
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SVDQUANT: ABSORBING OUTLIERS BY LOW-RANK
COMPONENT FOR 4-BIT DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

FLUX.1-SCHNELL BF16
Image Reward: 0.968

Memory: 23.2 GiB (OOM)
Latency: N/A

NF4 (W4A16)
Image Reward: 0.943

Memory: 7.7 GiB (3.0×)
Latency: 1823 ms

Our INT4 (W4A4)
Image Reward: 0.965

Memory: 6.5 GiB (3.6×)
Latency: 515 ms (3.5×)

Our FP4 (W4A4)
Image Reward: 0.957

Memory: 6.5 GiB (3.6×)
Latency: N/A

Prompt: An 8K photo of a Eurasian lynx in a sunlit forest, with tufted ears and a spotted coat. The lynx should be sharply focused, gazing into the distance, while the background is softly blurred for depth.
Use cinematic lighting with soft rays filtering through the trees, and capture the scene with a shallow depth of field for a natural, peaceful atmosphere.

Prompt: A futuristic humanoid robot stands in front of a blackboard in a classroom, writing with chalk. On the board, the word "SVDQuant is good!" is written in a stylish, clean font.

Figure 1: We present SVDQuant, a post-training quantization method for diffusion models. It effectively
quantizes both weights and activations of 12B FLUX.1-schnell to 4 bits without compromising visual quality, as
assessed by ImageReward (Xu et al., 2024a). Compared to the BF16 model, we reduce the memory usage by
3.6×. Compared to the NF4 W4A16 baseline, we achieve 3.6× speedup on a laptop with RTX-4090 GPU.

ABSTRACT

Diffusion models have been proven highly effective at generating high-quality
images. However, as these models grow larger, they require significantly
more memory and suffer from higher latency, posing substantial challenges for
deployment. In this work, we aim to accelerate diffusion models by quantizing
their weights and activations to 4 bits. At such an aggressive level, both weights
and activations are highly sensitive, where conventional post-training quantization
methods for large language models like smoothing become insufficient. To
overcome this limitation, we propose SVDQuant, a new 4-bit quantization
paradigm. Different from smoothing which redistributes outliers between weights
and activations, our approach absorbs these outliers using a low-rank branch.
We first consolidate the outliers by shifting them from activations to weights,
then employ a high-precision low-rank branch to take in the weight outliers with
Singular Value Decomposition (SVD). This process eases the quantization on
both sides. However, naïvely running the low-rank branch independently incurs
significant overhead due to extra data movement of activations, negating the
quantization speedup. To address this, we co-design an inference engine LoRunner
that fuses the kernels of the low-rank branch into those of the low-bit branch to
cut off redundant memory access. It can also seamlessly support off-the-shelf
low-rank adapters (LoRAs) without the need for re-quantization. Extensive
experiments on SDXL, PixArt-Σ, and FLUX.1 validate the effectiveness of
SVDQuant in preserving image quality. We reduce the memory usage for the
12B FLUX.1 models by 3.6×, achieving 3.5× speedup over the 4-bit weight-only
quantized baseline on a 16GB RTX-4090 GPU, paving the way for more interactive
applications on PCs. We will release the code and models upon publication.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Diffusion models have shown remarkable capabilities in generating high-quality images (Ho et al.,
2020), with recent advances further enhancing user control over the generation process. Trained
on vast data, these models can create stunning images from simple text prompts, unlocking diverse
image editing and synthesis applications (Meng et al., 2022b; Ruiz et al., 2023; Zhang et al., 2023).

C
om

pu
ta

tio
n

(T
M

A
C

s)

0

10

20

30

40

50

Parameters (B)
0 3 6 9 12 15

Diffusion Model
LLM AuraFlow v0.1’24

FLUX.1’24

Llama2-13B’23

Gemma2-9B’24
Llama3-8B’24

Phi-3.5’24
Gemma2-2B’24

PixArt’23

SD3-Medium’24

SDXL’23

SD1.4’22

Figure 2: Computation vs. param-
eters for LLMs and diffusion mod-
els. LLMs’ computation is mea-
sured with 512 context and 256
output tokens, and diffusion mod-
els’ computation is for a single
step. Dashed lines show trends.

To pursue higher image quality and more precise text-to-image
alignment, researchers are increasingly scaling up diffusion mod-
els. As shown in Fig. 2, Stable Diffusion (SD) (Rombach et al.,
2022) 1.4 only has 800M parameters, while SDXL (Podell et al.,
2024) scales this up to 2.6B parameters. AuraFlow v0.1 (fal.ai,
2024) extends this further to 6B parameters, with the latest model,
FLUX.1 (Black-Forest-Labs, 2024), pushing the boundary to 12B
parameters. Compared to large language models (LLMs), diffusion
models are significantly more computationally intensive. Their com-
putational costs* increase more rapidly with model size, posing a
prohibitive memory and latency barrier for real-world model deploy-
ment, particularly for interactive use cases that demand low latency.

As Moore’s law slows down, hardware vendors are turning to low-
precision inference to sustain performance improvements. For in-
stance, NVIDIA’s Blackwell Tensor Cores introduce a new 4-bit
floating point (FP4) precision, doubling the performance compared
to FP8 (NVIDIA, 2024). Therefore, using 4-bit inference to acceler-
ate diffusion models is appealing. In the realm of LLMs, researchers have leveraged quantization to
compress model sizes and boost inference speed (Dettmers et al., 2022; Xiao et al., 2023). However,
unlike LLMs–where latency is primarily constrained by loading model weights on modern GPUs,
especially with small batch sizes–diffusion models are heavily computationally bound, even with a
single batch. As a result, weight-only quantization cannot accelerate diffusion models on GPUs. To
achieve speedup on these devices, both weights and activations must be quantized to the same bit
width; otherwise, the lower-precision weight will be upcast during computation, negating potential
performance enhancements.

In this work, we focus on quantizing both the weights and activations of diffusion models to 4
bits. This challenging and aggressive scheme is often prone to severe quality degradation. Existing
methods like smoothing (Xiao et al., 2023; Lin et al., 2024a), which attempt to transfer the outliers
between the weights and activations, are less effective since both sides are highly vulnerable to
outliers. To address this issue, we propose a new general-purpose quantization paradigm, SVDQuant.
Our core idea is to introduce a low-cost branch to absorb outliers on both sides. To achieve this, as
illustrated in Fig. 3, we first aggregate the outliers by migrating them from activation X to weight
W via smoothing. Then we apply Singular Value Decomposition (SVD) to the updated weight,
Ŵ , decomposing it into a low-rank branch L1L2 and a residual Ŵ −L1L2. The low-rank branch
operates at 16 bits, allowing us to quantize only the residual to 4 bits, which has significantly reduced
outliers and magnitude. However, naively running the low-rank branch separately incurs substantial
memory access overhead, offsetting the speedup of 4-bit inference. To overcome this, we co-design a
specialized inference engine LoRunner, which fuses the low-rank branch computation into the 4-bit
quantization and computation kernels. This design enables us to achieve measured inference speedup
even with additional branches.

SVDQuant can quantize various text-to-image diffusion architectures, including both UNet (Ho
et al., 2020; Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023) backbones, into 4 bits, while
maintaining visual quality. It supports both INT4 and FP4 data types, and integrates seamlessly
with pre-trained low-rank adapters (LoRA) (Hsu et al., 2022) without requiring re-quantization. To
our knowledge, we are the first to successfully apply 4-bit post-training quantization to both the
weights and activations of diffusion models, and achieve measured speedup on NVIDIA GPUs. On
the latest 12B FLUX.1, we largely preserve the image quality and reduce the memory footprint of
the original BF16 model by 3.6× and deliver a 3.5× speedup over the NF4 weight-only quantized
baseline, measured on a 16GB laptop-level RTX4090 GPU. See Fig. 1 for visual examples.

*Computational cost is measured by number of Multiply-Accumulate operations (MACs). 1 MAC=2 FLOPs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Q
ua

nt
iz

at
io

n
Le

ve
l

0

10

0

2
￼|X | ￼|W |Outlier

Low Effective Bits

Very Hard to Quantize Hard to Quantize

0

2

0

4.5
￼| X̂ | ￼|Ŵ |

Migrate Difficulty with Smoothing

Easy to Quantize Harder to Quantize

0

2

0

0.05

rank=32

16-Bit ￼L1

16-Bit ￼L2

+

￼| X̂ | ￼|Ŵ − L1L2 |

Migrate Difficulty with SVD

Easy to Quantize Easy to Quantize No Need to Quantize

Low-Rank Branch ￼L1L2

(a) Original (b) Shift Outliers from Activation ￼ to Weight ￼X W (c) SVDQuant (Ours)

Channel Input Channel Channel Input Channel Channel Input Channel

Figure 3: Overview of SVDQuant. (a) Originally, both the activation X and weight W contain outliers, making
4-bit quantization challenging. (b) We migrate the outliers from the activation to weight, resulting in the updated
activation X̂ and weight Ŵ . While X̂ becomes easier to quantize, Ŵ now becomes more difficult. (c)
SVDQuant further decomposes Ŵ into a low-rank component L1L2 and a residual Ŵ − L1L2 with SVD.
Thus, the quantization difficulty is alleviated by the low-rank branch, which runs at 16-bit precision.

2 RELATED WORK

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged
as a powerful class of generative models, known for their ability to generate high-quality samples
by modeling the data distribution through an iterative denoising process. Recent advancements in
text-to-image diffusion models (Balaji et al., 2022; Rombach et al., 2022; Podell et al., 2024) have
already revolutionized content generation. Researchers further shifted from convolution-based UNet
architectures (Ronneberger et al., 2015; Ho et al., 2020) to transformers (e.g., DiT (Peebles & Xie,
2023) and U-ViT (Bao et al., 2023)) and scaled up the model size (Esser et al., 2024). However,
diffusion models suffer from extremely slow inference speed due to their long denoising sequences
and intense computation. To address this, various approaches have been proposed, including few-step
samplers (Zhang & Chen, 2022; Zhang et al., 2022; Lu et al., 2022) or distilling fewer-step models
from pre-trained ones (Salimans & Ho, 2021; Meng et al., 2022a; Song et al., 2023; Luo et al., 2023;
Sauer et al., 2023; Yin et al., 2024b;a; Kang et al., 2024). Another line of works choose to optimize or
accelerate computation via efficient architecture design (Li et al., 2023b; 2020; Cai et al., 2024; Liu
et al., 2024b), quantization (Shang et al., 2023; Li et al., 2023a), sparse inference (Li et al., 2022; Ma
et al., 2024c;b), and distributed inference (Li et al., 2024b; Wang et al., 2024c; Chen et al., 2024c). This
work focuses on quantizing the diffusion models to 4 bits to reduce the computation complexity. Our
method can also be applied to the few-step diffusion models to further reduce the latency (see Sec. 5.2).
Quantization. Quantization has been recognized as an effective approach for LLMs to reduce the
model size and accelerate inference (Dettmers et al., 2022; Frantar et al., 2023; Xiao et al., 2023;
Lin et al., 2024b;a; Kim et al., 2024; Zhao et al., 2024d). For diffusion models, Q-Diffusion (Li et al.,
2023a) and PTQ4DM (Shang et al., 2023) first achieved 8-bit quantization. Subsequent works refined
these techniques with approaches like sensitivity analysis (Yang et al., 2023) and timestep-aware
quantization (He et al., 2023; Huang et al., 2024; Liu et al., 2024c; Wang et al., 2024a). Some recent
works extended the setting to text-to-image models (Tang et al., 2023; Zhao et al., 2024c), DiT
backbones (Wu et al., 2024), quantization-aware training (He et al., 2024; Zheng et al., 2024; Wang
et al., 2024b; Sui et al., 2024), video generation (Zhao et al., 2024b), and different data types (Liu
& Zhang, 2024). Among these works, only MixDQ (Zhao et al., 2024c) and ViDiT-Q (Zhao et al.,
2024b) implement low-bit inference engines and report measured 8-bit speedup on GPUs. In this
work, we push the boundary further by quantizing diffusion models to 4 bits, supporting both the
integer or floating-point data types, compatible with the UNet backbone (Ho et al., 2020) and recent
DiT architecture (Peebles & Xie, 2023). Our co-designed inference engine, LoRunner, further ensures
on-hardware speedup. Additionally, when applying LoRA to the model, existing methods require
fusing the LoRA branch to the main branch and re-quantizing the model to avoid tremendous memory-
access overhead in the LoRA branch. LoRunner cuts off this overhead via kernel fusion, allowing
the low-rank branch to run efficiently as a separate branch, eliminating the need for re-quantization.
Low-rank decomposition. Low-rank decomposition has gained significant attention in deep learning
for enhancing computational and memory efficiency (Hu et al., 2022; Zhao et al., 2024a; Jaiswal et al.,
2024). While directly applying this approach to model weights can reduce the compute and memory
demands (Hsu et al., 2022; Yuan et al., 2023; Li et al., 2023c), it often leads to performance degra-
dation. Instead, Yao et al. (2023) combined it with quantization for model compression, employing
a low-rank branch to compensate for the quantization error. Low-Rank Adaptation (LoRA) (Hu et al.,
2022) introduces another important line of research by using low-rank matrices to adjust a subset
of pre-trained weights for efficient fine-tuning. This has sparked numerous advancements (Dettmers
et al., 2023; Guo et al., 2024; Li et al., 2024c; Xu et al., 2024b; Meng et al., 2024), which combines
quantized models with low-rank adapters to reduce memory usage during model fine-tuning. However,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 7k 14k 21k
0

0.5

1

1.5

2

0 7k 14k 21k
0

5

10

15

20

0 18k 55k 74k
0

0.2

0.4

0.8

1.0

0.6

37k0 7k 14k 21k
0

0.5

1.0

1.5

2.0

0 18k 37k 55k 74k
0

4

6

10

2

8

Input Activation Group Index Weight Group Index Weight Group IndexWeight Group IndexInput Activation Group Index

W
ei

gh
t V

al
ue

In
pu

t A
ct

iv
at

io
n

Va
lu

e

W
ei

gh
t V

al
ue

W
ei

gh
t V

al
ue

In
pu

t A
ct

iv
at

io
n

Va
lu

e

(a) |X | (b) |W | (c) | X̂ | = |X ⋅ diag(λ)−1 | (d) |Ŵ | = |W ⋅ diag(λ) | (e) |R | = |Ŵ − L1L2 |

50% Percentile

99% Percentile

Max
Original After Smoothing After SVDOutliers

Outliers
More

Outliers

Figure 4: Example value distribution of inputs and weights in PixArt-Σ. λ is the smooth factor. Red indicates
the outliers. Initially, both the input X and weight W contain significant outliers. After smoothing, the range of
X̂ is reduced with much fewer outliers, while Ŵ shows more outliers. Once the SVD low-rank branch L1L2 is
subtracted, the residual R has a narrower range and is free from outliers.

our work differs in two major aspects compared to this line of work that fine-tunes LoRA branches on
a quantized base model. Firstly, our goal is different, as we aim to accelerate model inference through
quantization, while previous works focus on model compression or efficient fine-tuning. Thus, they
primarily consider weight-only quantization, resulting in no speedup. Secondly, as shown in our exper-
iments (Fig. 6 and ablation study in Sec. 5.2), directly applying these methods not only degrades the
image quality but also introduces significant overhead. In contrast, our method yields much better per-
formance due to our joint quantization of weights and activations and our inference engine LoRunner
minimizes the overhead by fusing the low-rank branch kernels into the low-bit computation ones.

3 QUANTIZATION PRELIMINARY

Quantization is an effective approach to accelerate linear layers in networks. Given a tensor X , the
quantization process is defined as:

QX = round
(
X

sX

)
, sX =

max(|X|)
qmax

. (1)

Here, QX is the low-bit representation of X , sX is the scaling factor, and qmax is the maximum
quantized value. For signed b-bit integer quantization, qmax = 2b−1 − 1. For 4-bit floating-point
quantization with 1-bit mantissa and 2-bit exponent, qmax = 6. Thus, the dequantized tensor can be
formulated as Q(X) = sX ·QX . For a linear layer with input X and weight W , its computation
can be approximated by

XW ≈ Q(X)Q(W) = sXsW ·QXQW . (2)

The same approximation applies to convolutional layers. To speed up computation, modern commer-
cial GPUs require both QX and QW using the same bit width. Otherwise, the low-bit weights need
to be upcast to match the higher bit width of activations, or vice versa, negating the speed advantage.
Following the notation in QServe (Lin et al., 2024b), we denote x-bit weight, y-bit activation as
WxAy. “INT” and “FP” refer to the integer and floating-point data types, respectively.

In this work, we focus on W4A4 quantization for acceleration, where outliers in both weights
and activations place substantial obstacles. Traditional methods to suppress these outliers include
quantization-aware training (QAT) (He et al., 2024) and rotation (Ashkboos et al., 2024; Liu et al.,
2024d; Lin et al., 2024b). QAT requires massive computing resources, especially for tuning models
with more than 10B parameters (e.g., FLUX.1). Rotation is inapplicable due to the usage of adaptive
normalization layers (Peebles & Xie, 2023) in diffusion models. The runtime-generated normalization
weights preclude the offline integration of the rotation matrix with the weights of projection layers.
Consequently, online rotation of both activations and weights incurs significant runtime overhead.

4 METHOD

In this section, we first formulate our problem and discuss where the quantization error comes from.
Next, we present SVDQuant, a new W4A4 quantization paradigm for diffusion models. Our key
idea is to introduce an additional low-rank branch that can absorb quantization difficulties in both
weights and activations. Finally, we provide a co-designed inference engine LoRunner with kernel
fusion to minimize the overhead of the low-rank branches in the 4-bit model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 PROBLEM FORMULATION

Consider a linear layer with input X ∈ Rb×m and weight W ∈ Rm×n. The quantization error can
be defined as

E(X,W) = ∥XW −Q(X)Q(W)∥F , (3)
where ∥ · ∥F denotes Frobenius Norm.
Proposition 4.1 (Error decomposition). The quantization error can be decomposed as follows:

E(X,W) ≤ ∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W)∥F). (4)

See App. A.1 for the proof. From the proposition, we can see that the error is bounded by four elements
– the magnitude of the weight and input, ∥W ∥F and ∥X∥F , and their respective quantization
errors, ∥W −Q(W)∥F and ∥X −Q(X)∥F . To minimize the overall quantization error, we aim to
optimize these four terms.

4.2 SVDQUANT: ABSORBING OUTLIERS VIA LOW-RANK BRANCH

Migrate outliers from activation to weight. Smoothing (Xiao et al., 2023; Lin et al., 2024a) is
an effective approach for reducing outliers. We can smooth outliers in activations by scaling down
the input X and adjusting the weight matrix W correspondingly using a per-channel smoothing
factor λ ∈ Rm. As shown in Fig. 4(a)(c), the smoothed input X̂ = X · diag(λ)−1 exhibits reduced
magnitude and fewer outliers, resulting in lower input quantization error. However, in Fig. 4(b)(d),
the transformed weight Ŵ = W · diag(λ) has a significant increase in both magnitude and the
presence of outliers, which in turn raises the weight quantization error. Consequently, the overall
error reduction is limited.
Absorb magnified weight outliers with a low-rank branch. Our core insight is to introduce a 16-bit
low-rank branch and further migrate the weight quantization difficulty to this branch. Specifically,
we decompose the transformed weight as Ŵ = L1L2 +R, where L1 ∈ Rm×r and L2 ∈ Rr×n are
two low-rank factors of rank r, and R is the residual. Then XW can be approximated as

XW = X̂Ŵ = X̂L1L2 + X̂R ≈ X̂L1L2︸ ︷︷ ︸
16-bit low-rank branch

+Q(X̂)Q(R)︸ ︷︷ ︸
4-bit residual

. (5)

Compared to direct 4-bit quantization, i.e., Q(X̂)Q(W), our method first computes the low-rank
branch X̂L1L2 in 16-bit precision, and then approximates the residual X̂R with 4-bit quantization.
Empirically, r ≪ min(m,n), and is typically set to 16 or 32. As a result, the additional parameters
and computation for the low-rank branch are negligible, contributing only mr+nr

mn to the overall costs.
However, it still requires careful system design to eliminate redundant memory access, which we will
discuss in Sec. 4.3.

From Eq. 5, the quantization error can be expressed as∥∥∥X̂Ŵ − (X̂L1L2 +Q(X̂)Q(R))
∥∥∥
F
=

∥∥∥X̂R−Q(X̂)Q(R)
∥∥∥
F
= E(X̂,R), (6)

where R = Ŵ −L1L2. According to Proposition 4.1, since X̂ is already free from outliers, we only
need to focus on optimizing the magnitude of R, ∥R∥F and its quantization error, ∥R−Q(R)∥F .
Proposition 4.2 (Quantization error bound). For any tensor R and quantization method described
in Eq. 1 as Q(R) = sR ·QR. Assuming the elements of R follow a distribution that satisfies the
following regularity condition: There exists a constant c such that

E [max(|R|)] ≤ c · E [∥R∥F] . (7)

Then, we have

E [∥R−Q(R)∥F] ≤
c
√

size(R)

qmax
· E [∥R∥F] (8)

where size(R) denotes the number of elements in R. Especially if the elements of R follow a normal

distribution, Eq. 7 holds for c =
√

log(size(R))π
size(R) .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

La
te

nc
y

(u
s)

0

100

200

300

400

500

Naïve LoRunner (Ours)

Quantize
4-bit Compute
Up Proj.
Down Proj.

1.43￼×

(a) Latency Breakdown on QKV projection

Fused Kernel 1

X̂
4-Bit Compute

￼QR, s
RQX̂, s

X̂

Quantize

Down Proj.
￼L1

Up Proj.
￼L2

X̂L1
X̂L1L2

⊕
s

X̂
s

R
QX̂QR

(b) LoRunner Kernel Fusion

Fused Kernel 2

Shared OutputShared Input

7

287

150

17

300

22

Figure 6: (a) Naïvely running low-rank branch with rank 32 will introduce 57% latency overhead due to extra
read of 16-bit inputs in Down Projection and extra write of 16-bit outputs in Up Projection. Our LoRunner
engine optimizes this overhead with kernel fusion. (b) Down Projection and Quantize kernels use the same input,
while Up Projection and 4-Bit Compute kernels share the same output. To reduce data movement overhead, we
fuse the first two and the latter two kernels together.

0 16 32 48 64

100

400

10

￼W
￼Ŵ
￼R

Extremely
High
Singular
Values Low

Singular
Values

Figure 5: First 64 singular
values of W , Ŵ , and R. The
first 32 singular values of Ŵ
exhibit a steep drop, while the
remaining values are much
more gradual.

See App. A.2 for the proof. From this proposition, we obtain the
intuition that the quantization error ∥R−Q(R)∥F is bounded by
the magnitude of the residual ∥R∥F . Thus, our goal is to find the

optimal L1L2 that minimizes ∥R∥F =
∥∥∥Ŵ −L1L2

∥∥∥
F

, which can
be solved by simple Singular Value Decomposition (SVD). Given
the SVD of Ŵ = UΣV , the optimal solution is L1 = UΣ:,:r

and L2 = V:r,:. Fig. 5 illustrates the singular value distribution
of the original weight W , transformed weight Ŵ and residual R.
The singular values of the original weight W are highly imbalanced.
After smoothing, the singular value distribution of Ŵ becomes even
sharper, with only the first several values being significantly larger.
By removing these dominant values, Eckart–Young–Mirsky theorem†

suggests that the magnitude of the residual R is dramatically reduced,

as ∥R∥F =
√∑min(m,n)

i=r+1 σ2
i , compared to the original magnitude

∥∥∥Ŵ∥∥∥
F

=

√∑min(m,n)
i=1 σ2

i ,

where σi is the i-th singular value of Ŵ . Furthermore, empirical observations reveal that R exhibits
fewer outliers with a substantially compressed value range compared to Ŵ , as shown in Fig. 4(d)(e).
In practice, we can further reduce quantization errors by iteratively updating the low-rank branch
through decomposing W − Q(R) and adjusting R accordingly for several iterations, and then
picking the result with the smallest error.

4.3 LORUNNER: FUSING LOW-RANK AND LOW-BIT BRANCH KERNELS

Although the low-rank branch introduces theoretically negligible computation, running it as a separate
branch would incur significant latency overhead—approximately 50% of the 4-bit branch latency, as
shown in Fig. 6(a). This is because, for a small rank r, even though the computational cost is greatly
reduced, the data sizes of input and output activations remain unchanged, shifting the bottleneck from
computation to memory access. The situation deteriorates, especially when the activation cannot
fit into the GPU L2 cache. For example, in the diffusion transformer block, the up projection in
the low-rank branch for QKV projection is much slower since its output exceeds the available L2
cache and results in the extra load and store operations to DRAM. Fortunately, we observe that the
down projection L1 in the low-rank branch shares the same input as the quantization kernel in the
low-bit branch, while the up projection L2 shares the same output as the 4-bit computation kernel,
as illustrated in Fig. 6(b). By fusing the down projection with the quantization kernel and the up
projection with the 4-bit computation kernel, the low-rank branch can share the activations with the
low-bit branch, eliminating the extra memory access and also halving the number of kernel calls. As
a result, the low-rank branch adds only 5∼10% latency, making it nearly cost-free.

5 EXPERIMENTS

5.1 SETUPS

Models. We benchmark our methods using the following text-to-image models, including both the
UNet (Ronneberger et al., 2015; Ho et al., 2020) and DiT (Peebles & Xie, 2023) backbones:

†https://en.wikipedia.org/wiki/Low-rank_approximation

6

https://en.wikipedia.org/wiki/Low-rank_approximation

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quantitative quality comparisons across different models. IR means ImageReward. Our 8-bit results
closely match the quality of the 16-bit models. Moreover, our 4-bit results outperform other 4-bit baselines,
effectively preserving the visual quality of 16-bit models.

MJHQ sDCI

Backbone Model Precision Method Quality Similarity Quality Similarity

FID (↓) IR (↑) LPIPS (↓) PSNR(↑) FID (↓) IR (↑) LPIPS (↓) PSNR (↑)

FLUX.1
-dev

(50 Steps)

BF16 – 20.3 0.953 – – 24.8 1.02 – –

INT W8A8 Ours 20.4 0.948 0.089 27.0 24.7 1.02 0.106 24.9

W4A16 NF4 20.6 0.910 0.272 19.5 24.9 0.986 0.292 18.2
INT W4A4 Ours 20.0 0.924 0.259 20.0 24.6 0.992 0.275 18.8
FP W4A4 Ours 20.9 0.932 0.245 20.2 25.6 0.998 0.269 18.7

FLUX.1
-schnell
(4 Steps)

BF16 – 19.2 0.938 – – 20.8 0.932 – –

INT W8A8 Ours 19.2 0.966 0.120 22.9 20.7 0.975 0.133 21.3

DiT W4A16 NF4 18.9 0.943 0.257 18.2 20.7 0.953 0.263 17.1
INT W4A4 Ours 18.1 0.965 0.292 17.5 19.8 0.986 0.298 16.4
FP W4A4 Ours 20.1 0.957 0.281 17.4 21.7 0.971 0.280 16.6

PixArt-Σ
(20 Steps)

FP16 – 16.6 0.944 – – 24.8 0.966

INT W8A8 ViDiT-Q 15.7 0.944 0.137 22.5 23.5 0.974 0.163 20.4
INT W8A8 Ours 16.3 0.955 0.109 23.7 24.2 0.969 0.129 21.8

INT W4A8 ViDiT-Q 37.3 0.573 0.611 12.0 40.6 0.600 0.629 11.2
INT W4A4 ViDiT-Q 412 -2.27 0.854 6.44 425 -2.28 0.838 6.70
INT W4A4 Ours 20.1 0.898 0.394 16.2 25.1 0.922 0.434 14.9
FP W4A4 Ours 18.3 0.946 0.326 17.4 23.7 0.978 0.357 16.1

UNet

SDXL
-Turbo

(4 Steps)

FP16 – 24.3 0.845 – – 24.7 0.705 – –

INT W8A8 MixDQ 24.1 0.834 0.147 21.7 25.0 0.690 0.157 21.6
INT W8A8 Ours 24.3 0.845 0.100 24.0 24.8 0.701 0.110 23.7

INT W4A8 MixDQ 27.7 0.708 0.402 15.7 25.9 0.610 0.415 15.7
INT W4A4 MixDQ 353 -2.26 0.685 11.0 373 -2.28 0.686 11.3
INT W4A4 Ours 24.2 0.796 0.279 17.7 25.7 0.657 0.289 17.6
FP W4A4 Ours 24.1 0.822 0.250 18.5 24.7 0.699 0.261 18.4

SDXL
(30 Steps)

FP16 – 16.6 0.729 – – 22.5 0.573 – –

INT W8A8 TensorRT 20.2 0.591 0.247 22.0 25.4 0.453 0.265 21.7
INT W8A8 Ours 16.6 0.718 0.119 26.4 22.4 0.574 0.129 25.9

INT W4A4 Ours 21.4 0.591 0.306 20.4 26.8 0.470 0.320 20.3
FP W4A4 Ours 19.0 0.607 0.294 21.0 25.4 0.480 0.312 20.7

• FLUX.1 (Black-Forest-Labs, 2024) is the SoTA open-sourced DiT-based diffusion model. It
consists of 19 joint attention blocks (Esser et al., 2024) and 38 parallel attention blocks (Dehghani
et al., 2023), totaling 12B parameters. We evaluate on both the 50-step guidance-distilled (FLUX.1-
dev) and 4-step timestep-distilled (FLUX.1-schnell) variants.

• PixArt-Σ (Chen et al., 2024a) is another DiT-based model. Instead of using joint attention, it stacks
28 attention blocks composed of self-attention, cross-attention, and feed-forward layers, amounting
to 600M parameters. We evaluate it on the default 20-step setting.

• Stable Diffusion XL (SDXL) is a widely-used UNet-based model with 2.6B parameters (Podell
et al., 2024). It predicts noise with three resolution scales. The highest-resolution stage is processed
entirely by ResBlocks (He et al., 2016), while the other two stages jointly use ResBlocks and atten-
tion layers. Like PixArt-Σ, SDXL employs cross-attention layers for text conditioning. We evaluate
it in the 30-step setting, along with its 4-step distilled variant, SDXL-Turbo (Sauer et al., 2023).

Datasets. Following previous works (Li et al., 2023a; Zhao et al., 2024c;b), we randomly sample the
prompts in COCO Captions 2024 (Chen et al., 2015) for calibration. To assess the generalization
capability of our method, we adopt two distinct prompt sets with varying styles for benchmarking:

• MJHQ-30K (Li et al., 2024a) consists of 30K samples from Midjourney with 10 common categories,
3K samples each. We uniformly select 5K prompts from this dataset to evaluate model performance
on artistic image generation.

• Densely Captioned Images (DCI) (Urbanek et al., 2024) is a dataset containing ∼8K images with
detailed human-annotated captions, averaging over 1,000 words. For our experiments, we use
the summarized version (sDCI), where captions are condensed to 77 tokens using large language
models (LLMs) to accommodate diffusion models. Similarly, we randomly sample 5K prompts for
efficient evaluation of realistic image generation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Prompt: Night time, a bar with a dog outside, the bar is made of cargo container boxes and the
logo outside the container is neon logo that says Bark and Brew

Prompt: a fasion model is wearing the colorful clothes, fantasic,fasionable, pop,dinosaur style

Prompt: man pouring coffee into a cup, but with a unique twist the stream of coffee bends and curves
to fill the cup perfectly.take with Leica, 35mm, ISO 100, softfocus, Cinematic Lightning,

hyperdetailed, full HD

FLUX.1-dev BF16
Image Reward: 0.953

NF4 W4A16
Image Reward: 0.910

Our INT W4A4
Image Reward: 0.924

Our FP W4A4
Image Reward: 0.932

FLUX.1-schnell BF16
Image Reward: 0.968

NF4 W4A16
Image Reward: 0.943

Our INT W4A4
Image Reward: 0.965

Our FP W4A4
Image Reward: 0.957

Prompt: A smiling woman planting tomato seedlings in her permaculture garden, sunny day, a
greenhouse in the background, retro modern styling, highly realistic with a cinematic background blur,
Focal point and angle evoking a filmic perspective, Photography, DSLR with a 35mm prime lens at f2.8

Prompt: cute front of restaurant, winter

PixArt-￼ FP16
Image Reward: 0.944

Σ ViDiT-Q INT W4A8
Image Reward: 0.573

Our INT W4A4
Image Reward: 0.898

Our FP W4A4
Image Reward: 0.946

Prompt: illustration for 3 happy cute girls, one with curly hair, second with wavy hair,
the third with striaght hair ,8k

Prompt: hummingbird flying near a flower. 4k ultra realistic ray tracing dynamic lighting

SDXL-Turbo FP16
Image Reward: 0.845

MixDQ INT W4A8
Image Reward: 0.708

Our INT W4A4
Image Reward: 0.796

Our FP W4A4
Image Reward: 0.822

Prompt: Close up portrait deep underwater ,light, epic, green jungle ,flower white,
fox red, detailed, pretty face, dark background, detailed, photo

Prompt: logo of the number 30 made of colorful different sizes rectangles, neumorphism,
white background, bright lights, sharp focus

Prompt: Victorain Vintage girl in a green dress sitting under a tree reading a book

Prompt: a realistic portrait of taylor swift with a red scarf

(c) PixArt-￼Σ (d) SDXL-Turbo

(a) FLUX.1-dev (b) FLUX.1-schnell

Prompt: A white Havanese dog in sunglasses riding a motorcycle

Figure 7: Qualitative visual results on MJHQ. Image Reward is calculated over the entire dataset. On FLUX.1
models, our 4-bit models outperform the NF4 W4A16 baselines, demonstrating superior text alignment and
closer similarity to the 16-bit models. On PixArt-Σ and SDXL-Turbo, our 4-bit results demonstrate better visual
quality than ViDiT-Q’s and MixDQ’s W4A8 results.

0

175

350

525

700

0

500

1000

1500

2000

0

6

12

18

24
BF16 W4A16 - NF4 W4A4 - INT4

0

6

12

18

24

(b) Inference Memory (GiB) (c) Single Step Latency
on Desktop 4090 (ms)(a) Model Size (GiB)

3.2￼×
680 685

215

3.6￼×

7.7 6.5

23.2

5.8 6.1

22.2
3.8￼× 3.6￼× 3.0￼×

OOM 1823

515

3.5￼×

(d) Single Step Latency
on Laptop 4090 (ms)

Figure 8: SVDQuant reduces the model size of the 12B FLUX.1 by 3.6×. Additionally, our engine, LoRunner,
further reduces memory usage by another 3.6×, resulting in speedups of 3.2× and 3.5× on desktop and laptop
version NVIDIA RTX 4090 GPUs, respectively.

Baselines. We compare SVDQuant against the following post-training quantization (PTQ) methods:

• 4-bit NormalFloat (NF4) is a data type for weight-only quantization (Dettmers et al., 2023). It
assumes that weights follow a normal distribution and is the information-theoretically optimal 4-bit
representation. We use the community-quantized NF4 FLUX.1 models (Lllyasviel) as the baselines.

• ViDiT-Q (Zhao et al., 2024b) uses per-token quantization and smoothing (Xiao et al., 2023) to
alleviate the outliers across different batches and tokens and achieves lossless 8-bit quantization
on PixArt-Σ.

• MixDQ (Zhao et al., 2024c) identifies the outliers in the begin-of-sentence token of text embedding
and protects them with 16-bit pre-computation. This method enables up to W4A8 quantization
with negligible performance degradation on SDXL-Turbo.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Realism LoRA Ghibsky Illustration LoRA Anime LoRA Children Sketch LoRA Yarn Art LoRA

FLUX.1-dev
BF16

Our INT4

Figure 9: Our INT4 model seamlessly integrates with off-the-shelf LoRAs without requiring requantization.
When applying LoRAs, it matches the image quality of the original 16-bit FLUX.1-dev. See App. F for the
text prompts.

Prompt: award winning photography of a beautiful medic smiling

PixArt-￼ : FP16Σ Rank=16
Image Reward: 0.787

Rank=32
Image Reward: 0.829

Rank=64
Image Reward: 0.858

0%

3%

6%

9%

12%
11.3%

5.6%

2.8%

Rank=16 Rank=32 Rank=64

0.0%

2.5%

5.0%

7.5%

10.0%

8.8%

5.2%

3.3%

M
od

el
 S

iz
e

O
ve

rh
ea

d

La
te

nc
y

O
ve

rh
ea

d

Figure 10: Increasing the rank r of the low-rank branch can enhance image quality, but it also leads to higher
parameter and latency overhead.

• TensorRT contains an industry-level PTQ toolkit to quantize the diffusion models to 8 bits. It uses
smoothing and only calibrates activations over a selected timestep range with a percentile scheme.

Metrics. Following previous work (Li et al., 2022; 2024b), we mainly benchmark image quality and
similarity to the results produced by the original 16-bit models. For the image quality assessment, we
use Fréchet Inception Distance (FID, lower is better) to measure the distribution distance between the
generated images and the ground-truth images (Heusel et al., 2017; Parmar et al., 2022). Besides, we
employ Image Reward (higher is better) to approximate the human rating of the generated images (Xu
et al., 2024a). We use LPIPS (lower is better) to measure the perceptual similarity (Zhang et al.,
2018) and Peak Signal Noise Ratio (PSNR, higher is better) to measure the numerical similarity of
the images from the 16-bit models. Please refer to our App. D.1 for more metrics (CLIP IQA (Wang
et al., 2023b), CLIP Score (Hessel et al., 2021) and SSIM‡).
Implementation details. Please refer to App. B.

5.2 RESULTS

Quality results. We report the quantitative quality results in Tab. 1 across various models and
precision levels, and show some corresponding 4-bit qualitative comparisons in Fig. 7. Among all
models, our 8-bit results can perfectly mirror the 16-bit results, achieving PSNR higher than 21,
beating all other 8-bit baselines. On FLUX.1-dev, our INT8 PSNR even reaches 27 on MJHQ.

For 4-bit quantization, on FLUX.1, our SVDQuant surpasses the NF4 W4A16 baseline regarding
Image Reward. On the schnell variant, our Image Reward even exceeds that of the original BF16
model, suggesting stronger human preference. On PixArt-Σ, while our INT4 Image Reward shows
slight degradation, our FP4 model achieves an even higher score than the FP16 model. This is
likely due to PixArt-Σ’s small model size (600M parameters), which is already highly compact
and benefits from a smaller group size. Remarkably, both our INT4 and FP4 results consistently
outperform ViDiT-Q’s§ W4A8 results by a large margin across all metrics. For UNet-based models,
on SDXL-Turbo, our 4-bit models significantly outperform MixDQ’s W4A8 results, and our FID
scores are on par with the FP16 models, indicating no loss in performance. On SDXL, both our INT4
and FP4 results achieve comparable quality to TensorRT’s W8A8 performance, which represents the
8-bit SoTA. As shown in Fig. 15 in the Appendix, our visual quality only shows minor degradation.

‡https://en.wikipedia.org/wiki/Structural_similarity_index_measure
§Our FP16 PixArt-Σ model is slightly different from ViDiT’s, though both offer the same quality. For fair

comparisons, ViDiT-Q’s similarity results are calculated using their FP16 results.

9

https://developer.nvidia.com/blog/tensorrt-accelerates-stable-diffusion-nearly-2x-faster-with-8-bit-post-training-quantization/
https://en.wikipedia.org/wiki/Structural_similarity_index_measure

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Prompt: beach stock image popular no text prompt trend. pinterest contest winner

Prompt: recipe image, angry crab sallad, in salvador dali style photographed by david lachapelle, eerie,
rennaisance colors, award winning recipe on white background

PixArt- : FP16
Image Reward: 0.931

Σ SVD Only
Image Reward: -2.18

Naïve Quantization
Image Reward: -1.12

Smoothing
Image Reward: 0.508

Ours w/o Smoothing
Image Reward: 0.690

Ours
Image Reward: 0.858

LoRC
Image Reward: -0.965

Figure 11: Ablation study of SVDQuant on PixArt-Σ. The rank of the low-rank branch is fixed at 64 across all
experiments. ImageReward is measured over the 1K samples from MJHQ. Our results significantly outperform
the other, achieving the highest image quality by a wide margin.

Memory save & speedup. In Fig. 8, we report measured model size, memory savings and speedup
for FLUX.1. Our INT4 quantization reduces the original transformer size from 22.2 GiB to 6.1 GiB,
including a 0.3 GiB overhead due to the low-rank branch, resulting in an overall 3.6× reduction.
Since both weights and activations are quantized, compared to NF4 weight-only-quantized variant,
our inference engine LoRunner even saves 1.2× memory footprint, and attains a speedup of 3.2× on
desktop-level and 3.5× on laptop-level NVIDIA RTX 4090 systems, respectively. We anticipate even
greater speedups for FP4-quantized models on NVIDIA’s next-generation Blackwell GPUs, as they
inherently support microscaling for group quantization without the need for specialized GPU kernels.
Integrate with LoRA. Previous quantization methods require fusing the LoRA branches and re-
quantizing the model when integrating LoRAs. In contrast, our LoRunner eliminates redundant
memory access, allowing adding a separate LoRA branch. In practice, we can fuse the LoRA branch
into our low-rank branch by slightly increasing the rank, further enhancing efficiency. In Fig. 9,
we exhibit some visual examples of applying LoRAs of five different styles (Realism, Ghibsky
Illustration, Anime, Children Sketch, and Yarn Art) to our INT4 FLUX.1-dev model. Our INT4
model successfully adapts to each style while preserving the image quality of the 16-bit version. For
more visual examples, see App. D.2.
Ablation study. In Fig. 11, we present several ablation studies of SVDQuant on PixArt-Σ. First,
both SVD-only and naïve quantization perform poorly in the 4-bit setting, resulting in a severe
degradation of image quality. While applying smoothing to the quantization slightly improves image
quality compared to naïve quantization, the overall results remain unsatisfactory. LoRC (Yao et al.,
2023) introduces a low-rank branch to compensate for quantization errors, but this approach is
suboptimal. Quantization errors exhibit a smooth singular value distribution. Consequently, low-rank
compensation fails to effectively mitigate these errors, as discussed in Sec. 4.2. In contrast, we first
decompose the weights and quantize only the residual. As demonstrated in Fig. 5, the first several
singular values are significantly larger than the rest, allowing us to shift them to the low-rank branch
to effectively reduce weight magnitude. Finally, incorporating smoothing further enables the low-rank
branch to absorb outliers from the activations, substantially improving in image quality.
Trade-off of increasing rank. Fig. 10 presents the results of different rank r in SVDQuant on
PixArt-Σ. Increasing the rank from 16 to 64 significantly enhances image quality but increases
parameter and latency overhead. In our experiments, we select a rank of 32, which offers a decent
quality with minor overhead.

6 CONCLUSION

In this work, we introduce a novel 4-bit post-training quantization paradigm SVDQuant for diffusion
models. It adopts a low-rank branch to absorb the outliers in both the weights and activations,
easing the process of quantization. Our inference engine LoRunner further fuses the low-rank and
low-bit branch kernels, reducing memory usage and eliminating redundant data movement overhead.
Extensive experiments demonstrate that SVDQuant preserves image quality. Our LoRunner further
achieves a 3.5× reduction in memory usage and latency on an NVIDIA RTX-4090 laptop. This
advancement enables the efficient deployment of large-scale diffusion models on edge devices,
unlocking broader potential for interactive AI applications.

10

https://huggingface.co/XLabs-AI/flux-RealismLora
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/alvdansen/sonny-anime-fixed
https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch
https://huggingface.co/linoyts/yarn_art_Flux_LoRA

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024. 4, 25

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022. 3

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In CVPR, 2023. 3

Black-Forest-Labs. Flux.1, 2024. URL https://blackforestlabs.ai/. 2, 7

Han Cai, Muyang Li, Qinsheng Zhang, Ming-Yu Liu, and Song Han. Condition-aware neural network
for controlled image generation. In CVPR, 2024. 3

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-sigma: Weak-to-strong training of diffusion transformer
for 4k text-to-image generation. arXiv preprint arXiv:2403.04692, 2024a. 7

Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jingyan Jiang, Xin Wang, Zhi Wang, and Wenwu
Zhu. Q-dit: Accurate post-training quantization for diffusion transformers. CoRR, 2024b. 19

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015. 7

Zigeng Chen, Xinyin Ma, Gongfan Fang, Zhenxiong Tan, and Xinchao Wang. Asyncdiff: Parallelizing
diffusion models by asynchronous denoising. arXiv preprint arXiv:2406.06911, 2024c. 3

Huanpeng Chu, Wei Wu, Chengjie Zang, and Kun Yuan. Qncd: Quantization noise correction for
diffusion models. arXiv preprint arXiv:2403.19140, 2024. 19

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In ICML. PMLR, 2023. 7

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. NeurIPS, 2022. 2, 3, 25

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. 3, 8, 19

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In ICML, 2024. 3, 7

fal.ai. Auraflow v0.1, 2024. URL https://blog.fal.ai/auraflow/. 2

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. ICLR, 2023. 3

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. ICLR, 2024. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 7

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate
post-training quantization for diffusion models. NeurIPS, 2023. 3

11

https://blackforestlabs.ai/
https://blog.fal.ai/auraflow/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-
aware fine-tuning of low-bit diffusion models. In ICLR, 2024. 3, 4, 19

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021. 9, 20

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 2017. 9

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.
2, 3, 6

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In The Tenth International Conference on
Learning Representations, 2022. 2, 3

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth International
Conference on Learning Representations, 2022. 3

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal
feature maintenance quantization for diffusion models. In CVPR, 2024. 3

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang Wang.
From galore to welore: How low-rank weights non-uniformly emerge from low-rank gradients.
arXiv preprint arXiv: 2407.11239, 2024. 3

Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli Shecht-
man, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans. arXiv
preprint arXiv:2405.05967, 2024. 3

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W. Mahoney, and Kurt Keutzer. SqueezeLLM: Dense-and-sparse quantization. In ICML,
2024. 3

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024a. 7

Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, and Song Han. Gan compression:
Efficient architectures for interactive conditional gans. In CVPR, 2020. 3

Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, and Jun-Yan Zhu. Efficient spatially
sparse inference for conditional gans and diffusion models. In NeurIPS, 2022. 3, 9

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Ming-Yu Liu,
Kai Li, and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion
models. In CVPR, 2024b. 3, 9

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In ICCV, 2023a. 3, 7, 19, 25, 26

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
NeurIPS, 2023b. 3

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
LoSparse: Structured compression of large language models based on low-rank and sparse approx-
imation. In Proceedings of the 40th International Conference on Machine Learning, volume 202,
pp. 20336–20350. PMLR, 2023c. 3

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024c. 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. In MLSys, 2024a. 2, 3, 5, 25

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024b. 3, 4, 25

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm: Accurate
and efficient low-bitwidth quantization for large language models. In ICLR, 2024a. 25

Songhua Liu, Weihao Yu, Zhenxiong Tan, and Xinchao Wang. Linfusion: 1 gpu, 1 minute, 16k
image. arXiv preprint arXiv:2409.02097, 2024b. 3

Wenxuan Liu and Saiqian Zhang. Hq-dit: Efficient diffusion transformer with fp4 hybrid quantization.
arXiv preprint arXiv:2405.19751, 2024. 3

Xuewen Liu, Zhikai Li, Junrui Xiao, and Qingyi Gu. Enhanced distribution alignment for post-training
quantization of diffusion models. arXiv preprint arXiv:2401.04585, 2024c. 3

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024d. 4

Lllyasviel. [major update] bitsandbytes guidelines and flux · lllyasviel stable-diffusion-
webui-forge · discussion #981. URL https://github.com/lllyasviel/
stable-diffusion-webui-forge/discussions/981. 8

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In NeurIPS, 2022. 3

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv: 2310.04378,
2023. 3

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024a. 25

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. arXiv preprint arXiv:2406.01733, 2024b. 3

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In CVPR, 2024c. 3

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
ICLR, 2024d. 25

Pascal Massart. Concentration inequalities and model selection: Ecole d’Eté de Probabilités de
Saint-Flour XXXIII-2003. Springer, 2007. 17

Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On
distillation of guided diffusion models. arXiv preprint arXiv:2210.03142, 2022a. 3

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In ICLR, 2022b.
2

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024. 3

NVIDIA. Nvidia blackwell architecture technical brief, 2024. URL https://resources.
nvidia.com/en-us-blackwell-architecture. 2

13

https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981
https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
gan evaluation. In CVPR, 2022. 9

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023. 2, 3,
4, 6

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In ICLR, 2024. 2, 3, 7

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 20

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022. 2, 3, 26

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015. 2, 3, 6

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data
formats for deep learning. arXiv preprint arXiv:2310.10537, 2023. 18

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR,
2023. 2

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2021. 3

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023. 3, 7

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In CVPR, 2023. 3

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015. 3

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.
3

Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey
Tulyakov, and Jian Ren. Bitsfusion: 1.99 bits weight quantization of diffusion model. arXiv
preprint arXiv:2406.04333, 2024. 3

Siao Tang, Xin Wang, Hong Chen, Chaoyu Guan, Zewen Wu, Yansong Tang, and Wenwu Zhu.
Post-training quantization with progressive calibration and activation relaxing for text-to-image
diffusion models. arXiv preprint arXiv:2311.06322, 2023. 3

Jack Urbanek, Florian Bordes, Pietro Astolfi, Mary Williamson, Vasu Sharma, and Adriana Romero-
Soriano. A picture is worth more than 77 text tokens: Evaluating clip-style models on dense
captions. In CVPR, 2024. 7

Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards accurate
post-training quantization for diffusion models. In CVPR, 2024a. 3

Haoxuan Wang, Yuzhang Shang, Zhihang Yuan, Junyi Wu, and Yan Yan. Quest: Low-bit diffusion
model quantization via efficient selective finetuning. arXiv preprint arXiv:2402.03666, 2024b. 3,
26

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023a. 25

Jiannan Wang, Jiarui Fang, Aoyu Li, and PengCheng Yang. Pipefusion: Displaced patch pipeline
parallelism for inference of diffusion transformer models. arXiv preprint arXiv:2405.14430, 2024c.
3

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
of images. In AAAI, 2023b. 9, 20

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
quantization for diffusion transformers. arXiv preprint arXiv:2405.16005, 2024. 3

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, 2023. 2, 3,
5, 8, 18, 19, 25

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. NeurIPS,
2024a. 1, 9

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In The Twelfth International Conference on Learning Representations, 2024b. 3

Yuewei Yang, Xiaoliang Dai, Jialiang Wang, Peizhao Zhang, and Hongbo Zhang. Efficient quantiza-
tion strategies for latent diffusion models. arXiv preprint arXiv:2312.05431, 2023. 3

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring
post-training quantization in llms from comprehensive study to low rank compensation. arXiv
preprint arXiv:2303.08302, 2023. 3, 10, 19

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024a. 3

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024b. 3

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint arXiv:
2312.05821, 2023. 3

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023. 2

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In ICLR, 2022. 3

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. In ICLR, 2022. 3

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018. 9

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Proceedings of
the 41st International Conference on Machine Learning, volume 235, pp. 61121–61143. PMLR,
2024a. 3

Tianchen Zhao, Tongcheng Fang, Enshu Liu, Wan Rui, Widyadewi Soedarmadji, Shiyao Li, Zinan
Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vidit-q: Efficient and accurate quantization
of diffusion transformers for image and video generation. arXiv preprint arXiv:2406.02540, 2024b.
3, 7, 8, 19

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models
with metric-decoupled mixed precision quantization. arXiv preprint arXiv:2405.17873, 2024c. 3,
7, 8, 19

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. MLSys, 2024d. 3, 25

Xingyu Zheng, Haotong Qin, Xudong Ma, Mingyuan Zhang, Haojie Hao, Jiakai Wang, Zixiang Zhao,
Jinyang Guo, and Xianglong Liu. Binarydm: Towards accurate binarization of diffusion model.
arXiv preprint arXiv:2404.05662, 2024. 3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A MISSING PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proof.

∥XW −Q(X)Q(W)∥F
= ∥XW −XQ(W) +XQ(W)−Q(X)Q(W)∥F
≤∥X(W −Q(W))∥F + ∥(X −Q(X))Q(W)∥F
≤∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F ∥Q(W)∥F
≤∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F ∥W − (W −Q(W))∥F
≤∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W)∥F).

A.2 PROOF OF PROPOSITION 4.2

Proof.

∥R−Q(R)∥F
= ∥R− sR ·QR∥F

=

∥∥∥∥sR · R

sR
− sR · round

(
R

sR

)∥∥∥∥
F

=|sR|
∥∥∥∥ R

sR
− round

(
R

sR

)∥∥∥∥
F

.

So,

E [∥R−Q(R)∥F]

≤E [|sR|]
√

size(R)

=

√
size(R)

qmax
· E [max(|R|)]

≤
c
√

size(R)

qmax
· E [∥R∥F]

Especially, if the elements of R follows a normal distribution, we have

E [max(|R|)] ≤ σ
√
2 log (size(R)) (9)

where σ is the std deviation of the normal distribution. Eq. 9 comes from the maximal inequality of
Gaussian variables (Lemma 2.3 in Massart (2007)).

On the other hand,

E [∥R∥F]

=E

√∑
x∈R

x2


≥E

[∑
x∈R |x|√
size(R)

]
(10)

=σ

√
2size(R)

π
, (11)

where Eq. 10 comes from Cauchy-Schwartz inequality and Eq. 11 comes from the expectation of
half-normal distribution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Together, we have that for normal distribution,

E [max(|R|)]

≤σ
√

2 log (size(R))

≤

√
log (size(R))π

size(R)
E [∥R∥F] .

In other words, Eq. 7 holds for c =
√

log(size(R))π
size(R) .

B IMPLEMENTATION DETAILS

For the 8-bit setting, we use per-token dynamic activation quantization and per-channel weight
quantization with a low-rank branch of rank 16. For the 4-bit setting, we adopt per-group symmetric
quantization for both activations and weights, along with a low-rank branch of rank 32. INT4
quantization uses a group size of 64 with 16-bit scales. FP4 quantization uses a group size of 32
with FP8 scales (Rouhani et al., 2023). For FLUX.1 models, the inputs of linear layers in adaptive
normalization are kept in 16 bits (i.e., W4A16). For other models, key and value projections in the
cross-attention are retained at 16 bits since their latency only covers less than 5% of total runtime.

The smoothing factor λ ∈ Rm is a per-channel vector whose i-th element is computed as λi =
max(|X:,i|)α/max(|Wi,:|)1−α following SmoothQuant(Xiao et al., 2023) Here, X ∈ Rb×m and
W ∈ Rm×n. It is decided offline by searching for the best migration strength α for each layer to
minimize the layer output mean squared error (MSE) after SVD on the calibration dataset.

C DETAILED DISCUSSION WITH RELATED WORK

We compare the similarities and differences between our SVDQuant and some related works in Tab. 2:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Similarity and difference comparisons between SVDQuant and related works.

Method Similarity Difference

QLoRA
(Dettmers
et al., 2023)

Both have low-rank
branches and a quantized-
based model.

QLoRA focuses on PeFE on LLM and only quan-
tizes weights, while SVDQuant is a PTQ method
that quantizes both weights and activations for dif-
fusion models.

LoRC (Yao
et al., 2023)

Both are PTQ methods
with low-rank branches.

LoRC focuses on LLM quantization and uses low-
rank decomposition to compensate for quantization
errors. In contrast, we focus on diffusion model
quantization by first decomposing weights and then
quantizing the residuals. Additionally, we ease
activation quantization and achieve significantly
better results than LoRC.

QNCD (Chu
et al., 2024)

Both are PTQ methods
for diffusion models.

The methods differ entirely. QNCD is only applied
to U-Net backbones, while our approach supports
both U-Net and DiT. Additionally, we push the
boundary quantization from W4A8 to W4A4 and
demonstrate speedups on GPUs.

Q-DiT (Chen
et al., 2024b)

Both are PTQ methods
for diffusion models.

The methods differ entirely. Besides, Q-DiT is
only applied to class-conditioned models, while we
can work on large text-to-image models. We also
push the quantization boundary from their W4A8
to W4A4 and demonstrate speedups on GPUs.

Q-Diffusion
(Li et al.,
2023a)

Both are PTQ methods
for diffusion models.

The methods differ entirely. Besides, their work
is only applied to U-Net models, while we can
work on both the U-Net and DiT backbones. We
also push the quantization boundary from W4A8
to W4A4 and demonstrate measured speedups on
GPUs.

MixDQ (Zhao
et al., 2024c)

Both are PTQ methods
for diffusion models.

The methods differ entirely. Besides, MixDQ is
only applied U-Net models, while we can work on
both the U-Net and DiT backbones. We also push
the quantization boundary from W4A8 to W4A4.

ViDiT-Q
(Zhao et al.,
2024b)

Both are PTQ methods
for diffusion models.

The methods are completely different. We also
push the quantization boundary from their W4A8
to W4A4.

EfficientDM
(He et al.,
2024)

Both are diffusion quanti-
zation methods with low-
rank branches.

They use low-rank branches to reduce the cost of
quantization-aware training, requiring fusion after
tuning. In contrast, our method doesn’t need train-
ing and preserves the low-rank branches during in-
ference. Additionally, EfficientDP is only applied
to class-conditioned U-Nets. We support large
text-to-image models and demonstrate speedups
on GPUs.

SmoothQuant
(Xiao et al.,
2023)

Both are quantization
methods.

SmoothQuant is for LLM quantization, while we
focus on quantizing diffusion models. The ideas
are also different: Smoothing in our method is a
tool to aggregate outliers.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D ADDITIONAL RESULTS

D.1 QUALITY RESULTS

We report extra quantitative quality results with additional metrics in Tab. 3. Specifically, CLIP
IQA (Wang et al., 2023b) and CLIP Score (Hessel et al., 2021) assesses the image quality and
text-image alignment with CLIP (Radford et al., 2021), respectively. Structural Similarity Index
Measure (SSIM) is used to measure the luminance, contrast, and structure similarity of images
produced by our 4-bit model against the original 16-bit model. We also visualize more qualitative
comparsions in Fig. 12, 13, 14, 15 and 16.

Table 3: Additional quantitative quality comparisons across different models. C.IQA means CLIP IQA, and
C.SCR means CLIP Score.

MJHQ sDCI

Backbone Model Precision Method Quality Similarity Quality Similarity

C.IQA (↑) C.SCR (↑) SSIM(↑) C.IQA (↑) C.SCR (↑) SSIM (↑)

FLUX.1
-dev

(50 Steps)

BF16 – 0.952 26.0 – 0.955 25.4 –

INT W8A8 Ours 0.953 26.0 0.748 0.955 25.4 0.697

W4A16 NF4 0.947 25.8 0.748 0.951 25.4 0.697
INT W4A4 Ours 0.950 25.8 0.780 0.952 25.3 0.720
FP W4A4 Ours 0.950 25.8 0.781 0.953 25.3 0.726

FLUX.1
-schnell
(4 Steps)

BF16 – 0.938 26.6 – 0.932 26.2 –

INT W8A8 Ours 0.938 26.6 0.844 0.932 26.2 0.811

DiT W4A16 NF4 0.941 26.6 0.713 0.933 26.2 0.674
INT W4A4 Ours 0.938 26.5 0.691 0.931 26.2 0.647
FP W4A4 Ours 0.938 26.5 0.691 0.931 26.2 0.647

PixArt-Σ
(20 Steps)

FP16 – 0.944 26.8 – 0.966 26.1 –

INT W8A8 ViDiT-Q 0.948 26.7 0.815 0.966 26.1 0.756
INT W8A8 Ours 0.947 26.8 0.849 0.967 26.0 0.800

INT W4A8 ViDiT-Q 0.912 25.7 0.356 0.917 25.4 0.295
INT W4A4 ViDiT-Q 0.185 13.3 0.077 0.176 13.3 0.080
INT W4A4 Ours 0.927 26.6 0.602 0.952 26.1 0.519
FP W4A4 Ours 0.935 26.7 0.652 0.957 26.1 0.574

UNet

SDXL
-Turbo

(4 Steps)

FP16 – 0.926 26.5 – 0.913 26.5 –

INT W8A8 MixDQ 0.922 26.5 0.763 0.907 26.5 0.750
INT W8A8 Ours 0.925 26.5 0.821 0.912 26.5 0.808

INT W4A8 MixDQ 0.893 25.9 0.512 0.895 26.1 0.493
INT W4A4 MixDQ 0.556 13.1 0.289 0.548 11.9 0.296
INT W4A4 Ours 0.913 26.4 0.618 0.888 26.8 0.600
FP W4A4 Ours 0.919 26.4 0.640 0.901 26.7 0.620

SDXL
(30 Steps)

FP16 – 0.907 27.2 – 0.911 26.5 –

INT W8A8 TensorRT 0.905 26.7 0.733 0.901 26.1 0.697
INT W8A8 Ours 0.912 27.0 0.843 0.910 26.3 0.814

INT W4A4 Ours 0.878 26.6 0.709 0.869 26.2 0.666
FP W4A4 Ours 0.883 26.8 0.707 0.860 26.4 0.661

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

FLUX.1-dev BF16
Image Reward: 0.953

Our INT W8A8
Image Reward: 0.948

NF4 W4A16
Image Reward: 0.910

Our INT W4A4
Image Reward: 0.924

Our FP W4A4
Image Reward: 0.932

Prompt: perfect, attractive, beautiful young italian mans face, Clear facial features, EyeLevel Shot, f1.8

Prompt: A scientist analyzing sequential data with a recurrent neural network A research laboratory with computer screens and graphs in the
background Fluorescent lighting 35mm, photorealistic, Canon EOS 5D Mark IV DSLR, f5.6 aperture, 1125 second shutter speed, ISO 100

Prompt: Eiffel tower, landed on the moon, from moon perspective, earth in background, no town

Prompt: photography of word END in neon sign on a googie building by night

Figure 12: Qualitative visual results of FLUX.1-dev on MJHQ.

FLUX.1-schnell BF16
Image Reward: 0.968

Our INT W8A8
Image Reward: 0.966

NF4 W4A16
Image Reward: 0.943

Our INT W4A4
Image Reward: 0.965

Our FP W4A4
Image Reward: 0.957

Prompt: an attuned eagle soaring over the wilderness sunset golden hour

Prompt: Ludwig van Beethoven playing modern electronic mulikeyboard Yamaha set, 8k, Shot on DIGITAL CINEMA VRAPTOR XL 8K VV
Cinema Camera, f 11, Shutter Speed 1 800, 8mm lens, raw, super resolution, tone mapping, ray tracing, Megapixels

Prompt: ultra modern architure coffeeshop made with glass and with red flowers on the rims on the building

Prompt: cyberpunk lion with glowing eyes in the jungle hyperrealistic

Figure 13: Qualitative visual results of FLUX.1-schnell on MJHQ.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PixArt-￼ FP16
Image Reward: 0.944

Σ ViDiT-Q INT W8A8
Image Reward: 0.944

Our INT W8A8
Image Reward: 0.955

ViDiT-Q INT W4A8
Image Reward: 0.573

Our INT W4A4
Image Reward: 0.898

Our FP W4A4
Image Reward: 0.946

Prompt: Commercial photography of unlabelled omega 3 pills, with studio light, hyperdetailed, on
black isolated plain, pro color grading, white lighting, Shot on 70mm lens, Canon camera, 8k v 5

Prompt: a 12 year old orphan boy wizard with tattered clothes. South American ancient
clothing. Night sky with falling stars. Hyper realistic, cinematic lighting

Prompt: lake Powell at sunrise. Dramatic lighting with sun shining over the rocks. Still water. Realistic photograph. Breathtaking landscape. Ar 12

Prompt: 1950s style hamburger restaurant Cartoon with soft and funny contours with 3d with white background

Figure 14: Qualitative visual results of PixArt-Σ on MJHQ.

SDXL
Image Reward: 0.729

TensorRT W8A8
Image Reward: 0.591

Our W8A8
Image Reward: 0.718

Our INT W4A4
Image Reward: 0.591

Our FP W4A4
Image Reward: 0.607

Prompt: tasty pancakes epic and realistic photo, isolated on dark background, photography f22 f1.4

Prompt: morgan freeman headshot, hyperrealistic, 4k, colour graded, wearing old shashank redemption hat, looking at camera

Prompt: a portrait of a young lady in the rain, by guy aroch

Prompt: professional photo of a negroni cocktail. Italian atmosphere.

Figure 15: Qualitative visual results of SDXL on MJHQ.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

SDXL-Turbo FP16
Image Reward: 0.845

MixDQ INT W8A8
Image Reward: 0.834

Our INT W8A8
Image Reward: 0.845

MixDQ INT W4A8
Image Reward: 0.708

Our INT W4A4
Image Reward: 0.796

Our FP W4A4
Image Reward: 0.822

Prompt: portrait of a miner after hard work in a coal mine, high contrast, a lot of details, good light, a mining shaft in the background,
Canon EOS R5 prime lens, the lighting is a mix of natural light and artificial lighting, creating a dramatic and intense effect.

Prompt: barcelone conference event blockchain summit

Prompt: AI, flaming lion with a human body, warrior, fighting pose, 8k, 10 PIC, a photorealistic
white tiger, emerging from the jungle, stalking its prey in the snow

Prompt: lemur with long legs and red lips, natural habitat. Hyperrealistic, photo quality

Figure 16: Qualitative visual results of SDXL-Turbo on MJHQ.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 LORA RESULTS

In Fig. 17, we showcase more visual results of applying the aforementioned five community-
contributed LoRAs of different styles (Realism, Ghibsky Illustration, Anime, Children Sketch,
and Yarn Art) to our INT4 quantized models.

(a) Realism LoRA

(e) Yarn Art LoRA

(c) Anime LoRA

(d) Children Sketch LoRA

(b) Ghibsky Illustration LoRA

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

Figure 17: Additional LoRA results on FLUX.1-dev. When applying LoRAs, our INT4 model matches the
image quality of the original BF16 model. See App. F for the detailed used text prompts.

24

https://huggingface.co/XLabs-AI/flux-RealismLora
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/alvdansen/sonny-anime-fixed
https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch
https://huggingface.co/linoyts/yarn_art_Flux_LoRA

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.3 LATENCY RESULTS

In Tab. 4, we compare FLUX latency on a laptop-level 4090 GPU across different precisions.
Compared to INT8, 4-bit quantization delivers a 1.3× speedup. However, without optimization,
SVDQuant incurs an 18% overhead due to the low-rank branch. By eliminating redundant memory
access, LoRunner achieves latency comparable to naive INT4.

Table 4: Single-step latency comparisons of FLUX on a desktop-level 4090 GPU.

Method BF16 INT8 Naïve INT4 SVDQuant SVDQuant +LoRunner

Latency (ms) 657 282 212 250 218

D.4 COMPARISONS WITH LLM BASELINES

In Tab. 5, we adapted LLM quantization methods (SmoothQuant (Xiao et al., 2023), QLLM (Liu
et al., 2024a), QuaRot (Ashkboos et al., 2024), and AffineQuant (Ma et al., 2024d)) for diffusion
models and show the W4A4 results on MJHQ. SVDQuant outperforms all baselines by a wide margin
across all metrics on PixArt-Σ. On FLUX.1-schnell, SVDQuant achieves the best FID and Image
Reward scores and ranks second in LPIPS and PSNR, only behind NF4.

Table 5: 4-bit quantitative quality comparisons on PixArt-Σ and FLUX.1-schnell.

Model Method FID (↓) Image Rewad (↑) LPIPS (↓) PSNR (↑)

PixArt-Σ

Naive 206 -1.23 0.762 9.08

SmoothQuant 48.6 0.617 0.607 12.9

QLLM 35.8 0.763 0.581 13.1

AffineQuant 29.6 0.816 0.540 14.5

QuaRot 28.2 0.847 0.459 15.3

SVDQuant (Ours) 20.1 0.898 0.394 16.2

Naive 18.1 0.962 0.345 16.3

SmoothQuant 18.4 0.943 0.323 16.7

QLLM 18.3 0.959 0.295 17.3

FLUX.1-schnell AffineQuant 22.8 0.937 0.292 16.9

QuaRot 19.3 0.951 0.287 17.4

NF4 (W4A16) 18.9 0.943 0.257 18.2

SVDQuant (Ours) 18.1 0.965 0.292 17.5

D.5 TRADEOFF BETWEEN QUALITY AND BITWIDTH

We evaluate LPIPS across different bitwidths for various quantization methods on PixArt-Σ and
FLUX.1-schnell using the MJHQ dataset in Fig. 18, with weights and activations sharing the same
bitwidth. Following the convention (Xiao et al., 2023; Lin et al., 2024a;b; Li et al., 2023a; Zhao et al.,
2024d; Dettmers et al., 2022), for bitwidths above 4, we apply per-channel quantization; for 4 or
below, we use per-group quantization (group size 64). SVDQuant consistently outperforms naive
quantization and SmoothQuant. Notably, on PixArt–Σ and FLUX.1-schnell, our 4-bit results match
7-bit and 6-bit naive quantization, respectively.

Our SVDQuant can still generate images in the 3-bit settings on both PixArt-Σ and FLUX.1-schnell,
performing much better than SmoothQuant. Below this precision (e.g., W2A4 or W4A2), SVDQuant
cannot produce images either, since 2-bit symmetric quantization is essentially a ternary quantization.
Prior work (Ma et al., 2024a; Wang et al., 2023a) has shown that ternary neural networks require
quantization-aware training even for weight-only quantization to adapt the weights and activations to
the low-bit distribution.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

LP
IP

S
(↓

)

0.0

0.2

0.3

0.5

0.7

0.8

1.0

Bitwidth
3 4 5 6 7 8

Naive SmoothQuant SVDQuant

LP
IP

S
(↓

)

0.0

0.1

0.3

0.4

0.5

0.7

0.8

Bitwidth
3 4 5 6 7 8

(a) PixArt-￼Σ (b) FLUX.1-schnell

Figure 18: LPIPS of different quantization methods on PixArt-Σ and FLUX.1-schnell across different bitwidths.

D.6 RESULTS ON STALE DIFFUSION 1.4

In Tab. 6, we present additional results comparing Q-Diffusion (Li et al., 2023a) and QuEST (Wang
et al., 2024b) on Stable Diffusion 1.4 (Rombach et al., 2022) using the MJHQ dataset with W4A4
precision. Specifically, QuEST is a quantization-aware training method that requires additional
training. However, SVDQuant can still outperform it by a large margin regarding LPIPS and PSNR.

Table 6: 4-bit quantitative quality comparisons on Stable Diffusion 1.4.

Method FID (↓) LPIPS (↓) PSNR (↑)

Q-Diffusion 368 0.862 8.00

QuEST 25.1 0.771 8.48

SVDQuant (Ours) 38.3 0.393 15.9

E LIMITATIONS

In this work, we do not report the speedups for our FP4 models. This is because we have no access to
Blackwell GPUs, which natively support the precision and microscaling for group quantization. On
Blackwell hardware, we anticipate greater speedups compared to our INT4 results on 4090 GPUs.

F TEXT PROMPTS

Below we provide the text prompts we use in Fig. 9 (from left to right).

a man in armor with a beard and a sword
GHIBSKY style, a fisherman casting a line into a peaceful village lake

surrounded by quaint cottages↪→
girl, neck tuft, white hair, sheep horns, blue eyes, nm22 style
sketched style, A squirrel wearing glasses and reading a tiny book under

an oak tree↪→
a panda playing in the snow, yarn art style

The text prompts we use in Fig. 17 are (in the rasterizing order):

A male secret agent in a tuxedo, holding a gun, standing in front of a
burning building↪→

A handsome man in a suit, 25 years old, cool, futuristic
A knight in shining armor, standing in front of a castle under siege
A knight fighting a fire-breathing dragon in front of a medieval castle,

flames and smoke↪→
A male wizard with a long white beard casting a lightning spell in the

middle of a storm↪→
A young woman with long flowing hair, standing on a mountain peak at dawn,

overlooking a misty valley↪→

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

GHIBSKY style, a cat on a windowsill gazing out at a starry night sky and
distant city lights↪→

GHIBSKY style, a quiet garden at twilight, with blooming flowers and the
soft glow of lanterns lighting up the path↪→

GHIBSKY style, a serene mountain lake with crystal-clear water,
surrounded by towering pine trees and rocky cliffs↪→

GHIBSKY style, an enchanted forest at night, with glowing mushrooms and
fireflies lighting up the underbrush↪→

GHIBSKY style, a peaceful beach town with colorful houses lining the
shore and a calm ocean stretching out into the horizon↪→

GHIBSKY style, a cozy living room with a view of a snow-covered forest,
the fireplace crackling and a blanket draped over a comfy chair↪→

a dog wearing a wizard hat, nm22 anime style
a girl looking at the stars, nm22 anime style
a fish swimming in a pond, nm22 style
a giraffe with a long scarf, nm22 style
a bird sitting on a branch, nm22 minimalist style
a girl wearing a flower crown, nm22 style

sketched style, A garden full of colorful butterflies and blooming
flowers with a gentle breeze blowing↪→

sketched style, A beach scene with kids building sandcastles and seagulls
flying overhead↪→

sketched style, A hot air balloon drifting peacefully over a patchwork of
fields and forests below↪→

sketched style, A sunny meadow with a girl in a flowy dress chasing
butterflies↪→

sketched style, A little boy dressed as a pirate, steering a toy ship on
a small stream↪→

sketched style, A small boat floating on a peaceful lake, surrounded by
trees and mountains↪→

a hot air balloon flying over mountains, yarn art style
a cat chasing a butterfly, yarn art style
a squirrel collecting acorns, yarn art style
a wizard casting a spell, yarn art style
a jellyfish floating in the ocean, yarn art style
a sea turtle swimming through a coral reef, yarn art style

27

	Introduction
	Related Work
	Quantization Preliminary
	Method
	Problem Formulation
	SVDQuant: Absorbing Outliers via Low-Rank Branch
	LoRunner: Fusing Low-Rank and Low-Bit Branch Kernels

	Experiments
	Setups
	Results

	Conclusion
	Missing Proofs
	Proof of Proposition 4.1
	Proof of Proposition 4.2

	Implementation Details
	Detailed Discussion with Related Work
	Additional Results
	Quality Results
	LoRA Results
	Latency Results
	Comparisons with LLM Baselines
	Tradeoff between Quality and Bitwidth
	Results on Stale Diffusion 1.4

	Limitations
	Text Prompts

