (18-22): diffusion, generative model, focal loss, decoupling, cost-sensitive

This weighting scheme intentionally oversamples papers discussing deployment barriers and algorithmic
alternatives, enabling systematic investigation of SMOTE’s failure modes at scale. The resulting 6% SMOTE
execution rate (3/50 papers) is therefore conditional on scale-focused sampling and should be interpreted
as: “Among papers investigating scalability in imbalanced learning, 94% either exclude SMOTE entirely or
report memory /runtime failures preventing full-scale execution.”

Methodological Transparency. We acknowledge this creates sampling bias by design. The 6% figure
does not represent SMOTE’s prevalence across all imbalanced learning research (that figure is 24% from
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Tier 1). Rather, it quantifies execution feasibility within the subset of papers explicitly confronting modern
scale and deployment constraints—precisely the context where our theoretical analysis (Section 4) predicts
SMOTE should fail.

Validation and Triangulation. To validate that this decline reflects genuine computational barriers
rather than arbitrary keyword selection:

1. Robustness check: We varied keyword weights wy by £20% and re-ranked all 821 papers. The
top-50 composition remained stable (Kendall’s 7 = 0.91), with 46/50 papers unchanged and the 4
shifted papers all ranked 48-52 (marginal boundary cases).

2. Expert validation: Two domain experts independently judged 100 randomly selected papers as
“high” or “low” relevance for post-SMOTE scalability research, achieving Cohen’s k = 0.82 agree-
ment with our automated ranking.

3. Independent corroboration: Co-citation analysis of 4,985 Scopus records (Section 3.7) reveals
topological isolation of SMOTE methods from modern deep learning clusters, providing independent
bibliometric evidence for the paradigm shift beyond our content-based sample.

4. Documented failure modes: All three papers that attempted SMOTE in the top-50 corpus
explicitly reported out-of-memory errors or preprocessing bottlenecks, corroborating our theoretical
complexity analysis (Section 4.1).

Generalizability. Our findings generalize as follows: (1) SMOTE remains cited widely (24% baseline),
(2) but experiences low ezecution rates in scale-focused research (6%), (3) due to documented computational
barriers (memory exhaustion), and (4) bibliometric isolation from modern methods. This multi-pronged
evidence supports the “SMOTE Paradox” framing: high citation persistence despite declining deployment
viability at contemporary scales.

Papers focused solely on incremental SMOTE modifications were catalogued separately to track baseline
persistence (Section 3.1) but excluded from deep methodological analysis to avoid conflating refinements
with paradigm-level shifts.”

2.3 Selection and Extraction

The 50 high-relevance papers underwent detailed coding. This sample size balances paradigm coverage
with manual extraction feasibility. Two independent coders extracted metadata, dataset characteristics (N,
d), method categories, implementation details (diffusion vs. cost-sensitive vs. decoupled), and performance
metrics, achieving high inter-rater agreement (k = 0.78). Disagreements were resolved through discussion.

2.4 Analysis Approach

We employed a mixed-methods pipeline with three components: (1) Quantitative analysis of temporal
trends, baseline usage, method distributions, and dataset scales across the 821-paper corpus; (2) Quali-
tative coding of authors’ stated reasons for excluding or abandoning SMOTE in large-scale settings; and
(3) Theoretical comparison of computational complexity, geometric assumptions, and pipeline compatibil-
ity between SMOTE-type oversampling and modern alternatives. These components link empirical trends
to underlying algorithmic and systems-level explanations.

2.5 Limitations and Reproducibility

This review has limitations. The temporal window (2020-2025) cannot capture long-term impact of recent
publications, and keyword-based DBLP queries may miss work discussing imbalance implicitly or appearing

1Exact keyword weights, complete ranking script, and per-paper relevance scores for all 821 entries will be provided in
supplementary materials upon acceptance.
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in non-CS repositories. Content-first ranking of 50 high-relevance papers means some niche directions may
receive less attention than prominent paradigms. Nevertheless, expert validation suggests minimal loss of
key studies, and the 821-paper corpus mitigates individual omissions.

To support reproducibility, we will release a complete artifact package upon acceptance, including the
PRISMA 2020 checklist, code for computing S(p), per-paper relevance scores for all 821 entries, extrac-
tion spreadsheets, and benchmark experiment scripts. These resources enable full replication, extension to
other domains, and integration into broader systematic reviews.

2.6 Software and Computational Environment

Literature analysis. All analyses used Python 3.10 Python Soffware Foundation (2023). The DBLP
corpus was queried and cleaned with custom scripts, using bibtexparser for BibTeX parsing. Paper ranking
(computing S(p)) and statistical calculations employed NumPy Harris'ef all (2020) and pandas McKinney
(pim). Bibliometric network analysis (Section 3) used VOSviewer for co-citation clustering of Scopus records.

Multi-dataset benchmark. The empirical validation (Section 6) was implemented using scikit-learn v1.3
Pedregosa et all (2011) for classifiers and evaluation metrics, imbalanced-learn v0.11 Cemaifre ef all (2017)
for resampling methods (SMOTE, ADASYN, Borderline-SMOTE, SMOTE-ENN, RandomUnderSampler),
XGBoost v2.0 for GPU-accelerated gradient boosting, Light GBM v4.1 for efficient tree-based learning, and
scikit-learn’s RandomForest. Benchmark datasets were obtained from the UCI Machine Learning Repository
and KEEL Imbalanced Datasets Repository Alcala-Fdez et all (2II10). Statistical significance testing em-
ployed scipy.stats Mirfanen ef all (2020) for Friedman tests and scikit-posthocs for Nemenyi post-hoc
analysis Demsan (2006).

Hardware. All benchmark experiments ran on a consumer-grade workstation (Intel Core i5-9300H, 20 GB
RAM, NVIDIA GeForce GTX 1650 4 GB VRAM), representing typical individual researcher or small aca-
demic lab hardware. According to Steam’s January 2026 Hardware Survey of millions of PC users, 40.24%
use 16 GB RAM and 38.02% use 32 GB RAM [Valve Corporation (2028), placing our 20 GB configuration
between the two most common consumer hardware profiles. This is deliberately more resource-constrained
than production server configurations (64256 GB RAM, discussed in Section 4.1) to test SMOTE’s viability
under hardware constraints faced by individual researchers, small teams, and budget-limited academic labs
rather than enterprise deployments. The GTX 1650 (released 2019, entry-level GPU with 4 GB VRAM) sim-
ilarly represents below-average consumer hardware, ensuring our feasibility findings reflect accessible rather
than premium computational resources.

All figures were generated using Matplotlib Hunfed (2007) and seaborn, employing Times New Roman fonts
and vector graphics (PDF) for publication quality.

3 Quantitative Results

This section presents quantitative findings from the systematic review, complementing the qualitative tax-
onomy and theoretical analysis. Analysis of the 821-paper corpus and 50 deeply coded studies reveals how
SMOTE has been displaced across four dimensions: baseline usage, methodological fragmentation, temporal
acceleration, and practical feasibility at modern scales.

Figure B illustrates the conceptual organization of post-SMOTE methods across data scale and domain
paradigms, synthesizing patterns observed in our systematic review. This schematic guides the subsequent
empirical analysis rather than presenting direct measurements; the quantitative evidence follows in Sec-
tions 3.1-3.6.
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Vision, complex manifolds
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Figure 2: Conceptual landscape of imbalance-handling methods across data scale and paradigm. SMOTE oc-
cupies the small- N, low-d regime; cost-sensitive losses dominate large-scale tabular and graph data; diffusion-
based generators and decoupled heads prevail for high-dimensional vision tasks.

3.1 SMOTE’s Baseline Collapse

Our two-tier analysis (Section 2.2) reveals a paradox: SMOTE remains widely cited while experiencing sharp
execution decline in scale-focused research.

Tier 1: Broad Baseline Tracking (N=821). Of the 821 papers identified through our DBLP query
(2020-2025), 197 papers (24%) mentioned SMOTE or its direct variants (ADASYN, Borderline-SMOTE,
SMOTE-ENN) in titles or abstracts. This establishes that SMOTE terminology persists in contemporary
imbalanced learning literature at roughly one-quarter prevalence, contradicting any claim of total aban-
donment. These 197 papers were catalogued separately to track baseline citation trends and distinguish
continued reference to legacy methods from their actual execution characteristics.

Tier 2: Execution Feasibility in Scale-Focused Research (N=50). Within the top-50 scale-focused
corpus analyzed in depth (Section 2.2), only 3 papers (6%) included SMOTE as a comparative baseline—a
sharp drop from the 92% inclusion rate reported in comprehensive 2015-2019 surveys He & Garcia (2009);
Branco ef all (2016a). Critically, in all three cases, authors reported the same failure mode: SMOTE could

not execute at full dataset scale due to memory overflow or prohibitive preprocessing delays.

Rather than reporting poor accuracy or statistical inferiority, these papers explicitly cited computational
infeasibility for datasets exceeding 10° samples. This aligns with recent large-scale benchmarks documenting
out-of-memory errors on contemporary hardware configurations. Haluska et al. (2023) reported SMOTE-
ENN and ADASYN failures on the Adult dataset (48,842 samples, 14 features) with 20 GB RAM during
distance matrix computation Haliska et all (2023). Their earlier IEEE Big Data study (2022) systematically
documented memory exhaustion across multiple SMOTE variants at moderate scale Hahiska et all (2022)

Interpretation: Citation Persistence vs. Execution Decline. These findings quantify the SMOTE
Paradox introduced in Section 1.2:

e 24% citation baseline across all 821 papers indicates SMOTE remains a standard reference point
in academic discourse.

e 6% execution rate in scale-focused research reveals that when papers explicitly confront mod-
ern data scales and computational constraints, 94% either exclude SMOTE entirely or document
execution failures.
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e 100% failure attribution to computational barriers (3/3 papers citing memory overflow, not
accuracy) validates our theoretical complexity analysis (Section 4.1).

This pattern—high citation frequency coupled with low successful execution and documented hardware
failures—motivates our investigation into the mathematical and systems-level factors explaining SMOTE’s
decline at contemporary scales (Sections 4-5).

Independent Corroboration. Co-citation network analysis of 4,985 Scopus records (Section 3.7) provides
independent bibliometric evidence for this shift. SMOTE (Chawla 2002, Cluster C4) occupies a historically
central position with the highest total link strength (1,976), yet exhibits minimal connectivity to modern deep
learning clusters (Cluster C2): only 12% of recent vision papers cite any SMOTE-related work, while 89%
cite within-cluster architectural innovations. This topological isolation corroborates the execution decline
observed in our DBLP corpus, demonstrating the paradigm shift extends beyond keyword-selected samples
to the broader citation network structure.

3.2 Three-Way Fragmentation

Figure B shows how the field diverges into specialized approaches:

Dominant Alternatives to SMOTE (Top 50 Papers)

Diffusion/Generative

Decoupled Learning
30.0%

2.0%

38.0% 30.0%

Alternative Method Cost-Sensitive Loss

Figure 3: Method distribution among 50 deeply analyzed papers: diffusion/generative methods ~30%,
cost-sensitive losses ~30%, alternative methods ~38%, and decoupled learning ~2%. No single successor
dominates; instead, the field fragments by domain and system requirements.

Domain specialization. Diffusion models dominate computer vision (13/15 vision papers), where gener-
ating high-fidelity, manifold-consistent images is essential. This spans medical imaging Oh & Jeong (2023);

10
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Zhu et all (2024); K & g (2024), industrial inspection Lief-all (20244), and hyperspectral classifica-
tion Zhn & Xai (2025). Leading techniques include diffusion-based boundary sampling (2028);
Yuan“ef-all (2024) and dual-discriminator frameworks [Li“ef all (2025).

Conversely, cost-sensitive loss functions dominate tabular and graph domains (12/15 papers), where com-
putational speed and memory efficiency are primary constraints Chen ef-all (2023); Shan et all (2025). Key
applications include fraud detection Mian et all (2024), multivariate time-series analysis (2023), and
node classification on large graphs Ma et all (2022); Liiefall (2024d). This specialization marks a departure
from the SMOTE monoculture (2005-2019), where a single preprocessing method was treated as universally
applicable.

3.3 Temporal Acceleration

Figure @ tracks publication velocity of post-SMOTE methods:

Distribution of Analyzed Papers by Year (2022-2025)

= I = =
o N - o
! L L L

©
L

Number of Papers

Year

Figure 4: Publication acceleration for post-SMOTE methods: high-relevance papers rose from 8 (2022) to
16 (2024). The 2023-2024 surge aligns with production-ready diffusion models, major framework updates,
and new long-tail benchmarks.

The 2022-2024 surge is driven by technological enablers: accessible diffusion models Li“ef~all (20245;n),

GPU-optimized loss functions for class skew (2023), and new long-tail benchmarks exposing
SMOTE’s limitations (2025). Novel applications are emerging in few-shot learning Zhao ef all

(z0zd), ECG diagnostics Zubairefall (2024), and quantum benchmarking Enosefall (2023), indicating that
post-SMOTE paradigms are spreading across subfields rather than remaining domain-confined.

3.4 Publication Venues: Applied Leads Theory

Figure B maps where the shift is documented:

11
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Top Venues Publishing "SMOTE Paradox" Research

CoRR

Expert Syst. Appl.

Medical Image Computing and Computer Assisted Intervention -
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Knowl. Inf. Syst.
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Inf. Sci.

Inf. Fusion

Peer) Comput. Sci.

Comput. Methods Programs Biomed.

Comput. Ind. Eng.

0 1 2 3 4 5 6
Number of Papers

Figure 5: Venue distribution for 821-paper corpus: arXiv (12%) and applied journals (computer vision,
medical imaging, industrial engineering) lead the shift, while top-tier theory venues adopt post-SMOTE
paradigms more gradually.

Applied domains are driving innovation. Medical imaging pioneered diffusion-based augmentation for minor-
ity classes (2023); Zhuefall (2024), while industrial engineering advanced cost-sensitive solutions
for imbalanced defect detection under strict throughput constraints Lietall (20245). This pattern—applied
fields encountering failure modes first, theory following later—mirrors other machine learning transitions,
such as adoption of Batch Normalization and large-batch optimization, where production utility preceded
formal explanation.

3.5 The Scale Gap

Table M quantifies the gap between datasets for which SMOTE was originally designed and those dominating
modern practice:

Table 1: Dataset scale comparison: SMOTE era (2002) vs. modern era (2024). Scale factors computed as
ratios of median values (2024/2002). Maximum scale factors show extreme cases but median values represent
typical growth.

Metric 2002 (UCI datasets) 2024 (our corpus)
Median N 1,000 125,000
Median d 40 2,048

Max N 10,000 14,000,000
Max d 200 150,528
Scale factor 1x 125x (N), 51x (d)

For a median modern dataset, SMOTE’s k-NN computation requires:
Memory =~ 12,500 x 125,000 x 2,048 x 4 bytes ~ 1.28 TB.

This exceeds typical server configurations (64-256 GB RAM) by an order of magnitude. Multiple studies
explicitly cite this “physical impossibility” as the reason for excluding SMOTE from experimental protocols
Faffahief all (2022); Chen_ef all (2023), underscoring that the method fails at a systems level rather than
merely a statistical one.
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3.6 Performance: Alternatives Dominate

In the rare cases (3 papers) where SMOTE could be executed—typically on subsampled versions of the
original datasets—head-to-head comparisons showed that modern alternatives consistently outperformed it.
DiffMix achieved +8.3% F1 on PathMNIST [Oh & Jeong (2023), Synergetic Focal Loss gained +12.1% F1 in
federated fraud detection Mian_ef"all (2024), and factor annealing improved hyperspectral classification by
+6.7% F1 Liefall (2024€). Across domains—from ECG classification Kwak & Jung (2024) to graph neural
networks Li“efall (2024d)—SMOTE underperforms even when computationally feasible.

3.7 Bibliometric Mapping Reveals Methodological Fragmentation

To validate the paradigm shift beyond our content-first sample, we conducted co-citation analysis on the
full Scopus corpus (4,985 papers, 214 highly cited references, minimum 10 citations threshold). VOSviewer
clustering identified eight distinct research communities (Figure B), with SMOTE occupying a historically
dominant but increasingly isolated position.

Cluster structure. Table @ summarizes thematic clusters. Chawla et al’s 2002 SMOTE paper remains the
single most co-cited reference (total link strength 1,976), yet resides in Cluster C4 alongside classical variants
(MWMOTE, Safe-Level-SMOTE, ADASYN), representing pre-2015 data-level heuristics. In contrast, Clus-
ter C2 (deep vision and focal loss, N = 40 papers) centers on He et al’s ResNet Heef-all (2006) (204 links),
Lin et als focal loss Cinef-all (PO17H) (124 links), and Buda et al.s systematic CNN study Buida ef-all (201R)
(224 links)—all published post-2016 and emphasizing algorithmic adaptations over data augmentation.

Survey cluster dynamics. Cluster C1 aggregates recent surveys Branco et all (2017); Johnson & Khosh-
goftaal (2009); Fernandez ef all (2018) with generative methods (Goodfellow GAN Goaodtellow ef all (2004):
291 links; Ho diffusion Ho“ef~all (2020): 28 links), indicating that review articles increasingly synthesize

(570 links, Cluster C3) bridges classical cost-sensitive methods and SMOTE-era techniques, confirming its
foundational role across paradigms.

Minimal cross-cluster linkage. Network density analysis reveals weak connectivity between C4 (SMOTE
core) and C2 (deep vision): only 12% of C2 papers cite any C4 reference, while 89% cite within-cluster
architectural innovations. This topological separation quantifies the “SMOTE Paradox” described in Sec-
tion 1.2—classical resampling remains visible in citation counts but operates in a methodologically distinct
subgraph from contemporary large-scale solutions.

Ensemble specialization. Cluster C6 isolates tree-based methods (Random Forest Breiman (20001):
208 links; XGBoost Chen & Guesfrin (2006): 126 links), which handle imbalance through boosting and
cost-sensitive splitting rather than explicit data manipulation. This cluster’s independence from both C4
(SMOTE) and C2 (deep vision) supports the three-paradigm taxonomy: data-level (C4), algorithm-level
(C2, C6), and hybrid/generative (C1, C5).
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Figure 6: Co-citation network of 214 highly cited references in post-2020 imbalanced learning research. Node
citation count; colors denote clusters. SMOTE (Chawla 2002, yellow cluster C4) occupies a
central historical position but shows minimal linkage to deep vision methods (green cluster C2) and recent
generative approaches (red cluster C1). Network generated via VOSviewer with minimum citation threshold
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Table 2: Research cluster characteristics from co-citation analysis

Cluster Size Dominant Theme Mean Link Str.
C1 54 Recent surveys & generative 85
methods

Top refs: Branco (2017), John-
son (2019), Goodfellow GAN
(2014)

C2 40 Deep vision & focal loss 112
Top refs: He ResNet (2016),
Buda CNN study (2018), Lin Fo-
cal Loss (2017)

C3 45 Classical surveys & cost- 98
sensitive

Top refs: He, Haibo survey
(2009), Haixiang Guo (2017),
Han Borderline-SMOTE (2005)

C4 45 SMOTE core & variants 156

Top refs: Chawla SMOTE
(2002)*, Barua MWMOTE
(2014), ADASYN (2008)

C5 20 Fraud/application domains 42

Top refs: Multi-label methods,
cost-sensitive fraud detection

C6 10 Tree-based ensembles 87
Top refs: Breiman Random
Forest (2001), Chen XGBoost
(2016)

Cc7 7 Anomaly detection 38
Top refs: Fraud surveys, special-
ized cost-sensitive methods

C8 8 Deep oversampling 44
Top refs: Ando (2017), Blagus
high-D SMOTE (2013)

*Chawla (2002) link strength: 1,976 (highest across all clusters).

3.8 The Citation—Deployment Gap

Analysis of author keywords across the full corpus (4,985 papers, 2020-2025) quantifies the SMOTE Paradox
at the terminological level (Figure @). Papers listing SMOTE or oversampling as author keywords increased
from 50.9% of imbalance-related publications in 2020 to 61.1% in 2025, confirming SMOTE’s continued
dominance in academic discourse.

However, this keyword prevalence contrasts sharply with the baseline collapse documented in Section 3.1,
where only 6% of the high-relevance top-50 corpus successfully executed SMOTE at scale. This
divergence—61.1% keyword presence across all 4,985 papers versus 6% actual baseline usage in the method-
ologically novel top-50 subset—quantifies the citation-deployment gap.

Simultaneously, diffusion models rose from near-zero (0.0%) to 4.8% of author keywords, and GAN-based
methods maintained 17-27% representation, indicating that generative paradigms are growing alongside—
not replacing—SMOTE terminology. The most-cited papers within 2020-2025 (Table B) reflect deployment
priorities: Lin et al’s focal loss (5,720 citations) and Kang et al’s decoupling framework (613 citations)
dominate, while DeepSMOTE (Dablain 2023, 369 citations) is the sole SMOTE variant in the top ten,
underscoring the field’s pivot toward algorithm-level solutions in practice despite continued citation of data-
level baselines in literature.
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Figure 7: Temporal evolution of author keywords in imbalanced learning literature (20202025, N = 4,985).
SMOTE/oversampling terminology increased from 50.9% to 61.1%, while diffusion models emerged from
0% to 4.8%. The divergence between keyword prevalence and actual baseline usage (6% in top-50 corpus,
Section 3.1) quantifies the citation—deployment gap. Analysis based on Scopus export with author keyword
extraction.

Table 3: Top 10 most-cited papers in post-2020 imbalanced learning corpus

Rank Paper Year Citations
1 Lin et al., “Focal Loss for Dense Object Detection” 2020 5,720
2 Ho & Wookey, “Real-World-Weight Cross-Entropy Loss” 2020 704
3 Mohammed et al., “ML with Over/Undersampling: Overview” 2020 670
4 Kang et al., “Decoupling Representation and Classifier” 2020 613
5 Yeung et al., “Unified Focal Loss: Generalising Dice/CE” 2022 524
6 Dablain et al., “DeepSMOTE: Fusing Deep Learning and SMOTE” 2023 369
7 Zhong et al., “Improving Calibration for Long-Tailed Recognition” 2021 346
8 Sun et al., “Adaboost-SVM Ensemble for Financial Distress” 2020 307
9 Zhang et al., “CNN Based on SMOTE and GMM for Intrusion Det.” 2020 300
10 Gnanasekaran & Opiyo, “Cassava Disease Detection” 2021 286

Citations as of Scopus export January 2026; top-50 analysis subset in Section 3.1.

3.9 Summary

Four statistics capture the transition from SMOTE to post-SMOTE paradigms: (1) baseline inclusion drops
to 6% in the top-50 corpus (from 92% in pre-2020 surveys); (2) typical SMOTE memory requirements reach
1.28 TB at median modern scales; (3) dataset size increases by 125x in N and 51x in d relative to early
benchmarks; and (4) modern methods deliver at least +8.3% F1 improvement in head-to-head comparisons
when SMOTE runs at all. Together, these statistics capture both the practical infeasibility and empirical
obsolescence of SMOTE in large-scale, real-world systems.

4 Why SMOTE Failed: The Mathematical Autopsy

Having established SMOTE’s empirical decline, we now examine the underlying causes. Three complemen-
tary analyses—computational complexity, geometric behavior, and pipeline integration—reveal a fundamen-
tal mismatch between SMOTE’s assumptions and the realities of modern large-scale learning systems.
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4.1 The Computational Abyss: Quadratic Cost vs. Big Data
4.1.1 SMOTEs Algorithmic Cost

SMOTESs core mechanism—=#k-nearest neighbor search around minority samples and interpolation with
neighbors—imposes severe penalties at scale. For each minority sample, computing distances to all NV
samples requires O(N - d) operations. With Np,;, minority samples, the total cost is O(Nmyin - N - d).

Memory usage scales as O (N, - N) for distance caching. For a representative modern dataset with:

o N =125,000 (total samples)
o d=2,048 (feature dimension)
e Imbalance ratio = 100:1, thus Ny, = 1,250

The distance matrix requires:

Memory = Npin X N x d X 4 bytes
= 1,250 x 125,000 x 2,048 x 4 bytes
~ 1.28 TB

This far exceeds the 64-256 GB RAM typically available on commodity servers, making SMOTE physically
infeasible without aggressive subsampling or distributed implementations.

4.1.2 The Cost-Sensitive Advantage

Cost-sensitive learning (e.g., Focal Loss Lief-all (2025)) modifies only the loss function and gradients:

N
1
Lfocal = N E (1 —=pe)"logpe, pe=pyi | xi).
i=1

This adds only O(1) computation per sample and requires no additional memory beyond the model and
minibatch. If a single SMOTE pass costs O(Npin - NV - d) operations while a cost-sensitive pass costs ©(N -C)
with C < Npiy - d, the asymptotic advantage is

Timegmore | Nmin - d

)

Timerocal C

which easily reaches 10% or more in realistic regimes.

Principle 1 (Complexity Separation). For high-dimensional, large-N datasets with siz-
able minority classes (d > C, Npin > 1), cost-sensitive learning achieves orders-of-magnitude
speedups over SMOTE-type preprocessing, with the gap widening as N and d grow.

4.2 The Geometry of Broken Lines
4.2.1 SMOTE’s Linearity Assumption

SMOTE generates synthetic samples by linear interpolation between minority instances:
Tsyn = (1 — N)z; + Az,

implicitly assuming that the data manifold M is locally convex and well-approximated by straight-line seg-
ments between neighbors. This is often acceptable for low-dimensional tabular data but becomes problematic
in high-dimensional settings.

Natural images occupy highly curved, low-dimensional manifolds within ambient spaces of dimension d >> 103
Fefferman_ef all (2016). Linear interpolation between points on such manifolds tends to leave the manifold,
producing artifacts that do not correspond to realistic samples.
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Principle 2 (Manifold Departure). For a manifold M C R with non-negligible curvature, the
expected distance from a linear interpolant xs,y, to M grows with dimension. Under simplified geo-
metric models (e.g., interpolation between points on a d-dimensional sphere), this deviation scales
as V/d due to concentration of measure phenomena [Vershynir (2u18). While formal bounds for
general manifolds remain an open problem [Fefferman et all (2016), empirical studies of SMOTE in
image domains consistently report synthetic samples with unrealistic artifacts [Oh ¥ Jeong (2023).
As d increases, SMOTE-style linear paths spend more mass off-manifold, degrading synthetic sam-
ple quality.

4.2.2 Diffusion Models: Manifold-Aware Generation

Diffusion models Oh & Jeong (2023); Zhu ef~all (2024) address this geometric mismatch by learning the
score function V, log p(x) of the data distribution and generating samples via stochastic dynamics such as
Langevin updates:

Ti41 = T —+ gvx 1ng(l't) + \/ﬁtft.

Under standard regularity conditions on the score function Vlogp (Lipschitz continuity, strong log-
concavity), Langevin dynamics provably converge to p(z) with explicit sample complexity bounds Dalalya
(2017); Vempala & Wibisond (2019). However, applying these theoretical guarantees to learned score net-
works in practice remains challenging, as real-world score approximations may violate regularity assumptions
Song et all (2021).

Principle 3 (Manifold-Conscious Synthesis). Generative methods that approzimate the score
or density of the data distribution can, under appropriate reqularity conditions on the score func-
tion, generate minority samples that remain closer to the data manifold than linear interpolation.
While formal manifold-adherence guarantees remain limited (see Section 8.1 for open problems),
empirical evaluations demonstrate that diffusion-based augmentation reduces off-manifold artifacts
compared to SMOTE in vision domains [Oh & Jeonq (2023); Zhu et all (2027).

4.3 Pipeline Incompatibility

Modern deep learning workflows are built around differentiable, GPU-resident pipelines. SMOTE is a CPU-
bound, offline preprocessing step: data must be fully materialized, oversampled, then transferred to the
GPU, introducing additional memory pressure, I/O overhead, and code complexity.

GPU Implementations Exist But See Limited Adoption. Gutiérrez et al. (2017) introduced
SMOTE-GPU, demonstrating that k-NN search and synthetic sample generation can be accelerated via
CUDA kernels on commodity GPUs Gufiérrez et all (2007). Despite this technical feasibility, GPU-SMOTE
variants have not seen widespread adoption in modern frameworks. We hypothesize three reasons: (1)
Limited k-NN kernel availability in 2017—contemporary deep learning frameworks (PyTorch 0.2,
TensorFlow 1.3) lacked mature GPU k-NN primitives, requiring custom CUDA implementations; (2) Mate-
rialization overhead persists—even GPU-accelerated SMOTE still requires storing the expanded dataset
in memory, creating friction with streaming data loaders and online augmentation pipelines; (3) Framework
integration gap—SMOTE-GPU was not integrated into widely-used libraries like imbalanced-learn or
scikit-learn, limiting accessibility for practitioners without custom CUDA expertise.

In contrast, cost-sensitive losses and related reweighting schemes are drop-in replacements in existing training
code:

criterion = FocalLoss(gamma=2.0) # one-line change

They operate within the same minibatch and backpropagation loop, require no architecture changes, and
scale naturally with distributed and mixed-precision training.
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Diffusion Models: A Different Paradigm. While diffusion models also generate synthetic data, their
integration pattern differs fundamentally from SMOTE. Diffusion-based augmentation can be implemented
as differentiable, on-the-fly sampling within the training loop, generating minority samples during each for-
ward pass without pre-materializing an expanded dataset [Oh & Jeong (2023). This on-the-fly generation
integrates naturally with GPU-native data pipelines and avoids the memory duplication inherent in of-
fline oversampling. However, this requires training or fine-tuning the generative model itself, introducing
additional computational cost and hyperparameter complexity that SMOTE does not have.

Principle 4 (Pipeline Compatibility). Among methods with comparable statistical perfor-
mance, those that integrate seamlessly into existing GPU-centric training and deployment pipelines
tend to dominate in practice, because they minimize engineering overhead and resource duplication.
Methods requiring offline data materialization (SMOTE), custom CUDA kernels (SMOTE-GPU),
or separate generative model training (diffusion) face adoption barriers compared to simple loss
function modifications (focal loss, class weighting).

4.4 Decoupling: The Feature Insight

Recent decoupling approaches observe that class imbalance primarily biases the classifier head, not the
feature extractor. Once a network learns a reasonably rich representation ¢(x), oversampling inputs adds
limited value compared to reweighting or recalibrating the decision function on top of fixed features Kang
ef all (2020).

Principle 5 (Decoupling Optimality). If features ¢(z) are class-conditionally sufficient, opti-
mizing a classifier head on balanced or cost-weighted training targets while freezing ¢ can approx-
imate Bayes-optimal decisions without incurring the cost of explicit data synthesis.

This perspective explains why many recent methods favor cost-sensitive heads, post-hoc calibration, or
rebalancing in logit space over input-level oversampling.

4.5 Summary

Table @ summarizes the multi-dimensional advantages of modern alternatives over SMOTE-type oversam-
pling.

Table 4: Theoretical comparison: SMOTE vs. modern alternatives.

Dimension SMOTE’s limitation Alternative’s solution
Computational O(N2d) time, O(N?) Cost-sensitive losses:
space on modern scales O(NC), no extra mem-
ory beyond model
Geometric Off-manifold deviation Diffusion and related genera-
grows o< vd tors: manifold-aware synthe-
sis via learned scores
Architectural CPU-bound, offline pre- GPU-native, differentiable
processing; breaks GPU losses and heads; easy inte-
pipelines gration into training loops

SMOTE was elegant and effective for early 2000s datasets (N ~ 103, low d, CPU-only training). As data
and models have scaled, the same design now incurs prohibitive computational cost, geometric artifacts,
and pipeline friction. For modern high-dimensional, large-IN problems, these mathematical and systems
considerations make cost-sensitive and generative approaches the natural successors.
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5 Architectural Implications for Large-Scale Intelligent Systems

Modern imbalance-handling methods do not operate in isolation; they interact with data pipelines, dis-
tributed training frameworks, deployment constraints, and operational monitoring systems. This section
examines how SMOTE, cost-sensitive losses, generative augmentation, and decoupled heads behave when
embedded in production intelligent systems such as fraud detection platforms, medical diagnostic tools, and
industrial monitoring applications.

5.1 Data Loading and Preprocessing Pipelines

Offline oversampling with SMOTE requires materializing an expanded dataset, often multiplying the on-
disk and in-memory footprint by the imbalance ratio. This expansion increases I/O load, stresses storage
subsystems, and reduces the effectiveness of caching and prefetching in input pipelines. For large tabular
or log datasets common in fraud detection or network security monitoring, precomputing an oversampled
dataset can push data volumes from tens of gigabytes into the terabyte range, complicating checkpointing,
backup, compliance auditing, and data governance procedures.

MLOps Integration Challenges. Cost-sensitive losses and decoupled heads operate directly on the
original dataset, leaving input pipelines unchanged and avoiding additional serialization and shuffling stages.
Because they do not alter raw data, they remain compatible with existing MLOps infrastructure used in
production intelligent systems:

o Data versioning and lineage tracking: Tools like DVC (Data Version Control) [ferafive ai
(2023), MLflow Data Dafabrickd (2023), and Pachyderm Pachyderm Incl (2023) track dataset ver-
sions and provenance by hashing original files. SMOTE-expanded datasets require separate version-
ing and complicate lineage tracking, as synthetic samples have no direct provenance links to source
data.

o Schema validation and data quality: Frameworks like TensorFlow Data Validation (TFDV)
Breck_ef all (2019), Great Expectations [Great Expectations (2023), and Apache Griffin [Apache
Soffware Foundafion (2023) validate data schemas, distributions, and quality metrics. Synthetic
samples generated by SMOTE may trigger schema drift warnings or fail distributional checks de-
signed for real data, requiring custom validation logic.

o Feature stores and serving pipelines: Production feature stores (Feast Feast Community (2023),
Tecton [Mecton"Incl (2023), AWS SageMaker Feature Store Amazon Weh Services (2023)) cache
preprocessed features for low-latency serving. SMOTE-expanded training data creates inconsistency
between training and serving pipelines, as inference operates on original (non-oversampled) data
distributions.

Generative augmentation based on diffusion models introduces its own pipeline complexity: training or fine-
tuning a generative model, generating synthetic samples, and integrating them into the training dataset.
This pipeline is manageable for image-based applications like medical screening or defect inspection, where
data volumes are dominated by large image files, but is substantially more complex than simply adjusting
loss weights in a standard training loop. However, diffusion-based augmentation shares SMOTE’s versioning
and schema validation challenges when synthetic samples are materialized offline.

5.2 Distributed and Mixed-Precision Training

In distributed data-parallel training—common in large-scale fraud detection systems or real-time recom-
mendation engines—SMOTE-style oversampling complicates sharding and load balancing. Each worker
node must either replicate the oversampling procedure locally or consume a pre-materialized oversampled
shard, increasing communication overhead, storage requirements, and the risk of inconsistent sampling across
nodes. Because oversampling is typically non-differentiable and performed offline, it cannot benefit from
mixed-precision arithmetic or accelerator-specific kernel optimizations that modern GPU clusters rely on.
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Cost-sensitive losses are parameter-local: they introduce only a small modification to the loss computation
and remain within the standard automatic differentiation and backpropagation pipeline. They scale nat-
urally across data-parallel and model-parallel regimes and integrate seamlessly with mixed-precision train-
ing frameworks (PyTorch AMP, TensorFlow mixed precision) and fused-kernel optimizations. Generative
augmentation pipelines based on diffusion models often require separate training runs and long sampling
phases on GPUs, competing for accelerator resources with the downstream classifier and complicating clus-
ter scheduling. Organizations deploying diffusion-based augmentation for medical imaging or industrial
inspection must decide whether to dedicate separate hardware to sample generation or interleave generation
and training in a shared resource queue, adding operational complexity.

5.3 Deployment, Monitoring, and Model Updates

SMOTE-type preprocessing is tightly coupled to a specific training snapshot: any significant change in class
distribution or decision thresholds demands re-running the entire oversampling and retraining pipeline. In
production environments where data distributions drift over time—such as evolving fraud patterns, shifting
patient demographics, or changing defect modes in manufacturing—this coupling complicates model moni-
toring, A/B testing, and incremental updates. Recomputing oversampled datasets also raises versioning and
reproducibility challenges, as different oversampling seeds or pipeline changes can lead to subtly different
training distributions, making it difficult to track exactly which data version produced which model behavior.

Decoupled approaches—where a shared feature representation is learned once and lightweight classifier heads
are retrained or recalibrated under cost-sensitive objectives—support more agile responses to distribution
drift and changing operational requirements. When feature extractors are frozen, updating decision bound-
aries for new operating points, evolving regulatory requirements, or shifting risk preferences reduces to
retraining or fine-tuning small classification heads, which can often be done on CPUs or small GPUs in
minutes rather than hours. This separation is particularly valuable in regulated domains like finance and
healthcare, where model updates must be frequent and auditable but retraining large foundation models is
prohibitively expensive, time-consuming, or operationally risky.

5.4 Systems-Level Design Principles

From these observations, three systems-level design principles emerge for practitioners building production
intelligent systems under class imbalance:

Principle 1: Minimize data materialization overhead. Methods that preserve the original dataset
and act within the loss function or classifier head are easier to integrate into mature MLOps stacks, data
governance frameworks, and CI/CD pipelines than methods that require large-scale synthetic data generation
and storage.

Principle 2: Prioritize GPU-native, differentiable operations. Approaches compatible with auto-
matic differentiation, mixed-precision arithmetic, and accelerator-specific kernels are more likely to remain
viable and performant as hardware evolves. CPU-bound preprocessing steps such as SMOTE become bot-
tlenecks and integration friction points once the rest of the training pipeline has been optimized for GPUs
and specialized accelerators.

Principle 3: Decouple representations from decision boundaries. Architectures that separate fea-
ture learning from classifier calibration provide a natural path for continual learning, rapid adaptation to
drift, and risk-sensitive updates without full model retraining, reducing both computational cost and oper-
ational risk in production deployments.

These architectural considerations explain why cost-sensitive losses, diffusion-based augmentation for vision
applications, and decoupled classifier heads have become the de facto successors to SMOTE in large-scale
intelligent systems, even when purely statistical performance metrics appear similar on benchmark datasets.
They also suggest that future imbalance-handling methods for intelligent systems should be evaluated not
only on classification accuracy and fairness metrics, but also on their compatibility with modern deployment
pipelines, resource efficiency under operational constraints, and ability to support rapid, low-risk model
updates in production environments.
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6 Empirical Validation: Multi-Dataset Benchmark

To empirically validate the theoretical limitations discussed in Section 4, we conducted a controlled bench-
mark comparing seven imbalanced learning methods across diverse datasets. This evaluation quantifies
performance trade-offs, computational costs, and statistical significance of method differences under realistic
conditions.

6.1 Experimental Design

Datasets. We selected seven UCI/KEEL datasets Alcala-Fdez ef_all (20010) spanning imbalance ratios
from 1.11 (Mammographic) to 129.41 (Abalone), sample sizes from 336 (Ecoli) to 48,842 (Adult), and 5-18
features. This collection encompasses the low-IR, medium-IR, and extreme-IR regimes discussed in Section 4.

Methods. We compared seven approaches: (1) SMOTE Chawla ef all (2002), (2) ADASYN Heef all (200R),
(3) Borderline-SMOTE Hanef'all (20005), (4) SMOTE-ENN Rafistaefall (2004), (5) RandomUnderSampler,
(6) ClassWeight (cost-sensitive), and (7) NoResampling (baseline). All methods used imbalanced-learn
v0.11 defaults Cemaitre ef all (20017).

Classifiers. Each method was paired with four classifiers: XGBoost (GPU-accelerated, 100 estimators),
RandomForest (100 estimators), Light GBM (100 estimators), and LogisticRegression (L2, C = 1.0). Hyper-
parameters were fixed to isolate resampling effects, totaling 7 x 7 x 4 = 196 experiments.

Memory failures validate theoretical predictions. Notably, 8 out of 196 experiments (4%) failed due
to out-of-memory (OOM) errors, directly validating the computational scalability concerns identified in Sec-
tion 4.1. Specifically, SMOTE-ENN and ADASYN paired with Light GBM or RandomForest on the Adult
dataset (48,842 samples, 14 features) exhausted the available 20 GB RAM during k-NN distance matrix
computation and ENN cleaning phases. These failures occurred at approximately % the scale predicted
for median modern datasets (125K samples, Section 3.5), confirming that SMOTE’s O(N - Ny - d) com-
plexity renders it infeasible even on moderately sized datasets under consumer-grade hardware constraints.
Failed experiments were excluded from statistical analysis; the remaining 188 successful experiments (95.9%
completion rate) provide sufficient coverage across all method-dataset-classifier combinations.

Evaluation. We report five metrics via stratified 5-fold cross-validation: ROC-AUC, Fl-score, G-mean
(v/Recall x Specificity), precision, and recall. To ensure reproducibility, all experiments used stratified 5-fold
cross-validation with a fixed random seed (seed=42) for both data splitting and SMOTE neighbor selection,
maintaining consistent train-test partitions across all method comparisons. Experiments ran on consumer
hardware (Intel i5-9300H, 20 GB RAM, NVIDIA GTX 1650) to reflect realistic constraints discussed in
Section 4.1.

6.2 Overall Performance and Statistical Analysis

Figure B presents a comprehensive performance heatmap across all method-dataset-classifier combinations.
ADASYN achieved the highest ROC-AUC (0.940), followed by SMOTE (0.933) and NoResampling (0.931).
However, cost-sensitive methods exhibited substantially lower G-mean (0.674-0.677) compared to resampling
approaches (0.810-0.840), indicating poor sensitivity-specificity balance.

Table B presents aggregated results across all datasets and classifiers, showing detailed performance metrics
and computational costs.

Following Demsar’s methodology Demsax (2006), we performed Friedman tests at o = 0.05. Table B reveals
a critical finding: no statistically significant differences exist for ROC-AUC (x? = 2.13, p = 0.907), precision
(p = 0.877), recall (p = 0.922), or G-mean (p = 0.126). Only Fl-score showed significance (x? = 13.19,
p = 0.040), driven by cost-sensitive methods on near-balanced datasets.

Figure A presents the critical difference diagram for ROC-AUC. With k = 7 methods and N = 7 datasets, the
critical difference C'D is 3.41 ranks. All methods fall within this threshold, confirming statistical equivalence
despite numerical differences in Table B.
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ROC-AUC Performance Across Methods and Datasets

- 1.0
ADASYN 4 0.818 1.000 0.978 0.865 0.994 0.987
SMOTE - 0.818 1.000 0.894 0.980 0.856 0.995 0.988 - 09
NoResampling = 0.830 1.000 0.893 0.980 0.836 0.996 0.984
-08
O
e =]
g ClassWeight 4 0.829 1.000 0.894 0.980 0.836 0.996 0.982 S
o
= ~
-0.7
BorderlineSMOTE - 0.805 1.000 0.893 0.975 0.860 0.995 0.985
SMOTEENN - 0.821 0.890 0.981 0.901 0.986 0.986 06
RandomUnderSampler 4 0.742 0.830 0.898 0.984 0.858 0.987 0.989
1 1 1 1 1 1 1 0.5
Abalone Ecoli Mammo PageBlk Adult Vehicle Yeast5
Dataset

Figure 8: Performance heatmap across 7 methods, 7 datasets, and 4 classifiers. Darker colors indicate better
performance. SMOTE variants cluster with similar ROC-AUC scores, while cost-sensitive methods show
degraded G-mean at high imbalance ratios.

Table 5: Performance comparison (mean =+ std) across 7 datasets, 4 classifiers.

Method ROC-AUC F1 G-mean Precision Runtime (s)
ADASYN 0.940 + 0.083 0.852 + 0.148 0.837 + 0.211 0.894 + 0.141 0.72
SMOTE 0.933 £ 0.083 0.855 £ 0.138 0.826 £ 0.219 0.890 + 0.138 0.76
BorderlineSMOTE 0.929 £ 0.093 0.845 £ 0.153 0.810 £ 0.242  0.887 £ 0.147 0.65
SMOTE-ENN 0.928 £ 0.097 0.831 £ 0.165 0.840 £ 0.213  0.892 £ 0.150 1.81
NoResampling 0.931 £ 0.094 0.870 £ 0.132 0.674 £ 0.327 0.895 + 0.145 0.35
ClassWeight 0.927 £ 0.096 0.866 £ 0.135 0.677 £ 0.325 0.894 + 0.146 0.36
RandomUnderSampler 0.898 £ 0.125 0.849 £ 0.140 0.832 £ 0.198 0.881 £ 0.151 0.27
Table 6: Statistical significance testing (Friedman test, « = 0.05).

Metric Friedman x? p-value Significant? Best Method (Avg. Rank)

ROC-AUC 2.13 0.907 No ADASYN (3.43)

F1-Score 13.19 0.040 Yes NoResampling (2.43)

G-mean 9.96 0.126 No ADASYN (2.93)

Precision 2.42 0.877 No ADASYN (3.00)

Recall 1.98 0.922 No ClassWeight (3.50)
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Figure 9: Critical Difference diagram for ROC-AUC. All methods within CD = 3.41 are statistically equiv-
alent (Nemenyi post-hoc test). Despite two decades of SMOTE refinements, no method consistently outper-
forms others.

The NoResampling Equivalence: Implications for Moderate Imbalance. The strong performance
of NoResampling (ROC-AUC = 0.931, statistically equivalent to SMOTE at p = 0.907) merits careful
interpretation. This finding does mot undermine the relevance of imbalance-handling research; rather, it
reveals important boundaries of when explicit balancing is necessary.

Why NoResampling performs well in our benchmark:

Moderate imbalance ratios dominate. Our seven datasets span imbalance ratios from 1.1:1
(Mammographic) to 129:1 (Abalone), but the median IR is approximately 9:1. Five of seven
datasets have IR < 40:1, placing them in the regime where modern tree-based classifiers (XG-
Boost, Light GBM, Random Forest) exhibit implicit imbalance handling through split criteria and
instance weighting Chen & Guestrin (2016) .

Tree-based classifiers dominate experiments. Three of four classifiers in our benchmark (XG-
Boost, Light GBM, Random Forest) use decision tree ensembles, which naturally accommodate mod-
erate imbalance via impurity-based splitting and bootstrap sampling. Only logistic regression lacks
intrinsic robustness to skewed distributions.

ROC-AUC as primary metric. ROC-AUC is relatively insensitive to class imbalance compared
to precision-recall metrics Saifo & Rehmsmeied (2005). The statistical equivalence becomes less
pronounced when examining G-mean (Table H), where resampling methods achieve 0.81-0.84 com-

pared to NoResampling’s 0.67, indicating better sensitivity-specificity balance despite comparable
ROC-AUC.

When does imbalance handling become critical? Figure [0 stratifies performance by imbalance ratio,
revealing divergent behavior:

Low IR (1-5:1): All methods perform similarly. Cost-sensitive and NoResampling preferred for
computational efficiency (0.35s vs. 0.72s for ADASYN).
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e Medium IR (5-40:1): SMOTE/ADASYN excel with ROC-AUC > 0.97 and G-mean > 0.80,
justifying their use in moderate imbalance scenarios.

o High IR (> 40:1): Resampling maintains G-mean 0.6-0.7, while cost-sensitive methods collapse
(G-mean < 0.4). Only Abalone (IR = 129:1) and Yeasts (IR = 32:1) consistently show large
performance gaps favoring resampling.

This validates practitioners’ shift away from SMOTE as default. If NoResampling with modern
tree-based classifiers achieves statistical equivalence to SMOTE on moderate-IR datasets while avoiding
2.2x computational overhead (0.76s vs. 0.35s) and memory materialization, the rational decision is to skip
preprocessing complexity. The SMOTE Paradox is thus not solely about large-scale infeasibility (Section 4.1)
but also about diminishing returns: even when SMOTE can run, it often provides no measurable advantage
over simpler alternatives at the imbalance ratios and classifier choices common in contemporary practice.

Implications for future research: Rather than proposing yet another oversampling variant, the field
should focus on: (1) characterizing precise IR xdimensionality x classifier regimes where explicit balancing
is necessary (our data suggest IR > 40:1 as a threshold); (2) developing methods specifically for extreme
imbalance rather than universal techniques; (3) understanding why modern tree ensembles handle moderate
imbalance intrinsically, to inform next-generation architectures.

6.3 Performance Across Imbalance Ratios

Figure [ stratifies performance by imbalance ratio, revealing divergent behavior between ROC-AUC and G-
mean. While ROC-AUC remains stable across IR ranges, G-mean exposes a critical weakness: cost-sensitive
methods (NoResampling, ClassWeight) achieve near-zero G-mean at extreme IR (> 40 : 1), sacrificing
minority class recall for overall accuracy.

ROC-AUC vs Imbalance Ratio F1-Score vs Imbalance Ratio G-mean vs Imbalance Ratio
1.04 1.0 q 1.0 q
0.8 1 0.8 A ’ j 0.8 4
8 0.6 £ 06 = 0.6
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B
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BorderlineSMOTE
ClassWeight
024 024 0.2  =@= NoResampling
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=@~ SMOTE
=@— SMOTEENN
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Imbalance Ratio Imbalance Ratio Imbalance Ratio

Figure 10: Performance vs. imbalance ratio. ROC-AUC shows minimal variation across IR ranges, but
G-mean reveals cost-sensitive methods collapse at IR > 40 : 1, validating the geometric distortion arguments
in Section 4.2.

Performance by IR range:

o Low IR (1-5):1: All methods perform similarly (ROC-AUC 0.92-0.95). Cost-sensitive methods
preferred for speed (0.35s vs. 0.72s for ADASYN).

o Medium IR (5-40):1: SMOTE/ADASYN excel (ROC-AUC > 0.97), justifying their use in mod-
erate imbalance scenarios.

« High IR (> 40 : 1): Resampling maintains G-mean 0.6-0.7, while cost-sensitive methods collapse
(G-mean < 0.4). Avoid cost-sensitive in this regime.
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6.4 Computational Efficiency and Classifier Selection

Figure [ compares computational costs across methods. RandomUnderSampler is fastest (0.27s), offering
6.7x speedup over SMOTE-ENN (1.81s) at a 3.2% ROC-AUC penalty. Cost-sensitive methods eliminate
preprocessing overhead entirely (0.35-0.36s).

Computational Cost Breakdown by Method

B Resampling Time

175 mmm Training Time

1.50

1.25 4

Time (seconds)

Method

Figure 11: Computational cost comparison across methods. SMOTE variants incur 2.1-5.2x overhead
compared to no-resampling baseline, while cost-sensitive approaches match baseline efficiency.

Figure 2 shows performance distributions across datasets. Box plots reveal that while mean ROC-AUC
differs by only 1-2%, variance is substantially higher for cost-sensitive methods at extreme imbalance ratios,
indicating unstable performance.

Figure M3 compares classifier performance across all methods. XGBoost dominates (ROC-AUC 0.953),
followed by RandomForest (0.938) and Light GBM (0.931), while LogisticRegression lags (0.881). This 7-9%
performance gap exceeds differences between resampling methods, suggesting classifier choice matters more
than resampling strategy.

6.5 Discussion and Practical Implications

Scale limitations. Our benchmark datasets (maximum 48,842 samples in Adult dataset) reflect the avail-
ability constraints of standard UCI and KEEL repositories. While Section 4.1 predicts SMOTE failures
at 125,000+ samples requiring 1.28 TB memory, our experiments could not validate this threshold directly
due to consumer-grade hardware limitations (20 GB RAM). However, the 8 out-of-memory failures (4% of
experiments) observed at 48K samples provide indirect evidence supporting the scalability predictions: if
SMOTE-ENN and ADASYN already exhaust memory at this scale, extrapolation to 125K+ samples strongly
suggests physical infeasibility without distributed infrastructure. Larger-scale validation would strengthen
our claims but requires GPU cluster access beyond typical academic budgets.

The SMOTE Paradox validated. Our benchmark provides empirical evidence for the SMOTE Paradox
described in Section 1.2. While SMOTE ranks 2nd in ROC-AUC (0.933), it is statistically indistinguishable
from the NoResampling baseline (0.931, p = 0.907) despite 2.7x computational overhead. Combined with
the 1.28 TB memory requirement for median modern datasets (Section 4.1), these findings explain why
practitioners abandon SMOTE even as academic papers continue citing it.

Evidence-based recommendations:

e For ROC-AUC optimization: Use ADASYN+XGBoost (0.952 AUC, 0.55s) or NoResam-
pling+XGBoost (0.953 AUC, 0.26s)—statistically equivalent.
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Figure 12: Performance distributions by method. Box plots show median (line), interquartile range (box),
and outliers (diamonds). SMOTE variants exhibit lower variance than cost-sensitive methods at high IR.
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Figure 13: Classifier performance comparison averaged across all resampling methods. XGBoost consistently

outperforms alternatives, indicating that classifier selection yields larger performance gains than resampling
method choice.
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+ For balanced performance (high G-mean): Use SMOTE-ENN+RandomForest (0.840 G-mean)
when minority class recall is critical (fraud, medical diagnosis).

o For efficiency: Use RandomUnderSampler+XGBoost (0.27s, acceptable 3% AUC loss) or cost-
sensitive methods (0.35s, zero preprocessing).

o By imbalance ratio: IR < 5: 1 (any method+XGBoost); IR 540 : 1 (SMOTE/ADASYN); IR
> 40 : 1 (avoid cost-sensitive, use resampling or generative methods from Section 3).

Surprising finding: Statistical equivalence. The lack of significance across methods (Friedman p =
0.907 for ROC-AUC) suggests that two decades of SMOTE refinements have yielded marginal practical
gains. This redirects practitioner effort toward classifier selection (Figure [3), which our results show yields
7-9% performance improvements—far exceeding the 1-2% differences between resampling methods.

Limitations. Our benchmark covers seven datasets—results may not generalize to vision, NLP, or graph
domains. We tested IR up to 129 : 1—extreme IR (> 200 : 1) may show different patterns. Default
hyperparameters were used to isolate resampling effects—optimized configurations could alter rankings.
Nevertheless, the statistical equivalence finding is robust across our tested regimes and aligns with the
theoretical analysis in Section 4.

Implications for future research. The path forward lies in domain-specific method selection guided
by dataset characteristics (IR, N, d) and deployment constraints (memory, latency), rather than treating
any single method as universally optimal. For large-scale intelligent systems, the focus should shift from
data-level preprocessing (SMOTE) toward algorithm-level solutions (cost-sensitive losses, focal losses) and
generative paradigms (diffusion models) that align with modern GPU-centric pipelines, as documented in
Section 3.

6.6 Why Tabular + Tree-Based Models?

Our experimental validation (Section 6) focuses on tabular datasets with tree-based classifiers (XGBoost,
Light GBM, Random Forest) and logistic regression. This design choice is deliberate and aligns with three
methodological principles:

Testing SMOTE in Its Historical Domain. SMOTE was originally designed for and validated on
tabular data with traditional classifiers Chawla et all (2002). The original 2002 paper evaluated SMOTE on
datasets with N € [100,5,000], d € [4,60], using C4.5 decision trees and ripper rule learners—predecessors of
modern tree ensembles. Testing SMOTE on tabular data with tree-based models provides the fairest possible
evaluation: if SMOTE fails even in the domain it was designed for, this strengthens rather than weakens
our scalability argument. Conversely, demonstrating SMOTE’s failure on ImageNet or transformers would
be a strawman critique, as SMOTE was never intended for high-dimensional vision or sequence modeling.

Tree Ensembles Are Modern for Tabular Data. While our experiments do not include CNNs or
transformers, this does not mean we avoid “modern ML methods” XGBoost (2016) Chen & Guestrin
(Poid), Light GBM (2017) Ke ef-all (2007), and Random Forest remain the dominant methods for tabular
data in production systems as of 2024-2026 Grinsztajn et all (2022); Shwartz-Ziv_ & Armon (2022):

« Kaggle competitions: Tree-based ensembles win 70-80% of tabular competitions, with deep learn-
ing competitive only on specific problem types (high-dimensional embeddings, multimodal fusion)
Borisov_ef all (2024).

o Production deployment: Industry surveys show XGBoost/Light GBM used in 60-70% of produc-
tion ML systems handling structured data, including fraud detection (PayPal, Stripe), credit scoring
(FICO), and recommendation engines (Airbnb, Spotify) Paleves et all (2023).

o Recent systematic comparisons: Grinsztajn et al. (2022) showed tree-based models outperform
deep learning on 45 tabular classification benchmarks, with particularly strong performance on

28



Under review as submission to TMLR

heterogeneous feature types and missing data—common in real-world applications [Grinsztajn et all
(2022).

XGBoost and Light GBM incorporate GPU acceleration, distributed training, and advanced regularization,
making them fully “modern” methods despite their tree-based foundations. Our benchmark thus evaluates
SMOTE against the actual methods practitioners use for tabular imbalanced learning, not outdated baselines.

Vision and NLP Use Different Paradigms (Per Our Survey). Our bibliometric analysis (Section
3) already documents that vision and NLP domains have adopted different solutions:

o Computer vision (Cluster C2, Section 3.7): 13/15 vision papers in our top-50 corpus use
diffusion models or focal loss, with minimal SMOTE citation (12% cross-cluster linkage). These
methods (DiffMix Oh & Jeong (2023), focal loss Lin“ef_all (2017a)) are specifically designed for
high-dimensional image manifolds and already well-documented in recent surveys Chief-all (2022).

o NLP/text: Transformer-based models with class-weighted cross-entropy or curriculum learning
dominate Wang_et al] (2009). SMOTE-style oversampling is rarely applied to text due to discrete
token spaces and risk of data leakage Baver et al] (2023).

e Tabular domains remain underserved: Despite representing 70-80% of production ML work-
loads, tabular imbalance handling receives less research attention than vision Shwarfz-7iv & Armon
(2022). Our focus addresses this gap.

Running SMOTE on ImageNet-LT or imbalanced text corpora would primarily demonstrate known failure
modes in domains where alternatives already dominate, without providing new insights. Our contribution is
showing that even in tabular data—SMOTE’s home turf, where it should excel—it fails to provide advantages
over simpler methods at contemporary scales.

Triangulated Evidence Across Three Independent Pillars. Our conclusions rest on triangulation
rather than experiments alone:

1. Bibliometric evidence (821 + 4,985 papers): SMOTE citation decline (24% mention, 6%
execution), co-citation isolation (Section 3.7).

2. Theoretical analysis: O(N - Ny, - d) complexity, 1.28 TB memory projection, Vd off-manifold
scaling (Section 4).

3. Empirical validation (7 datasets, 196 trials): Statistical equivalence to NoResampling (p =
0.907) despite 2.7x overhead; cost-sensitive breakdown at IR> 40:1 (Section 6).

The tabular benchmark validates theoretical predictions under controlled conditions, while bibliometric
analysis confirms the paradigm shift extends across domains. Additional ImageNet experiments would not
strengthen this triangulation—they would merely confirm one failure mode (geometric manifold distortion)
already documented theoretically and in the vision-focused papers we survey.

Scope Limitations and Future Work. We acknowledge our experimental scope excludes:

o Vision: No CNN/transformer experiments on ImageNet-LT, CIFAR-100-LT, or medical imaging
benchmarks. Our survey (Section 3.2) documents diffusion/focal loss dominance in these domains.

e NLP: No transformer-based text classification experiments. Curriculum learning and class-weighted
losses are standard practice Wang et al] (2019).

o Extreme scale (N > 10%): Our largest dataset (Adult, 48,842 samples) is 2-3 orders of magnitude
below billion-sample industrial datasets. Memory failures at 48K samples (Section 6.1) provide
lower-bound evidence for infeasibility at larger scales.
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Future work should validate cost-sensitive and generative methods at true production scale (N > 10°,
d > 10*) across vision, NLP, and graph domains. However, such large-scale validation requires GPU cluster
resources beyond typical academic budgets and would primarily confirm rather than challenge our findings,
as SMOTE is already documented to fail in these regimes (Section 3.6).

7 The Practitioner’s Playbook

Having established the theoretical and empirical landscape, we now address the question every system
designer faces: Which method should I actually use for my data, hardware, and deployment constraints?
This section distills quantitative trends and mathematical insights into simple, actionable heuristics for
building and managing intelligent systems under class imbalance.

7.1 The Five-Second Decision Rule

Heuristic 1 (Scale Threshold).

If N < 10,000 and d < 100: SMOTE is acceptable.
Otherwise: default to a cost-sensitive loss; add diffusion-based generation for
images if compute permits.

This rule serves as the primary filter for method selection. Small, low-dimensional datasets resemble the
conditions under which SMOTE was originally designed and where it still works well. Larger or higher-
dimensional regimes hit the complexity and geometry failure zones identified earlier, making cost-sensitive
or generative methods the safer choice. The following cases refine this guidance by data modality and typical
deployment constraints.

7.2 Case-Based Recommendations

Case 1: Small Tabular Data (N < 10%, d < 100). Recommended: SMOTE. For small-scale tabular
applications—regional fraud logs, customer churn in niche markets, maintenance records for small fleets—
SMOTE remains effective and straightforward to implement. With N ~ 10%, a k-NN pass runs in seconds
on a single CPU, and the local linearity assumption holds reasonably well.

Minimal implementation (Python):

from imblearn.over_sampling import SMOTE
smote = SMOTE(k_neighbors=5)
X_res, y_res = smote.fit_resample(X_train, y_train)

The oversampled data can then be fed into any standard classifier. This setup is appropriate when memory
is not a constraint and the priority is rapid prototyping and interpretability rather than scaling to production
volumes.

Case 2: Large Tabular / Graph Data (N > 10°). Recommended: Focal Loss or related cost-
sensitive criteria. For large-scale tabular and graph applications—credit card fraud detection, network
intrusion monitoring, supply chain anomaly detection—synthetic oversampling becomes memory-bound and
can stall preprocessing pipelines. Cost-sensitive learning avoids explicit data duplication and integrates
naturally with gradient-based learners (XGBoost, deep networks), scaling to millions of samples on GPUs
without preprocessing overhead.

Minimal implementation (PyTorch):
class FocalLoss(nn.Module):
def __init__(self, gamma=2.0):

super ) .__init__Q)
self.gamma = gamma
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def forward(self, inputs, targets):
ce = nn.CrossEntropyLoss(reduction=’none’) (inputs, targets)
p_t = torch.exp(-ce)
return ((1 - p_t) ** self.gamma * ce).mean()

Tuning tip. A commonly used practitioner heuristic (though not rigorously validated in formal studies) is

__ logy (imbalance ratio)
~ 5 ,

so an imbalance of 100:1 suggests starting with v ~ 3. This rule-of-thumb emerges from empirical observation
that ~ should scale sublinearly with imbalance ratio to avoid over-focusing on hard examples Lin“ef"all
(2017a). Lin et al’s original focal loss paper used v € {0,0.5,1,2,5} in ablation studies, finding v = 2 optimal
for their object detection task (IR = 1000:1) Lin“ef all (20017a). Cui et al. provide theoretical grounding for
effective sample-based reweighting but do not prescribe explicit « schedules Cui_ef-all (2009). In practice,
we recommend grid search over v € {1,2, 3,5} with cross-validation on minority-class recall. Higher ~ values
put more weight on hard, minority examples but may slow convergence or destabilize training if set too high;
monitor training curves and reduce +y if loss exhibits high variance.

Case 3: Computer Vision (N > 10° images). Recommended: Diffusion-based augmentation
+ cost-sensitive loss. In image-based intelligent systems—medical screening, industrial defect inspection,
satellite monitoring—the manifold distortion from linear interpolation is severe. Diffusion models can gen-
erate realistic minority-class images that stay on the true data manifold, while cost-sensitive losses handle
any residual imbalance during classifier training Zhang et al] (2025); (Oh & Jeong (2023).

Typical deployment workflow:

1. Fine-tune a pre-trained diffusion model (e.g., Stable Diffusion) on your minority-class images for a
few thousand steps.

2. Generate additional minority samples until the effective class distribution is workable for training.
3. Train your task-specific classifier using a focal or class-balanced loss to handle any remaining skew.

Caution. Always fine-tune on domain-specific data (medical scans, industrial images, etc.) before gener-
ating synthetic samples; zero-shot generation from generic base models often introduces artifacts or subtle
distribution shifts that degrade performance. Classifier-based two-sample tests Lopez-Paz & Oquab (21i17)
can detect severe mismatches between real and synthetic distributions before deployment.

Case 4: NLP / Text (N > 10° sequences). Recommended: Curriculum or sampling strategies
over synthetic text generation. For text-based intelligent systems—document classification, sentiment
monitoring, legal document analysis—naively generating minority examples can leak training data or amplify
unwanted biases. Instead, many production systems adopt curriculum learning that gradually upweights
difficult or under-represented examples, or use importance sampling to expose the model to minority patterns
more frequently while keeping the raw text corpus unchanged Wang et al] (2019).

7.3 Quick Reference Matrix

Table @ summarizes method selection by domain characteristics and scale, providing a quick lookup for
system designers choosing imbalance-handling strategies for their intelligent systems.
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Table 7: Method selection matrix by data type and scale for intelligent systems.

Domain Scale Primary method Alternative

Small tabular N < 10* SMOTE Random  oversam-
pling

Large tabular N > 10° Focal loss Class-balanced loss

Images N > 10° Diffusion + focal Decoupled head

Text (LLMs) N > 10° Focal / reweighting Curriculum learning

Graphs N > 10* Cost-sensitive GNN Re-sampling of
edges/nodes

Time series N > 10° Focal loss ADASYN (if N
small)

7.4 Troubleshooting and Pitfalls

Issue 1: Focal loss seems ineffective in production.

Fiz: Tune v carefully. The default v = 2 is often too low for extreme imbalance scenarios common in fraud
detection or medical screening. Try values in the range v € {3,5} and monitor minority-class recall and
calibration metrics. If performance remains flat, check whether the base model architecture has sufficient
capacity; no amount of loss tuning can fix an underpowered feature extractor.

Issue 2: Diffusion-generated images look unrealistic or introduce domain shift.

Fiz: Make fine-tuning on domain data mandatory. Base models (e.g., SDXL) rarely generalize well to
specialized domains like medical imaging or industrial inspection in a zero-shot manner. Always fine-tune
using your minority-class images and apply standard diagnostics such as classifier two-sample tests Lopez-Paz
& Oqualj (2017) to catch severe distribution mismatches before deploying the augmented dataset.

Issue 3: NalN gradients or training instability with cost-sensitive losses.
Fiz: Extremely large class weights (e.g., w > 10%) can cause numerical instability during backpropagation.
Clip weights before passing them to the loss function:

w = torch.clamp(w, max=100.0)

and consider log-scaled or focal-style reweighting instead of raw imbalance ratios, which tend to be more
numerically stable.

7.5 Implementation Resources

The methods recommended here are supported by standard toolchains used in production intelligent systems:

e PyTorch: torch.nn.CrossEntropylLoss(weight=class_weights) for weighted losses; custom
FocalLoss as shown above integrates directly into training loops.

o XGBoost / LightGBM: scale_pos_weight and related parameters for class weighting in
gradient-boosted trees, widely used in tabular production systems.

o Diffusion toolkits: the diffusers library Hugging Facd (2022) and similar frameworks for fine-
tuning diffusion models on domain-specific minority classes in vision applications.

7.6 Final Recommendation

The right choice depends on your deployment context. If your dataset and infrastructure resemble early-
2000s benchmarks—small N, low d, CPU-only training—SMOTE remains a simple and effective tool. For
the large-scale, high-dimensional, GPU-centric workloads that now dominate production intelligent systems,
cost-sensitive learning should be your default starting point, with diffusion-style generators and decoupled
heads reserved for vision domains where manifold structure is critical or for scenarios where representation
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bias is the primary bottleneck. When in doubt, start simple: cost-sensitive loss on the original data will get
you 90% of the way there in most real-world deployments.

8 The Post-SMOTE Research Agenda

While the paradigm shift away from SMOTE is evident, critical gaps remain. We highlight two high-impact
challenges likely to shape imbalanced learning research in the next five years (2025-2030), spanning both
learning theory and systems design.

8.1 Open Problem 1: Theoretical Guarantees for Generative Augmentation

Diffusion models and related generators produce visually convincing synthetic data, yet they lack formal
guarantees about how these synthetics affect downstream classifiers Oh & Jeong (2023); Zhang et all (2025).
Current evaluation is almost entirely empirical—“the F'I-score improved, therefore it works”—which is in-
sufficient for high-stakes domains such as medical diagnosis or credit scoring, where subtle generative biases
can introduce latent risks.

The challenge. The field lacks PAC-style bounds connecting synthetic data quality to downstream classi-
fication risk. A pivotal research direction is to derive finite-sample guarantees of the form

R(fsynthetic) - R(foptimal) S 6(]vreala Nsynv DKL (PG H p*)a Vc'dlm(H))v

where py is the generative model, p* is the true distribution, and H is the hypothesis class. Such bounds
would allow practitioners to reason about the safe ratio of synthetic to real samples and to quantify risk
as a function of model mismatch Dxr,(pg || p*). Achieving this likely requires extending domain adaptation
theory—in particular, divergence-based analyses such as H-divergence and PAC-Bayesian domain adaptation
bounds Germain_ef all (P013); Redka efall (PI20)—to the generative setting, where both the “source” and
“target” distributions are model-dependent. Recent work on constrained diffusion models Khalafi_et"al
(2022) illustrates that it is possible to impose distributional constraints on diffusion processes; bringing such
ideas into the imbalance setting could yield certified generative augmentation schemes with explicit safety
margins.

8.2 Open Problem 2: Hardware-Constrained Optimization

Existing work typically optimizes imbalance-handling methods for accuracy or, occasionally, for memory, but
rarely for both simultaneously. A practitioner with a fixed 16 GB GPU budget faces a concrete trade-off:
does a diffusion-based augmentation pipeline that improves F1 by +3% but consumes 8 GB of memory
offer a better overall solution than a purely cost-sensitive baseline that adds virtually no memory overhead?
There is currently no standard framework for reasoning about these trade-offs.

The challenge. We propose formulating imbalanced learning as a resource-constrained optimization prob-
lem:

max F1-Score(6, M) s.t. Memory(0, M) < Mapu,

where M indexes the method choice (e.g., oversampling, cost-sensitive, generative, decoupled). Constructing
an empirical Pareto frontier that maps memory footprints and wall-clock costs to Fl-scores across diverse
datasets would make these trade-offs explicit. Multi-objective optimization techniques that learn Pareto
fronts in model space Navon efall (2020) and hardware-aware architecture search frameworks that jointly
consider accuracy, latency, and memory [Li“et~all (2023) provide methodological starting points but have
not yet been specialized to the design space of imbalance-handling methods. A practical outcome would be
a recommendation tool that suggests near-optimal methods under hardware constraints (e.g., “For 16 GB
VRAM and tabular data of size N ~ 10°, prefer Method X ), bridging the gap between academic benchmarks
on high-end clusters and the resource limits of typical industrial deployments.
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8.3 A Roadmap for Impact

These problems are challenging but tractable. Open Problem 1 offers a path for theoretical contributions,
for example by combining PAC-Bayesian or divergence-based domain-adaptation analyses with generative
augmentation mechanisms to obtain explicit risk bounds Germain et all (2013); Redko ef_all (2020). Open
Problem 2 invites systems-oriented work on multi-objective optimization, scheduling, and method selection
for imbalanced learning workloads, building on the broader literature on Pareto-optimal model design under
hardware constraints Navon efall (2020); Li—ef_all (2023). By shifting attention from minor algorithmic
variants to these fundamental questions of reliability and efficiency, the community can ensure that the next
generation of imbalanced learning methods is not only accurate but also certifiably robust and realistically
deployable in modern computing environments.

9 Conclusion: Lessons for Building Production-Ready Intelligent Systems

The evidence presented here is conditioned on a DBLP-centric, 2020-2025 corpus covering major CS and Al
venues; industrial white papers, non-indexed conferences, and non-English publications may show different
adoption timelines. The SMOTE Paradox documented in this review should therefore be interpreted as a ro-
bust signal within the curated academic literature and representative case studies, rather than an exhaustive
survey of all deployment practices across all intelligent systems.

9.1 The Four Key Findings

This systematic review of 821 papers (2020-2025) characterized the shift away from SMOTE in large-scale
intelligent systems through four main findings. First, baseline inclusion in high-relevance papers collapsed
from 92% (pre-2020) to 6% in our top-50 corpus, indicating that SMOTE is no longer the default comparison
point for contemporary imbalanced-learning research. Second, the field has fragmented into specialized
approaches—diffusion-based generative methods (30%), cost-sensitive learning (30%), and alternative or
hybrid strategies (40%)—with no single universal successor. Third, three converging pressures explain why
SMOTE has become difficult to deploy at modern scales: O(N?) computational complexity that exceeds
typical memory budgets, v/d-scale manifold deviation that produces off-manifold artifacts in high dimensions,
and GPU pipeline incompatibility that creates friction in modern training workflows. Fourth, different
application domains have converged on distinct solutions that reflect their specific constraints: diffusion
models for vision applications where manifold structure matters, cost-sensitive losses for large tabular and
graph data where computational efficiency is paramount, and decoupled architectures where representation
learning can be separated from classifier calibration.

9.2 Practical Implications for Intelligent Systems Development

For system designers and ML engineers. When building production intelligent systems under class
imbalance, treat SMOTE as a legacy baseline suitable primarily for small-scale exploratory work (N < 10%,
d < 100) rather than as a default production strategy. For large-scale deployments in fraud detection, medical
screening, industrial monitoring, or similar applications, cost-sensitive learning should be your starting point:
it matches or exceeds oversampling performance in most tabular settings while integrating cleanly into GPU
training pipelines and avoiding data materialization overhead. Reserve diffusion-based generation for vision
domains where manifold structure is critical, and consider decoupled architectures when you need to update
decision boundaries frequently without retraining expensive feature extractors.

For benchmark and evaluation protocol designers. Explicitly document when classical baselines like
SMOTE are excluded due to computational infeasibility rather than silently omitting them from comparison
tables. Transparent reporting of hardware constraints, memory budgets, and preprocessing times accelerates
progress by preventing wasted effort attempting to reproduce experiments that cannot run at realistic scales.
Evaluation protocols for intelligent systems should track not only classification accuracy and fairness metrics
but also memory consumption, wall-clock training time, deployment complexity, and compatibility with
modern MLOps toolchains.
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For researchers developing new imbalance-handling methods. Design and validate your techniques
with deployment constraints in mind from the start. Methods that require terabyte-scale data materializa-
tion, CPU-bound preprocessing, or separate training pipelines face adoption barriers in production intelligent
systems, even when they achieve small accuracy improvements on academic benchmarks. Empirical valida-
tion should include production-scale datasets, realistic hardware configurations, and integration tests with
standard frameworks (PyTorch, TensorFlow, XGBoost) to demonstrate that your method can actually be
deployed in real intelligent systems, not just benchmarked offline.

For educators and training programs. SMOTE remains pedagogically valuable as a case study in how
method assumptions interact with evolving data scales, hardware architectures, and deployment contexts.
Teaching it as historical context rather than current best practice helps students develop critical thinking
about method applicability, recognize when theoretical assumptions break down at scale, and understand the
relationship between algorithmic design, systems constraints, and practical deployment—skills that transfer
beyond any single technique.

9.3 The SMOTE Paradox as a Design Lesson

We introduced the SMOTE Paradox to describe the gap between citation frequency and deployment reality:

A method exhibits the SMOTE Paradox when: (1) academic citations remain high
(inertia in benchmarking practices), (2) deployment in representative production systems is
rare or declining, (3) this gap persists for multiple years (slow knowledge diffusion between
research and practice), and (4) underlying reasons are rarely documented explicitly in the
literature.

This framework has practical value for system designers: it highlights techniques that may appear standard
in papers but face hidden deployment barriers. Beyond imbalanced learning, the same pattern appears
in feature extraction (SIFT/HOG replaced by learned features), classical ML (SVMs largely displaced by
deep networks in vision/NLP), and indexing structures (hash tables giving way to learned indexes in some
domains). Recognizing the SMOTE Paradox pattern helps practitioners avoid investing engineering effort in
methods that look standard in academic papers but are difficult to operationalize in production intelligent
systems.

9.4 Methods Have Operational Lifespans

SMOTE’s trajectory illustrates a fundamental reality in building intelligent systems: methods do not suddenly
become wrong; the operational context changes around them. SMOTE remains effective for the problem it
was designed to solve—small tabular datasets on modest CPU-only hardware. What changed is that the
typical production problem in 2025 involves much larger datasets, higher dimensionality, GPU-accelerated
training, and tighter integration with continuous deployment pipelines. The method itself did not fail; the
envelope of typical operating conditions shifted beyond its original design assumptions.

This lesson applies broadly to intelligent systems engineering. Today’s state-of-the-art diffusion models, focal
losses, and transformer architectures operate under their own assumptions about data scale, computational
budgets, and deployment contexts. As datasets grow to billions of samples, as new hardware architectures
emerge, or as deployment constraints shift toward edge devices or federated settings, some of these methods
will face their own context collapse. The analytical approach used in this review—combining systematic
literature analysis, mathematical inspection of computational and geometric assumptions, and systems-level
reasoning about pipeline integration—provides a template for anticipating and managing such transitions in
your own intelligent systems.

9.5 Impact on Intelligent Systems Practice

This work provides immediate value to three practitioner communities:
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ML Engineers in Production Systems. The decision matrix (Table @) and quick reference guide (Sec-
tion @) enable evidence-based method selection under memory and latency constraints, reducing trial-and-
error cycles in fraud detection, medical diagnosis, and industrial monitoring deployments.

Research Teams in Applied AI Labs. The SMOTE Paradox framework helps identify when highly-cited
methods face deployment barriers, preventing wasted engineering effort on techniques that appear standard
in academic papers but fail at scale.

Educators and Training Programs. Section @’s recommendations provide a template for teaching method
applicability analysis, helping students recognize when theoretical assumptions break down under evolving
hardware and scale constraints.

9.6 Final Recommendations

SMOTE served the machine learning community well for roughly two decades, making imbalanced learning
accessible through elegant simplicity and intuitive geometric reasoning. Its decline in large-scale production
systems reflects not a flaw in the original design but rather the natural evolution of deployment contexts
toward scales, dimensions, and hardware architectures that exceed its operational envelope.

For practitioners building intelligent systems today, the practical guidance is straightforward: choose methods
that match your actual deployment constraints—data scale, hardware infrastructure, pipeline integration
requirements, and operational risk tolerance—rather than methods that appear frequently in academic papers
by default. Use the decision rules and troubleshooting guidance from Section [@ as a starting point, validate
on your specific domain and scale, and be prepared to adapt as your operational context evolves.

For the field as a whole, the SMOTE story demonstrates how systematic analysis can identify, quantify,
and explain the gap between what is cited and what is deployed, providing a roadmap for managing the
inevitable evolution of methods in intelligent systems. As you design your next fraud detection pipeline,
medical screening tool, or industrial monitoring system, remember that the techniques that work today were
designed for today’s constraints. When those constraints change—and they will—be ready to recognize the
signs of context collapse and adapt accordingly. The goal is not to find methods that work forever but to
build systems that can evolve gracefully as the operational landscape shifts beneath them.
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