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ABSTRACT

The world is understood from various modalities, such as appearance, sound, and
language. Since each modality only partially represents objects in a certain mean-
ing, leveraging additional ones is beneficial in both theory and practice. How-
ever, exploiting novel modalities normally requires cross-modal pairs correspond-
ing to the same instance, which is extremely resource-consuming and sometimes
even impossible, making knowledge exploration of novel modalities largely re-
stricted. To seek practical multi-modal learning, here we study Out-of-Modal
(OOM) Generalization as an initial attempt to generalize to an unknown modal-
ity without given instance-level modal correspondence. Specifically, we consider
Semi-Supervised and Unsupervised scenarios of OOM Generalization, where the
first has scarce correspondences and the second has none, and propose connect &
explore (COX) to solve these problems. COX first connects OOM data and known
In-Modal (IM) data through a variational information bottleneck framework to ex-
tract shared information. Then, COX leverages the shared knowledge to create
emergent correspondences, which is theoretically justified from an information-
theoretic perspective. As a result, the label information on OOM data emerges
along with the correspondences, which help explore the OOM data with unknown
knowledge, thus benefiting generalization results. We carefully evaluate the pro-
posed COX method under various OOM generalization scenarios, verifying its

effectiveness and extensibility.

1 INTRODUCTION

To understand the world, we use various data modalities, such as im-
age data (He et al., 2016; 2017; Ren et al., 2015) and text data (Devlin
et al., 2018; Vaswani et al., 2017). Each modality describes objects
through a certain physical perspective, and thus contributing to under-
standing objects. Therefore, multi-modal learning (MML) (Alayrac
et al., 2022; Ngiam et al., 2011; Radford et al., 2021; Socher et al.,
2013) which learns from multiple modality data has been a core re-
search topic in Al Thanks to the utilization of various modalities,
the learning performance has shown to be beneficial on various tasks
compared to uni-modal learning (Huang et al., 2021; Lu, 2024; Rad-
ford et al., 2021; Sun et al., 2020), such as cross-modal retrieval and
generation (Yasunaga et al., 2023; Zhang et al., 2021; Zhen et al.,
2019), human-computer interaction (Pantic & Rothkrantz, 2003; Rah-
man et al., 2022), and robotics (Jiang et al., 2023; Yu et al., 2023).

However, existing states of the art performance are not satisfactory,
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Figure 1: AI is enhanced
as more modalities are in-
corporated, so how can we
teach Al to learn from
novel modalities based on
the ones it already know?

and emerging modalities need to be explored and leveraged effectively just like the relatively new
data modalities of the geomagnetic fields (Hashimoto, 1926), sound waves (Harley et al., 2003), and
electromagnetic waves (Weinstein, 1988). Therefore, emerging technologies have been constantly
leveraging new sensors to enhance their performance. For example, Embodied Als (Savva et al.,
2019) already possess abilities like 3D vision and language, but they are still exploring novel skills,
such as tactile sensing and bio-sensing. Since it is hard to leverage such uncommon and inexperi-
enced skills in practice, adapting the knowledge from common modalities to better understand the
novel ones could be potentially beneficial, as shown in Figure 1. In practice, most existing MML
investigations (Radford et al., 2021; Girdhar et al., 2023; Wang et al., 2024; Zhu et al., 2023) re-
quire instance-level modal correspondence, i.e., multi-modal data are paired with the same instance,
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which is often hard to satisfy in real-world scenarios when facing novel modalities (Liang et al.,
2023; 2021; Sun et al., 2020; Xia et al., 2024). For a robotic example, some modalities are com-
mon and easy to acquire, e.g., vision and language, but others like tactile data might need special
sensors to resample from the same objects seen or spoken. Unfortunately, the resample could no
longer access the same objects in real-world applications. As a result, the new modalities usually
have incomplete or even no correspondence, which could seriously block the knowledge interaction
across modalities and hinder the benefits brought by MML. Hence, a question naturally occurs: Do
we really need instance-level modal correspondence to explore novel modalities?

This paper studies a practical yet unexplored problem named Out-of-Modal (OOM) Generalization.
Particularly, we are given several modalities, i.e., In-Modal (IM) data, and then our goal is to gener-
alize to an unknown modality that has no correspondence to any of the known ones, or in some cases
only scarcely paired. Such a problem setting implies the utilization of novel modalities in realistic
situations: Even though our knowledge is limited to certain modalities, e.g., human perceptions only
have touch, sight, sound, smell, and taste, but we can still understand unperceivable ones such as
magnetism by utilizing inherently-possessed senses, e.g., feel the force when pulling two magnets
together; or see the magnetic field by observing the alignment of iron filings around a magnet.

Based on this insight, we utilize IM perceptors that contain prior knowledge to encode known IM
data, which can be implemented using existing MML models (Radford et al., 2021; Girdhar et al.,
2023; Zhu et al., 2023; Wang et al., 2024), and an OOM learner which learns novel modalities with-
out any prior knowledge. By analyzing the interactions between the extracted latent features, we
show theoretically and empirically that the knowledge from OOM data can be gradually discovered,
allowing us to train the OOM learner to enhance its understanding of the novel modality, as shown
in Figure 2. First, we consider semi-supervised OOM generalization where few correspondences
are given. Based on the correspondence, we can capture the prior probability distribution and learn
mappings that connect OOM data and IM data. Through an information-theoretic perspective, we
propose connect & explore (COX), which encourages the agreement on mappings across modali-
ties, further the cross-modal knowledge can be shared and novel information can be explored. Then,
we extend COX to an unsupervised OOM generalization scenario where there is no instance-level
correspondence at all. To tackle such a challenge, we enhance the OOM-IM connections by maxi-
mizing cross-modal interaction. To simplify such an unsupervised problem into a semi-supervised
case, we select data pairs from cross-modal mappings and IM features, respectively. According to
feature similarity, we assume that the data pairs closing to OOM mappings can be considered as
correspondence. Under this assumption, we can leverage the emerging correspondence and solve
the unsupervised case via the semi-supervised solution. To validate the proposed method, we care-
fully design experiments using various multi-modal datasets to validate the effectiveness of COX.
Moreover, we provide extensive analyses in various scenarios to understand our method and inspire
future research. To sum up, our contributions are three-fold:

* We discover a novel and practical problem named Out-of-Modal Generalization, which
aims to explore a novel modality using the knowledge from known modalities.

* We consider two typical situations: Semi-Supervised OOM generalization and Unsuper-
vised OOM generalization, and propose a connect & explore framework to tackle both
problems from an information-theoretic perspective.

* We conduct extensive experiments to tackle the OOM generalization on various datasets
and provide intuitive insights to help inspire future research.

2 RELATED WORK

Modality Generalization generally focuses on leveraging the knowledge from some modalities
and generalizing to another one. Existing studies are conducted in different settings and with various
tasks. Cross-Modal Fine-Tuning mimics transfer learning by adapting the distribution of IM data
to OOM data using the same model. Shen et al. (2023) proposed to conduct distribution alignment
to achieve this goal which requires both pre-trained knowledge and labeled target modality data.
Based on a similar problem setting, Cai et al. (2024) designed a gradual modality generation scheme
that selects the top-k active feature patches from target modalities, and replaces them with source
modalities patches. Such a progressive strategy can align target modal data to ensure generalization.
Cross-Modal Generalization uses separate encoders and focus on generalizing to a different modal-
ity data from the same instance. Liang et al. (2021) used meta-learning to align OOM data to IM
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Table 1: A comparison of different MML problems and their corresponding settings.

Problem \References \ IM Knowledge OOM Knowledge Correspondence
Cross-Modal Fine-Tuning ‘Shcn et al. (2023); Cai et al. (2024) ‘pre—Lrained & labeled labeled X
Liang et al. (2021) pre-trained & labeled pre-trained v

Cross-Modal Generalization

Xia et al. (2024) pre-trained & labeled pre-trained & labeled v

MML w/o labeled Multi-Modal Data|Liang et al. (2023) | partially labeled partially labels v

Semi-Supervised case (Section 3.3)
Unsupervised case (Section 3.4)

pre-trained & labeled  scarcely labeled A few

OOM Generalization
pre-trained & labeled X X

space and generalize to OOM tasks dynamically. Xia et al. (2024) studied a different setting where
IM and OOM data are both known during training. Then, a unified representation space is learned
to help downstream generalization on OOM data. Some other studies considers generalization when
all modalities are available, Ma et al. (2019) studied cross-modal generalization without paired data,
Wang et al. (2023) applied the information bottleneck to CLIP training, Fang et al. (2024) conducted
multi-modal fusion under limited clinical data, and Dong et al. (2023) considered domain general-
ization with fully-paired multi-modal data. A recent study MML without Labeled Multi-Modal Data
(Liang et al., 2023) proposed a different setting where both IM and OOM data have labels, but they
are not paired. Instead, additional unlabeled paired multi-modal data is given for learning the inter-
action between modalities. Moreover, Xue et al. (2022) understood the interactions and applied it to
knowledge distillation. Except for cross-modal fine-tuning which follows transfer learning, existing
MML works mostly require instance-level correspondence. This work proposes OOM Generaliza-
tion, where there is no correspondence and the OOM knowledge is barely provided. The comparison
of related works is shown in Table 1.

Modality Binding aims to learn a joint embedding space across different modalities. Contrastive
Language-Image Pre-training CLIP (Radford et al., 2021) is the first work that aligns image with
language data. Then, ImageBind (Girdhar et al., 2023) proposed to use vision modalities to bind
various modalities into the same representation space. Further, LanguageBind (Zhu et al., 2023)
proposed using language as an alternative solution, which binds various modalities similarly. Re-
cently, FreeBind (Wang et al., 2024) extended the existing unified space into an additional expert
space. Specifically, two types of binding were considered, namely space displacement bond and
space combination bind. Since modality binding often requires a large amount of data with cor-
respondence, the selected modalities are often quite common. Therefore, the OOM generalization
problem can take advantage of the development of modality binding by leveraging the encoders as
our IM perceptors to learn novel modalities.

3 OOM GENERALIZATION

In this section, we first formalize the OOM generalization setting. Then, we demonstrate the pro-
posed method. Further, we consider a Semi-Supervised case where a few correspondences are avail-
able and an Unsupervised scenario where there is no correspondence, showing that the proposed
method can successfully tackle both settings and effectively leverage unpaired OOM data.

3.1 PROBLEM SETTING

In OOM generalization, we are given a set of known modalities {M!, ... M.} where
Micn. xy = 1@ my,) € & x Y} is composed of N number of labeled IM exam-
ples with its subscript ¢ denoting the correspondence across different modalities. Moreover, we
have an unknown modality M = {(2%)}£,} containing M unlabeled OOM examples. In some
cases, it is possible to obtain few correspondences with IM data, then our OOM data could be
MO = {(2?,y7) 1 U{(27)} )L, 11, where L < M and the subscript i traces the corresponding
IM data instance and label.

To tackle OOM generalization, we go () 20
propose a learning framework as Py j

shown in Figure 2.  Particularly, .’

we use a set of IM perceptors g{ & z{
{gi,..., g%} to perceive IM data,
which can be realized by many ex- @ I % p
isting modality-binding models, such Ik Zg

as ImageBind (Girdhar et al., 2023)
and LanguageBind (Zhu et al., 2023). Figure 2: Learning framework of our OOM generalization.
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Then, the features of IM data are obtained via zk = gk(:r k) Moreover, we use an OOM learner g©
to learn features z© from OOM data through z© = ¢©(2®). Our goal is to effectively generalize to
OOM data by exploring the relationships between the OOM feature 2 and IM features {1} .
Note that we only focus on the generalization performance of OOM data, the improvement of learn-
ing IM data is not the goal of this paper. Therefore, we freeze the parameters of all IM perceptors
and only train the OOM learner dunng experlments On top of the above models, we further define
classifiers h© (z©) := h°(29; ¢°) and hy.(x) := hi(2}; gL) that make predictions.

3.2 METHODOLOGY: CONNECT & EXPLORE (COX)

Here we elucidate the proposed method based on the interactive relationship between modalities
(Liang et al., 2023; Williams & Beer, 2010). Specifically, the total information of two modali-
ties under a certain task is decomposed into 1) commonality' which indicates common attributes
across modalities, 2) uniqueness that is only presented in each modality, and 3) synergy denoting
the emerging information when modalities are presented together. Note that we do not consider 3)
in this paper as our goal is generalizing to OOM data.

To generalize to an unknown modality based on common ones, we aim to extract the commonality
that can help partially comprehend OOM data based on IM data. Then, we model the posterior
distribution of OOM data by selecting anchor points with minimum uniqueness. To this end, the
OOM generalization can be successfully established. The proposed COX method comprises two
steps: 1) learning connections by mapping IM data to OOM data to extract commonality, and 2)
exploring high uniqueness OOM data by matching their posterior to high-commonality OOM data.

Connection across Modalities that capture the shared knowledge is learnable through generative
models (Lu, 2024). Here we follow the variational information bottleneck (VIB) framework (Alemi
et al., 2016) to achieve this goal. We assume that given IM data X' and OOM data X ©, the latent
variable V extracted from X 12, and label Y, the joint distribution can be factorized as

p(XL, X, V,Y) =p(V,Y|X®, X p(XC|X")P(XT), (1)

where we assume p(V, Y |X©, X1) = p(V|X)p(Y|X?), corresponding to the Markov chains V' «»
X' XOand X' <+ Y ¢ XO©. Such an assumption means that V' is not related to X© (Alemi
et al., 2016) and the given label Y is not directly connected to X © under our OOM setting.

Our goal is to extract valuable knowledge from IM data to leverage OOM data by maximizing the
information commonality (Liang et al., 2023; Williams & Beer, 2010):

max I(X9; XLY) = 1(Xx°; x") — 1(X°; X"|v), )

where 1(X©; X';Y) denotes the mutual information between X© and X! regarding the task Y,
i.e., the label; and 7(X©; X'|Y") indicates the conditional mutual information irrelevant to Y. We
start with the first term:

p(a®at) p(a®lat)
p(xO)p(at) p(z©)

where p(z°[2!) = [dop(z®,v|zt) = [dvp(x®|v)p(v|z’) can be approximated via a de-

coder g(z°|v). Since the Kullback Leibler (KL) divergence is always non-negative, we have
KL[p(XOV) || ¢(X°V)] > 0= [da®p(zC|v)logp(z°|v) > [dzOp(z°|v)logq(z®|v), and
thus we can have

I(XO;XI)Z/dmod;rlp(ro. Il)loh /dlodl p(a®x )10% 3)

0 I
I(X©: X /dxodx p(z°, z1) log fdvq(z(:lg))p(ﬂx ) 4)
:/ daCdz'dvp(z°, ") log q(z°v)p(v|at) + H(XO), 3)

'Tt is originally termed “redundancy” which is negative. However, such property is quite positive for tackling
our problem, and hence we rename it “commonality”.
“Note that the latent variable V here is different from the feature representation z' and z°©.



Under review as a conference paper at ICLR 2025

where the last term is independent of our optimization process. Further, we rewrite p(z©, 2!) =
[ dop(z©, 2", v) = [ dvp(z")p(z°|2")p(v|z!). Then, we have the following lower bound:

(X9 x> / da®da'dvp(z")p(z®|z)p(v]z") log q(z°|v)p(v]ah), (6)

which is realized by sampling from the joint data distribution, the latent variable from our encoder
p(v|xt), and the tractable variational approximation g(z°|v).

Similarly, we can upper-bound the second term I(X©; X'|Y") (full derivation shown in Appendix
A.l):

(X% Xx"Y)< /dxodxldyp(xo, z',y) log p(yla")p(x®|z)p(a') —log h° (y|2®), (D)

where h© (y|2©) is our classifier model for predicting OOM data. To this end, we can lower-bound
our objective by combining equation 6 and equation 7:

(X% X%Y) > / daCdatup(a")p(z° 2" p(v]at) log g(2°|v)p(v]zt)
®)
— / daCda'dyp(«©, 2", y) log p(y|a")p(z° |z )p(x") +1og h° (y]2°) = Leon-

The above lower bound contains two part: 1) OOM data reconstruction where we reconstruct X ©
using the latent V' and 2) OOM data label prediction where we model the label distribution Y. In
practice, we can approximate p(x®, x',y) using empirical samples from IM and OOM data. More-
over, we use encoder p(v|z') without any prior assumptions because we can leverage the feature
distribution from the pre-trained IM perceptors. Additionally, a classifier h(y|z©) is optimized to
categorize OOM data based on given labels. Empirically, we can minimize

con = A[ZHTO 7(] 0‘7 ) (7Y |7 )”2 10gho(7/1|710) (9)

- |13 to realize the log-likelihood ¢(z°|v)p(v|z'), as sim-
ilarly done by Klngma & Welling (2013). After building the connections, we can ensure the task-
relevant information shared across modalities is learned, which helps partially understand OOM
data regarding its commonality. However, note that the second term in Eq. 23 is not fully lever-
aged which contains p(u\ ) modeled by the IM perceptors. Take a step further, we can obtain
— [dx®da'dyp(x©, 2, y) log plyle ,Zp((;‘w" >)”(' ). Since p(z (xC|2")p(x?) is fixed in label prediction,
we can derive —KL(p(y|z!) || hC(y|x®)) which implies that the label information related IM data
can be harnessed to explore commonality. Next, we demonstrate how the commonality helps OOM
generalization, and provide a solution to explore uniqueness.

Exploration of Uniqueness can be achieved via selecting and exploring the OOM data with high
uniqueness. To identify these data, we can leverage the agreement and disagreement achieved by
the optimal classifiers from various IM data. Our final goal is to optimize via

rniOnKL(hO(y|:cg) | hO(y|z2)), where 2§ € D, 20 € A, (10)

in Wthh hy and h} denote the optimal classifiers found in two IM data z! and x% respectively,
and xd and 20 are selected from OOM data with modahty disagreement D := {z° : hi(2©) #
h3(z9)} and agreement A := {2© : h}(z°) = hi(x°)}, respectively. Here we use two in-
modalities for simplicity, but the conclusion can be extended to multiple modalities. Moreover, the
data with agreement is considered anchor points that guide the exploration of those with disagree-
ment. This objective aims to match the posterior of OOM data with uniqueness h° (y|z) to the one
of anchor points h° (y|zQ). To justify this, we first define modality disagreement:

Definition 1 (Modality disagreement). Given X7, X5 and target Y, as well as their corre-
sponding optimal classifiers A} and hj}, their modality disagreement is defined as «(hj,hl) =
Ep(zr 00y [d(h}, h3)] where d : Y x Y — R is a distance function in the label space scoring
the disagreement between hj and h3.

3 Although training generative models in input space is computationally less efficient, we show in experi-
ments that it is feasible to connect modalities in the feature space.
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Theorem 1. Given two Bayes’ optimal classifiers h] and h3 from two in-modalities, under relaxed
triangle inequality, inverse Lipschitz condition, and classifier optimality assumptions (Sridharan &
Kakade, 2008), the modalities disagreement is upper-bounded by (see details in Appendix A.2)

a(hi, hy) < I(X°, X3, V|X]) + I(X©, X1, Y|X]) + 2I(X°,Y|X], X3). (11)

Finally, based on the decomposition of the task-related mutual information of X©: I(X©Y) =
I(X9, xLv|xDh + 1(xC, X1, v|x1) + 1(x°,Y|x], X)) + 1(X©, X], X1,Y), as shown in
Figure 3, we can achieve

a(hi, h3) < I(XO,Y) - I(X°, X1, X3,Y) + I(X°,Y|X], Xp), (12)

where the first term denotes the overall information, X0

the second term indicates the commonality shared be-
tween all modalities, and the third term stands for the
uniqueness only preserved in OOM data. Intuitively, ;o xi yix1) 1000, XL, v |x1)

when we try to increase the modality disagreement, the

commonality is decreased and OOM uniqueness is in-

creased, which successfully justifies our learning objec-

tive: In order to explore the uniqueness of OOM data,

we can explore the ones with high modality disagree-

ment; conversely, the OOM data with high common- x! X!

ality and low uniqueness is found where agreement is . . i, o
achieved among hj and hj. Therefore, we select such Figure 3: Decomposition of (X, Y).
data as anchor points that provide informative guidance to help explore uniqueness.

Next, we consider two realistic scenarios of OOM generalization and demonstrate how the proposed
COX method can tackle them.

3.3 SEMI-SUPERVISED OOM GENERALIZATION

We start with a semi-supervised case
where a few correspondences are
available in OOM data, as shown

in Figure 4 (a). Based on the 1 e
VIB framework proposed in Sec- / a ol e
tion 3.2, We first leverage the OOM

data {(x9,y°)}E, corresponding

to IM data {(x};,yp )}, Yk € J 20 J s 2°
{1,...,K} to build K connections ‘ @ ‘ ®

using additional generative models Figure 4: Two scenarios: (a) Semi-Supervised OOM Gen-
that can be trained via a point-to- eralization and (b) Unsupervised OOM Generlaizaiton.
point mapping. As a result, the map-

pings on the OOM feature space can successfully match the OOM feature distribution, which allows
us to directly apply IM data posteriors to select and explore the uniqueness of OOM data. Hence,
we formulate our objective as

min Lo := ZCE (h°(a Z ZKL (RO () 1h° (x); by, h3), (13)

where the first term exploits labeled OOM data with correspondence and the second term explores
OOM data D with modality disagreement by minimizing its KL divergence from the label posterior.
Through the above objective, we can maximally exploit the uniqueness of OOM data to achieve
effective OOM generalization.

3.4 UNSUPERVISED OOM GENERALIZATION

As for the unsupervised case, we propose two-phase training: 1) we first conduct a warm-up training
to initialize the OOM feature space and the connection, and 2) then, we enhance the connection by
creating emergent correspondence and further exploring OOM data.
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Specifically, we select anchor points from OOM data by directly applying modality agreement
among all Bayes’ optimal classifiers from IM data via

K
Asorted =SORTT (A, % > maxhj(z°)), where A={Vz® € MO: I} (x®)=---=hj(z°)}, (14)

k=1

where the SORT(, ) is a sort function, which ranks each element 2© in A based on the value

of % Zle max h,’;(mo) from large to small. Here, we select anchor points with the top-T" largest
likelihood averaged over all K IM classifiers. Then, we warm up the OOM learner via minimizing
cross-entropy loss min & > o A CE(hO(2°), argmax h} (z°)). Additionally, we also warm
up the connection by leveraging class-wise information. Specifically, we compute the cluster cen-
troids for each modality via ﬁ Zx?ecy::{zo hO (20) =y YV} 2z and pair them to each IM centroid
correspondingly. To this end, we can build up initial connections by following the VIB framework.

After the warm-up, we aim to further enhance both our connection and OOM exploration by creating
emergent correspondence, as shown in Figure 4 (b). To tackle this, we map all IM data into the
OOM feature space. If an OOM feature is close to all mappings vy ;,Vk = {1,..., K}, then they
can form a strong correspondence. Further, we select such OOM data as anchor points, which is
further labeled the same as the corresponding IM data. Formally, we optimize OOM learners via

; . O O L Lk *
H}}})nﬁuns- Z CE ‘.A|+|’D‘ Z ZKL h |h ( )7h1ah2)7 (15)

(ra Y)E zQeDzQeA

where A denotes the updated anchor points which are realized by sorting the Euclidean distance:
A := SORTs ({(z] ,yl)}j L —mileq, Ny 7 Zszl HZJO*Uk1||), where the first term computes
the cross-entropy loss from the anchor points, and the second term calculates the KL divergence
between the OOM data with modality disagreement and the OOM anchor points.

After these two steps, we can effectively tackle the unsupervised OOM generalization. In practice,
we connect modalities and select anchor points in the feature space, and hence our application to
both two scenarios can be efficient. In the next section, we carefully conduct extensive experiments
to justify the effectiveness and extendibility of the proposed COX method under various settings.

4 EXPERIMENTS

In our experiments, we first elucidate the experimental details. Then, we provide performance com-
parisons to various baseline methods on different datasets. Finally, we conduct empirical analyses
to provide an intuitive understanding of the proposed method.

4.1 IMPLEMENTATION DETAILS

Datasets. We consider datasets with at least three modalities: 1) TVL dataset (Fu et al., 2024)
contains tactile sensing, RGB image, and class name which can be transformed into language; 2)
LLVIP (Jiaet al., 2021) dataset has infrared thermal data, RGB image, and annotations for pedestrian
detection. We follow Zhu et al. (2023) to crop the pedestrian and background which stand for two
classes. Further, we use the OpenAl template (Radford et al., 2021) to create language description;
3) NYU-D dataset (Silberman et al., 2012) contains RGB image, depth data, and class name that
can be transformed into language description as well; 4) VGGS dataset (Chen et al., 2020) includes
video data, corresponding sound, and the language description; 5) MSR-VTT (Xu et al., 2016)
includes videos and text description, we break down the videos into video frames and the audio
data; 6) MOSEI dataset (Zadeh et al., 2018) contains videos from 7 classes of emotions, we extract
audio data from the videos and use the emotion type to create language descriptions.

Models. We employ two types of IM perceptors, namely ImageBind (Girdhar et al., 2023) and
LanguageBind (Zhu et al., 2023) which correspondingly contain 6 and 5 encoders to process differ-
ent modalities. We select one modality for each experiment as OOM and then choose the rest as IM.
For IM data, we use the existing encoders to extract their features. As for OOM data, we conduct
preprocessing to ensure its compatibility. Then, we initialize an OOM learner from scratch using
ViT-T/16 to learn from the OOM data using the guidance from IM perceptors. Note that for the
TVL dataset, there are no existing encoders to process tactile modality. Therefore, when the tactile
modality is chosen as IM data, we fine-tune the encoder using contrastive learning on the training
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Table 2: Classification performance comparison of different methods across multiple datasets with
different OOM modalities.

Setting  IM Perceptor Method‘ TVL LLVIP NYU-D VGGS
| RGB Lan Tac | RGB Lan The | RGB Dep Lan | Aud Vid Lan

Random 0.4 0.3 0.2 482 473 510 102 113 102 | 03 0.3 0.3
ERM 23.1 195 227 | 546 53.1 541 | 452 445 381 | 93 102 84
2 ImageBind EntMin | 24.0 21.8 23.6 | 567 570 554 | 480 463 393|105 133 89
£ COX 312 253 265 | 592 583 583 | 523 50.7 442 | 168 184 117
g aligned | | | |
2] Random 0.4 0.3 0.2 482 473 510 | 102 113 102 | 03 0.3 0.3
‘g ERM 23.6 20.1 226 | 565 549 583 | 448 445 399 | 98 137 99
@ LanguageBind EntMin | 25.7 23.1 25.1 | 59.8 60.0 622 | 494 473 427|119 145 128
COX 335 263 273 | 612 623 664 | 588 535 484 | 183 221 134
aligned | | | |
Random 0.4 0.3 0.2 482 473 510 | 102 113 102 | 03 0.3 0.3
ImageBind SSL 6.3 4.3 5.1 523  56.1 524 | 146 13.6 189 | 25 69 38
§ 2 (6(0):¢ 189 154 17.1 | 548 572 538 | 21.7 220 195 | 93 102 105
g aligned | \ \ \
g Random 0.4 0.3 0.2 482 473 510 | 102 113 102 | 03 0.3 0.3
5 LaneuaceBind SSL 6.8 6.5 5.1 546 578 538 | 169 181 163 | 72 56 48
suag (6(0):¢ 193 192 186 | 55.0 564 557 | 245 231 204|100 11.6 104

aligned | | | |

set. For ImageBind, the tactile encoder is aligned with the image encoder, and for LanguageBind, it
is aligned with the language encoder, which is the same as the original training process. For training
the connection between modalities, we employ multi-layer perceptrons to realize the variational in-
formation bottleneck framework. Moreover, to obtain the optimal classifier from each in-modality,
we utilize the extracted features and train a linear layer as classification heads.

Setup. We consider two scenarios of OOM generalization: For the semi-supervised case, we sam-
ple 10% of the training data as labeled data with each class having a balanced number of labels.
For the unsupervised case, we have no labels at all. For selecting the number of anchor points, we
choose the same number of examples for the warm-up and training phases, which is 10% of the total
training set. To train the OOM learner, we use the Adam optimizer with an initial learning rate of
le — 3 with weight decay 1e — 5, and train the model for 50 epochs.

Baseline methods. Since there is no existing baseline method to compare with under our setting,
we implement four methods for comparison, namely: Random where the model is randomly initial-
ized, ERM where only labeled data is used to minimize the empirical risk, EntMin (Grandvalet &
Bengio, 2004) which minimize the entropy of unlabeled data meanwhile conduct ERM, SSL which
conducts self-supervised learning using Gaussian noise perturbation on the input, and MoCo He
et al. (2020) which updates model parameters with ensembling and meanwhile conducts contrastive
learning. Note that in the semi-supervised case, MoCo is employed with EntMin. Moreover, we
use a pre-trained encoder as an upper-limit baseline “aligned”. Next, we carefully compare the
performance of our COX to these baseline methods.

4.2 PERFORMANCE COMPARISON

For performance comparisons, we conduct classification and cross-modal retrieval to validate the
proposed COX. There are seven modalities are considered, namely RGB image, language, tactile,
thermal, depth, audio, and video which are simplified as RGB, Lan, Tac, The, Dep, Aud, and Vid, re-
spectively. For each column, we choose one modality as OOM data, the rest modalities are selected
IM data. For the retrieval task, we report the recall rate in both top 1 (R@1) and top 5 (R@5). The
results are shown in Tables 2 and 3. We can see that the proposed COX clearly shows the best per-
formance in both scenarios. Specifically, COX can achieve more than 5% performance improvement
for most of the OOM setting, which justifies that leveraging the knowledge from IM perceptors can
indeed help OOM generalization compared to using OOM data alone. Moreover, even though the
performance is relatively limited compared to the fully pre-trained baseline under the unsupervised
case, considering it is an extremely challenging setting, we can still largely improve the performance
for over 10% compared to the Random baseline, which demonstrates that the unsupervised OOM
generalization is indeed learnable further leads to a novel research direction for improving the gen-
eralization performance. Additionally, note that the performance of COX is affected by the quality
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Table 3: Cross-modal retrieval performance comparison of different methods across multiple
datasets with different OOM modalities.

\ MSR-VTT \ MOSEI
Setting IM Perceptor Method ‘ Aud ‘ Lan ‘ Vid ‘ Aud ‘ Lan ‘ Vid
| R@1 R@5 | R@1 R@5 | R@1 R@5 | R@1 R@5 | R@1 R@5 | R@1 R@5
Random | 54 251 | 50 254 | 54 242 | 143 425 | 144 428 | 141 421
ERM | 156 303 | 161 352 | 185 382 | 280 453 | 293 47.1 | 334 482
EntMin | 185 324 | 192 385 | 21.0 394 | 296 467 | 320 487 | 354 505
- ImageBind - TECOX | 23.3 358 | 234 390 | 265 488 | 324 480 | 338 504 | 388 537
g Aligned | | | | ‘ |
g Random | 52 243 | 54 251 | 50 256 | 135 431 | 142 427 | 146 419
2 ERM | 163 311 | 165 362 | 187 379 | 273 455 | 284 476 | 334 493
4 EntMin | 19.6 334 | 198 386 | 224 379 | 302 455 | 33.5 490 | 360 497
9 .
#  LanguageBind BECo 252 36,0 | 240 40.0 | 287  49.5 | 346 498 | 346 502 | 39.2 554
Aligned | | | | | |
Random | 54 25.1 | 50 254 | 54 242 | 143 425 | 144 428 | 141 421
SSL | 89 284 | 93 281 | 101 295 | 174 488 | 162 452 | 160 450
ImageBind  COX | 135 30.4 | 165 324 | 152 348 | 208 537 | 187 467 | 182 489
% Aligned | \ \ \ \ \
£ Random | 52 243 | 54 251 | 50 256 | 135 431 | 142 427 | 146 419
& SSL | 92 289 | 11.0 288 | 103 287 | 180 489 | 184 450 | 178 456
1]
=
S LanguageBind  COX | 148 3L1 | 18.4 344 | 154 350 | 231 528 | 19.4 472 | 204 499
Aligned | \ \ \ | |

of IM perceptors, as using LanguageBind shows relatively higher performance compared to using
ImageBind. Thus, it would be potentially helpful to leverage sophisticated IM perceptors to benefit
the generalization performance.

4.3 EMPIRICAL ANALYSIS

To provide an intuitive justification for the proposed method, here we conduct empirical analyses
using the MSR-VTT dataset on various OOM scenarios and modalities.

OOM Generalization to Audio

V2A MMD
T2A MMD

OOM generalization to Video

A2V MMD
T2V MMD

OOM generalization to Text

A2T MMD
V2T MMD

0.0035
A2V ACC

T2V ACC

V2A ACC
T2A ACC

A2T ACC
V2T ACC

0.0030
0.0025
0.0020
0.0015

0.0010

0.0005

0.0000

1 13 1 1 13 135 7 9 1113151719 21 23 25 27 29 31 33

3 7 3 3 7 S
Training Epoch Training Epoch Training Epoch

Figure 5: Connection effect on maximum mean discrepancy and accuracy across modalities.

Connection mitigates modality gap. To understand the performance of our VIB-based connec-
tion learning, here we show its effect on generalization out-of-modal. Specifically, during connec-
tion training, we compute the maximum mean discrepancy (MMD) between the mapping of each
IM data and the OOM data. Meanwhile, we evenly select 6 points during the training and extract
the IM mappings which are used to learn a classification head as the optimal classifier. Based on our
theoretical result, we apply the classifiers to OOM data and compute their accuracies, as shown in
Figure 5. We can see that as training goes on, the MMD between each IM mapping and OOM data
is decreasing and the corresponding accuracy is increasing, which shows that: 1) our connection can
indeed close the modality gap between their features and 2) as the mappings of IM data getting close
to OOM data, the optimal classifier shows better classification results on OOM data, which benefits
the knowledge transfer from known modalities to unknown ones.

Modality disagreement identifies uncertainty. To understand the effect of modality disagree-
ment, we conduct an analysis under the semi-supervised scenario by training the OOM learner to
use only labeled data for 10 epochs. Then, we leverage the modality disagreement criteria to sepa-
rate OOM data into those with disagreement and agreement and show their prediction accuracies in
Figure 6 (a). We can see that the accuracy for OOM data with disagreement is significantly lower
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than those with agreement, meaning that the prediction uncertainty, i.e., data with low accuracy, is
effectively identified by the proposed modality disagreement.

Modality agreement alleviates

Prediction Accuracy Prediction Accuracy
uncertainty. Further, we con- o Disagreement h Disagreement
duct training by following the * Rareement * Rareement
procedure proposed in Section
3.3 and again show the accu- S [

racies of OOM data with dis-
agreement and agreement in
Figure 6 (b). We can see . 5
that the performance gap be- OOB?;I;Jata
tween the two types of data is
largely mitigated, which justi-
fies the methodology of explor-
ing OOM data using the guid-
ance of modality agreement. As a result, we can achieve almost comparable performance on both
types of data, benefiting the overall generalization performance.

Aud
OOM Data

Figure 6: Prediction accuracy of OOM data with modality dis-
agreement and modalities agreement, respectively. (a) Before ex-
ploration. (b) After exploration.

Ablation study. Additionally, we conduct an abla-  Table 4: Ablation study on various settings.
tion study to justify the effect of our methodology. . . | MSR-VITR@I
Specifically, we consider three ablations: 1) “wio  Setting Ablation IR ——
A . | Aud | Lan | Vid

connection” where we remove the connection and _
directly apply the modality disagreement criteria on . W/oconnection | 87 7.9 103
the original features of IM data and OOM data, 2) Semi  wfo exploration | 164 165 18.8
« S COX 252 241 40.0

w/o exploration” where we only leverage the OOM
data with agreement for training, 3) For unsuper-  ynsup w/o warm-up | 7.4 115 105

: - : « 5 ’ COX 148 184 154
vised scenario, we consider “w/o warm-up” where
we do not conduct the warm-up phase and directly
training the model. The results in Table 4 show that all modules are essential for achieving effective
OOM generalization. Specifically, the connection is vital for the knowledge transduction of IM data
to OOM data, without which the generalization performance is largely degraded. The conclusion
is consistent with the connection analysis where directly applying optimal classifiers across modal-
ities leads to poor accuracy. Moreover, removing exploration also hinders the performance because
the uniqueness of OOM data is largely ignored. Additionally, we find that the warm-up phase is
essential for the unsupervised case. As initialized models have no classification capability, we need
pre-training to form basic feature clusters that are consistent with IM data, further enabling effective
OOM generalization.

Discussion on computational efficiency. Note that we conduct the feature connection mostly on
the feature space, the computational cost of training VIB framework work is quite acceptable. The
main cost is training the OOM learner which is the basic training with cross-entropy loss optimiza-
tion and can be implemented on a single NVIDIA 3090/4090 GPU.

5 CONCLUSION AND LIMITATION

In this paper, we study a novel and promising research direction dubbed Out-of-Modal (OOM) Gen-
eralization which aims to leverage knowledge from existing modalities to generalize to an unknown
modality without instance-level correspondence. We consider two scenarios where there are a few
correspondences and there is no correspondence, i.e., semi-supervised and unsupervised cases, re-
spectively. To tackle these problems, we propose a connect & explore (COX) method which first
learns connections across modalities to extract common knowledge and then explores the unique
knowledge of OOM data based on modality disagreement. Extensive experiments are conducted to
justify the proposed method and intuitive insights are provided to inspire future studies. However,
our research is limited to several aspects which we hope to address in the future. First, although
challenging as it is, the performance is relatively limited compared to fully-aligned models, which
requires more investigations to enhance generalization. Second, our OOM generalization is mostly
conducted within the modalities from the same dataset. In the future, we hope to discover scenarios
where the OOM data is from a different dataset with a large modality gap.

10
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A APPENDIX

A.1 LOWER BOUND OF OUR VIB FRAMEWORK

Recall that we have the following factorization:

p(X', X0,V Y) =p(V,Y[X, XDp(XO1X)P(XT), (16)
with Markov chains V <+ XT <+ X©and X! <+ Y ¢4 X©. Our goal is to maximize the information
redundancy (Liang et al., 2023; Williams & Beer, 2010):

max I(X9; XLY) = 1(x°; x1) — 1(X°; X"|v), (17)
where the first term is lower-bounded by:
I(X9; xH> / dz®da'dvp(2)p(2°| 2 ) p(v|z") log q(z°|v)p(v|aT), (18)

Then, we consider the second term I(X©; X'|Y):

0 I
I(XO;XI|Y):/dxodacldyp(xo,xl,y) logpp(x 2 1Y) (19)

(zOy)p(=y)

O .1
_ d:rod:rldyp IIZO, I‘I, y IOg p(fE , L ay)
/ ( ) p(yla©)

Note that we use the factorization p(x©, 2%, y) = p(y|z")p(x°|2")p(2?), and further ignore the en-
tropy terms®, then we have:

I(X%x"y)< / dz®dz'dyp(y|2")p(z°|2")p(a") log p(y|2")p(z° |2")p(2") —log h(y[z®), (21)

which is based on the positivity of KL divergence between our classifier h(y|z°) and p(y|x©).

~HY)+HY|XHY+HX)+H(XY).  (0)

To this end, we can lower-bound our objective by combining Eqs. 18 and 21:

(X% xLy) > / da®dz"dvp(2")p(a°|")p(v|2") log ¢(° [v)p(v]a") (22)
— / da®da'dyp(y|x")p(z°|2")p(2") log p(y|z")p(z® |2")p(z") +log h(y|z®) = Leon.  (23)

A.2 PROOF OF THEOREM 1

Proof.
Assumption 1 (Relaxed triangle inequality). For the distance function d : ) x ) — R™, there
exists c¢qg > 1 such that Vg1, G2, 93 € Vd(91,92) < ca(d(91,93) + d(J2,U3))-

Assumption 2 (Inverse Lipschitz condition). For the function d, it holds that Vh,
Eld(h(x1,22), h* (21, 22))] < |L(h) — L(h*)|, where h* is the Bayes optimal classifier on both
x1 and zo; and E[d(h(z), h*(x))] < |L(h) — L(h*)|, where h* is the Bayes optimal classifier on x.

Assumption 3 (Classifier optimality). For any classifiers h in comparison to the Bayes’ optimal
classifier h*, there exists constants € > 0 such that |£(h) — L(h*)]? < e.

To bridge ] and h3, we use hj 5 and h* to denote the Bayes’ optimal classifier on both IM data and
all data, respectively. Then, we capture the relationship between the uniqueness of OOM data given
both IM data and the difference in their Bayes’ optimal prediction errors:

|£(hi2) - E(h*)|2 = |EXEY\X{,X§,XO€(}L*(IIDzéaxo)ay) - ]EX{,XéEY\X{,ng(hT(IIMX%)ay)|2

(24)
< |Eyxi,xy,x0 (h* (21,23, 2°),y) — By x1 x3 /(] (21, X3), 9) (25)
< KL(p(ylz}, w5, 2°) || p(y|o], 5)) (26)
< ExKL(p(ylz}, 25, 2°) || p(y|o], #5)) 27)
=I(X°,Y|X], X)), (28)

*We focus on the optimization of p(Y|X©), and p(Y'| X") is given and frozen in our setting.

14
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Then, we first capture the redundancy between one IM data and OOM data given another IM data:
[L(h}) — L(h)]? = “EXEY\X{,Xé,Xog(h*(x{ax127xo)vy) - EX{]EY|X}€(hT($11)ay)|2 (29)

< |]EY|XI X! Xof(h*($117$127 O)»y) - EY\X{E(hT(xDay)P (30)
< KL(p(ylzy, 25, 2°) || p(ylz1)) (1)
< ExKL(p(ylz}, z5, 2°) || p(yl=1)) (32)
=I1(X° X! v|x]). (33)

Further leveraging triangle inequality through the Bayes’ optimal classifier 2* and the inverse Lips-
chitz condition, we have:

Ep(zll,zé,mo)[d(hfa 1(72)] < Ep(mll,zé,zo)[d( 41<7 h*)] + Ep(mll,xé,zo)[d(h*v hI,2)] (34)

<IL(hY) = L) +1L(R") = L7y ) (35)

< I(XO, X3, Y[X) + (X9, VX, X). (36)

Symmetrically, we can have gﬁ % — L(R*)]* < I(XO X{,Y|X§) and further obtain
Ep(a1 ot 20 [d(R3, hT 5)] X1V XD + I(XO Y| X1, X1). Then combining with Eq. 36:
(o} b, 13)] < I(XO, X5, YIXH) + 1(x°, XL Y|xb) +21(XO, vIx), X)) 37)

Finally, based on the decomposition of the task-related mutual information of X©: I(X© Y) =
I(X°, XL y|Xh + 1(x©, x1,v|xd) + 1(x°,Y|X], X)) + [(X©, X], X1,Y), as shown in
Figure 3, we can achieve:

Oé( T?h;) = Ep(zll,zé)[d( T’h;)] SI(XO7Y)_I(Xon{aX;Y)+I(X03Y‘X{7X%)v (38)

O
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