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FLUX.1-SCHNELL BF16 
Image Reward: 0.968 

Memory: 23.2 GiB (OOM) 
Latency: N/A

NF4 (W4A16) 
Image Reward: 0.943 

Memory: 7.7 GiB (3.0×) 
Latency: 1823 ms

Our INT4 (W4A4) 
Image Reward: 0.965 

Memory: 6.5 GiB (3.6×) 
Latency: 515 ms (3.5×)

Our FP4 (W4A4) 
Image Reward: 0.957 

Memory: 6.5 GiB (3.6×) 
Latency: N/A

Prompt: An 8K photo of a Eurasian lynx in a sunlit forest, with tufted ears and a spotted coat. The lynx should be sharply focused, gazing into the distance, while the background is softly blurred for depth. 
Use cinematic lighting with soft rays filtering through the trees, and capture the scene with a shallow depth of field for a natural, peaceful atmosphere.

Prompt: A futuristic humanoid robot stands in front of a blackboard in a classroom, writing with chalk. On the board, the word "SVDQuant is good!" is written in a stylish, clean font.

Figure 1: We present SVDQuant, a post-training quantization method for diffusion models. It effectively
quantizes both weights and activations of 12B FLUX.1-schnell to 4 bits without compromising visual quality, as
assessed by ImageReward (Xu et al., 2024a). Compared to the BF16 model, we reduce the memory usage by
3.6×. Compared to the NF4 W4A16 baseline, we achieve 3.6× speedup on a laptop with RTX-4090 GPU.

ABSTRACT

Diffusion models have been proven highly effective at generating high-quality
images. However, as these models grow larger, they require significantly
more memory and suffer from higher latency, posing substantial challenges for
deployment. In this work, we aim to accelerate diffusion models by quantizing
their weights and activations to 4 bits. At such an aggressive level, both weights
and activations are highly sensitive, where conventional post-training quantization
methods for large language models like smoothing become insufficient. To
overcome this limitation, we propose SVDQuant, a new 4-bit quantization
paradigm. Different from smoothing which redistributes outliers between weights
and activations, our approach absorbs these outliers using a low-rank branch.
We first consolidate the outliers by shifting them from activations to weights,
then employ a high-precision low-rank branch to take in the weight outliers with
Singular Value Decomposition (SVD). This process eases the quantization on
both sides. However, naïvely running the low-rank branch independently incurs
significant overhead due to extra data movement of activations, negating the
quantization speedup. To address this, we co-design an inference engine LoRunner
that fuses the kernels of the low-rank branch into those of the low-bit branch to
cut off redundant memory access. It can also seamlessly support off-the-shelf
low-rank adapters (LoRAs) without the need for re-quantization. Extensive
experiments on SDXL, PixArt-Σ, and FLUX.1 validate the effectiveness of
SVDQuant in preserving image quality. We reduce the memory usage for the
12B FLUX.1 models by 3.6×, achieving 3.5× speedup over the 4-bit weight-only
quantized baseline on a 16GB RTX-4090 GPU, paving the way for more interactive
applications on PCs. We will release the code and models upon publication.
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1 INTRODUCTION

Diffusion models have shown remarkable capabilities in generating high-quality images (Ho et al.,
2020), with recent advances further enhancing user control over the generation process. Trained
on vast data, these models can create stunning images from simple text prompts, unlocking diverse
image editing and synthesis applications (Meng et al., 2022b; Ruiz et al., 2023; Zhang et al., 2023).
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Figure 2: Computation vs. param-
eters for LLMs and diffusion mod-
els. LLMs’ computation is mea-
sured with 512 context and 256
output tokens, and diffusion mod-
els’ computation is for a single
step. Dashed lines show trends.

To pursue higher image quality and more precise text-to-image
alignment, researchers are increasingly scaling up diffusion mod-
els. As shown in Fig. 2, Stable Diffusion (SD) (Rombach et al.,
2022) 1.4 only has 800M parameters, while SDXL (Podell et al.,
2024) scales this up to 2.6B parameters. AuraFlow v0.1 (fal.ai,
2024) extends this further to 6B parameters, with the latest model,
FLUX.1 (Black-Forest-Labs, 2024), pushing the boundary to 12B
parameters. Compared to large language models (LLMs), diffusion
models are significantly more computationally intensive. Their com-
putational costs* increase more rapidly with model size, posing a
prohibitive memory and latency barrier for real-world model deploy-
ment, particularly for interactive use cases that demand low latency.

As Moore’s law slows down, hardware vendors are turning to low-
precision inference to sustain performance improvements. For in-
stance, NVIDIA’s Blackwell Tensor Cores introduce a new 4-bit
floating point (FP4) precision, doubling the performance compared
to FP8 (NVIDIA, 2024). Therefore, using 4-bit inference to acceler-
ate diffusion models is appealing. In the realm of LLMs, researchers have leveraged quantization to
compress model sizes and boost inference speed (Dettmers et al., 2022; Xiao et al., 2023). However,
unlike LLMs–where latency is primarily constrained by loading model weights on modern GPUs,
especially with small batch sizes–diffusion models are heavily computationally bound, even with a
single batch. As a result, weight-only quantization cannot accelerate diffusion models on GPUs. To
achieve speedup on these devices, both weights and activations must be quantized to the same bit
width; otherwise, the lower-precision weight will be upcast during computation, negating potential
performance enhancements.

In this work, we focus on quantizing both the weights and activations of diffusion models to 4
bits. This challenging and aggressive scheme is often prone to severe quality degradation. Existing
methods like smoothing (Xiao et al., 2023; Lin et al., 2024a), which attempt to transfer the outliers
between the weights and activations, are less effective since both sides are highly vulnerable to
outliers. To address this issue, we propose a new general-purpose quantization paradigm, SVDQuant.
Our core idea is to introduce a low-cost branch to absorb outliers on both sides. To achieve this, as
illustrated in Fig. 3, we first aggregate the outliers by migrating them from activation X to weight
W via smoothing. Then we apply Singular Value Decomposition (SVD) to the updated weight,
Ŵ , decomposing it into a low-rank branch L1L2 and a residual Ŵ −L1L2. The low-rank branch
operates at 16 bits, allowing us to quantize only the residual to 4 bits, which has significantly reduced
outliers and magnitude. However, naively running the low-rank branch separately incurs substantial
memory access overhead, offsetting the speedup of 4-bit inference. To overcome this, we co-design a
specialized inference engine LoRunner, which fuses the low-rank branch computation into the 4-bit
quantization and computation kernels. This design enables us to achieve measured inference speedup
even with additional branches.

SVDQuant can quantize various text-to-image diffusion architectures, including both UNet (Ho
et al., 2020; Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023) backbones, into 4 bits, while
maintaining visual quality. It supports both INT4 and FP4 data types, and integrates seamlessly
with pre-trained low-rank adapters (LoRA) (Hsu et al., 2022) without requiring re-quantization. To
our knowledge, we are the first to successfully apply 4-bit post-training quantization to both the
weights and activations of diffusion models, and achieve measured speedup on NVIDIA GPUs. On
the latest 12B FLUX.1, we largely preserve the image quality and reduce the memory footprint of
the original BF16 model by 3.6× and deliver a 3.5× speedup over the NF4 weight-only quantized
baseline, measured on a 16GB laptop-level RTX4090 GPU. See Fig. 1 for visual examples.

*Computational cost is measured by number of Multiply-Accumulate operations (MACs). 1 MAC=2 FLOPs.
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Figure 3: Overview of SVDQuant. (a) Originally, both the activation X and weight W contain outliers, making
4-bit quantization challenging. (b) We migrate the outliers from the activation to weight, resulting in the updated
activation X̂ and weight Ŵ . While X̂ becomes easier to quantize, Ŵ now becomes more difficult. (c)
SVDQuant further decomposes Ŵ into a low-rank component L1L2 and a residual Ŵ − L1L2 with SVD.
Thus, the quantization difficulty is alleviated by the low-rank branch, which runs at 16-bit precision.

2 RELATED WORK

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged
as a powerful class of generative models, known for their ability to generate high-quality samples
by modeling the data distribution through an iterative denoising process. Recent advancements in
text-to-image diffusion models (Balaji et al., 2022; Rombach et al., 2022; Podell et al., 2024) have
already revolutionized content generation. Researchers further shifted from convolution-based UNet
architectures (Ronneberger et al., 2015; Ho et al., 2020) to transformers (e.g., DiT (Peebles & Xie,
2023) and U-ViT (Bao et al., 2023)) and scaled up the model size (Esser et al., 2024). However,
diffusion models suffer from extremely slow inference speed due to their long denoising sequences
and intense computation. To address this, various approaches have been proposed, including few-step
samplers (Zhang & Chen, 2022; Zhang et al., 2022; Lu et al., 2022) or distilling fewer-step models
from pre-trained ones (Salimans & Ho, 2021; Meng et al., 2022a; Song et al., 2023; Luo et al., 2023;
Sauer et al., 2023; Yin et al., 2024b;a; Kang et al., 2024). Another line of works choose to optimize or
accelerate computation via efficient architecture design (Li et al., 2023b; 2020; Cai et al., 2024; Liu
et al., 2024b), quantization (Shang et al., 2023; Li et al., 2023a), sparse inference (Li et al., 2022; Ma
et al., 2024c;b), and distributed inference (Li et al., 2024b; Wang et al., 2024c; Chen et al., 2024c). This
work focuses on quantizing the diffusion models to 4 bits to reduce the computation complexity. Our
method can also be applied to the few-step diffusion models to further reduce the latency (see Sec. 5.2).
Quantization. Quantization has been recognized as an effective approach for LLMs to reduce the
model size and accelerate inference (Dettmers et al., 2022; Frantar et al., 2023; Xiao et al., 2023;
Lin et al., 2024b;a; Kim et al., 2024; Zhao et al., 2024d). For diffusion models, Q-Diffusion (Li et al.,
2023a) and PTQ4DM (Shang et al., 2023) first achieved 8-bit quantization. Subsequent works refined
these techniques with approaches like sensitivity analysis (Yang et al., 2023) and timestep-aware
quantization (He et al., 2023; Huang et al., 2024; Liu et al., 2024c; Wang et al., 2024a). Some recent
works extended the setting to text-to-image models (Tang et al., 2023; Zhao et al., 2024c), DiT
backbones (Wu et al., 2024), quantization-aware training (He et al., 2024; Zheng et al., 2024; Wang
et al., 2024b; Sui et al., 2024), video generation (Zhao et al., 2024b), and different data types (Liu
& Zhang, 2024). Among these works, only MixDQ (Zhao et al., 2024c) and ViDiT-Q (Zhao et al.,
2024b) implement low-bit inference engines and report measured 8-bit speedup on GPUs. In this
work, we push the boundary further by quantizing diffusion models to 4 bits, supporting both the
integer or floating-point data types, compatible with the UNet backbone (Ho et al., 2020) and recent
DiT architecture (Peebles & Xie, 2023). Our co-designed inference engine, LoRunner, further ensures
on-hardware speedup. Additionally, when applying LoRA to the model, existing methods require
fusing the LoRA branch to the main branch and re-quantizing the model to avoid tremendous memory-
access overhead in the LoRA branch. LoRunner cuts off this overhead via kernel fusion, allowing
the low-rank branch to run efficiently as a separate branch, eliminating the need for re-quantization.
Low-rank decomposition. Low-rank decomposition has gained significant attention in deep learning
for enhancing computational and memory efficiency (Hu et al., 2022; Zhao et al., 2024a; Jaiswal et al.,
2024). While directly applying this approach to model weights can reduce the compute and memory
demands (Hsu et al., 2022; Yuan et al., 2023; Li et al., 2023c), it often leads to performance degra-
dation. Instead, Yao et al. (2023) combined it with quantization for model compression, employing
a low-rank branch to compensate for the quantization error. Low-Rank Adaptation (LoRA) (Hu et al.,
2022) introduces another important line of research by using low-rank matrices to adjust a subset
of pre-trained weights for efficient fine-tuning. This has sparked numerous advancements (Dettmers
et al., 2023; Guo et al., 2024; Li et al., 2024c; Xu et al., 2024b; Meng et al., 2024), which combines
quantized models with low-rank adapters to reduce memory usage during model fine-tuning. However,
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50% Percentile

99% Percentile

Max
Original After Smoothing After SVDOutliers

Outliers
More 

Outliers

Figure 4: Example value distribution of inputs and weights in PixArt-Σ. λ is the smooth factor. Red indicates
the outliers. Initially, both the input X and weight W contain significant outliers. After smoothing, the range of
X̂ is reduced with much fewer outliers, while Ŵ shows more outliers. Once the SVD low-rank branch L1L2 is
subtracted, the residual R has a narrower range and is free from outliers.

our work differs in two major aspects compared to this line of work that fine-tunes LoRA branches on
a quantized base model. Firstly, our goal is different, as we aim to accelerate model inference through
quantization, while previous works focus on model compression or efficient fine-tuning. Thus, they
primarily consider weight-only quantization, resulting in no speedup. Secondly, as shown in our exper-
iments (Fig. 6 and ablation study in Sec. 5.2), directly applying these methods not only degrades the
image quality but also introduces significant overhead. In contrast, our method yields much better per-
formance due to our joint quantization of weights and activations and our inference engine LoRunner
minimizes the overhead by fusing the low-rank branch kernels into the low-bit computation ones.

3 QUANTIZATION PRELIMINARY

Quantization is an effective approach to accelerate linear layers in networks. Given a tensor X , the
quantization process is defined as:

QX = round
(
X

sX

)
, sX =

max(|X|)
qmax

. (1)

Here, QX is the low-bit representation of X , sX is the scaling factor, and qmax is the maximum
quantized value. For signed b-bit integer quantization, qmax = 2b−1 − 1. For 4-bit floating-point
quantization with 1-bit mantissa and 2-bit exponent, qmax = 6. Thus, the dequantized tensor can be
formulated as Q(X) = sX ·QX . For a linear layer with input X and weight W , its computation
can be approximated by

XW ≈ Q(X)Q(W ) = sXsW ·QXQW . (2)

The same approximation applies to convolutional layers. To speed up computation, modern commer-
cial GPUs require both QX and QW using the same bit width. Otherwise, the low-bit weights need
to be upcast to match the higher bit width of activations, or vice versa, negating the speed advantage.
Following the notation in QServe (Lin et al., 2024b), we denote x-bit weight, y-bit activation as
WxAy. “INT” and “FP” refer to the integer and floating-point data types, respectively.

In this work, we focus on W4A4 quantization for acceleration, where outliers in both weights
and activations place substantial obstacles. Traditional methods to suppress these outliers include
quantization-aware training (QAT) (He et al., 2024) and rotation (Ashkboos et al., 2024; Liu et al.,
2024d; Lin et al., 2024b). QAT requires massive computing resources, especially for tuning models
with more than 10B parameters (e.g., FLUX.1). Rotation is inapplicable due to the usage of adaptive
normalization layers (Peebles & Xie, 2023) in diffusion models. The runtime-generated normalization
weights preclude the offline integration of the rotation matrix with the weights of projection layers.
Consequently, online rotation of both activations and weights incurs significant runtime overhead.

4 METHOD

In this section, we first formulate our problem and discuss where the quantization error comes from.
Next, we present SVDQuant, a new W4A4 quantization paradigm for diffusion models. Our key
idea is to introduce an additional low-rank branch that can absorb quantization difficulties in both
weights and activations. Finally, we provide a co-designed inference engine LoRunner with kernel
fusion to minimize the overhead of the low-rank branches in the 4-bit model.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 PROBLEM FORMULATION

Consider a linear layer with input X ∈ Rb×m and weight W ∈ Rm×n. The quantization error can
be defined as

E(X,W ) = ∥XW −Q(X)Q(W )∥F , (3)
where ∥ · ∥F denotes Frobenius Norm.
Proposition 4.1 (Error decomposition). The quantization error can be decomposed as follows:

E(X,W ) ≤ ∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W )∥F ). (4)

See App. A.1 for the proof. From the proposition, we can see that the error is bounded by four elements
– the magnitude of the weight and input, ∥W ∥F and ∥X∥F , and their respective quantization
errors, ∥W −Q(W )∥F and ∥X −Q(X)∥F . To minimize the overall quantization error, we aim to
optimize these four terms.

4.2 SVDQUANT: ABSORBING OUTLIERS VIA LOW-RANK BRANCH

Migrate outliers from activation to weight. Smoothing (Xiao et al., 2023; Lin et al., 2024a) is
an effective approach for reducing outliers. We can smooth outliers in activations by scaling down
the input X and adjusting the weight matrix W correspondingly using a per-channel smoothing
factor λ ∈ Rm. As shown in Fig. 4(a)(c), the smoothed input X̂ = X · diag(λ)−1 exhibits reduced
magnitude and fewer outliers, resulting in lower input quantization error. However, in Fig. 4(b)(d),
the transformed weight Ŵ = W · diag(λ) has a significant increase in both magnitude and the
presence of outliers, which in turn raises the weight quantization error. Consequently, the overall
error reduction is limited.
Absorb magnified weight outliers with a low-rank branch. Our core insight is to introduce a 16-bit
low-rank branch and further migrate the weight quantization difficulty to this branch. Specifically,
we decompose the transformed weight as Ŵ = L1L2 +R, where L1 ∈ Rm×r and L2 ∈ Rr×n are
two low-rank factors of rank r, and R is the residual. Then XW can be approximated as

XW = X̂Ŵ = X̂L1L2 + X̂R ≈ X̂L1L2︸ ︷︷ ︸
16-bit low-rank branch

+Q(X̂)Q(R)︸ ︷︷ ︸
4-bit residual

. (5)

Compared to direct 4-bit quantization, i.e., Q(X̂)Q(W ), our method first computes the low-rank
branch X̂L1L2 in 16-bit precision, and then approximates the residual X̂R with 4-bit quantization.
Empirically, r ≪ min(m,n), and is typically set to 16 or 32. As a result, the additional parameters
and computation for the low-rank branch are negligible, contributing only mr+nr

mn to the overall costs.
However, it still requires careful system design to eliminate redundant memory access, which we will
discuss in Sec. 4.3.

From Eq. 5, the quantization error can be expressed as∥∥∥X̂Ŵ − (X̂L1L2 +Q(X̂)Q(R))
∥∥∥
F
=

∥∥∥X̂R−Q(X̂)Q(R)
∥∥∥
F
= E(X̂,R), (6)

where R = Ŵ −L1L2. According to Proposition 4.1, since X̂ is already free from outliers, we only
need to focus on optimizing the magnitude of R, ∥R∥F and its quantization error, ∥R−Q(R)∥F .
Proposition 4.2 (Quantization error bound). For any tensor R and quantization method described
in Eq. 1 as Q(R) = sR ·QR. Assuming the elements of R follow a distribution that satisfies the
following regularity condition: There exists a constant c such that

E [max(|R|)] ≤ c · E [∥R∥F ] . (7)

Then, we have

E [∥R−Q(R)∥F ] ≤
c
√

size(R)

qmax
· E [∥R∥F ] (8)

where size(R) denotes the number of elements in R. Especially if the elements of R follow a normal

distribution, Eq. 7 holds for c =
√

log(size(R))π
size(R) .

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

La
te

nc
y 

(u
s)

0

100

200

300

400

500

Naïve LoRunner (Ours)

Quantize
4-bit Compute
Up Proj.
Down Proj.

1.43￼×

(a) Latency Breakdown on QKV projection

Fused Kernel 1

X̂
4-Bit Compute 

￼QR, s
RQX̂, s

X̂

Quantize

Down Proj. 
￼L1

Up Proj. 
￼L2

X̂L1
X̂L1L2

⊕
s

X̂
s

R
QX̂QR

(b) LoRunner Kernel Fusion

Fused Kernel 2

Shared OutputShared Input

7

287

150

17

300

22

Figure 6: (a) Naïvely running low-rank branch with rank 32 will introduce 57% latency overhead due to extra
read of 16-bit inputs in Down Projection and extra write of 16-bit outputs in Up Projection. Our LoRunner
engine optimizes this overhead with kernel fusion. (b) Down Projection and Quantize kernels use the same input,
while Up Projection and 4-Bit Compute kernels share the same output. To reduce data movement overhead, we
fuse the first two and the latter two kernels together.

0 16 32 48 64

100

400

10

￼W
￼Ŵ
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See App. A.2 for the proof. From this proposition, we obtain the
intuition that the quantization error ∥R−Q(R)∥F is bounded by
the magnitude of the residual ∥R∥F . Thus, our goal is to find the

optimal L1L2 that minimizes ∥R∥F =
∥∥∥Ŵ −L1L2

∥∥∥
F

, which can
be solved by simple Singular Value Decomposition (SVD). Given
the SVD of Ŵ = UΣV , the optimal solution is L1 = UΣ:,:r

and L2 = V:r,:. Fig. 5 illustrates the singular value distribution
of the original weight W , transformed weight Ŵ and residual R.
The singular values of the original weight W are highly imbalanced.
After smoothing, the singular value distribution of Ŵ becomes even
sharper, with only the first several values being significantly larger.
By removing these dominant values, Eckart–Young–Mirsky theorem†

suggests that the magnitude of the residual R is dramatically reduced,

as ∥R∥F =
√∑min(m,n)

i=r+1 σ2
i , compared to the original magnitude

∥∥∥Ŵ∥∥∥
F

=

√∑min(m,n)
i=1 σ2

i ,

where σi is the i-th singular value of Ŵ . Furthermore, empirical observations reveal that R exhibits
fewer outliers with a substantially compressed value range compared to Ŵ , as shown in Fig. 4(d)(e).
In practice, we can further reduce quantization errors by iteratively updating the low-rank branch
through decomposing W − Q(R) and adjusting R accordingly for several iterations, and then
picking the result with the smallest error.

4.3 LORUNNER: FUSING LOW-RANK AND LOW-BIT BRANCH KERNELS

Although the low-rank branch introduces theoretically negligible computation, running it as a separate
branch would incur significant latency overhead—approximately 50% of the 4-bit branch latency, as
shown in Fig. 6(a). This is because, for a small rank r, even though the computational cost is greatly
reduced, the data sizes of input and output activations remain unchanged, shifting the bottleneck from
computation to memory access. The situation deteriorates, especially when the activation cannot
fit into the GPU L2 cache. For example, in the diffusion transformer block, the up projection in
the low-rank branch for QKV projection is much slower since its output exceeds the available L2
cache and results in the extra load and store operations to DRAM. Fortunately, we observe that the
down projection L1 in the low-rank branch shares the same input as the quantization kernel in the
low-bit branch, while the up projection L2 shares the same output as the 4-bit computation kernel,
as illustrated in Fig. 6(b). By fusing the down projection with the quantization kernel and the up
projection with the 4-bit computation kernel, the low-rank branch can share the activations with the
low-bit branch, eliminating the extra memory access and also halving the number of kernel calls. As
a result, the low-rank branch adds only 5∼10% latency, making it nearly cost-free.

5 EXPERIMENTS

5.1 SETUPS

Models. We benchmark our methods using the following text-to-image models, including both the
UNet (Ronneberger et al., 2015; Ho et al., 2020) and DiT (Peebles & Xie, 2023) backbones:

†https://en.wikipedia.org/wiki/Low-rank_approximation
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Table 1: Quantitative quality comparisons across different models. IR means ImageReward. Our 8-bit results
closely match the quality of the 16-bit models. Moreover, our 4-bit results outperform other 4-bit baselines,
effectively preserving the visual quality of 16-bit models.

MJHQ sDCI

Backbone Model Precision Method Quality Similarity Quality Similarity

FID (↓) IR (↑) LPIPS (↓) PSNR( ↑) FID (↓) IR (↑) LPIPS (↓) PSNR (↑)

FLUX.1
-dev

(50 Steps)

BF16 – 20.3 0.953 – – 24.8 1.02 – –

INT W8A8 Ours 20.4 0.948 0.089 27.0 24.7 1.02 0.106 24.9

W4A16 NF4 20.6 0.910 0.272 19.5 24.9 0.986 0.292 18.2
INT W4A4 Ours 20.0 0.924 0.259 20.0 24.6 0.992 0.275 18.8
FP W4A4 Ours 20.9 0.932 0.245 20.2 25.6 0.998 0.269 18.7

FLUX.1
-schnell
(4 Steps)

BF16 – 19.2 0.938 – – 20.8 0.932 – –

INT W8A8 Ours 19.2 0.966 0.120 22.9 20.7 0.975 0.133 21.3

DiT W4A16 NF4 18.9 0.943 0.257 18.2 20.7 0.953 0.263 17.1
INT W4A4 Ours 18.1 0.965 0.292 17.5 19.8 0.986 0.298 16.4
FP W4A4 Ours 20.1 0.957 0.281 17.4 21.7 0.971 0.280 16.6

PixArt-Σ
(20 Steps)

FP16 – 16.6 0.944 – – 24.8 0.966

INT W8A8 ViDiT-Q 15.7 0.944 0.137 22.5 23.5 0.974 0.163 20.4
INT W8A8 Ours 16.3 0.955 0.109 23.7 24.2 0.969 0.129 21.8

INT W4A8 ViDiT-Q 37.3 0.573 0.611 12.0 40.6 0.600 0.629 11.2
INT W4A4 ViDiT-Q 412 -2.27 0.854 6.44 425 -2.28 0.838 6.70
INT W4A4 Ours 20.1 0.898 0.394 16.2 25.1 0.922 0.434 14.9
FP W4A4 Ours 18.3 0.946 0.326 17.4 23.7 0.978 0.357 16.1

UNet

SDXL
-Turbo

(4 Steps)

FP16 – 24.3 0.845 – – 24.7 0.705 – –

INT W8A8 MixDQ 24.1 0.834 0.147 21.7 25.0 0.690 0.157 21.6
INT W8A8 Ours 24.3 0.845 0.100 24.0 24.8 0.701 0.110 23.7

INT W4A8 MixDQ 27.7 0.708 0.402 15.7 25.9 0.610 0.415 15.7
INT W4A4 MixDQ 353 -2.26 0.685 11.0 373 -2.28 0.686 11.3
INT W4A4 Ours 24.2 0.796 0.279 17.7 25.7 0.657 0.289 17.6
FP W4A4 Ours 24.1 0.822 0.250 18.5 24.7 0.699 0.261 18.4

SDXL
(30 Steps)

FP16 – 16.6 0.729 – – 22.5 0.573 – –

INT W8A8 TensorRT 20.2 0.591 0.247 22.0 25.4 0.453 0.265 21.7
INT W8A8 Ours 16.6 0.718 0.119 26.4 22.4 0.574 0.129 25.9

INT W4A4 Ours 21.4 0.591 0.306 20.4 26.8 0.470 0.320 20.3
FP W4A4 Ours 19.0 0.607 0.294 21.0 25.4 0.480 0.312 20.7

• FLUX.1 (Black-Forest-Labs, 2024) is the SoTA open-sourced DiT-based diffusion model. It
consists of 19 joint attention blocks (Esser et al., 2024) and 38 parallel attention blocks (Dehghani
et al., 2023), totaling 12B parameters. We evaluate on both the 50-step guidance-distilled (FLUX.1-
dev) and 4-step timestep-distilled (FLUX.1-schnell) variants.

• PixArt-Σ (Chen et al., 2024a) is another DiT-based model. Instead of using joint attention, it stacks
28 attention blocks composed of self-attention, cross-attention, and feed-forward layers, amounting
to 600M parameters. We evaluate it on the default 20-step setting.

• Stable Diffusion XL (SDXL) is a widely-used UNet-based model with 2.6B parameters (Podell
et al., 2024). It predicts noise with three resolution scales. The highest-resolution stage is processed
entirely by ResBlocks (He et al., 2016), while the other two stages jointly use ResBlocks and atten-
tion layers. Like PixArt-Σ, SDXL employs cross-attention layers for text conditioning. We evaluate
it in the 30-step setting, along with its 4-step distilled variant, SDXL-Turbo (Sauer et al., 2023).

Datasets. Following previous works (Li et al., 2023a; Zhao et al., 2024c;b), we randomly sample the
prompts in COCO Captions 2024 (Chen et al., 2015) for calibration. To assess the generalization
capability of our method, we adopt two distinct prompt sets with varying styles for benchmarking:

• MJHQ-30K (Li et al., 2024a) consists of 30K samples from Midjourney with 10 common categories,
3K samples each. We uniformly select 5K prompts from this dataset to evaluate model performance
on artistic image generation.

• Densely Captioned Images (DCI) (Urbanek et al., 2024) is a dataset containing ∼8K images with
detailed human-annotated captions, averaging over 1,000 words. For our experiments, we use
the summarized version (sDCI), where captions are condensed to 77 tokens using large language
models (LLMs) to accommodate diffusion models. Similarly, we randomly sample 5K prompts for
efficient evaluation of realistic image generation.
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Prompt: Night time, a bar with a dog outside, the bar is made of cargo container boxes and the 
logo outside the container is neon logo that says Bark and Brew

Prompt: a fasion model is wearing the colorful clothes, fantasic,fasionable, pop,dinosaur style

Prompt: man pouring coffee into a cup, but with a unique twist the stream of coffee bends and curves 
to fill the cup perfectly.take with Leica, 35mm, ISO 100, softfocus, Cinematic Lightning, 

hyperdetailed, full HD

FLUX.1-dev BF16 
Image Reward: 0.953

NF4 W4A16 
Image Reward: 0.910

Our INT W4A4 
Image Reward: 0.924

Our FP W4A4 
Image Reward: 0.932

FLUX.1-schnell BF16 
Image Reward: 0.968

NF4 W4A16 
Image Reward: 0.943

Our INT W4A4 
Image Reward: 0.965

Our FP W4A4 
Image Reward: 0.957

Prompt: A smiling woman planting tomato seedlings in her permaculture garden, sunny day, a 
greenhouse in the background, retro modern styling, highly realistic with a cinematic background blur, 
Focal point and angle evoking a filmic perspective, Photography, DSLR with a 35mm prime lens at f2.8

Prompt: cute front of restaurant, winter

PixArt-￼  FP16 
Image Reward: 0.944

Σ ViDiT-Q INT W4A8 
Image Reward: 0.573

Our INT W4A4 
Image Reward: 0.898

Our FP W4A4 
Image Reward: 0.946

Prompt: illustration for 3 happy cute girls, one with curly hair, second with wavy hair, 
the third with striaght hair ,8k

Prompt: hummingbird flying near a flower. 4k ultra realistic ray tracing dynamic lighting

SDXL-Turbo FP16 
Image Reward: 0.845

MixDQ INT W4A8 
Image Reward: 0.708

Our INT W4A4 
Image Reward: 0.796

Our FP W4A4 
Image Reward: 0.822

Prompt: Close up portrait deep underwater ,light, epic, green jungle ,flower white, 
fox red, detailed, pretty face, dark background, detailed, photo

Prompt: logo of the number 30 made of colorful different sizes rectangles, neumorphism, 
white background, bright lights, sharp focus

Prompt: Victorain Vintage girl in a green dress sitting under a tree reading a book

Prompt: a realistic portrait of taylor swift with a red scarf

(c) PixArt-￼Σ (d) SDXL-Turbo

(a) FLUX.1-dev (b) FLUX.1-schnell

Prompt: A white Havanese dog in sunglasses riding a motorcycle

Figure 7: Qualitative visual results on MJHQ. Image Reward is calculated over the entire dataset. On FLUX.1
models, our 4-bit models outperform the NF4 W4A16 baselines, demonstrating superior text alignment and
closer similarity to the 16-bit models. On PixArt-Σ and SDXL-Turbo, our 4-bit results demonstrate better visual
quality than ViDiT-Q’s and MixDQ’s W4A8 results.
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(b) Inference Memory (GiB) (c) Single Step Latency 
on Desktop 4090 (ms)(a) Model Size (GiB)
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(d) Single Step Latency 
on Laptop 4090 (ms)

Figure 8: SVDQuant reduces the model size of the 12B FLUX.1 by 3.6×. Additionally, our engine, LoRunner,
further reduces memory usage by another 3.6×, resulting in speedups of 3.2× and 3.5× on desktop and laptop
version NVIDIA RTX 4090 GPUs, respectively.

Baselines. We compare SVDQuant against the following post-training quantization (PTQ) methods:

• 4-bit NormalFloat (NF4) is a data type for weight-only quantization (Dettmers et al., 2023). It
assumes that weights follow a normal distribution and is the information-theoretically optimal 4-bit
representation. We use the community-quantized NF4 FLUX.1 models (Lllyasviel) as the baselines.

• ViDiT-Q (Zhao et al., 2024b) uses per-token quantization and smoothing (Xiao et al., 2023) to
alleviate the outliers across different batches and tokens and achieves lossless 8-bit quantization
on PixArt-Σ.

• MixDQ (Zhao et al., 2024c) identifies the outliers in the begin-of-sentence token of text embedding
and protects them with 16-bit pre-computation. This method enables up to W4A8 quantization
with negligible performance degradation on SDXL-Turbo.
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Realism LoRA Ghibsky Illustration LoRA Anime LoRA Children Sketch LoRA Yarn Art LoRA

FLUX.1-dev 
BF16

Our INT4

Figure 9: Our INT4 model seamlessly integrates with off-the-shelf LoRAs without requiring requantization.
When applying LoRAs, it matches the image quality of the original 16-bit FLUX.1-dev. See App. F for the
text prompts.

Prompt: award winning photography of a beautiful medic smiling

PixArt-￼ : FP16Σ Rank=16 
Image Reward: 0.787

Rank=32 
Image Reward: 0.829

Rank=64 
Image Reward: 0.858
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Figure 10: Increasing the rank r of the low-rank branch can enhance image quality, but it also leads to higher
parameter and latency overhead.

• TensorRT contains an industry-level PTQ toolkit to quantize the diffusion models to 8 bits. It uses
smoothing and only calibrates activations over a selected timestep range with a percentile scheme.

Metrics. Following previous work (Li et al., 2022; 2024b), we mainly benchmark image quality and
similarity to the results produced by the original 16-bit models. For the image quality assessment, we
use Fréchet Inception Distance (FID, lower is better) to measure the distribution distance between the
generated images and the ground-truth images (Heusel et al., 2017; Parmar et al., 2022). Besides, we
employ Image Reward (higher is better) to approximate the human rating of the generated images (Xu
et al., 2024a). We use LPIPS (lower is better) to measure the perceptual similarity (Zhang et al.,
2018) and Peak Signal Noise Ratio (PSNR, higher is better) to measure the numerical similarity of
the images from the 16-bit models. Please refer to our App. D.1 for more metrics (CLIP IQA (Wang
et al., 2023b), CLIP Score (Hessel et al., 2021) and SSIM‡).
Implementation details. Please refer to App. B.

5.2 RESULTS

Quality results. We report the quantitative quality results in Tab. 1 across various models and
precision levels, and show some corresponding 4-bit qualitative comparisons in Fig. 7. Among all
models, our 8-bit results can perfectly mirror the 16-bit results, achieving PSNR higher than 21,
beating all other 8-bit baselines. On FLUX.1-dev, our INT8 PSNR even reaches 27 on MJHQ.

For 4-bit quantization, on FLUX.1, our SVDQuant surpasses the NF4 W4A16 baseline regarding
Image Reward. On the schnell variant, our Image Reward even exceeds that of the original BF16
model, suggesting stronger human preference. On PixArt-Σ, while our INT4 Image Reward shows
slight degradation, our FP4 model achieves an even higher score than the FP16 model. This is
likely due to PixArt-Σ’s small model size (600M parameters), which is already highly compact
and benefits from a smaller group size. Remarkably, both our INT4 and FP4 results consistently
outperform ViDiT-Q’s§ W4A8 results by a large margin across all metrics. For UNet-based models,
on SDXL-Turbo, our 4-bit models significantly outperform MixDQ’s W4A8 results, and our FID
scores are on par with the FP16 models, indicating no loss in performance. On SDXL, both our INT4
and FP4 results achieve comparable quality to TensorRT’s W8A8 performance, which represents the
8-bit SoTA. As shown in Fig. 15 in the Appendix, our visual quality only shows minor degradation.

‡https://en.wikipedia.org/wiki/Structural_similarity_index_measure
§Our FP16 PixArt-Σ model is slightly different from ViDiT’s, though both offer the same quality. For fair

comparisons, ViDiT-Q’s similarity results are calculated using their FP16 results.
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Prompt: beach stock image popular no text prompt trend. pinterest contest winner

Prompt: recipe image, angry crab sallad, in salvador dali style photographed by david lachapelle, eerie,  
rennaisance colors, award winning recipe on white background

PixArt- : FP16 
Image Reward: 0.931

Σ SVD Only 
Image Reward: -2.18

Naïve Quantization 
Image Reward: -1.12

Smoothing 
Image Reward: 0.508

Ours w/o Smoothing 
Image Reward: 0.690

Ours 
Image Reward: 0.858

LoRC 
Image Reward: -0.965

Figure 11: Ablation study of SVDQuant on PixArt-Σ. The rank of the low-rank branch is fixed at 64 across all
experiments. ImageReward is measured over the 1K samples from MJHQ. Our results significantly outperform
the other, achieving the highest image quality by a wide margin.

Memory save & speedup. In Fig. 8, we report measured model size, memory savings and speedup
for FLUX.1. Our INT4 quantization reduces the original transformer size from 22.2 GiB to 6.1 GiB,
including a 0.3 GiB overhead due to the low-rank branch, resulting in an overall 3.6× reduction.
Since both weights and activations are quantized, compared to NF4 weight-only-quantized variant,
our inference engine LoRunner even saves 1.2× memory footprint, and attains a speedup of 3.2× on
desktop-level and 3.5× on laptop-level NVIDIA RTX 4090 systems, respectively. We anticipate even
greater speedups for FP4-quantized models on NVIDIA’s next-generation Blackwell GPUs, as they
inherently support microscaling for group quantization without the need for specialized GPU kernels.
Integrate with LoRA. Previous quantization methods require fusing the LoRA branches and re-
quantizing the model when integrating LoRAs. In contrast, our LoRunner eliminates redundant
memory access, allowing adding a separate LoRA branch. In practice, we can fuse the LoRA branch
into our low-rank branch by slightly increasing the rank, further enhancing efficiency. In Fig. 9,
we exhibit some visual examples of applying LoRAs of five different styles (Realism, Ghibsky
Illustration, Anime, Children Sketch, and Yarn Art) to our INT4 FLUX.1-dev model. Our INT4
model successfully adapts to each style while preserving the image quality of the 16-bit version. For
more visual examples, see App. D.2.
Ablation study. In Fig. 11, we present several ablation studies of SVDQuant on PixArt-Σ. First,
both SVD-only and naïve quantization perform poorly in the 4-bit setting, resulting in a severe
degradation of image quality. While applying smoothing to the quantization slightly improves image
quality compared to naïve quantization, the overall results remain unsatisfactory. LoRC (Yao et al.,
2023) introduces a low-rank branch to compensate for quantization errors, but this approach is
suboptimal. Quantization errors exhibit a smooth singular value distribution. Consequently, low-rank
compensation fails to effectively mitigate these errors, as discussed in Sec. 4.2. In contrast, we first
decompose the weights and quantize only the residual. As demonstrated in Fig. 5, the first several
singular values are significantly larger than the rest, allowing us to shift them to the low-rank branch
to effectively reduce weight magnitude. Finally, incorporating smoothing further enables the low-rank
branch to absorb outliers from the activations, substantially improving in image quality.
Trade-off of increasing rank. Fig. 10 presents the results of different rank r in SVDQuant on
PixArt-Σ. Increasing the rank from 16 to 64 significantly enhances image quality but increases
parameter and latency overhead. In our experiments, we select a rank of 32, which offers a decent
quality with minor overhead.

6 CONCLUSION

In this work, we introduce a novel 4-bit post-training quantization paradigm SVDQuant for diffusion
models. It adopts a low-rank branch to absorb the outliers in both the weights and activations,
easing the process of quantization. Our inference engine LoRunner further fuses the low-rank and
low-bit branch kernels, reducing memory usage and eliminating redundant data movement overhead.
Extensive experiments demonstrate that SVDQuant preserves image quality. Our LoRunner further
achieves a 3.5× reduction in memory usage and latency on an NVIDIA RTX-4090 laptop. This
advancement enables the efficient deployment of large-scale diffusion models on edge devices,
unlocking broader potential for interactive AI applications.
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A MISSING PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proof.

∥XW −Q(X)Q(W )∥F
= ∥XW −XQ(W ) +XQ(W )−Q(X)Q(W )∥F
≤∥X(W −Q(W ))∥F + ∥(X −Q(X))Q(W )∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F ∥Q(W )∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F ∥W − (W −Q(W ))∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W )∥F ).

A.2 PROOF OF PROPOSITION 4.2

Proof.

∥R−Q(R)∥F
= ∥R− sR ·QR∥F

=

∥∥∥∥sR · R

sR
− sR · round

(
R

sR

)∥∥∥∥
F

=|sR|
∥∥∥∥ R

sR
− round

(
R

sR

)∥∥∥∥
F

.

So,

E [∥R−Q(R)∥F ]

≤E [|sR|]
√

size(R)

=

√
size(R)

qmax
· E [max(|R|)]

≤
c
√

size(R)

qmax
· E [∥R∥F ]

Especially, if the elements of R follows a normal distribution, we have

E [max(|R|)] ≤ σ
√
2 log (size(R)) (9)

where σ is the std deviation of the normal distribution. Eq. 9 comes from the maximal inequality of
Gaussian variables (Lemma 2.3 in Massart (2007)).

On the other hand,

E [∥R∥F ]

=E

√∑
x∈R

x2


≥E

[∑
x∈R |x|√
size(R)

]
(10)

=σ

√
2size(R)

π
, (11)

where Eq. 10 comes from Cauchy-Schwartz inequality and Eq. 11 comes from the expectation of
half-normal distribution.
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Together, we have that for normal distribution,

E [max(|R|)]

≤σ
√

2 log (size(R))

≤

√
log (size(R))π

size(R)
E [∥R∥F ] .

In other words, Eq. 7 holds for c =
√

log(size(R))π
size(R) .

B IMPLEMENTATION DETAILS

For the 8-bit setting, we use per-token dynamic activation quantization and per-channel weight
quantization with a low-rank branch of rank 16. For the 4-bit setting, we adopt per-group symmetric
quantization for both activations and weights, along with a low-rank branch of rank 32. INT4
quantization uses a group size of 64 with 16-bit scales. FP4 quantization uses a group size of 32
with FP8 scales (Rouhani et al., 2023). For FLUX.1 models, the inputs of linear layers in adaptive
normalization are kept in 16 bits (i.e., W4A16). For other models, key and value projections in the
cross-attention are retained at 16 bits since their latency only covers less than 5% of total runtime.

The smoothing factor λ ∈ Rm is a per-channel vector whose i-th element is computed as λi =
max(|X:,i|)α/max(|Wi,:|)1−α following SmoothQuant(Xiao et al., 2023) Here, X ∈ Rb×m and
W ∈ Rm×n. It is decided offline by searching for the best migration strength α for each layer to
minimize the layer output mean squared error (MSE) after SVD on the calibration dataset.

C DETAILED DISCUSSION WITH RELATED WORK

We compare the similarities and differences between our SVDQuant and some related works in Tab. 2:
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Table 2: Similarity and difference comparisons between SVDQuant and related works.

Method Similarity Difference

QLoRA
(Dettmers
et al., 2023)

Both have low-rank
branches and a quantized-
based model.

QLoRA focuses on PeFE on LLM and only quan-
tizes weights, while SVDQuant is a PTQ method
that quantizes both weights and activations for dif-
fusion models.

LoRC (Yao
et al., 2023)

Both are PTQ methods
with low-rank branches.

LoRC focuses on LLM quantization and uses low-
rank decomposition to compensate for quantization
errors. In contrast, we focus on diffusion model
quantization by first decomposing weights and then
quantizing the residuals. Additionally, we ease
activation quantization and achieve significantly
better results than LoRC.

QNCD (Chu
et al., 2024)

Both are PTQ methods
for diffusion models.

The methods differ entirely. QNCD is only applied
to U-Net backbones, while our approach supports
both U-Net and DiT. Additionally, we push the
boundary quantization from W4A8 to W4A4 and
demonstrate speedups on GPUs.

Q-DiT (Chen
et al., 2024b)

Both are PTQ methods
for diffusion models.

The methods differ entirely. Besides, Q-DiT is
only applied to class-conditioned models, while we
can work on large text-to-image models. We also
push the quantization boundary from their W4A8
to W4A4 and demonstrate speedups on GPUs.

Q-Diffusion
(Li et al.,
2023a)

Both are PTQ methods
for diffusion models.

The methods differ entirely. Besides, their work
is only applied to U-Net models, while we can
work on both the U-Net and DiT backbones. We
also push the quantization boundary from W4A8
to W4A4 and demonstrate measured speedups on
GPUs.

MixDQ (Zhao
et al., 2024c)

Both are PTQ methods
for diffusion models.

The methods differ entirely. Besides, MixDQ is
only applied U-Net models, while we can work on
both the U-Net and DiT backbones. We also push
the quantization boundary from W4A8 to W4A4.

ViDiT-Q
(Zhao et al.,
2024b)

Both are PTQ methods
for diffusion models.

The methods are completely different. We also
push the quantization boundary from their W4A8
to W4A4.

EfficientDM
(He et al.,
2024)

Both are diffusion quanti-
zation methods with low-
rank branches.

They use low-rank branches to reduce the cost of
quantization-aware training, requiring fusion after
tuning. In contrast, our method doesn’t need train-
ing and preserves the low-rank branches during in-
ference. Additionally, EfficientDP is only applied
to class-conditioned U-Nets. We support large
text-to-image models and demonstrate speedups
on GPUs.

SmoothQuant
(Xiao et al.,
2023)

Both are quantization
methods.

SmoothQuant is for LLM quantization, while we
focus on quantizing diffusion models. The ideas
are also different: Smoothing in our method is a
tool to aggregate outliers.
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D ADDITIONAL RESULTS

D.1 QUALITY RESULTS

We report extra quantitative quality results with additional metrics in Tab. 3. Specifically, CLIP
IQA (Wang et al., 2023b) and CLIP Score (Hessel et al., 2021) assesses the image quality and
text-image alignment with CLIP (Radford et al., 2021), respectively. Structural Similarity Index
Measure (SSIM) is used to measure the luminance, contrast, and structure similarity of images
produced by our 4-bit model against the original 16-bit model. We also visualize more qualitative
comparsions in Fig. 12, 13, 14, 15 and 16.

Table 3: Additional quantitative quality comparisons across different models. C.IQA means CLIP IQA, and
C.SCR means CLIP Score.

MJHQ sDCI

Backbone Model Precision Method Quality Similarity Quality Similarity

C.IQA (↑) C.SCR (↑) SSIM( ↑) C.IQA (↑) C.SCR (↑) SSIM (↑)

FLUX.1
-dev

(50 Steps)

BF16 – 0.952 26.0 – 0.955 25.4 –

INT W8A8 Ours 0.953 26.0 0.748 0.955 25.4 0.697

W4A16 NF4 0.947 25.8 0.748 0.951 25.4 0.697
INT W4A4 Ours 0.950 25.8 0.780 0.952 25.3 0.720
FP W4A4 Ours 0.950 25.8 0.781 0.953 25.3 0.726

FLUX.1
-schnell
(4 Steps)

BF16 – 0.938 26.6 – 0.932 26.2 –

INT W8A8 Ours 0.938 26.6 0.844 0.932 26.2 0.811

DiT W4A16 NF4 0.941 26.6 0.713 0.933 26.2 0.674
INT W4A4 Ours 0.938 26.5 0.691 0.931 26.2 0.647
FP W4A4 Ours 0.938 26.5 0.691 0.931 26.2 0.647

PixArt-Σ
(20 Steps)

FP16 – 0.944 26.8 – 0.966 26.1 –

INT W8A8 ViDiT-Q 0.948 26.7 0.815 0.966 26.1 0.756
INT W8A8 Ours 0.947 26.8 0.849 0.967 26.0 0.800

INT W4A8 ViDiT-Q 0.912 25.7 0.356 0.917 25.4 0.295
INT W4A4 ViDiT-Q 0.185 13.3 0.077 0.176 13.3 0.080
INT W4A4 Ours 0.927 26.6 0.602 0.952 26.1 0.519
FP W4A4 Ours 0.935 26.7 0.652 0.957 26.1 0.574

UNet

SDXL
-Turbo

(4 Steps)

FP16 – 0.926 26.5 – 0.913 26.5 –

INT W8A8 MixDQ 0.922 26.5 0.763 0.907 26.5 0.750
INT W8A8 Ours 0.925 26.5 0.821 0.912 26.5 0.808

INT W4A8 MixDQ 0.893 25.9 0.512 0.895 26.1 0.493
INT W4A4 MixDQ 0.556 13.1 0.289 0.548 11.9 0.296
INT W4A4 Ours 0.913 26.4 0.618 0.888 26.8 0.600
FP W4A4 Ours 0.919 26.4 0.640 0.901 26.7 0.620

SDXL
(30 Steps)

FP16 – 0.907 27.2 – 0.911 26.5 –

INT W8A8 TensorRT 0.905 26.7 0.733 0.901 26.1 0.697
INT W8A8 Ours 0.912 27.0 0.843 0.910 26.3 0.814

INT W4A4 Ours 0.878 26.6 0.709 0.869 26.2 0.666
FP W4A4 Ours 0.883 26.8 0.707 0.860 26.4 0.661
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FLUX.1-dev BF16 
Image Reward: 0.953

Our INT W8A8 
Image Reward: 0.948

NF4 W4A16 
Image Reward: 0.910

Our INT W4A4 
Image Reward: 0.924

Our FP W4A4 
Image Reward: 0.932

Prompt: perfect, attractive, beautiful young italian mans face, Clear facial features, EyeLevel Shot, f1.8

Prompt: A scientist analyzing sequential data with a recurrent neural network A research laboratory with computer screens and graphs in the 
background Fluorescent lighting 35mm, photorealistic, Canon EOS 5D Mark IV DSLR, f5.6 aperture, 1125 second shutter speed, ISO 100

Prompt: Eiffel tower, landed on the moon, from moon perspective, earth in background, no town

Prompt: photography of word END in neon sign on a googie building by night

Figure 12: Qualitative visual results of FLUX.1-dev on MJHQ.

FLUX.1-schnell BF16 
Image Reward: 0.968

Our INT W8A8 
Image Reward: 0.966

NF4 W4A16 
Image Reward: 0.943

Our INT W4A4 
Image Reward: 0.965

Our FP W4A4 
Image Reward: 0.957

Prompt: an attuned eagle soaring over the wilderness sunset golden hour

Prompt: Ludwig van Beethoven playing modern electronic mulikeyboard Yamaha set, 8k, Shot on DIGITAL CINEMA VRAPTOR XL 8K VV 
Cinema Camera, f 11, Shutter Speed 1 800, 8mm lens, raw, super resolution, tone mapping, ray tracing, Megapixels

Prompt: ultra modern architure coffeeshop made with glass and with red flowers on the rims on the building

Prompt: cyberpunk lion with glowing eyes in the jungle hyperrealistic

Figure 13: Qualitative visual results of FLUX.1-schnell on MJHQ.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PixArt-￼  FP16 
Image Reward: 0.944

Σ ViDiT-Q INT W8A8 
Image Reward: 0.944

Our INT W8A8 
Image Reward: 0.955

ViDiT-Q INT W4A8 
Image Reward: 0.573

Our INT W4A4 
Image Reward: 0.898

Our FP W4A4 
Image Reward: 0.946

Prompt: Commercial photography of unlabelled omega 3 pills, with studio light, hyperdetailed, on 
black isolated plain, pro color grading, white lighting, Shot on 70mm lens, Canon camera, 8k v 5

Prompt: a 12 year old orphan boy wizard with tattered clothes. South American ancient 
clothing. Night sky with falling stars. Hyper realistic, cinematic lighting

Prompt: lake Powell at sunrise. Dramatic lighting with sun shining over the rocks. Still water. Realistic photograph. Breathtaking landscape. Ar 12

Prompt: 1950s style hamburger restaurant Cartoon with soft and funny contours with 3d with white background

Figure 14: Qualitative visual results of PixArt-Σ on MJHQ.

SDXL 
Image Reward: 0.729

TensorRT W8A8 
Image Reward: 0.591

Our W8A8 
Image Reward: 0.718

Our INT W4A4 
Image Reward: 0.591

Our FP W4A4 
Image Reward: 0.607

Prompt: tasty pancakes epic and realistic photo, isolated on dark background, photography f22 f1.4 

Prompt: morgan freeman headshot, hyperrealistic, 4k, colour graded, wearing old shashank redemption hat, looking at camera

Prompt: a portrait of a young lady in the rain, by guy aroch

Prompt: professional photo of a negroni cocktail. Italian atmosphere.

Figure 15: Qualitative visual results of SDXL on MJHQ.
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SDXL-Turbo FP16 
Image Reward: 0.845

MixDQ INT W8A8 
Image Reward: 0.834

Our INT W8A8 
Image Reward: 0.845

MixDQ INT W4A8 
Image Reward: 0.708

Our INT W4A4 
Image Reward: 0.796

Our FP W4A4 
Image Reward: 0.822

Prompt: portrait of a miner after hard work in a coal mine, high contrast, a lot of details, good light, a mining shaft in the background, 
Canon EOS R5 prime lens, the lighting is a mix of natural light and artificial lighting, creating a dramatic and intense effect.

Prompt: barcelone conference event blockchain summit

Prompt: AI, flaming lion with a human body, warrior, fighting pose, 8k, 10 PIC, a photorealistic 
white tiger, emerging from the jungle, stalking its prey in the snow

Prompt: lemur with long legs and red lips, natural habitat. Hyperrealistic, photo quality

Figure 16: Qualitative visual results of SDXL-Turbo on MJHQ.
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D.2 LORA RESULTS

In Fig. 17, we showcase more visual results of applying the aforementioned five community-
contributed LoRAs of different styles (Realism, Ghibsky Illustration, Anime, Children Sketch,
and Yarn Art) to our INT4 quantized models.

(a) Realism LoRA

(e) Yarn Art LoRA

(c) Anime LoRA

(d) Children Sketch LoRA

(b) Ghibsky Illustration LoRA

FLUX.1-dev 
BF16

Our INT4

FLUX.1-dev 
BF16

Our INT4

FLUX.1-dev 
BF16

Our INT4

FLUX.1-dev 
BF16

Our INT4

FLUX.1-dev 
BF16

Our INT4

Figure 17: Additional LoRA results on FLUX.1-dev. When applying LoRAs, our INT4 model matches the
image quality of the original BF16 model. See App. F for the detailed used text prompts.
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https://huggingface.co/XLabs-AI/flux-RealismLora
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/alvdansen/sonny-anime-fixed
https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch
https://huggingface.co/linoyts/yarn_art_Flux_LoRA


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.3 LATENCY RESULTS

In Tab. 4, we compare FLUX latency on a laptop-level 4090 GPU across different precisions.
Compared to INT8, 4-bit quantization delivers a 1.3× speedup. However, without optimization,
SVDQuant incurs an 18% overhead due to the low-rank branch. By eliminating redundant memory
access, LoRunner achieves latency comparable to naive INT4.

Table 4: Single-step latency comparisons of FLUX on a desktop-level 4090 GPU.

Method BF16 INT8 Naïve INT4 SVDQuant SVDQuant +LoRunner

Latency (ms) 657 282 212 250 218

D.4 COMPARISONS WITH LLM BASELINES

In Tab. 5, we adapted LLM quantization methods (SmoothQuant (Xiao et al., 2023), QLLM (Liu
et al., 2024a), QuaRot (Ashkboos et al., 2024), and AffineQuant (Ma et al., 2024d)) for diffusion
models and show the W4A4 results on MJHQ. SVDQuant outperforms all baselines by a wide margin
across all metrics on PixArt-Σ. On FLUX.1-schnell, SVDQuant achieves the best FID and Image
Reward scores and ranks second in LPIPS and PSNR, only behind NF4.

Table 5: 4-bit quantitative quality comparisons on PixArt-Σ and FLUX.1-schnell.

Model Method FID (↓) Image Rewad (↑) LPIPS (↓) PSNR (↑)

PixArt-Σ

Naive 206 -1.23 0.762 9.08

SmoothQuant 48.6 0.617 0.607 12.9

QLLM 35.8 0.763 0.581 13.1

AffineQuant 29.6 0.816 0.540 14.5

QuaRot 28.2 0.847 0.459 15.3

SVDQuant (Ours) 20.1 0.898 0.394 16.2

Naive 18.1 0.962 0.345 16.3

SmoothQuant 18.4 0.943 0.323 16.7

QLLM 18.3 0.959 0.295 17.3

FLUX.1-schnell AffineQuant 22.8 0.937 0.292 16.9

QuaRot 19.3 0.951 0.287 17.4

NF4 (W4A16) 18.9 0.943 0.257 18.2

SVDQuant (Ours) 18.1 0.965 0.292 17.5

D.5 TRADEOFF BETWEEN QUALITY AND BITWIDTH

We evaluate LPIPS across different bitwidths for various quantization methods on PixArt-Σ and
FLUX.1-schnell using the MJHQ dataset in Fig. 18, with weights and activations sharing the same
bitwidth. Following the convention (Xiao et al., 2023; Lin et al., 2024a;b; Li et al., 2023a; Zhao et al.,
2024d; Dettmers et al., 2022), for bitwidths above 4, we apply per-channel quantization; for 4 or
below, we use per-group quantization (group size 64). SVDQuant consistently outperforms naive
quantization and SmoothQuant. Notably, on PixArt–Σ and FLUX.1-schnell, our 4-bit results match
7-bit and 6-bit naive quantization, respectively.

Our SVDQuant can still generate images in the 3-bit settings on both PixArt-Σ and FLUX.1-schnell,
performing much better than SmoothQuant. Below this precision (e.g., W2A4 or W4A2), SVDQuant
cannot produce images either, since 2-bit symmetric quantization is essentially a ternary quantization.
Prior work (Ma et al., 2024a; Wang et al., 2023a) has shown that ternary neural networks require
quantization-aware training even for weight-only quantization to adapt the weights and activations to
the low-bit distribution.
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Naive SmoothQuant SVDQuant
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(a) PixArt-￼Σ (b) FLUX.1-schnell

Figure 18: LPIPS of different quantization methods on PixArt-Σ and FLUX.1-schnell across different bitwidths.

D.6 RESULTS ON STALE DIFFUSION 1.4

In Tab. 6, we present additional results comparing Q-Diffusion (Li et al., 2023a) and QuEST (Wang
et al., 2024b) on Stable Diffusion 1.4 (Rombach et al., 2022) using the MJHQ dataset with W4A4
precision. Specifically, QuEST is a quantization-aware training method that requires additional
training. However, SVDQuant can still outperform it by a large margin regarding LPIPS and PSNR.

Table 6: 4-bit quantitative quality comparisons on Stable Diffusion 1.4.

Method FID (↓) LPIPS (↓) PSNR (↑)

Q-Diffusion 368 0.862 8.00

QuEST 25.1 0.771 8.48

SVDQuant (Ours) 38.3 0.393 15.9

E LIMITATIONS

In this work, we do not report the speedups for our FP4 models. This is because we have no access to
Blackwell GPUs, which natively support the precision and microscaling for group quantization. On
Blackwell hardware, we anticipate greater speedups compared to our INT4 results on 4090 GPUs.

F TEXT PROMPTS

Below we provide the text prompts we use in Fig. 9 (from left to right).

a man in armor with a beard and a sword
GHIBSKY style, a fisherman casting a line into a peaceful village lake

surrounded by quaint cottages↪→
girl, neck tuft, white hair, sheep horns, blue eyes, nm22 style
sketched style, A squirrel wearing glasses and reading a tiny book under

an oak tree↪→
a panda playing in the snow, yarn art style

The text prompts we use in Fig. 17 are (in the rasterizing order):

A male secret agent in a tuxedo, holding a gun, standing in front of a
burning building↪→

A handsome man in a suit, 25 years old, cool, futuristic
A knight in shining armor, standing in front of a castle under siege
A knight fighting a fire-breathing dragon in front of a medieval castle,

flames and smoke↪→
A male wizard with a long white beard casting a lightning spell in the

middle of a storm↪→
A young woman with long flowing hair, standing on a mountain peak at dawn,

overlooking a misty valley↪→
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GHIBSKY style, a cat on a windowsill gazing out at a starry night sky and
distant city lights↪→

GHIBSKY style, a quiet garden at twilight, with blooming flowers and the
soft glow of lanterns lighting up the path↪→

GHIBSKY style, a serene mountain lake with crystal-clear water,
surrounded by towering pine trees and rocky cliffs↪→

GHIBSKY style, an enchanted forest at night, with glowing mushrooms and
fireflies lighting up the underbrush↪→

GHIBSKY style, a peaceful beach town with colorful houses lining the
shore and a calm ocean stretching out into the horizon↪→

GHIBSKY style, a cozy living room with a view of a snow-covered forest,
the fireplace crackling and a blanket draped over a comfy chair↪→

a dog wearing a wizard hat, nm22 anime style
a girl looking at the stars, nm22 anime style
a fish swimming in a pond, nm22 style
a giraffe with a long scarf, nm22 style
a bird sitting on a branch, nm22 minimalist style
a girl wearing a flower crown, nm22 style

sketched style, A garden full of colorful butterflies and blooming
flowers with a gentle breeze blowing↪→

sketched style, A beach scene with kids building sandcastles and seagulls
flying overhead↪→

sketched style, A hot air balloon drifting peacefully over a patchwork of
fields and forests below↪→

sketched style, A sunny meadow with a girl in a flowy dress chasing
butterflies↪→

sketched style, A little boy dressed as a pirate, steering a toy ship on
a small stream↪→

sketched style, A small boat floating on a peaceful lake, surrounded by
trees and mountains↪→

a hot air balloon flying over mountains, yarn art style
a cat chasing a butterfly, yarn art style
a squirrel collecting acorns, yarn art style
a wizard casting a spell, yarn art style
a jellyfish floating in the ocean, yarn art style
a sea turtle swimming through a coral reef, yarn art style
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